WO2018164213A1 - サードレール測定方法及び装置 - Google Patents

サードレール測定方法及び装置 Download PDF

Info

Publication number
WO2018164213A1
WO2018164213A1 PCT/JP2018/008918 JP2018008918W WO2018164213A1 WO 2018164213 A1 WO2018164213 A1 WO 2018164213A1 JP 2018008918 W JP2018008918 W JP 2018008918W WO 2018164213 A1 WO2018164213 A1 WO 2018164213A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
laser range
vehicle
traveling
position data
Prior art date
Application number
PCT/JP2018/008918
Other languages
English (en)
French (fr)
Inventor
勇介 渡部
寛修 深井
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Priority to SG11201908161Q priority Critical patent/SG11201908161QA/en
Priority to CN201880016554.7A priority patent/CN110462335B/zh
Publication of WO2018164213A1 publication Critical patent/WO2018164213A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/30Power rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a third rail measurement method and apparatus. Specifically, one or a plurality of laser range sensors are installed, and the installation state / usage (wear level) of the third rail is measured based on data acquired from each sensor.
  • the third rail is a third power supply rail that is used in one of the power collection methods of electric railways and is laid in parallel with the traveling rail separately from the traveling rail.
  • the electricity collecting shoes attached to the vehicle are rubbed against the third rail to supply electricity to the vehicle.
  • a type that rubs the upper side with respect to the rail is defined as an upper surface contact type third rail
  • a type that rubs the lower surface is defined as a lower surface contact type third rail.
  • the upper surface contact type third rail 1 is installed and laid on the insulator 2 in an upward state, and the protection plate 3 is suspended by an arm metal 4 which is a mounting bracket above it. It has been.
  • the lower surface contact type third rail 5 is suspended from the upper end of the arm metal 6 in a downward state, and its upper surface is covered with a protective plate 7.
  • the arm brackets 4 and 6 are metal fittings that support the third rails 1 and 5, and are installed at regular intervals.
  • the top contact method is mainly used in Japan, and the bottom contact method is mainly used overseas.
  • Patent Document 1 is a method for measuring an upper surface contact type third rail widely used in Japan.
  • the upper part of the upper surface contact type third rail is detected from the upper part of the upper surface of the arm rail using a sensor and installed in the same manner.
  • This is a method of recording the values of a plurality of sensors.
  • the displacement amount can be measured from the value of the sensor orient
  • the lower surface contact type third rail since there is no part of the arm metal jumping out to the upper surface as described above, there is a problem that Patent Document 1 cannot detect (measure) the arm material.
  • the present invention has been made in view of the above prior art, and uses one or a plurality of laser range sensors, and based on data acquired from each sensor, the installation state / use of the bottom contact type third rail It is intended to measure the degree (wear level).
  • a third rail measuring device for solving the above-mentioned problems is obtained by a laser range sensor capable of simultaneously placing a bottom contact type third rail and a traveling rail in a measurement range, and the laser range sensor. And a data processing unit that calculates the position of the third rail based on the traveling rail.
  • a third rail measurement apparatus for solving the above-mentioned problems is the third rail measurement apparatus according to the first aspect, wherein the recording apparatus stores the position data acquired by the laser range sensor, and the laser range sensor acquires the position data. And a data recording unit that records the recorded position data in the recording device.
  • a third rail measuring device for solving the above-mentioned problems is that, in the first aspect, the laser range sensor is a plurality of units, and each of the laser range sensors is attached to a vehicle traveling on the traveling rail.
  • a third rail measurement apparatus for solving the above-described problems is the third rail measurement apparatus according to the third aspect, wherein the vehicle is based on position data respectively acquired by two laser range sensors attached to the vehicle.
  • a vehicle shake correction unit that calculates the inclination of the traveling rail with respect to the vehicle and corrects the position data acquired with respect to the traveling rail to be horizontal with respect to the vehicle based on the inclination. .
  • the third rail measurement method according to claim 5 of the present invention that solves the above-described problem is that the lower surface contact type third rail and the traveling rail are simultaneously placed in the measurement range of the laser range sensor, and the position acquired by the laser range sensor. Based on the data, the position of the third rail relative to the traveling rail is calculated.
  • the third rail measurement method according to claim 6 of the present invention for solving the above-mentioned problems is characterized in that, in claim 5, the position data acquired by the laser range sensor is recorded and stored.
  • the third rail measurement method according to claim 7 of the present invention for solving the above-mentioned problem is that, in claim 5, the laser range sensor is a plurality of sensors, and each of the laser range sensors is attached to a vehicle traveling on the travel rail.
  • a third rail measurement method for solving the above-described problem is the third rail measurement method according to the seventh aspect, wherein the vehicle is based on position data respectively acquired by the two laser range sensors attached to the vehicle. An inclination of the traveling rail with respect to the vehicle is calculated, and the position data acquired with respect to the traveling rail with respect to the vehicle is corrected to be horizontal based on the inclination.
  • the present invention also measures the third rail by the laser range sensor and at the same time the traveling rail, so that the traveling rail (or the vehicle traveling on the traveling rail) can be measured.
  • the third rail position relative to the center) can be calculated. Specifically, it is possible to measure the wear amount of the third rail, the displacement / disengagement of the protective plate (cover), and the displacement / disengagement of the brace.
  • FIG. 7A is a sectional view and FIG. 7B is a front view of the top contact type third rail. 8A is a cross-sectional view and FIG. 8B is a front view of the bottom contact type third rail.
  • FIG. 1 shows a third rail measuring apparatus according to Embodiment 1 of the present invention.
  • the third rail measuring apparatus of the present embodiment is a laser in which a third rail 5, a brace 6, a protective plate 7 and a traveling rail 8 (hereinafter referred to as a structure) are simultaneously measured.
  • a range sensor 10 a recording device 20 that stores position data acquired by the laser range sensor 10, and a data recording unit 30 that records the position data acquired by the laser range sensor 10 in the recording device 20
  • a data processing unit 40 is provided that calculates values corresponding to each measurement item (inspection item) related to the structure.
  • the laser range sensor 10 is a general term for a scanning laser distance sensor. As shown in FIG. 1, an infrared laser beam is emitted from a laser transmitter in the sensor to form a fan shape having an angle ⁇ surrounded by a broken line in the figure. By irradiating the measurement range and receiving the light reflected by the structure with the light receiving sensor, the distance to the structure within the scanning surface of the infrared laser and the angle value indicating the direction of irradiation of the infrared laser are obtained. It is acquired continuously. The acquired position data is polar coordinates that are distance measurement data for each direction.
  • the laser range sensor 10 is installed so as to be parallel to the sleeper direction perpendicular to the direction in which the third rail 5, the protection plate 7 and the traveling rail 8 are laid in order to simultaneously set the structure in the measurement range.
  • the fan-shaped measurement range is a vertical plane having a constant elevation angle and depression angle with respect to the horizontal direction.
  • the laser range sensor 10 is not limited to one as shown in FIG. 1, and there is an advantage that accuracy is improved by averaging the acquired position data as a plurality of units.
  • the value corresponding to each measurement item calculated by the data processing unit 40 is the vertical direction from the height reference V to the third rail 5 with the upper end of the running rail 8 as the height reference V.
  • the third rail height A which is the distance between the height reference V and the protection plate vertical distance B, which is the vertical distance from the height reference V to the protection plate 7, and the side surface of the running rail 8 is the horizontal distance reference H.
  • An arm metal horizontal distance C that is a horizontal distance from H to the arm metal 6, a protection plate horizontal distance D that is a horizontal distance from the horizontal distance reference H to the protection plate 7, and the like.
  • the third rail height A corresponding to each measurement item is a value based on the traveling rail 8.
  • the data processing unit 40 converts polar coordinates formed by angle values representing the distance to the structure and the irradiation direction, which are position data acquired by the laser range sensor 10, into orthogonal coordinates in the horizontal direction and the vertical direction (hereinafter, “ Each inspection item data division ”is calculated, and the third rail height A, the protective plate vertical distance B, the arm metal horizontal distance C, and the protective plate horizontal distance D are calculated as values corresponding to each measurement item (hereinafter, This is called “distance calculation from the reference value”).
  • the data processing unit 40 is already recorded in the recording device 20 by the data recording unit 30 as the position data acquired by the laser range sensor 10. It is also possible to perform the above calculation using the obtained position data.
  • a third rail measurement method by the third rail measurement device having the above configuration will be described with reference to a flowchart shown in FIG.
  • the third rail 5, the arm bracket 6, the protection plate 7 and the traveling rail 8, which are structures are simultaneously placed in the measurement range of the laser range sensor 10, and the position data acquired by the laser range sensor 10 is stored in the data recording unit.
  • the data is recorded and stored in the recording device 20 by 30 (step S1).
  • each inspection item data is divided by the data processing unit 40 with respect to the position data acquired by the laser range sensor 10 (step S2). Subsequently, the distance from the reference value is calculated by the data processing unit 40 based on the data obtained by dividing each inspection item data (step S3).
  • the third rail 5 is measured, and the traveling rail 8 is also measured at the same time.
  • values A, B, C, and D corresponding to each measurement item can be calculated.
  • the values corresponding to each measurement item include the third rail height A, the protective plate vertical distance B, the brace horizontal distance C, and the protective plate horizontal.
  • the distance D can be calculated.
  • the height (wear amount) of the third rail 5, the displacement / disengagement of the protective plate 7, and the displacement / disengagement of the arm bracket 6 can be measured. is there.
  • the presence / absence of the arm metal 6 which is the support point of the third rail 5 can be determined by the presence / absence of the measured value of the “arm metal horizontal distance C”.
  • the traveling rail 8 the third rail 5, and the arm metal 6 are within the measurement range of the laser range sensor 10 and are below the contact surface of the third rail 5, the installation position of the laser range sensor 10 is restricted. There is also an advantage of not. Further, the same effect can be obtained by using the center of a vehicle (not shown) traveling on the traveling rail 8 as a reference instead of the traveling rail 8.
  • the structure of the vehicle to which the laser range sensor 10 is attached is not taken into consideration with respect to the vehicle. There exists an effect that the installation situation of an object can be judged.
  • FIG. 2 shows a third rail measuring apparatus according to the second embodiment of the present invention.
  • the configuration of the first embodiment targets the third rail 5 on one side
  • the present embodiment targets the third rails 5a and 5b on both sides as shown in FIG.
  • the laser range sensor is additionally installed.
  • the third rail measuring device of the present embodiment includes a third rail 5 a, a brace 6 a, a protective plate 7 a, and a traveling rail 8 a (hereinafter referred to as a structure) as a measurement range.
  • the laser range sensor 10a, the third rail 5b, the arm bracket 6b, the protective plate 7b, and the traveling rail 8b (hereinafter referred to as structures) are simultaneously measured in the sleeper direction. On the other hand, they are installed in opposite directions. That is, as shown in FIG. 4, one laser range sensor 10b is additionally installed on the vehicle 9 on the other side rotated 180 degrees in the direction of the sleeper relative to the laser range sensor 10a. .
  • a recording device 20 that stores the position data acquired by the laser range sensors 10a and 10b, and a data recording unit that records the position data acquired by the laser range sensors 10a and 10b in the recording device 20, respectively.
  • a processing unit 40 is provided.
  • the vehicle shake is calculated and corrected from the position data of the traveling rails 8a and 8b respectively acquired by the two laser range sensors 10a and 10b. It is characterized in that a vehicle shake correction unit 50 is added. The rest is the same as in the first embodiment.
  • the traveling rails acquired by the two laser range sensors 10a and 10b are inclined with respect to the vehicle 9.
  • the traveling rails 8a and 8b are not tilted, and the vehicle 9 is tilted by rolling.
  • the vehicle shake correction unit 50 calculates the inclination of the travel rails 8a and 8b with respect to the vehicle 9 based on the position data of the travel rails 8a and 8b respectively acquired by the two laser range sensors 10a and 10b (hereinafter, referred to as the following). This is referred to as “rail inclination calculation”), and this inclination is estimated as vehicle shake, and the position data acquired for the traveling rails 8a and 8b with respect to the vehicle 9 is corrected to be horizontal (hereinafter referred to as “vehicle shake”). Correction ").
  • vehicle shake horizontal
  • the angle value representing the direction of the traveling rail 8 a acquired by the laser range sensor 10 a is a traveling rail with respect to the vehicle 9.
  • the angle corresponding to the direction of the traveling rail 8b acquired by the laser range sensor 10b is reduced by the inclination of the traveling rails 8a and 8b with respect to the vehicle 9.
  • the vehicle shake correction unit 50 subtracts the inclination of the travel rails 8a and 8b with respect to the vehicle 9 from the angle value representing the direction of the travel rail 8a acquired by the laser range sensor 10a, for example, as the vehicle shake correction.
  • the inclination of the traveling rails 8a and 8b with respect to the vehicle 9 is added to the angle value representing the direction of the traveling rail 8b acquired by the laser range sensor 10b.
  • a third rail measurement method by the third rail measurement device having the above configuration will be described with reference to a flowchart shown in FIG.
  • the third rail 5a, the arm metal 6a, the protection plate 7a, and the traveling rail 8a, which are structures are simultaneously placed in the measurement range of the laser range sensor 10a, and the third rail 5b, the arm metal 6b, and the protection plate 7b, which are structures.
  • the traveling rail 8b are simultaneously placed in the measurement range of the laser range sensor 10b, and the position data acquired by the laser range sensors 10a and 10b are recorded and stored in the recording device 20 by the data recording unit 30 (step T1). ).
  • step T2 rail inclination calculation is performed by the vehicle shake correction unit 50 (step T2), and vehicle shake correction is performed (step T3).
  • step T3 vehicle shake correction is performed.
  • step T4 each measurement item data division is performed on the position data acquired by the laser range sensors 10a and 10b by the data processing unit 40 (step T4), and based on the data obtained by dividing each measurement item data, a reference is made. The distance from the value is calculated (step T5).
  • the position data acquired by the two laser range sensors 10a and 10b attached to the vehicle 9 are obtained. Based on this, the inclination of the traveling rails 8a and 8b with respect to the vehicle 9 is calculated (rail inclination calculation), and based on this inclination, the position data acquired for the traveling rails 8a and 8b with respect to the vehicle 9 is horizontal. Since correction (vehicle shake correction) is performed, there is an advantage that even if the vehicle 9 is inclined by rolling, the influence of rolling can be canceled.
  • the laser range sensors 10a and 10b are respectively attached to the vehicle 9 traveling on the traveling rails 8a and 8b.
  • the recording device 20, the data recording unit 30, the data processing unit 40, and the vehicle shake correction are provided.
  • the unit 50 is not necessarily mounted on the vehicle, and may be installed on the ground so as to be able to communicate with the laser range sensors 10a and 10b via a network.
  • the present invention can be widely used industrially as a third rail measuring method and apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

下面接触式サードレール(5)及び走行レール(8)を同時に測定範囲に収めることができるレーザ測域センサ(10)と、レーザ測域センサ(10)で取得された位置データに基づき、走行レール(8)を基準としたサードレール(5)の位置を算出するデータ処理部(40)とを備えたので、サードレール(5)の測定が可能となることに加え、レーザ測域センサ(10)によりサードレール(5)を測定すると同時に走行レール(8)も測定することにより、走行レール(8)を基準としたサードレール(5)の位置を算出することができるという効果を奏する。

Description

サードレール測定方法及び装置
 本発明は、サードレール測定方法及び装置に関する。詳しくは、1台もしくは複数台のレーザ測域センサを設置し、各センサから取得したデータを基に、サードレールの設置状態・使用度(摩耗度)を測定するものである。
 サードレール(第三軌条)とは、電気鉄道の集電方式の一つに使用される、走行用レールとは別に走行用レールと並行して敷設される第三の給電用レールのことを言い、車両に取り付けた集電靴をこのサードレールに擦って車両に電気を供給する。
 本明細書ではレールを基準として、上側を擦るタイプを上面接触式サードレール、下面を擦るタイプを下面接触式サードレールと定義する。
 即ち、図7に示すように、上面接触式サードレール1は、上向きの状態で、碍子2上に設置して敷設され、その上方に保護板3が取付け金具である腕金4にて吊り下げられている。一方、図8に示すように、下面接触式サードレール5は、下向きの状態で、腕金6の上端から吊り下げられ、その上面は、保護板7により覆われている。
 ここで、腕金4,6は、サードレール1,5を支持する金具を言い、一定間隔で設置されている。
 上面接触式は主に日本国内で用いられている方式であり、下面接触式は主に海外で用いられている。本発明は下面接触式を対象とし、特に指定がない限り「サードレール」=「下面接触式サードレール」を指す。
 サードレールには、通常の架線と同様に高電圧電流が流れていることから、従来、測定を行う際は遮断し、直接作業員が測定を行う方式、または加圧中に非接触で測定する方式がある。非接触で行う測定方式に、レーザを用いたものがあり、以下の特許文献1が提案されている。
 特許文献1は、日本国内で広く用いられている上面接触式サードレールに対して測定する方式であり、上面接触式サードレールの上部からセンサを用いて腕金の上部を検出し、同様に設置された複数のセンサの値を記録する方式である。
特開2012-173254号公報
 上記特許文献1では、上面接触式サードレールの上面に向けたセンサの値から、その変位量を測定し、腕金上部を検出することができる。
 しかし、下面接触式サードレールにおいては上記のような上面に飛び出した腕金の一部が存在しないため、特許文献1は腕金を検知(測定)することができないといった課題が挙げられる。
 即ち、従来技術では下面接触式サードレールを測定できないといった問題があった。
 本発明は、上記従来技術に鑑みてなされたものであり、1台もしくは複数台のレーザ測域センサを使用し、各センサから取得したデータを基に、下面接触式サードレールの設置状態・使用度(摩耗度)を測定することを目的としている。
 上記課題を解決する本発明の請求項1に係るサードレール測定装置は、下面接触式サードレール及び走行レールを同時に測定範囲に収めることができるレーザ測域センサと、前記レーザ測域センサで取得された位置データに基づき、前記走行レールを基準とした前記サードレールの位置を算出するデータ処理部とを備えることを特徴とする。
 上記課題を解決する本発明の請求項2に係るサードレール測定装置は、請求項1において、前記レーザ測域センサで取得された前記位置データを保存する記録装置と、前記レーザ測域センサで取得された前記位置データを前記記録装置に収録するデータ収録部とを備えることを特徴とする。
 上記課題を解決する本発明の請求項3に係るサードレール測定装置は、請求項1において、前記レーザ測域センサは、複数台であり、前記走行レール上を走行する車両に各々取り付けられることを特徴とする。
 上記課題を解決する本発明の請求項4に係るサードレール測定装置は、請求項3において、前記車両に取り付けられた2台の前記レーザ測域センサで各々取得された位置データに基づき、前記車両に対する前記走行レールの傾きを計算し、前記傾きに基づいて前記車両に対して前記走行レールに関して各々取得された前記位置データが水平となるように補正する車両動揺補正部を備えることを特徴とする。
 上記課題を解決する本発明の請求項5に係るサードレール測定方法は、下面接触式サードレール及び走行レールを同時にレーザ測域センサの測定範囲に収めると共に、前記レーザ測域センサで取得された位置データに基づき、前記走行レールを基準とした前記サードレールの位置を算出することを特徴とする。
 上記課題を解決する本発明の請求項6に係るサードレール測定方法は、請求項5において、前記レーザ測域センサで取得された前記位置データを収録して保存することを特徴とする。
 上記課題を解決する本発明の請求項7に係るサードレール測定方法は、請求項5において、前記レーザ測域センサは、複数台であり、前記走行レール上を走行する車両に各々取り付けられることを特徴とする。
 上記課題を解決する本発明の請求項8に係るサードレール測定方法は、請求項7において、前記車両に取り付けられた2台の前記レーザ測域センサで各々取得された位置データに基づき、前記車両に対する前記走行レールの傾きを計算し、前記傾きに基づいて前記車両に対して前記走行レールに関して各々取得された前記位置データが水平となるように補正することを特徴とする。
 本発明は、下面接触式サードレールの測定が可能となることに加え、レーザ測域センサによりサードレールを測定すると同時に走行レールも測定することにより、走行レール(または走行レール上を走行する車両の中心)を基準としたサードレールの位置を算出することができるという効果を奏する。具体的には、サードレールの摩耗量、保護板(カバー)のズレ・外れ、腕金のズレ・外れを測定できるという効果を奏する。
本発明の実施例1に係るサードレール測定装置の概略図である。 本発明の実施例2に係るサードレール測定装置の概略図である。 測定項目(検測項目)の説明図である。 車両のローリングを示す説明図である。 本発明の実施例1に係るサードレール測定方法のフローチャートである。 本発明の実施例2に係るサードレール測定方法のフローチャートである。 上面接触式サードレールに関し、図7(a)は断面図、図7(b)は正面図である。 下面接触式サードレールに関し、図8(a)は断面図、図8(b)は正面図である。
[実施例1]
 <基本的な考え方の実施例>
 本発明の実施例1に係るサードレール測定装置を図1に示す。
 本実施例のサードレール測定装置は、図1に示すように、サードレール5、腕金6、保護板7及び走行レール8(これらを、以下、構造物と言う)を同時に測定範囲とするレーザ測域センサ10と、このレーザ測域センサ10で取得された位置データを保存する記録装置20と、このレーザ測域センサ10で取得された位置データを記録装置20に収録するデータ収録部30と、このレーザ測域センサ10で取得された位置データに基づき、構造物に関する各測定項目(検測項目)に該当する値を算出するデータ処理部40を備える。
 レーザ測域センサ10とは、走査式のレーザ距離センサの総称であり、図1に示すように、センサ内のレーザ発信機から赤外線レーザを、図中破線で囲まれた角度θをなす扇状の測定範囲に照射し、構造物で反射された光を受光センサで受光することにより、その赤外線レーザの走査面内にある構造物までの距離と、赤外線レーザの照射された方向を表す角度値を連続して取得するものである。取得された位置データは、方位毎の測距データである極座標となる。
 レーザ測域センサ10は、構造物を同時に測定範囲とするために、サードレール5、保護板7及び走行レール8の敷設される方向に対して直交する枕木方向と平行となるよう設置され、その扇状の測定範囲は、水平方向に対して一定の仰角及び俯角を有する垂直面である。
 レーザ測域センサ10は、図1に示すように1台に限るものではなく、複数台として、取得された位置データを平均化すると精度が向上する利点がある。
 データ処理部40で算出される各測定項目に該当する値とは、図3に示すように、走行レール8の上端を高さ基準Vとし、この高さ基準Vからサードレール5までの垂直方向の距離であるサードレール高さA、この高さ基準Vから保護板7までの垂直方向の距離である保護板垂直方向距離B、走行レール8の側面を水平距離基準Hとし、この水平距離基準Hからの腕金6までの水平距離である腕金水平距離C、この水平距離基準Hから保護板7までの水平方向距離である保護板水平距離Dなどをいう。各測定項目に該当するサードレール高さAは、走行レール8を基準とする値である。
 データ処理部40は、レーザ測域センサ10で取得された位置データである構造物までの距離と照射方向を表す角度値よりなる極座標を、水平方向及び垂直方向の直交座標に変換(以下、「各検測項目データ分割」と言う)し、各測定項目に該当する値として、サードレール高さA、保護板垂直方向距離B、腕金水平距離C及び保護板水平距離Dを算出(以下、「基準値からの距離計算」と言う)する。
 本実施例では、記録装置20及びデータ収録部30を備えているため、データ処理部40は、レーザ測域センサ10で取得された位置データとして、データ収録部30により記録装置20に既に記録された位置データを使用して上記演算を行うことも可能である。
 上記構成を有するサードレール測定装置によるサードレール測定方法について、図5に示すフローチャートを参照して説明する。
 先ず、構造物であるサードレール5、腕金6、保護板7及び走行レール8を同時にレーザ測域センサ10の測定範囲に収めて、レーザ測域センサ10で取得された位置データをデータ収録部30により記録装置20に収録して保存する(ステップS1)。
 次いで、レーザ測域センサ10で取得された位置データに対して、データ処理部40により各検測項目データ分割を行う(ステップS2)。
 引き続き、各検測項目データ分割されたデータに基づき、データ処理部40により基準値からの距離計算を行う(ステップS3)。
 このように説明したように、本実施例は、下面接触式サードレール5の計測が可能となるのに加え、サードレール5を測定すると同時に走行レール8も測定することにより、走行レール8を基準とし、走行レール8からの水平又は垂直距離として、各測定項目に該当する値A,B,C,Dを算出できるという効果を奏する。
 具体的には、図3に示すように、走行レール8を基準とし、各測定項目に該当する値として、サードレール高さA、保護板垂直方向距離B、腕金水平距離C及び保護板水平距離Dを算出することができ、このことは言い換えると、サードレール5の高さ(摩耗量)、保護板7のズレ・外れ、腕金6のズレ・外れを測定できるといった利点があることである。
 また、構造物を連続的に測定することができるため、サードレール5の支持点である腕金6の有無は「腕金水平距離C」の測定値の有無により判断することができる。
 更に、レーザ測域センサ10の測定範囲に走行レール8、サードレール5、腕金6が入る位置、かつ、サードレール5の接触面より下部であれば、レーザ測域センサ10の設置位置に制約はないといった利点もある。
 また、走行レール8に代えて、走行レール8上を走行する図示しない車両の中心を基準としても同様な効果を奏する。
 即ち、レーザ測域センサ10が、走行レール8上を走行する図示しない車両に取り付けられた場合には、車両を基準として、レーザ測域センサ10が取り付けられる車両の動揺を考慮に入れず、構造物の設置状況を判断することができるという効果を奏する。
[実施例2]
<2台のレーザ測域センサを使用する実施例>
 本発明の実施例2に係るサードレール測定装置を図2に示す。
 実施例1の構成が片側のサードレール5を対象としたものに対し、本実施例は、図2に示すように、両側のサードレール5a,5bを対象とし、枕木方向に同軸にもう1台のレーザ測域センサを追加設置したものである。
 即ち、本実施例のサードレール測定装置は、図2に示すように、サードレール5a、腕金6a、保護板7a及び走行レール8a(これらを、以下、構造物と言う)を同時に測定範囲とするレーザ測域センサ10aと、サードレール5b、腕金6b、保護板7b及び走行レール8b(これらを、以下、構造物と言う)を同時に測定範囲とするレーザ測域センサ10bとを枕木方向に対して逆向きに各々設置したものである。つまり、図4に示すように、レーザ測域センサ10aに対して、枕木方向に180度回転させたもう片方側にも1台のレーザ測域センサ10bを車両9に追加で設置したものである。
 また、このレーザ測域センサ10a,10bで各々取得された位置データを保存する記録装置20と、このレーザ測域センサ10a,10bで各々取得された位置データを記録装置20に収録するデータ収録部30と、このレーザ測域センサ10a,10bで各々取得された位置データに基づき、サードレール5a,5b、走行レール8a,8b、腕金6a,6bに関する各測定項目に該当する値を算出するデータ処理部40を備える。
 更に、記録装置20、データ収録部30及びデータ処理部40に加え、2台のレーザ測域センサ10a,10bで各々取得された走行レール8a,8bの位置データから車両動揺を計算し、補正する車両動揺補正部50を加えた点に特徴がある。それ以外は実施例1と同様である。
 即ち、図4に示すように、2台のレーザ測域センサ10a,10bを取り付けた車両9がローリング(動揺)等により傾くと、2台のレーザ測域センサ10a,10bが各々取得する走行レール8a,8bの位置データは、走行レール8a,8bが車両9に対して傾いたものとなる。但し、これは見かけ上であって、実際には、走行レール8a,8bは傾いておらず、車両9がローリング(動揺)して傾いているのである。
 そこで、車両動揺補正部50は、2台のレーザ測域センサ10a,10bで各々取得された走行レール8a,8bの位置データに基づき、車両9に対する走行レール8a,8bの傾斜を計算(以下、「レール傾き計算」と言う)し、この傾斜を以て車両動揺と推定し、車両9に対して走行レール8a,8bに関して各々取得された位置データが水平になるように補正する(以下、「車両動揺補正」と言う)。これにより、実施例1では判らない、車両9のローリングの影響を打ち消すことができる利点がある。
 ここで、図4に示す車両9のローリングにおいては、車両9がローリングしていない時に比較して、レーザ測域センサ10aで取得する走行レール8aの方向を表す角度値が、車両9に対する走行レール8a,8bの傾斜分だけ余分であり、逆に、レーザ測域センサ10bで取得する走行レール8bの方向を表す角度値が、車両9に対する走行レール8a,8bの傾斜分だけ少なくなっている。
 そのため、車両動揺補正部50は、車両動揺補正として、例えば、レーザ測域センサ10aで取得する走行レール8aの方向を表す角度値に対して、車両9に対する走行レール8a,8bの傾斜分を減算し、逆に、レーザ測域センサ10bで取得する走行レール8bの方向を表す角度値に対して、車両9に対する走行レール8a,8bの傾斜分を加算する。
 上記構成を有するサードレール測定装置によるサードレール測定方法について、図6に示すフローチャートを参照して説明する。
 先ず、構造物であるサードレール5a、腕金6a、保護板7a及び走行レール8aを同時にレーザ測域センサ10aの測定範囲に収めると共に、構造物であるサードレール5b、腕金6b、保護板7b及び走行レール8bを同時にレーザ測域センサ10bの測定範囲に収めて、レーザ測域センサ10a,10bで各々取得された位置データをデータ収録部30により記録装置20に収録して保存する(ステップT1)。
 次いで、車両動揺補正部50によりレール傾き計算を行い(ステップT2)、車両動揺補正を行う(ステップT3)。
 引き続き、データ処理部40によりレーザ測域センサ10a,10bで各々取得された位置データに対して各検測項目データ分割を行い(ステップT4)、各検測項目データ分割されたデータに基づき、基準値からの距離計算を行う(ステップT5)。
 このように説明したように、本実施例によれば、実施例1と同様な効果を奏する他、車両9に取り付けられた2台のレーザ測域センサ10a,10bで各々取得された位置データに基づき、車両9に対する走行レール8a,8bの傾きを計算(レール傾き計算)し、この傾きに基づいて、車両9に対して走行レール8a,8bに関して各々取得された位置データが水平になるように補正(車両動揺補正)するため、更に、車両9がローリングで傾斜しても、ローリングの影響を打ち消すことができると言う利点がある。
 なお、本実施例では、レーザ測域センサ10a,10bは、走行レール8a,8b上を走行する車両9に各々取り付けられるが、記録装置20、データ収録部30、データ処理部40及び車両動揺補正部50は必ずしも車両に搭載される必要はなく、地上に設置し、ネットワークを介して、レーザ測域センサ10a,10bと通信可能な状態としても良い。
 本発明は、サードレール測定方法及び装置として産業上広く利用可能なものである。
1 上面接触式サードレール
2 碍子
3,7,7a,7b 保護板
4,6,6a,6b 腕金
5,5a,5b 下面接触式サードレール
8,8a,8b 走行レール
9 車両
10,10a,10b レーザ測域センサ
20 記録装置
30 データ収録部
40 データ処理部
50 車両動揺補正部

Claims (8)

  1.  下面接触式サードレール及び走行レールを同時に測定範囲に収めることができるレーザ測域センサと、
     前記レーザ測域センサで取得された位置データに基づき、前記走行レールを基準とした前記サードレールの位置を算出するデータ処理部とを備えることを特徴とするサードレール測定装置。
  2.  前記レーザ測域センサで取得された前記位置データを保存する記録装置と、
     前記レーザ測域センサで取得された前記位置データを前記記録装置に収録するデータ収録部とを備えることを特徴とする請求項1記載のサードレール測定装置。
  3.  前記レーザ測域センサは、複数台であり、前記走行レール上を走行する車両に各々取り付けられることを特徴とする請求項1記載のサードレール測定装置。
  4.  前記車両に取り付けられた2台の前記レーザ測域センサで各々取得された位置データに基づき、前記車両に対する前記走行レールの傾きを計算し、前記傾きに基づいて前記車両に対して前記走行レールに関して各々取得された前記位置データが水平となるように補正する車両動揺補正部を備えることを特徴とする請求項3記載のサードレール測定装置。
  5.  下面接触式サードレール及び走行レールを同時にレーザ測域センサの測定範囲に収めると共に、前記レーザ測域センサで取得された位置データに基づき、前記走行レールを基準とした前記サードレールの位置を算出することを特徴とするサードレール測定方法。
  6.  前記レーザ測域センサで取得された前記位置データを収録して保存することを特徴とする請求項5記載のサードレール測定方法。
  7.  前記レーザ測域センサは、複数台であり、前記走行レール上を走行する車両に各々取り付けられることを特徴とする請求項5記載のサードレール測定方法。
  8.  前記車両に取り付けられた2台の前記レーザ測域センサで各々取得された位置データに基づき、前記車両に対する前記走行レールの傾きを計算し、
     前記傾きに基づいて前記車両に対して前記走行レールに関して各々取得された前記位置データが水平となるように補正することを特徴とする請求項7記載のサードレール測定方法。
PCT/JP2018/008918 2017-03-08 2018-03-08 サードレール測定方法及び装置 WO2018164213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201908161Q SG11201908161QA (en) 2017-03-08 2018-03-08 Method and apparatus for measuring third rail
CN201880016554.7A CN110462335B (zh) 2017-03-08 2018-03-08 第三轨测量方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044234A JP6938972B2 (ja) 2017-03-08 2017-03-08 サードレール測定方法及び装置
JP2017-044234 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164213A1 true WO2018164213A1 (ja) 2018-09-13

Family

ID=63447831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008918 WO2018164213A1 (ja) 2017-03-08 2018-03-08 サードレール測定方法及び装置

Country Status (4)

Country Link
JP (1) JP6938972B2 (ja)
CN (1) CN110462335B (ja)
SG (1) SG11201908161QA (ja)
WO (1) WO2018164213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606102A (zh) * 2019-09-12 2019-12-24 柳州铁道职业技术学院 一种轨道检测小车及其接触轨智能检测装置和检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026651B2 (ja) * 2019-02-25 2022-02-28 公益財団法人鉄道総合技術研究所 車体動揺補正装置および車体動揺補正方法、ならびにプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201108A (ja) * 1985-03-04 1986-09-05 Hitachi Electronics Eng Co Ltd 第3軌条狂いの非接触測定装置
JPH05141947A (ja) * 1991-11-21 1993-06-08 Mitsubishi Electric Corp 超音波式軌条寸法計測装置
JPH0682221A (ja) * 1992-09-04 1994-03-22 Toshiba Corp 第三軌条測定装置
JPH0656711U (ja) * 1993-01-13 1994-08-05 西日本旅客鉄道株式会社 鉄道線路の建築限界測定装置
JP2009019923A (ja) * 2007-07-10 2009-01-29 East Japan Railway Co 距離測定方法および距離測定装置
JP2012192759A (ja) * 2011-03-15 2012-10-11 Hitachi High-Technologies Corp 検測車動揺補正方法及び装置、並びに検測方法及び装置
CN103863357A (zh) * 2014-03-21 2014-06-18 杭州海聚动力科技有限公司 一种轨道交通接触轨测量装置及测量方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619061B2 (ja) * 1999-06-28 2005-02-09 東海旅客鉄道株式会社 位置測定車両
JP2005070840A (ja) * 2003-08-25 2005-03-17 East Japan Railway Co 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム
JP2006194809A (ja) * 2005-01-17 2006-07-27 Nippon Densetsu Kogyo Co Ltd サードレール測定器
JP4260148B2 (ja) * 2005-09-14 2009-04-30 ユニバーサル機器株式会社 鉄道設備用検測車
CN201126352Y (zh) * 2007-11-20 2008-10-01 中铁电气化局集团有限公司 接触轨检测尺
CN201261472Y (zh) * 2008-07-23 2009-06-24 成都唐源科技有限责任公司 地铁第三轨车载在线检测装置
JP5498633B2 (ja) * 2011-02-24 2014-05-21 株式会社日立ハイテクノロジーズ 検測方法及び装置
JP5796684B2 (ja) * 2012-08-06 2015-10-21 株式会社明電舎 レーザ測定による支持物検知装置
CN102897192A (zh) * 2012-10-18 2013-01-30 成都唐源电气有限责任公司 城市轨道交通接触轨检测***及其检测方法
KR20150034860A (ko) * 2013-09-25 2015-04-06 한국철도공사 전주번호 인식을 통한 위치검지 시스템 및 방법
JP6468648B2 (ja) * 2015-03-30 2019-02-13 三和テッキ株式会社 鉄道線路の支障物検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201108A (ja) * 1985-03-04 1986-09-05 Hitachi Electronics Eng Co Ltd 第3軌条狂いの非接触測定装置
JPH05141947A (ja) * 1991-11-21 1993-06-08 Mitsubishi Electric Corp 超音波式軌条寸法計測装置
JPH0682221A (ja) * 1992-09-04 1994-03-22 Toshiba Corp 第三軌条測定装置
JPH0656711U (ja) * 1993-01-13 1994-08-05 西日本旅客鉄道株式会社 鉄道線路の建築限界測定装置
JP2009019923A (ja) * 2007-07-10 2009-01-29 East Japan Railway Co 距離測定方法および距離測定装置
JP2012192759A (ja) * 2011-03-15 2012-10-11 Hitachi High-Technologies Corp 検測車動揺補正方法及び装置、並びに検測方法及び装置
CN103863357A (zh) * 2014-03-21 2014-06-18 杭州海聚动力科技有限公司 一种轨道交通接触轨测量装置及测量方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606102A (zh) * 2019-09-12 2019-12-24 柳州铁道职业技术学院 一种轨道检测小车及其接触轨智能检测装置和检测方法

Also Published As

Publication number Publication date
SG11201908161QA (en) 2019-10-30
CN110462335A (zh) 2019-11-15
JP2018146509A (ja) 2018-09-20
CN110462335B (zh) 2021-12-31
JP6938972B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
TWI519763B (zh) Line measuring device
JP7354152B2 (ja) 軌道のレールの実際位置を求めるための方法
JP5453130B2 (ja) アタック角測定装置及び測定方法
WO2013167840A3 (fr) Système et procédé de mesure de la position du fil de contact d'une caténaire par rapport à une voie ferrée
US20050174582A1 (en) Integrated measurement device
JP5893869B2 (ja) 計測装置、計測方法、及びプログラム
CN110249095A (zh) 非接触地检测轨道几何形状的方法
WO2018164213A1 (ja) サードレール測定方法及び装置
US20170219335A1 (en) Rail position measurement device
JP5498633B2 (ja) 検測方法及び装置
US10712144B2 (en) Trolley-wire measurement device and trolley-wire measurement method
JP6159177B2 (ja) 架線位置計測装置及び方法
JP6260026B2 (ja) 画像処理による架線位置測定装置及び架線位置測定方法
JP2010243416A (ja) トロリ線検測装置及び検測方法
JP2012191778A (ja) パンタグラフの動特性の異常検出方法
WO2018051738A1 (ja) 碍子検出装置及び碍子検出方法
JP2012192759A (ja) 検測車動揺補正方法及び装置、並びに検測方法及び装置
JP2019045449A (ja) サードレール測定装置及び方法
JP2007183215A (ja) プラットホームの高さ及び離れを計測する計測器及びその計測方法
JP2020041943A (ja) パンタグラフの総合計測装置およびパンタグラフ押上げ力推定方法
JP5426949B2 (ja) レール下隙間測定装置
JP5302707B2 (ja) 脱線防止用ガードレールの位置測定方法および測定装置
JP5809091B2 (ja) 台車姿勢検出方法
EP1710117A1 (en) Apparatus for measuring the height of the electrical contact line of a railroad, and associated method
JP5117368B2 (ja) 跨座型モノレールの走行路摩耗量の測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763186

Country of ref document: EP

Kind code of ref document: A1