WO2018166055A1 - Avo属***会烃类检测方法及装置、计算机存储介质 - Google Patents

Avo属***会烃类检测方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018166055A1
WO2018166055A1 PCT/CN2017/083552 CN2017083552W WO2018166055A1 WO 2018166055 A1 WO2018166055 A1 WO 2018166055A1 CN 2017083552 W CN2017083552 W CN 2017083552W WO 2018166055 A1 WO2018166055 A1 WO 2018166055A1
Authority
WO
WIPO (PCT)
Prior art keywords
avo
attribute
sampling points
avo attribute
studied
Prior art date
Application number
PCT/CN2017/083552
Other languages
English (en)
French (fr)
Inventor
张光荣
冉崎
肖富森
于豪
马波
喻颐
廖奇
梁瀚
张旋
陈骁
卢晓敏
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to CA3056268A priority Critical patent/CA3056268C/en
Priority to RU2019128521A priority patent/RU2727057C1/ru
Publication of WO2018166055A1 publication Critical patent/WO2018166055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging

Definitions

  • the invention belongs to the field of geophysical exploration, and particularly relates to a method for detecting hydrocarbons of AVO (amplitude varying with offset) based on angular rotation, in particular to a method and device for detecting hydrocarbons of AVO attribute intersection, and computer storage. medium.
  • AVO is the abbreviation of amplitude variation with offset.
  • AVO attribute analysis technology uses the principle of reflection coefficient to change with incident angle. The relationship between seismic reflection amplitude and offset is analyzed on pre-stack gathers.
  • An important technique for identifying lithology and detecting gas content mainly using the AVO characteristic response formed by Poisson's ratio difference to distinguish between reservoir and non-reservoir, and the difference in Poisson's ratio is Due to the difference in lithology or hydrocarbon-bearing properties, various AVO properties such as P-wave impedance reflectivity, S-wave impedance reflectivity, elastic impedance, and fluid factor can be obtained by pre-stack seismic data.
  • the prior art mainly projects AVO attribute pairs, such as intercept and gradient, near-channel superposition and far-channel superposition, P-wave reflectivity and S-wave reflectivity, onto the intersection graph, so that different AVO anomaly classifications are displayed in different intersection graphs.
  • the area according to the prior information, draws the AVO anomaly area from the attribute space to distinguish between the reservoir and the non-reservoir.
  • the present invention provides an AVO attribute intersection hydrocarbon detection method based on angular rotation for utilizing
  • the AVO attribute intersection method better distinguishes between reservoir and non-reservoir.
  • a specific embodiment of the present invention provides a method for detecting an AVO attribute intersection hydrocarbon based on angular rotation, comprising: acquiring drilling data, determining a geological interval to be studied; and performing forward modeling on the geological interval to be studied.
  • AVO attribute data of a plurality of sampling points of the geological layer to be studied Obtaining AVO attribute data of a plurality of sampling points of the geological layer to be studied; obtaining an AVO attribute intersection map according to the AVO attribute data of the plurality of sampling points; and trending all the sampling points in the AVO attribute intersection graph Combining, obtaining a fitted straight line; translating the fitted straight line to obtain a background line passing through the origin; and rotating all the sampling points around the preset coordinate point by using the background line and the vertical line of the background line as a coordinate axis to obtain a rotation
  • the subsequent AVO attribute intersection graph wherein the angle of rotation is the degree of the angle between the background line and the horizontal axis of the AVO attribute intersection graph.
  • the embodiment of the present invention further provides an AVO attribute intersection hydrocarbon detecting device based on an angular rotation, comprising: a first calculating unit, configured to perform forward modeling on the geological layer to be studied, and obtain the geology to be studied AVO attribute data of a plurality of sampling points of the layer segment; a second calculating unit, configured to obtain an AVO attribute intersection map according to the AVO attribute data of the plurality of sampling points; and a third calculating unit, configured to perform the AVO attribute intersection graph All the sampling points are subjected to trend fitting to obtain a fitted straight line; a fourth calculating unit is configured to translate the fitted straight line to obtain a background line passing through the origin; and a fifth calculating unit for using the background line and the The vertical line of the background line is an coordinate axis, and all the sampling points are rotated around the preset coordinate point to obtain a rotated AVO attribute intersection map, wherein the rotation angle is between the background line and the horizontal axis of the AVO attribute intersection diagram The degree of the angle.
  • Embodiments of the present invention also provide a computer storage medium containing computer executed instructions that, when executed by a data processing device, perform an AVO attribute intersection hydrocarbon detection method based on angular rotation.
  • the beneficial effects of the technical solution provided by the embodiments of the present invention are: performing forward modeling of the geological layer to be studied, obtaining AVO attribute data of several sampling points of the geological layer to be studied, obtaining an AVO attribute intersection graph, and rendezvousizing the AVO attribute. All the sampling points in the figure are trend-fitted, and the fitted straight line is obtained. The straight line is fitted and translated, and the background line of the origin is obtained. The background line and its perpendicular line are used as the coordinate axes, and the background is rotated around the preset coordinate points for all sampling points.
  • the degree of the angle between the line and the horizontal axis of the AVO attribute intersection graph is obtained, and the rotated AVO attribute intersection map is obtained, so that different AVO anomaly classifications are enhancedly displayed, which is convenient for visually identifying the abnormal classification of the AVO fluid, and can pass the AVO attribute.
  • Quantitative detection of the range of values for hydrocarbons is obtained.
  • FIG. 1 is a flow chart of a method for detecting an AVO attribute rendezvous hydrocarbon based on angular rotation according to the present invention
  • Figure 2 is a seismic cross-sectional view of an embodiment of the present invention
  • 3a is a front view simulation AVO attribute analysis diagram of a high-production gas well c1 according to an embodiment of the present invention
  • FIG. 3b is a front view simulation AVO attribute analysis diagram of the water well c2 according to the embodiment of the present invention.
  • 4a is a difference diagram of different fluid phase AVO gathers of the high-production gas well A201 provided by the embodiment of the present invention.
  • 4b is a difference diagram of different fluid phase AVO gathers of the well A27 provided by the embodiment of the present invention.
  • FIG. 5a is an AVO sensitive attribute analysis diagram of the intercept attribute P according to the embodiment of the present invention.
  • FIG. 5b is an AVO sensitive attribute analysis diagram of a gradient attribute G according to an embodiment of the present invention.
  • FIG. 5c is an AVO sensitive attribute analysis diagram of a P ⁇ G attribute according to an embodiment of the present invention.
  • FIG. 5d is an AVO sensitive attribute analysis diagram of a P+G attribute provided by an embodiment of the present invention.
  • 5e is an AVO sensitive attribute analysis diagram of a P-G attribute provided by an embodiment of the present invention.
  • FIG. 5f is an AVO sensitive attribute analysis diagram of the (P-G)/(P+G) attribute provided by the embodiment of the present invention.
  • 6a is a schematic view of the AVO attribute coordinate axis before the rotation of the embodiment of the present invention.
  • 6b is a schematic diagram of the AVO attribute coordinate axis after the embodiment of the present invention is rotated;
  • FIG. 7a is a schematic diagram showing the AVO attribute of the gas well A23 after the coordinate axis is rotated according to the embodiment of the present invention.
  • FIG. 7b is a schematic diagram showing the AVO attribute of the well A54 after the coordinate axis rotation according to the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an AVO attribute intersection hydrocarbon detecting device based on an angular rotation according to an embodiment of the present invention.
  • the present embodiment provides a method for detecting hydrocarbons based on angular rotation and amplitude variation with offset variation AVO. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Obtain drilling data and determine the geological interval to be studied.
  • the geological interval to be studied includes water and gas layers.
  • the geological interval to be studied is determined, and the joint seismic profile of the geological interval to be studied is obtained, as shown in FIG. 2, wherein the dotted line indicates the bottom of the reservoir, that is, the bottom boundary of the gas layer or the water layer. Due to the complex contact relationship between the top boundary of the geological section to be studied and the overlying surrounding rock stratum, and the burial of the target layer is deep, the topographic seismic reflection characteristics of the geological interval to be studied are diversified (weak peaks or troughs); The bottom boundary reflection of the study geological interval is relatively stable, and the basic performance is trough reflection.
  • the effective gas-bearing reservoir is mainly concentrated in the upper middle part of the geological section to be studied, and usually forms at the bottom of the gas-bearing reservoir.
  • a relatively obvious bright spot reflection the bright spot reflection layer currently explained basically corresponds to the bottom boundary (gas well) or the water bottom boundary (water well) of the gas layer, and based on the above analysis, the bottom boundary of the reservoir is represented by the dotted reflection layer (equivalent to The gas layer or the bottom layer of the water layer is used for AVO type analysis.
  • Step 102 Perform a forward modeling of the geological interval to be studied, and obtain AVO attribute data of several sampling points of the geological interval to be studied.
  • Amplitude Variation with Offset AVO attribute analysis technique uses the principle that the reflection coefficient changes with the incident angle. The relationship between the amplitude of the seismic reflection and the offset is analyzed on the pre-stack gathers to identify the lithology. And an important technique for detecting gas content. It mainly uses the AVO characteristic response formed by the Poisson's ratio difference to distinguish between reservoir and non-reservoir, and the difference of Poisson's ratio is caused by lithology or oil-bearing property.
  • a variety of AVO properties such as P-wave impedance reflectivity, S-wave impedance reflectivity, elastic impedance, and fluid factor can be obtained by pre-stack seismic data.
  • the preferred AVO property can directly reflect the subsurface hydrocarbon-bearing properties.
  • Castagna et al. proposed the use of traditional AVO rendezvous analysis techniques to reveal AVO attribute anomalies. Since its introduction, this technology has been continuously developed and widely used in oil and gas exploration, especially in natural gas exploration.
  • R PP is a longitudinal wave reflection system
  • R PS is a reflection coefficient of a transverse wave
  • T PP is a transmission coefficient of a longitudinal wave
  • T PS is a transmission coefficient of a transverse wave
  • ⁇ 1 is a density of a medium at a reflection interface
  • ⁇ 2 is a reflection interface The density of the lower medium.
  • the AVO attribute technique uses the linear approximation equation of the Zoeppritz equation.
  • the incident angle is less than 30°
  • the relationship between the longitudinal wave reflection coefficient and the incident angle can be approximated by the following formula:
  • P is the reflection amplitude of the longitudinal wave at approximately zero offset, also known as the AVO intercept, the magnitude of which depends on the difference in longitudinal wave impedance between the upper and lower layers (the value of P from the high impedance to the low impedance interface is positive, and vice versa Negative);
  • G is the gradient of the amplitude of the longitudinal wave reflection with the angle of incidence, also known as the slope of the AVO, depending on the Poisson's ratio (positive when the amplitude increases as the angle of incidence increases, and vice versa);
  • is the angle of incidence .
  • the AVO attribute analysis of the forward modeling of the gas layer and the water layer is performed on the c1 well and the c2 well, as shown in Fig. 3a and Fig. 3b, and the forward modeling by the c1 well and the c2 well indicates that the gas is contained.
  • the AVO law of the reservoir shows that the amplitude decreases with the change of the offset, while the amplitude of the water layer does not change significantly with the offset.
  • the values of the intercept attribute P and the gradient attribute G can be determined by the relationship between the amplitude and the incident angle.
  • Step 103 Obtain an AVO attribute intersection graph according to AVO attribute data of a plurality of sampling points.
  • the variation law of AVO property is obtained, as shown in Fig. 4a and Fig. 4b, that is, the amplitude of the high-production gas well decreases with the increase of the offset, and the amplitude of the well is biased. There is basically no change in the increase in the distance.
  • the sensitivity analysis of the AVO attribute data is carried out to obtain the AVO sensitive attribute analysis graph.
  • the AVO attribute data of several sampling points are compared to obtain the intercept attribute P and the most obvious characteristic of the AVO attribute.
  • Table 1 is a list of AVO attribute data for different wells.
  • Step 104 Perform trend matching on all sampling points in the AVO attribute intersection graph to obtain a fitted straight line.
  • trend fitting is performed on all sampling points in the P and G attribute intersection graphs to obtain a fitted straight line characterized by P and G attributes.
  • Step 105 Pan the fitted straight line to obtain the background line of the origin.
  • Step 106 Rotating all the sampling points around the preset coordinate point with the background line and the vertical line of the background line as coordinate axes, and obtaining a rotated AVO attribute intersection diagram, wherein the rotation angle is the background line and The degree of the angle between the horizontal axes of the AVO attribute intersection graph.
  • the degree of the angle between the background line and the horizontal axis of the AVO attribute intersection map is less than 180 degrees.
  • x 0 (x-rx 0 )cos ⁇ -(y-ry 0 )sin ⁇ +rx 0
  • y 0 (x-rx 0 )cos ⁇ -(y-ry 0 )sin ⁇ +ry 0
  • is the angle of rotation
  • the new coordinate point is expressed as:
  • x 0 (xcos ⁇ +ysin ⁇ ) n
  • n is the amplification factor
  • is the rotation angle
  • P is the intercept before rotation
  • G is the gradient before rotation
  • P 0 is the intercept after rotation
  • G 0 is the gradient after rotation.
  • the rotation diagram of the AVO attribute coordinate axis is shown in FIG. 6a and FIG. 6b.
  • the wells of different fluid types are based on the distribution area of the PG intersection diagram, and the background line and The vertical line is the coordinate axis, and the degree ⁇ of the angle between the rotation of the background line and the horizontal axis of the AVO attribute intersection diagram of all the sampling points around the preset coordinate point is rotated, so that the different AVO anomaly classification after the rotation is enhanced and displayed, which is convenient and intuitive.
  • the abnormal classification of AVO fluids is identified, and the range of values of hydrocarbons can be quantitatively determined by the value of AVO attributes.
  • the rotated AVO attribute data is substituted for verification.
  • Fig. 7a and Fig. 7b the AVO high value below the bottom boundary of the gas reservoir of the A23 well is shown. It is obviously obvious, and it is confirmed that A23 is an industrial gas well; the bottom boundary of the water-bearing reservoir shows a low-value anomaly in the A54 well, and it is confirmed that A54 is a well.
  • the rotating AVO attribute intersection hydrocarbon detection method can more clearly and more specifically highlight the AVO.
  • the property is abnormal and intuitively identifies the distribution of fluid anomalies on the profile.
  • FIG. 8 is a schematic structural diagram of an AVO attribute rendezvous hydrocarbon detecting device based on an angular rotation according to an embodiment of the present invention.
  • the device includes: a wave generator 10, a first calculating unit 20, The second calculation unit 30, the third calculation unit 40, and the fifth calculation unit 60.
  • the wave generator 10 is configured to acquire drilling data and determine a geological interval to be studied;
  • the first calculating unit 20 is configured to perform forward modeling on the geological interval to be studied, and obtain a plurality of samples of the geological interval to be studied.
  • the second calculating unit 30 is configured to obtain an AVO attribute intersection map according to the AVO attribute data of the several sampling points; and the third calculating unit 40 is configured to perform all the sampling points in the AVO attribute intersection graph.
  • the trend is fitted to obtain a fitted straight line;
  • the fourth calculating unit 50 is configured to translate the fitted straight line to obtain a background line passing through the origin;
  • the fifth calculating unit 60 is configured to use the background line and the vertical line of the background line
  • all the sampling points are rotated around the preset coordinate point to obtain a rotated AVO attribute intersection graph, wherein the angle of rotation is the degree of the angle between the background line and the horizontal axis of the AVO attribute intersection graph.
  • Embodiments of the present invention also provide a computer storage medium containing computer-executable instructions that, when executed by a data processing device, perform all or part of the following steps:
  • Step 101 Obtain drilling data and determine the geological interval to be studied.
  • Step 102 Perform a forward modeling of the geological interval to be studied, and obtain AVO attribute data of several sampling points of the geological interval to be studied.
  • Step 103 Obtain an AVO attribute intersection graph according to AVO attribute data of a plurality of sampling points.
  • Step 104 Perform trend matching on all sampling points in the AVO attribute intersection graph to obtain a fitted straight line.
  • Step 105 Pan the fitted straight line to obtain the background line of the origin.
  • Step 106 Rotating all the sampling points around the preset coordinate point with the background line and the vertical line of the background line as coordinate axes, and obtaining a rotated AVO attribute intersection diagram, wherein the rotation angle is the background line and The degree of the angle between the horizontal axes of the AVO attribute intersection graph.
  • the degree of the angle between the angles is obtained, and the rotated AVO attribute intersection map is obtained, so that different AVO anomaly classifications are enhanced and displayed, which is convenient for visually identifying the abnormal classification of AVO fluids, and quantitatively detecting the range of hydrocarbon values by AVO attributes.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于角度旋转的AVO属***会烃类检测方法,包括步骤:对待研究地质层段进行正演模拟,得到待研究地质层段的若干采样点的AVO属性数据(102);根据若干采样点的AVO属性数据,得到AVO属***会图(103);对AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线(104);平移拟合直线,得到过原点的背景线(105);以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图(106),使得不同AVO异常分类得到加强显示。还提供一种基于角度旋转的AVO属***会烃类检测装置和计算机存储介质。

Description

AVO属***会烃类检测方法及装置、计算机存储介质
优先权声明
本申请要求2017年03月15日递交的、申请号为CN201710154281.X、发明名称为“一种基于角度旋转的AVO属***会烃类检测方法”的中国发明专利的优先权,该发明专利的所有内容在此全部引入。
技术领域
本发明属于地球物理勘探领域,特别涉及一种基于角度旋转的AVO(振幅随偏移距变化)属***会烃类检测方法,具体来说就是一种AVO属***会烃类检测方法及装置、计算机存储介质。
背景技术
AVO是振幅随偏移距变化(Amplitude Variation with Offset)的英文缩写,AVO属性分析技术是利用反射系数随入射角变化的原理,在叠前道集上分析地震反射振幅随偏移距变化的关系,用以识别岩性及检测含气性的一种重要技术,主要利用泊松比差异所形成的AVO特征响应来区分储层与非储层,而这种泊松比的差异,则是由岩性或含油气性不同造成的,通过叠前地震资料可以得到P波阻抗反射率、S波阻抗反射率、弹性阻抗、流体因子等多种AVO属性。如何优选出能够直接反映地下含油气性的检测方法一直是研究的热点和难点。Castagna等人提出了利用传统AVO交会分析技术来揭示AVO属性异常,该技术自提出以来,在油气勘探中不断发展并广泛应用,尤其是在天然气勘探中发挥了重要作用。
现有技术主要是将AVO属性对,如截距和梯度、近道叠加和远道叠加、P波反射率和S波反射率等参数投影到交会图上,使不同AVO异常分类显示在交会图的不同区域,根据先验信息从属性空间中划出AVO异常区,区分储层与非储层。
在实现本发明的过程中,本发明人发现现有技术中至少存在以下问题:
在实际资料应用中,特别是在碳酸盐储层中,P和G属性的交会经常会出现AVO流体异常分布范围较大、异常区与非异常区重叠、流体异常不明显等现象,导致AVO类型划分存在多解性,利用传统的AVO属***会方法难以区分AVO属性异常。
发明内容
有鉴于此,本发明提供一种基于角度旋转的AVO属***会烃类检测方法,用于利用 AVO属***会方法更好地区分储层与非储层。
具体而言,本发明的具体实施方式提供一种基于角度旋转的AVO属***会烃类检测方法,包括:获取钻井资料,确定待研究地质层段;对所述待研究地质层段进行正演模拟,得到所述待研究地质层段的若干采样点的AVO属性数据;根据所述若干采样点的AVO属性数据,得到AVO属***会图;对所述AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线;平移所述拟合直线,得到过原点的背景线;以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
本发明的具体实施方式还提供一种基于角度旋转的AVO属***会烃类检测装置,包括:第一计算单元,用于对所述待研究地质层段进行正演模拟,得到所述待研究地质层段的若干采样点的AVO属性数据;第二计算单元,用于根据所述若干采样点的AVO属性数据,得到AVO属***会图;第三计算单元,用于对所述AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线;第四计算单元,用于平移所述拟合直线,得到过原点的背景线;第五计算单元,用于以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
本发明的具体实施方式还提供一种包含有计算机执行指令的计算机存储介质,所述计算机执行指令被数据处理设备执行时,所述数据处理设备执行基于角度旋转的AVO属***会烃类检测方法。
本发明实施例提供的技术方案的有益效果为:通过对待研究地质层段进行正演模拟,获得待研究地质层段的若干采样点的AVO属性数据,得到AVO属***会图,并对AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线,平移拟合直线,得到过原点的背景线,以背景线及其垂线为坐标轴,对所有采样点绕预设坐标点旋转背景线与AVO属***会图的横轴之间夹角的度数,得到旋转后的AVO属***会图,使得不同AVO异常分类得到加强显示,便于直观地识别出AVO流体的异常分类,并可以通过AVO属性定量检测烃类的取值范围。
应了解的是,上述一般描述及以下具体实施方式仅为示例性及阐释性的,其并不能限制本发明所欲主张的范围。
附图说明
下面的所附附图是本发明的说明书的一部分,其绘示了本发明的示例实施例,所附附图与说明书的描述一起用来说明本发明的原理。
图1是本发明一种基于角度旋转的AVO属***会烃类检测方法的方法流程图;
图2是本发明实施例的地震剖面图;
图3a是本发明实施例提供的高产气井c1的正演模拟AVO属性分析图;
图3b是本发明实施例提供的水井c2的正演模拟AVO属性分析图;
图4a是本发明实施例提供的高产气井A201的不同流体相AVO道集差异图;
图4b是本发明实施例提供的水井A27的不同流体相AVO道集差异图;
图5a是本发明实施例提供的截距属性P的AVO敏感属性分析图;
图5b是本发明实施例提供的梯度属性G的AVO敏感属性分析图;
图5c是本发明实施例提供的P×G属性的AVO敏感属性分析图;
图5d是本发明实施例提供的P+G属性的AVO敏感属性分析图;
图5e是本发明实施例提供的P-G属性的AVO敏感属性分析图;
图5f是本发明实施例提供的(P-G)/(P+G)属性的AVO敏感属性分析图;
图6a是本发明实施例的AVO属性坐标轴旋转前的示意图;
图6b是本发明实施例的AVO属性坐标轴旋转后的示意图;
图7a是本发明实施例提供的坐标轴旋转后的气井A23的AVO属性示意图;
图7b是本发明实施例提供的坐标轴旋转后的水井A54的AVO属性示意图;
图8是本发明具体实施例提供的一种基于角度旋转的AVO属***会烃类检测装置的示意结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。
为使本发明的技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本实施例提供了一种基于角度旋转的振幅随偏移距变化AVO属***会烃类检测方法,如图1所示,该方法包括如下步骤:
步骤101:获取钻井资料,确定待研究地质层段。
具体地,在地层埋藏较深、地震分辨率较低、或者储层顶底边界与围岩的接触关系较复杂的情况下,烃类检测的难度会增大。当获取了钻井资料之后,确定待研究地质层段,其 中,待研究地质层段包括水层和气层等。
在本实施例中,确定待研究地质层段,并获取待研究地质层段的联井地震剖面图,如图2所示,其中,虚线表示储层底即气层或水层的底界。由于待研究地质层段的顶界与上覆围岩地层之间接触关系复杂,且目的层埋藏较深,待研究地质层段的顶界地震反射特征表现多元化(弱峰或波谷);待研究地质层段的底界反射相对稳定,基本表现为波谷反射;从已钻井分析来看,有效含气储层主要集中在待研究地质层段的中上部,在含气储层底部通常会形成一个比较明显的亮点反射,目前解释的亮点反射层位基本对应气层的底界(气井)或水层底界(水井),基于以上分析确定以虚线反射层位表示储层底界(相当于气层或水层底界)来进行AVO类型分析。
步骤102:对待研究地质层段进行正演模拟,得到待研究地质层段的若干采样点的AVO属性数据。
振幅随偏移距变化(Amplitude Variation with Offset)AVO属性分析技术是利用反射系数随入射角变化的原理,在叠前道集上分析地震反射振幅随偏移距变化的关系,用以识别岩性及检测含气性的一种重要技术。它主要利用泊松比差异所形成的AVO特征响应,来区分储层与非储层,而这种泊松比的差异,则是由岩性或含油气性不同造成的。
通过叠前地震资料可以得到P波阻抗反射率、S波阻抗反射率、弹性阻抗、流体因子等多种AVO属性,优选出的AVO属性能够直接反映地下含油气性。Castagna等人提出了利用传统AVO交会分析技术来揭示AVO属性异常,该技术自提出以来,在油气勘探中不断发展并广泛应用,尤其是在天然气勘探中发挥了重要作用。
AVO技术的理论基础是Zoeppritz方程:
Figure PCTCN2017083552-appb-000001
其中,RPP为纵波的反射***;RPS为横波的反射系数;TPP为纵波的透射系数;TPS为横波的透射系数;ρ1为反射界面上介质的密度;、ρ2为反射界面下介质的密度。此式揭示了反射系数(影响反射波振幅的主要因素)与入射角及界面两侧介质的物理性质之间的关系。
AVO属性技术采用Zoeppritz方程的线性近似方程,即当入射角小于30°时,纵波反射系数与入射角的关系可以用下式来近似表达:
RP(θ)≈P+Gsin2θ
其中,P为近似零偏移距下纵波的反射振幅,也称AVO截距,其大小取决于上下层之间的纵波阻抗差异(从高阻抗到低阻抗界面上的P值为正,反之为负);G为纵波反射振幅随入射角的变化梯度,也称AVO斜率,取决于泊松比的变化(当振幅随入射角增加而加大时为正,反之为负);θ为入射角度。
在AVO属性分析技术的基础上,采用正演模型研究进行烃类检测。对待研究地质层段上的井,在用合成地震记录进行层位精确标定的基础上,研究正演模拟的结果记录中含油气储层AVO属性参数的特征,以及含油气储层与非含油气储层在各项特征上的差异和变化,指导利用实际地震道集的AVO反演结果进行可靠的储层含气性解释。其中,AVO属性包括:截距属性P、梯度属性G、P×G属性、P+G属性和P-G属性。
在本实施例中对c1井和c2井进行了代表气层与水层的正演模拟的AVO属性分析,如图3a、图3b所示,通过c1井和c2井正演模拟表明,含气储层AVO规律为振幅随偏移距变化呈减少趋势,而水层振幅随偏移距变化不明显。同时,根据图3a、图3b可知,可通过振幅与入射角的关系图来确定截距属性P和梯度属性G的取值。
步骤103:根据若干采样点的AVO属性数据,得到AVO属***会图。
本步骤中,首先,通过分析不同流体相的AVO道集差异,得到AVO属性变化规律,如图4a、图4b所示,即高产气井的振幅随偏移距增加而减少,水井的振幅随偏移距的增加基本无变化。其次,对AVO属性数据进行敏感性分析,得到AVO敏感属性分析图,如图5a~图5f所示,将若干采样点的AVO属性数据进行对比,获取表征AVO属性最明显的截距属性P和梯度属性G,得到P和G属***会图。表1为不同井的AVO属性数据列表。
表1
井名 P G PXG P+G P-G (P-G)/(P+G) 备注
A8 0.0957 -0.0361 -0.0035 0.0596 0.1318 2.2114 气井
A9 0.1039 -0.0701 -0.0073 0.0338 0.174 5.1479 气井
A203 0.0303 -0.0051 -0.0002 0.0252 0.0354 1.4048 水井
A27 0.0292 -0.0084 -0.0002 0.0208 0.0376 1.8077 水井
A204 0.1078 -0.0355 -0.0038 0.0723 0.1433 1.982 气水同产井
A12 0.0982 -0.0487 -0.0048 0.0495 0.1469 2.9677 气井
A13 0.0828 -0.0481 -0.004 0.0347 0.1309 3.7723 气井
A17 0.0951 -0.0231 -0.0022 0.072 0.1182 1.6417 气井
A11 0.0637 -0.025 -0.0016 0.0387 0.0887 2.292 气井
步骤104:对AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线。
具体地,对P和G属***会图中的所有采样点进行趋势拟合,得到P和G属性表征的拟合直线。
步骤105:平移拟合直线,得到过原点的背景线。
步骤106:以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
具体地,背景线与AVO属***会图的横轴之间夹角的度数小于180°。
假设在平面中内,绕预设坐标点(rx0,ry0)逆时针旋转拟合直线与AVO属***会图的横轴之间夹角的度数α后,任意坐标点(x,y)的坐标发生变化,新坐标点设为(x0,y0),表示为:
x0=(x-rx0)cosα-(y-ry0)sinα+rx0
y0=(x-rx0)cosα-(y-ry0)sinα+ry0
式中:α为旋转角度。
当预设坐标点为原点,新的坐标点表示为:
x0=(xcosα+ysinα)n
y0=(ycosα+xsinα)n
式中:n为放大系数;α为旋转角度。
在P和G属***会图中,上式可以表示为:
P0=(Pcosα+Gsinα)n
G0=(Gcosα+Psinα)n
式中:P是旋转前的截距;G是旋转前的梯度;P0是旋转后的截距;G0是旋转后的梯度。
在本实施例中,AVO属性坐标轴的旋转示意图如图6a、图6b所示,在实测井资料分析统计不同流体类型的井在P-G交会图的分布区域的基础上,以背景线及其垂线为坐标轴,对所有采样点围绕预设坐标点旋转背景线与AVO属***会图的横轴之间夹角的度数α旋转,使得旋转后的不同AVO异常分类得到加强显示,便于直观地识别出AVO流体的异常分类,并可以通过AVO属性的取值定量检测烃类的取值范围。
为了验证旋转后AVO属***会可以更有利于烃类的检测,将旋转后的AVO属性数据代入进行验证,如图7a、图7b所示,过A23井的含气储层底界下方AVO高值异常明显,且经证实A23为工业气井;过A54井可见含水储层底界表现为低值异常,且经证实A54为水井。由图7a、图7b可知,旋转AVO属***会烃类检测方法可以更明确更有针对性的突出AVO 属性异常,直观地在剖面上识别出流体异常的分布。
图8是本发明具体实施例提供的一种基于角度旋转的AVO属***会烃类检测装置的示意结构图,如图8所示,所述装置包括:波发生器10、第一计算单元20、第二计算单元30、第三计算单元40和第五计算单元60。其中,波发生器10用于获取钻井资料,确定待研究地质层段;第一计算单元20用于对所述待研究地质层段进行正演模拟,得到所述待研究地质层段的若干采样点的AVO属性数据;第二计算单元30用于根据所述若干采样点的AVO属性数据,得到AVO属***会图;第三计算单元40用于对所述AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线;第四计算单元50用于平移所述拟合直线,得到过原点的背景线;第五计算单元60用于以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
本发明的具体实施方式还提供一种包含有计算机执行指令的计算机存储介质,所述计算机执行指令被数据处理设备执行时,所述数据处理设备执行以下步骤的全部或部分:
步骤101:获取钻井资料,确定待研究地质层段。
步骤102:对待研究地质层段进行正演模拟,得到待研究地质层段的若干采样点的AVO属性数据。
步骤103:根据若干采样点的AVO属性数据,得到AVO属***会图。
步骤104:对AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线。
步骤105:平移拟合直线,得到过原点的背景线。
步骤106:以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
本实施例通过对待研究地质层段进行正演模拟,获得待研究地质层段的若干采样点的AVO属性数据,得到AVO属***会图,并对AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线,平移拟合直线,得到过原点的背景线,以背景线及其垂线为坐标轴,对所有采样点绕预设坐标点旋转背景线与AVO属***会图的横轴之间夹角的度数,得到旋转后的AVO属***会图,使得不同AVO异常分类得到加强显示,便于直观地识别出AVO流体的异常分类,并可以通过AVO属性定量检测烃类的取值范围。
以上所述仅是为了便于本领域的技术人员理解本发明的技术方案,并不用以限制本发明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种基于角度旋转的振幅随偏移距变化AVO属***会烃类检测方法,其特征在于,所述方法包括:
    对所述待研究地质层段进行正演模拟,得到所述待研究地质层段的若干采样点的AVO属性数据;
    根据所述若干采样点的AVO属性数据,得到AVO属***会图;
    对所述AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线;
    平移所述拟合直线,得到过原点的背景线;
    以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
  2. 根据权利要求1所述的方法,其特征在于,对所述待研究地质层段进行正演模拟,得到所述待研究地质层段的若干采样点的AVO属性数据的步骤之前,该方法还包括:
    获取钻井资料,确定待研究地质层段。
  3. 根据权利要求1所述的方法,其特征在于,所述AVO属性数据包括:截距属性P、梯度属性G、P×G属性、P+G属性和P-G属性。
  4. 根据权利要求3所述的方法,其特征在于,根据所述若干采样点的AVO属性数据,得到AVO属***会图的步骤,具体包括:
    将所述若干采样点的AVO属性数据进行对比,获取表征AVO属性最明显的截距属性P和梯度属性G,得到P和G属***会图。
  5. 根据权利要求4所述的方法,其特征在于,对所述AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线的步骤,具体包括:
    对所述P和G属***会图中的所有采样点进行趋势拟合,得到P和G属性表征的拟合直线。
  6. 根据权利要求1所述的方法,其特征在于,所述待研究地质层段包括水层和气层。
  7. 根据权利要求1所述的方法,其特征在于,所述度数小于180°。
  8. 根据权利要求1所述的方法,其特征在于,以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点的步骤,具体包括:
    假设在平面中,任意坐标点(x,y),绕预设坐标点(rx0,ry0)逆时针旋转所述拟合直线与所述AVO属***会图的横轴之间夹角的度数α后,形成新的坐标点设为(x0,y0),表示为:
    x0=(x-rx0)cosα-(y-ry0)sinα+rx0
    y0=(x-rx0)cosα-(y-ry0)sinα+ry0
    其中,α为旋转角度。
  9. 根据权利要求8所述的方法,其特征在于,所述预设坐标点(rx0,ry0)为原点,所述新的坐标点(x0,y0)表示为:
    x0=(x cosα+y sinα)n
    y0=(y cosα+x sinα)n
    式中:n为放大系数;α为旋转角度。
  10. 一种基于角度旋转的振幅随偏移距变化AVO属***会烃类检测装置,其特征在于,所述装置包括:
    第一计算单元,用于对所述待研究地质层段进行正演模拟,得到所述待研究地质层段的若干采样点的AVO属性数据;
    第二计算单元,用于根据所述若干采样点的AVO属性数据,得到AVO属***会图;
    第三计算单元,用于对所述AVO属***会图中的所有采样点进行趋势拟合,得到拟合直线;
    第四计算单元,用于平移所述拟合直线,得到过原点的背景线;
    第五计算单元,用于以所述背景线及所述背景线的垂线为坐标轴,绕预设坐标点旋转所有采样点,得到旋转后的AVO属***会图,其中,旋转的角度为所述背景线与所述AVO属***会图的横轴之间夹角的度数。
  11. 根据权利要求10所述的装置,其特征在于,该装置还包括:
    波发生器,用于获取钻井资料,确定待研究地质层段。
  12. 一种包含有计算机执行指令的计算机存储介质,其特征在于,所述计算机执行指令被数据处理设备执行时,所述数据处理设备执行权利要求1~9任一所述的方法。
PCT/CN2017/083552 2017-03-15 2017-05-09 Avo属***会烃类检测方法及装置、计算机存储介质 WO2018166055A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3056268A CA3056268C (en) 2017-03-15 2017-05-09 Method for detecting hydrocarbons of avo attribute crossplot, and computer storage medium
RU2019128521A RU2727057C1 (ru) 2017-03-15 2017-05-09 Способ и устройство для обнаружения углеводородов посредством графика зависимости avo-атрибутов и компьютерный носитель для хранения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710154281.X 2017-03-15
CN201710154281.XA CN106896411B (zh) 2017-03-15 2017-03-15 一种基于角度旋转的avo属***会烃类检测方法

Publications (1)

Publication Number Publication Date
WO2018166055A1 true WO2018166055A1 (zh) 2018-09-20

Family

ID=59193582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083552 WO2018166055A1 (zh) 2017-03-15 2017-05-09 Avo属***会烃类检测方法及装置、计算机存储介质

Country Status (4)

Country Link
CN (1) CN106896411B (zh)
CA (1) CA3056268C (zh)
RU (1) RU2727057C1 (zh)
WO (1) WO2018166055A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219531A (zh) * 2020-02-05 2021-08-06 中国石油天然气集团有限公司 致密砂岩气水分布的识别方法及装置
CN113495293A (zh) * 2020-04-01 2021-10-12 中国石油天然气股份有限公司 油藏流体预测方法及装置
CN113740911A (zh) * 2021-09-06 2021-12-03 北京海润联创石油科技有限公司 一种基于坐标旋转波阻抗反演提高储层预测精度的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594328B (zh) * 2018-04-25 2020-09-04 北京金海能达科技有限公司 一种识别致密岩甜点的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095677B2 (en) * 2003-05-27 2006-08-22 Paradigm Geophysical Crossplot analysis of A.V.O. anomolies in seismic surveying
CN102455438A (zh) * 2010-10-26 2012-05-16 中国石油化工股份有限公司 碳酸盐岩缝洞型储层体积预测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343245B2 (en) * 2005-06-09 2008-03-11 Eseis, Inc. Method of processing seismic data to extract and portray AVO information
WO2009154851A1 (en) * 2008-06-18 2009-12-23 Exxonmobil Upstream Research Company Seismic fluid prediction via expanded avo anomalies
CN102053277A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种利用地震资料进行检测储层裂缝发育方向的方法
CN102866426B (zh) * 2012-09-20 2016-01-20 成都晶石石油科技有限公司 一种利用avo大角度道集分析岩体油气信息的方法
US9482771B2 (en) * 2012-11-05 2016-11-01 Fugro Marine Geoservices, Inc. Method of indicating the presence of gas hydrate and shallow gas in deepwater environment
CN105068117B (zh) * 2015-08-25 2016-06-08 中国矿业大学(北京) 用于裂缝性介质的avo反演方法、装置和设备
CN106338768B (zh) * 2016-11-04 2019-01-18 中国石油天然气股份有限公司 一种生成储层预测属性数据的处理方法、装置及***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095677B2 (en) * 2003-05-27 2006-08-22 Paradigm Geophysical Crossplot analysis of A.V.O. anomolies in seismic surveying
CN102455438A (zh) * 2010-10-26 2012-05-16 中国石油化工股份有限公司 碳酸盐岩缝洞型储层体积预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG, RAO ET AL.: "Application of Prestack Simultaneous Inversion in Sandstone Oil Reservoir Prediction", PROGRESS IN GEOPHYSICS, vol. 28, no. 1, 28 February 2013 (2013-02-28), pages 380 - 385, XP055540240 *
XIE, JIGAO ET AL.: "Hydrocarbon Detection by Poisson Impedance", OIL GEOPHYSICAL PROSPECTING, vol. 41, no. 2, 30 April 2013 (2013-04-30), pages 273 - 278 *
ZHU, QIUYING ET AL.: "Application of K-L transform in analysis of AVO crossplot", OIL GEOPHYSICAL PROSPECTING, vol. 41, no. 03, 30 June 2006 (2006-06-30), pages 295 - 302 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219531A (zh) * 2020-02-05 2021-08-06 中国石油天然气集团有限公司 致密砂岩气水分布的识别方法及装置
CN113219531B (zh) * 2020-02-05 2024-05-28 中国石油天然气集团有限公司 致密砂岩气水分布的识别方法及装置
CN113495293A (zh) * 2020-04-01 2021-10-12 中国石油天然气股份有限公司 油藏流体预测方法及装置
CN113495293B (zh) * 2020-04-01 2023-09-26 中国石油天然气股份有限公司 油藏流体预测方法及装置
CN113740911A (zh) * 2021-09-06 2021-12-03 北京海润联创石油科技有限公司 一种基于坐标旋转波阻抗反演提高储层预测精度的方法
CN113740911B (zh) * 2021-09-06 2023-09-26 北京海润联创石油科技有限公司 一种基于坐标旋转波阻抗反演提高储层预测精度的方法

Also Published As

Publication number Publication date
CA3056268A1 (en) 2018-09-20
CN106896411A (zh) 2017-06-27
CN106896411B (zh) 2018-11-16
RU2727057C1 (ru) 2020-07-17
CA3056268C (en) 2022-11-08

Similar Documents

Publication Publication Date Title
Reine et al. Robust prestack Q-determination using surface seismic data: Part 1—Method and synthetic examples
Walsh et al. Silver and Chan revisited
WO2018166055A1 (zh) Avo属***会烃类检测方法及装置、计算机存储介质
Hunt et al. Quantitative estimate of fracture density variations in the Nordegg with azimuthal AVO and curvature: A case study
Qi et al. Volumetric aberrancy to map subtle faults and flexures
AU2013100760A4 (en) A workflow for seismic lithologic characterization
Belayouni et al. Microseismic event location using the first and reflected arrivals
Li et al. Identification of fractured carbonate vuggy reservoirs in the S48 well area using 3D 3C seismic technique: A case history from the Tarim Basin
Crosbie et al. Shear velocity structure from ambient noise and teleseismic surface wave tomography in the cascades around Mount St. Helens
Chopra et al. Understanding the seismic disorder attribute and its applications
Hendrickson Stacked
Khoshnavaz et al. Oriented surface passive seismic location using local slopes
DeAngelo et al. Depth registration of P-wave and C-wave seismic data for shallow marine sediment characterization, Gulf of Mexico
Wang et al. Key issues and strategies for processing complex carbonate reservoir data in China
Li et al. Azimuthal P–P prestack seismic prediction of fractures for superdeep carbonate reservoirs in Northwest China
Zhang et al. Azimuthal anisotropy analysis applied to naturally fractured unconventional reservoirs: A Barnett Shale example
Zhang et al. Time-lapse pre-stack seismic inversion with thin bed resolution for CO2 sequestration from Cranfield, Mississippi
Palmer Non‐uniqueness with refraction inversion–the Mt Bulga shear zone
Salishchev et al. Logging, well testing and microseismic fracture geometry investigations: Mistakes, lessons learnt and challenges
Lynn et al. Azimuthal PP prestack amplitudes in the presence of oil-filled aligned porosity (fracture porosity)
CN108089228B (zh) 一种确定地层岩石特性的解释数据方法和装置
Perez et al. New azimuthal binning for improved delineation of faults and fractures
Yan et al. Fracture detection using scattered waves in the angle domain
Yu et al. Arctangent function‐based third derivative attribute for characterisation of faults
Dvorak et al. Evaluating 4D Overburden Velocity Perturbation for the Shearwater Field via Pre-Stack Time-Shift Inversion.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3056268

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019128521

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 17900305

Country of ref document: EP

Kind code of ref document: A1