WO2018161663A1 - 一种正负电源输出控制装置及方法 - Google Patents

一种正负电源输出控制装置及方法 Download PDF

Info

Publication number
WO2018161663A1
WO2018161663A1 PCT/CN2017/115171 CN2017115171W WO2018161663A1 WO 2018161663 A1 WO2018161663 A1 WO 2018161663A1 CN 2017115171 W CN2017115171 W CN 2017115171W WO 2018161663 A1 WO2018161663 A1 WO 2018161663A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
output
positive
power supply
resistor
Prior art date
Application number
PCT/CN2017/115171
Other languages
English (en)
French (fr)
Inventor
肖开华
邓青萍
罗小兵
Original Assignee
广州龙之杰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州龙之杰科技有限公司 filed Critical 广州龙之杰科技有限公司
Publication of WO2018161663A1 publication Critical patent/WO2018161663A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/071Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate a negative voltage output from a positive voltage source

Definitions

  • the invention relates to the field of power output, and particularly relates to a positive and negative power output control device and method.
  • the existing operational amplifiers provide positive and negative power supplies for the operational amplifiers in order to meet normal operation, reduce work anomalies, and achieve an ideal state of zero input and zero output.
  • the commonly implemented method is that the transformers using two sets of winding outputs are rectified to generate positive and negative power sources respectively, two DC-DC chips are used to realize positive and negative power sources respectively, and one DC-DC chip plus one transformer is used to generate positive and negative power sources, and two sets of transistors.
  • the inductor produces a positive and negative power supply.
  • the above design scheme has high cost, complicated design layout, and large power consumption.
  • the object of the present invention is to overcome the shortcomings and shortcomings of the prior art, and provide a positive and negative power supply output control device, which utilizes a single DC-DC power supply chip to simultaneously generate positive and negative voltage power output, and has a rich and flexible control mode, and reduces design. Cost and power consumption, etc., to meet the needs of developers.
  • Another object of the present invention is to provide a positive and negative power supply output control method.
  • a positive and negative power supply output control device comprises a DC-DC power supply module 2, a storage energy inductor L2, a storage energy discharge capacitor C8, a capacitor charge and discharge direction control bidirectional diode D3, a positive power output module 3, a negative power output module 4,
  • the output terminal of the DC power module 1 is connected to the input end of the energy storage inductor L2 and the input end of the DC-DC power module 2, and the output end of the energy storage inductor L2 is connected to the DC power supply module 1;
  • An input end of the power module 2 and a positive voltage output circuit, an output end of the energy storage discharge capacitor C8 is connected to the input end of the capacitor charge and discharge direction control bidirectional diode D3, and the charge and discharge direction of the capacitor controls the output of the bidirectional diode D3 Connecting an
  • the DC-DC power module 2 includes a DC-DC chip IC1, a first resistor R1, a second resistor R2, a third resistor R3, a third capacitor C3, and a fifth capacitor C5.
  • the DC-DC chip IC1 The fourth port EN is connected to the first resistor R1, the fifth port VCC is connected to the output end of the DC power module 1, and the third port FB is connected as a feedback input to the second resistor R2.
  • the first port LX is connected.
  • the storage capacitor discharge capacitor C8, the second port GND is grounded; the first resistor R1 is connected to the fourth port EN of the DC-DC chip IC1, and the other end is connected to the output end of the DC power module 1; One end of the second resistor R2 is connected to the third port FB of the DC-DC chip IC1, and the other end is connected to the positive power output module 3; one end of the third resistor R3 is connected to the fifth capacitor C5, and the other end is grounded. One end of the fifth capacitor C5 is connected to the positive power output module 3, and the other end is connected to the third resistor R3; one end of the third capacitor C3 is connected to the DC power module 1 and the other end is grounded.
  • the DC power module 1 includes a DC power supply + VCC, a first inductor L1, a first capacitor C1, and a second capacitor C2.
  • One end of the first inductor L1 is connected to the DC power source + VCC, and the other end is connected to the first
  • the second capacitor C2 has one end connected to the DC power source +VCC and the other end connected to the ground; one end of the second capacitor C2 is connected to the first inductor L1, and the other end is grounded.
  • the negative power output module 4 includes a ninth capacitor C9, a tenth capacitor C10, a Zener diode ZW1, a fifth resistor R5, a sixth resistor R6, and a sixth resistor R6 and the Zener diode ZW1.
  • the tenth capacitor C10 is connected in parallel, one end is connected to the fifth resistor R5, and the other end is grounded; the fifth resistor R5 is connected at one end to the sixth resistor R6, the Zener tube ZW1 and the tenth capacitor C10 in parallel, and the other end is
  • the ninth capacitor is connected in parallel and connected to the capacitor charging and discharging direction control bidirectional diode D3. One end of the ninth capacitor C9 is grounded, and the other end is connected in parallel with the fifth resistor, and the capacitor charging and discharging direction control bidirectional diode D3 is connected.
  • the positive power output module 3 includes a unidirectional diode D1, a fuse L105, a fourth resistor R4, a sixth capacitor C6, a seventh capacitor C7, an eleventh capacitor C11, a twelfth capacitor C12, and a unidirectional diode D1.
  • One end is connected to the energy storage inductor L2, and the other end is connected to the fuse L105; the fuse L105 One end is connected to the unidirectional diode D1 and the seventh capacitor C7, and the other end is connected to a positive voltage output; one end of the sixth capacitor C6 is connected to the fifth capacitor C5 and the second resistor of the DC-DC power module 2 R2, the other end is grounded; one end of the seventh capacitor C7 is connected to the fuse L105, and the other end is connected to the capacitor charging and discharging direction control bidirectional diode D3; one end of the eleventh capacitor C11 is connected with a positive voltage output, and the other end is connected Connecting the Zener diode ZW1; one end of the twelfth capacitor C12 is connected to a positive voltage output, and the other end is connected to the sixth resistor R6; one end of the fourth resistor R4 is connected to the positive voltage output, and the other end is connected The sixth resistor R6.
  • the capacitor charging and discharging direction is controlled as a bidirectional diode.
  • the on-off state of the switch tube in the DC-DC chip IC1 controls the positive and negative power supply outputs
  • the DC power module 1 When the switch is turned off, the DC power module 1 is connected to the positive power output module 3 through the energy storage inductor L2 to form a positive power supply loop output positive voltage and charge and store the eleventh capacitor C11.
  • the DC power module 1 is connected to the energy storage discharge capacitor C8 and the capacitor charge and discharge direction control bidirectional diode D3 to charge and store the energy storage capacitor C8 through the energy storage inductor L2.
  • the ninth capacitor C9 is grounded and connected to the negative voltage output, and the discharge can maintain a negative voltage output;
  • the energy storage discharge capacitor C8 When the switch tube is turned on, the energy storage discharge capacitor C8 is connected to the capacitor charge and discharge direction through the switch tube, and the bidirectional diode D3 and the negative power output module 4 form a negative power supply loop output negative voltage and the ninth
  • the capacitor C9 performs charging and energy storage.
  • the DC power module 1 is connected to the DC-DC power module 2 through the storage inductor L2 to form a loop to charge and store the energy storage inductor L2.
  • the eleventh capacitor C11 is grounded and connected to the positive voltage output, and the discharge maintains a positive voltage output;
  • the positive voltage output is provided by the DC power module 1 to connect the energy storage inductor L2, the unidirectional diode D1, and the fuse L105 to form a loop.
  • the voltage output is supported by the ninth capacitor C9; when the switch tube in the DC-DC chip IC1 is turned on, the negative voltage output is connected to the capacitor by the energy storage discharge capacitor C8 through the switch tube after grounding
  • the charge and discharge bidirectional diode D3 and the fifth resistor R5 are discharged, and the positive voltage output is discharged by the eleventh capacitor C11; this enables simultaneous output of positive and negative voltages.
  • the positive voltage value outputted in the positive power output module 3 is sampled and fed back to the DC-DC core in real time.
  • the switching tube in the DC-DC chip IC1 is switched from the off-state to the on-state; when the positive voltage is lower than the DC-DC
  • the switching transistor in the DC-DC chip IC1 is switched from the on state to the off state.
  • the positive voltage output value is adjusted by the second resistor R2 and the third resistor R3, and the negative voltage output value is adjusted by the Zener diode ZW1.
  • a positive and negative power output control method includes the following steps:
  • the positive and negative power supply outputs are controlled by the on-off state of the switching transistor in the DC-DC chip IC1:
  • the DC power module 1 When the switch is turned off, the DC power module 1 is charged and stored through the eleventh capacitor C11. At the same time, the DC power module 1 is connected to the energy storage capacitor C8 through the energy storage inductor L2 and the bidirectional diode D3 is stored in the charge and discharge direction. The capacitor C8 can be charged and stored, and the ninth capacitor C9 is grounded and connected to the negative voltage output to discharge the negative voltage output;
  • the energy storage discharge capacitor C8 is controlled by the switch tube ground connection capacitor charging and discharging direction control bidirectional diode D3 and the negative power output module 4 to form a negative power supply circuit output negative voltage and charge and store the ninth capacitor C9,
  • the DC power module 1 is connected to the DC-DC power module 2 through the energy storage inductor L2 to form a loop to charge and store the energy storage inductor L2.
  • the eleventh capacitor C11 is grounded and connected to the positive voltage output, and the discharge maintains a positive voltage. Output.
  • the positive voltage output is provided by the DC power supply module 1 connecting the energy storage inductor L2, the unidirectional diode D1 and the fuse L105 to form a loop, and the negative voltage output is provided by the current
  • the ninth capacitor C9 discharge support; when the switch tube in the DC-DC chip IC1 is turned on, the negative voltage output is connected to the capacitor through charge and discharge bidirectional diode after the storage capacitor discharge capacitor C8 is grounded through the switch tube. D3 and the fifth resistor R5 are discharged, and the positive voltage output is supported by the eleventh capacitor C11 at this time; this enables simultaneous output of positive and negative voltages.
  • the DC-DC chip (IC1) samples the positive voltage outputted from the positive power output module (3) in real time. Value, when the positive voltage value exceeds the internal reference voltage of the DC-DC chip IC1, the switching tube in the DC-DC chip IC1 is switched from the off-state to the on-state; when the positive voltage value is lower than the DC-DC chip IC1 At the internal reference voltage, the switching transistor in the DC-DC chip IC1 is switched from the on state to the off state.
  • the set value of the positive voltage output is adjusted by the second resistor R2 and the third resistor R3, and the negative voltage output value is adjusted by the Zener diode ZW1.
  • the present invention has the following advantages and benefits:
  • a positive-negative power supply output control device and method according to the present invention can realize simultaneous output of positive and negative dual power supplies with only one DC-DC chip, and the conversion time is 4-20 microseconds.
  • the conversion speed is fast, the circuit design difficulty and cost are reduced, the power consumption of the power supply is also reduced, electromagnetic interference is reduced, and the use requirements of the developer are more satisfied.
  • the positive and negative voltages outputted by the positive and negative power supply output control device and method of the present invention can achieve both symmetrical output and asymmetric output.
  • the positive voltage output control device and method of the invention adopts sampling feedback control in the positive voltage output, the control mode is flexible and simple, and has a normal working input voltage in the range of 3-50V.
  • a positive and negative power supply output control device and method of the present invention expands a completely new way: sharing a DC-DC power supply module, and generating positive and negative voltages in combination with components such as capacitors and inductors, which can be extended to: share A DC-DC power supply module plus other circuits implements functions such as square wave, sine wave, sawtooth wave, and timer.
  • 1 is a circuit diagram of the positive and negative power supply output control device.
  • a positive and negative power supply output control device includes: a DC power supply module 1, a DC-DC power supply module 2, a storage inductor L2, a storage energy discharge capacitor C8, and a capacitor charge and discharge direction control bidirectional diode D3.
  • An output end of the DC power module 1 is connected to an input end of the energy storage inductor L2 and an input end of the DC-DC power module 2, and an output end of the energy storage inductor L2 is connected to the positive power output module 3
  • An input end and an input end of the energy storage discharge capacitor C8 and an input end of the DC-DC power supply module 2 an output end of the positive power output module 3 is connected to an input end of the DC-DC power supply module 2
  • a positive voltage output circuit the output end of the energy storage discharge capacitor C8 is connected to the input end of the capacitor charge and discharge direction control bidirectional diode D3, and the output end of the capacitor charge and discharge direction control bidirectional diode D3 is connected to the energy storage
  • an output end of the negative power output module 4 is connected to an input end of the capacitor charge and discharge direction control bidirectional diode D3 and a negative voltage output circuit
  • the output end of the DC-DC power module 2 is connected to
  • the DC-DC power module 2 includes a DC-DC chip IC1, a first resistor R1, a second resistor R2, a third resistor R3, a third capacitor C3, a fifth capacitor C5, and a fourth of the DC-DC chip IC1.
  • the port EN is connected to the first resistor R1
  • the fifth port VCC is connected to the output end of the DC power module 1
  • the third port FB is connected as a feedback input to the second resistor R2
  • the first port LX is connected to the energy storage.
  • a discharge capacitor C8 the second port GND is grounded;
  • the first resistor R1 is connected to the fourth port EN of the DC-DC chip IC1, and the other end is connected to the output end of the DC power module 1;
  • One end of the R2 is connected to the third port FB of the DC-DC chip IC1, and the other end is connected to the positive power output module 3;
  • one end of the third resistor R3 is connected to the fifth capacitor C5, and the other end is grounded;
  • One end of the fifth capacitor C5 is connected to the positive power output module 3, and the other end is connected to the third resistor R3.
  • One end of the third capacitor C3 is connected to the DC power module 1 and the other end is grounded.
  • the DC power module 1 includes a DC power supply +VCC, a first inductor L1, a first capacitor C1, and a second capacitor C2.
  • One end of the first inductor L1 is connected to the DC power source +VCC, and the other end is connected to the second capacitor.
  • a capacitor C2; one end of the first capacitor C1 is connected to the DC power source +VCC, and the other end is grounded; one end of the second capacitor C2 is connected to the first inductor L1, and the other end is grounded.
  • the positive power output module 3 includes a unidirectional diode D1, a fuse L105, and a fourth resistor R4. a capacitor C6, a seventh capacitor C7, an eleventh capacitor C11, and a twelfth capacitor C12; one end of the unidirectional diode D1 is connected to the energy storage inductor L2, and the other end is connected to the fuse L105; One end of the unidirectional diode D1 and the seventh capacitor C7 are connected to one end, and the other end is connected to a positive voltage output; one end of the sixth capacitor C6 is connected to the fifth capacitor C5 and the second resistor R2 of the DC-DC power module 2 The other end is grounded; one end of the seventh capacitor C7 is connected to the fuse L105, and the other end is connected to the capacitor charging and discharging direction control bidirectional diode D3; one end of the eleventh capacitor C11 is connected with a positive voltage output, and the other end is connected The voltage regulator tube ZW1; one end of the twelfth capacitor C
  • the negative power output module 4 includes a ninth capacitor C9, a tenth capacitor C10, a Zener diode ZW1, a fifth resistor R5, and a sixth resistor R6; the sixth resistor R6 and the Zener diode ZW1, the first Ten capacitors C10 are connected in parallel, one end is connected to the fifth resistor R5, and the other end is grounded; the fifth resistor R5 is connected at one end to the sixth resistor R6, the Zener tube ZW1 and the tenth capacitor C10 in parallel, and the other end is opposite to the first After the nine capacitors are connected in parallel, the capacitor charging and discharging direction control bidirectional diode D3 is connected. One end of the ninth capacitor C9 is grounded, and the other end is connected in parallel with the fifth resistor, and the capacitor charging and discharging direction control bidirectional diode D3 is connected.
  • the DC power supply module 1 has a DC voltage + VCC input range of 3-50V, and provides an operating voltage for the DC-DC power supply module 2.
  • the off-conduction state of the switching transistor in the DC-DC chip IC1 of the DC-DC power supply module 2 controls the positive and negative power supply outputs.
  • the first resistor R1 is connected to the first inductor L1, and the DC voltage +VCC provides an operating voltage for the DC-DC power module 2,
  • the switching transistor in the DC-DC chip IC1 is in an off state, and the DC voltage +VCC outputs a positive voltage through the first inductor L1, the storage inductor L2, the unidirectional diode D1, and the fuse L105 loop; meanwhile, the DC voltage +VCC charges and stores the energy storage capacitor C8 through the first inductor L1, the energy storage inductor L2, the energy storage capacitor C8, the capacitor charge and discharge direction control bidirectional diode D3, and the grounding circuit;
  • the voltage +VCC charges the eleventh capacitor C11 by the first inductor L1, the storage inductor L2, the unidirectional diode D1, the fuse L105, and the eleventh capacitor C11;
  • the nine capacitor C9 is grounded and connected to the negative voltage output, and the discharge can provide a negative voltage output;
  • the DC voltage +VCC is grounded and connected to the negative voltage
  • the storage energy discharge capacitor C8 is electrically connected to the switch tube, and is connected to the fifth resistor through the ninth capacitor C9, the tenth capacitor C10, the Zener diode ZW1, the sixth resistor R6, and the like connected in parallel.
  • the circuit discharges a negative voltage and charges the ninth capacitor C9; and the DC voltage +VCC is connected through the first inductor L1 and the storage inductor L2.
  • the first port LX ground circuit of the DC-DC chip IC1 charges and stores the storage inductor L2, and the eleventh capacitor C11 is grounded to connect a positive voltage output, and then discharges to maintain a positive voltage output.
  • the switching tube in the DC-DC chip IC1 is switched from the on state to the off state, and the circuit system is cyclically operated to achieve only one DC-DC chip. Realize the simultaneous output of positive and negative voltages.
  • the positive voltage output value is determined by the second resistor R2, the third resistor R3, and the internal reference voltage of the DC-DC chip IC1
  • U out+ represents a positive voltage value of the output
  • R 2 and R 3 respectively represent
  • U FB represents the internal voltage value of the DC-DC chip IC1
  • the size is selected to select the required positive voltage value
  • the negative voltage output value is determined by the Zener diode ZW1
  • the negative voltage output value is equal to the voltage value of the Zener diode ZW1.
  • the present invention also relates to a positive and negative power supply output control method, which corresponds to the above-described positive and negative power supply output control device of the present invention, and can be understood as a method for realizing a positive and negative power supply output control device of the present invention.
  • the hardware circuit diagram of the implementation can refer to the drawing.
  • the method controls the positive and negative power supply output by using the on-off state of the switch tube in the DC-DC chip IC1: when the switch tube is turned off, the DC power supply module 1 is connected to the positive power output through the energy storage inductor L2
  • the module 3 forms a positive power supply circuit to output a positive voltage and charge and store the eleventh capacitor C11, and at the same time, the DC power supply module 1 passes
  • the energy storage inductor L2 is connected to the energy storage discharge capacitor C8 and the capacitor charge and discharge direction control bidirectional diode D3 to charge and store the energy storage capacitor C8.
  • the ninth capacitor C9 is grounded and connected. The discharge can maintain a negative voltage output after a negative voltage output.
  • the positive voltage value outputted in the positive power output module 3 is fed back to the DC-DC chip IC1 by real-time sampling.
  • the DC-DC chip IC1 is The switch tube is switched from the off state to the on state.
  • the energy storage discharge capacitor C8 is connected to the capacitor charge and discharge direction through the switch tube, and the bidirectional diode D3 and the negative power output module 4 form a negative power supply loop output negative voltage and the ninth
  • the capacitor C9 performs charging and energy storage.
  • the DC power module 1 is connected to the DC-DC power module 2 through the storage inductor L2 to form a loop to charge and store the energy storage inductor L2.
  • the eleventh capacitor C11 is grounded and connected to a positive voltage output, and the discharge maintains a positive voltage output.
  • the positive voltage is lower than the internal reference voltage of the DC-DC chip IC1
  • the switching tube in the DC-DC chip IC1 is switched from the on state to the off state, and the circuit system is cyclically operated to achieve only one DC-DC chip. Realize the simultaneous output of positive and negative voltages.
  • the positive voltage output is provided by the DC power module 1 to connect the energy storage inductor L2, the unidirectional diode D1, and the fuse L105 to form a loop.
  • the voltage output is supported by the ninth capacitor C9; when the switch tube in the DC-DC chip IC1 is turned on, the negative voltage output is connected to the capacitor by the energy storage discharge capacitor C8 through the switch tube after grounding
  • the charge and discharge bidirectional diode D3 and the fifth resistor R5 are discharged, and the positive voltage output is discharged by the eleventh capacitor C11 at this time.
  • the positive voltage output value is adjusted by the second resistor R2 and the third resistor R3, and the negative voltage output value is adjusted by the Zener diode ZW1.
  • the second resistor R2, the third resistor R3, and the Zener diode ZW1 both the positive and negative voltages can be symmetrically output, and the asymmetric output can also be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种正负电源输出控制装置,该装置包括DC-DC电源模块(2),储能电感(L2),储能放能电容(C8),电容充放电方向控制双向二极管(D3),正电源输出模块(3),负电源输出模块(4),直流电源模块(1)。通过DC-DC电源模块(2)中的开关管的截止与导通来控制正负电源的输出,进而达到使用一个DC-DC芯片即可同时实现正、负电源输出的目的。该控制装置及方法,其控制模式灵活简洁,降低了设计成本及电源功耗,具有较大的应用推广前景。

Description

一种正负电源输出控制装置及方法 技术领域
本发明涉及电源输出领域,具体涉及一种正负电源输出控制装置及方法。
背景技术
目前,一般现有的运放为了满足正常工作,减少工作异常现象,实现零输入零输出理想状态,要给运放提供正负电源。通常实现的方式有利用两组绕组输出的变压器整流后分别产生正负电源、利用两个DC-DC芯片分别实现正负电源、利用一个DC-DC芯片外加一个变压器产生正负电源、两组晶体管和电感产生正负电源。然而,上述设计方案的成本高,设计布局繁琐,功耗大。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种正负电源输出控制装置,利用单个DC-DC电源芯片同时产生正负电压的电源输出,具有控制模式丰富灵活、简洁,降低设计成本及电源功耗等优点,满足开发人员的使用需求。
本发明的另一目的在于提供一种正负电源输出控制方法。
本发明的目的通过如下技术方案实现:
一种正负电源输出控制装置,包括DC-DC电源模块2、储能电感L2、储能放能电容C8、电容充放电方向控制双向二极管D3、正电源输出模块3、负电源输出模块4、直流电源模块1;其中,所述直流电源模块1的输出端连接所述储能电感L2的输入端和所述DC-DC电源模块2的输入端,所述储能电感L2的输出端连接所述正电源输出模块3的输入端和所述储能放能电容C8的输入端以及所述DC-DC电源模块2的输入端,所述正电源输出模块3的输出端连接所述DC-DC电源模块2的一个输入端和正电压输出电路,所述储能放能电容C8的输出端连接所述电容充放电方向控制双向二极管D3的输入端,所述电容充放电方向控制双向二极管D3的输出端连接所述储能放能电容C8的输入端和所述负电源输出 模块4的输入端,所述负电源输出模块4的输出端连接所述电容充放电方向控制双向二极管D3的输入端和负电压输出电路,所述DC-DC电源模块2的输出端连接所述储能放能电容C8的输入端。
所述DC-DC电源模块2,包括DC-DC芯片IC1、第一电阻R1、第二电阻R2、第三电阻R3、第三电容C3、第五电容C5;其中,所述DC-DC芯片IC1的第四端口EN连接所述第一电阻R1,第五端口VCC连接所述直流电源模块1的输出端,第三端口FB作为反馈输入端连接所述第二电阻R2,第一端口LX连接所述储能放能电容C8,第二端口GND接地;所述第一电阻R1一端连接所述DC-DC芯片IC1的第四端口EN,另一端连接所述直流电源模块1的输出端;所述第二电阻R2的一端连接所述DC-DC芯片IC1的第三端口FB,另一端连接所述正电源输出模块3;所述第三电阻R3的一端连接所述第五电容C5,另一端接地;所述第五电容C5的一端连接所述正电源输出模块3,另一端连接所述第三电阻R3;所述第三电容C3一端连接所述直流电源模块1,另一端接地。
所述直流电源模块1,包括直流电源+VCC,第一电感L1,第一电容C1,第二电容C2;所述第一电感L1的一端连接所述直流电源+VCC,另一端连接所述第二电容C2;所述第一电容C1的一端连接所述直流电源+VCC,另一端接地;所述第二电容C2的一端连接所述第一电感L1,另一端接地。
所述负电源输出模块4,包括第九电容C9,第十电容C10,稳压管ZW1,第五电阻R5,第六电阻R6;所述第六电阻R6与所述稳压管ZW1、所述第十电容C10并联后一端连接所述第五电阻R5,另一端接地;所述第五电阻R5一端连接并联后的第六电阻R6、稳压管ZW1和第十电容C10,另一端与所述第九电容并联后连接所述电容充放电方向控制双向二极管D3,所述第九电容C9的一端接地,另一端与所述第五电阻并联后连接所述电容充放电方向控制双向二极管D3。
所述正电源输出模块3包括单向二极管D1,保险丝L105,第四电阻R4,第六电容C6,第七电容C7,第十一电容C11,第十二电容C12;所述单向二极管D1的一端连接所述储能电感L2,另一端连接所述保险丝L105;所述保险丝L105 的一端连接所述单向二极管D1和所述第七电容C7,另一端连接正电压输出;所述第六电容C6的一端连接所述DC-DC电源模块2的第五电容C5和第二电阻R2,另一端接地;所述第七电容C7的一端连接所述保险丝L105,另一端连接所述电容充放电方向控制双向二极管D3;所述第十一电容C11的一端连接正电压输出,另一端连接所述稳压管ZW1;所述第十二电容C12的一端连接正电压输出,另一端连接所述第六电阻R6;所述第四电阻R4的一端连接所述正电压输出,另一端连接所述第六电阻R6。
所述电容充放电方向控制为双向二极管。
所述DC-DC芯片IC1中开关管的导通截止状态控制正负电源输出;
开关管截止时,所述直流电源模块1通过所述储能电感L2连接到所述正电源输出模块3形成正电源回路输出正电压并对所述第十一电容C11进行充电储能,同时,所述直流电源模块1通过所述储能电感L2连接到所述储能放能电容C8和所述电容充放电方向控制双向二极管D3对储能放能电容C8进行充电储能,另外,所述第九电容C9接地并连接负电压输出后放电可维持负电压输出;
开关管导通时,所述储能放能电容C8通过开关管接地连接所述电容充放电方向控制双向二极管D3和所述负电源输出模块4形成负电源回路输出负电压并对所述第九电容C9进行充电储能,同时,所述直流电源模块1通过所述储能电感L2连接到所述DC-DC电源模块2接地后形成回路对储能电感L2进行充电储能,另外,所述第十一电容C11接地并连接正电压输出后放电维持正电压输出;
所述DC-DC芯片IC1中的开关管截止时,正电压输出由所述直流电源模块1连接所述储能电感L2、所述单向二极管D1和所述保险丝L105形成回路提供,此时负电压输出由所述第九电容C9放电支持;所述DC-DC芯片IC1中的开关管导通时,负电压输出由所述储能放能电容C8通过开关管导通接地后连接所述电容充放电双向二极管D3和所述第五电阻R5放电提供,此时正电压输出由所述第十一电容C11放电支持;这样能够实现同时输出正负电压。
所述正电源输出模块3中输出的正电压值被实时采样反馈至所述DC-DC芯 片IC1中,当正电压值超过DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1中的开关管即从截止转态转换成导通状态;当正电压值低于DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1中的开关管则从导通状态转换成截止状态。
所述正电压输出值通过所述第二电阻R2、第三电阻R3调整,所述负电压输出值通过所述稳压管ZW1调整。
本发明的另一目的通过以下的技术方案实现:
一种正负电源输出控制方法,包含以下步骤:
利用DC-DC芯片IC1中开关管的导通截止状态控制正负电源输出:
开关管截止时,直流电源模块1通过第十一电容C11进行充电储能,同时,直流电源模块1通过储能电感L2连接到储能放能电容C8和电容充放电方向控制双向二极管D3对储能放能电容C8进行充电储能,另外,第九电容C9接地并连接负电压输出后放电能够维持负电压输出;
开关管导通时,储能放能电容C8通过开关管接地连接电容充放电方向控制双向二极管D3和负电源输出模块4形成负电源回路输出负电压并对第九电容C9进行充电储能,同时,直流电源模块1通过储能电感L2连接到DC-DC电源模块2接地后形成回路对储能电感L2进行充电储能,另外,第十一电容C11接地并连接正电压输出后放电维持正电压输出。
所述DC-DC芯片IC1中的开关管截止时,正电压输出由所述直流电源模块1连接所述储能电感L2、单向二极管D1和保险丝L105形成回路提供,此时负电压输出由所述第九电容C9放电支持;所述DC-DC芯片IC1中的开关管导通时,负电压输出由所述储能放能电容C8通过开关管导通接地后连接所述电容充放电双向二极管D3和第五电阻R5放电提供,此时正电压输出由所述第十一电容C11放电支持;这样能够实现同时输出正负电压。
所述DC-DC芯片(IC1)实时采样反馈正电源输出模块(3)中输出的正电压 值,当正电压值超过DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1中的开关管即从截止转态转换成导通状态;当正电压值低于DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1中的开关管则从导通状态转换成截止状态。
所述正电压输出的设定值通过第二电阻R2、第三电阻R3调整,所述负电压输出值通过稳压管ZW1调整。
本发明与现有技术相比,具有以下优点和有益效果:
1、本发明所述一种正负电源输出控制装置及方法中只需一个DC-DC芯片即可实现正、负双电源同时输出,转换时间为4-20微妙。转换速度快,降低电路设计难度和成本,同时也降低电源功耗,减少电磁干扰;更能够满足开发人员的使用需求。
2、本发明所述一种正负电源输出控制装置及方法中输出的正负电压既能做到对称输出,也能做到不对称输出。
3、本发明一种正负电源输出控制装置及方法中正电压输出采用采样反馈控制,控制模式灵活简洁,并且具备3-50V范围的正常工作输入电压。
4、本发明一种正负电源输出控制装置及方法中拓展了一种全新的方式:共用一个DC-DC电源模块,并结合电容、电感等元器件产生正负电压,可以延伸拓展到:共用一个DC-DC电源模块外加其它电路实现方波,正弦波,锯齿波,定时器等功能。
附图说明
图1为所述一种正负电源输出控制装置的电路图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1,一种正负电源输出控制装置,包括:直流电源模块1,DC-DC电源模块2,储能电感L2,储能放能电容C8,电容充放电方向控制双向二极管D3, 正电源输出模块3,负电源输出模块4。
所述直流电源模块1的输出端连接所述储能电感L2的输入端和所述DC-DC电源模块2的输入端,所述储能电感L2的输出端连接所述正电源输出模块3的输入端和所述储能放能电容C8的输入端以及所述DC-DC电源模块2的输入端,所述正电源输出模块3的输出端连接所述DC-DC电源模块2的一个输入端和正电压输出电路,所述储能放能电容C8的输出端连接所述电容充放电方向控制双向二极管D3的输入端,所述电容充放电方向控制双向二极管D3的输出端连接所述储能放能电容C8的输入端和所述负电源输出模块4的输入端,所述负电源输出模块4的输出端连接所述电容充放电方向控制双向二极管D3的输入端和负电压输出电路,所述DC-DC电源模块2的输出端连接所述储能放能电容C8的输入端。
所述DC-DC电源模块2包括DC-DC芯片IC1,第一电阻R1,第二电阻R2,第三电阻R3,第三电容C3,第五电容C5;所述DC-DC芯片IC1的第四端口EN连接所述第一电阻R1,第五端口VCC连接所述直流电源模块1的输出端,第三端口FB作为反馈输入端连接所述第二电阻R2,第一端口LX连接所述储能放能电容C8,第二端口GND接地;所述第一电阻R1一端连接所述DC-DC芯片IC1的第四端口EN,另一端连接所述直流电源模块1的输出端;所述第二电阻R2的一端连接所述DC-DC芯片IC1的第三端口FB,另一端连接所述正电源输出模块3;所述第三电阻R3的一端连接所述第五电容C5,另一端接地;所述第五电容C5的一端连接所述正电源输出模块3,另一端连接所述第三电阻R3;所述第三电容C3一端连接所述直流电源模块1,另一端接地。
所述直流电源模块1包括直流电源+VCC,第一电感L1,第一电容C1,第二电容C2;所述第一电感L1的一端连接所述直流电源+VCC,另一端连接所述第二电容C2;所述第一电容C1的一端连接所述直流电源+VCC,另一端接地;所述第二电容C2的一端连接所述第一电感L1,另一端接地。
所述正电源输出模块3包括单向二极管D1,保险丝L105,第四电阻R4,第 六电容C6,第七电容C7,第十一电容C11,第十二电容C12;所述单向二极管D1的一端连接所述储能电感L2,另一端连接所述保险丝L105;所述保险丝L105的一端连接所述单向二极管D1和所述第七电容C7,另一端连接正电压输出;所述第六电容C6的一端连接所述DC-DC电源模块2的第五电容C5和第二电阻R2,另一端接地;所述第七电容C7的一端连接所述保险丝L105,另一端连接所述电容充放电方向控制双向二极管D3;所述第十一电容C11的一端连接正电压输出,另一端连接所述稳压管ZW1;所述第十二电容C12的一端连接正电压输出,另一端连接所述第六电阻R6;所述第四电阻R4的一端连接所述正电压输出,另一端连接所述第六电阻R6。
所述负电源输出模块4包括第九电容C9,第十电容C10,稳压管ZW1,第五电阻R5,第六电阻R6;所述第六电阻R6与所述稳压管ZW1、所述第十电容C10并联后一端连接所述第五电阻R5,另一端接地;所述第五电阻R5一端连接并联后的第六电阻R6、稳压管ZW1和第十电容C10,另一端与所述第九电容并联后连接所述电容充放电方向控制双向二极管D3,所述第九电容C9的一端接地,另一端与所述第五电阻并联后连接所述电容充放电方向控制双向二极管D3。
图1所示的一种正负电源输出控制装置,所述直流电源模块1的直流电压+VCC输入范围为3-50V,为DC-DC电源模块2提供工作电压。所述DC-DC电源模块2中DC-DC芯片IC1中的开关管的截止导通状态来控制正负电源输出。本发明如附图所示装置的具体工作如下:所述第一电阻R1连接所述第一电感L1,所述直流电压+VCC为所述DC-DC电源模块2提供工作电压,此时所述DC-DC芯片IC1中的开关管处于截止状态,所述直流电压+VCC通过所述第一电感L1、储能电感L2、单向二极管D1、保险丝L105回路输出正电压;同时,所述直流电压+VCC通过所述第一电感L1、储能电感L2、储能放能电容C8、电容充放电方向控制双向二极管D3以及接地这一回路对储能放能电容C8进行充电储能;所述直流电压+VCC通过所述第一电感L1、储能电感L2、单向二极管D1、保险丝L105和所述第十一电容C11接地后对所述第十一电容C11充电储能;另外,所 述第九电容C9接地并连接负电压输出后放电可提供负电压输出;所述直流电压+VCC通过所述第一电感L1、储能电感L2、单向二极管D1、第二电阻R2、DC-DC芯片IC1的第三端口FB回路对实时输出正电压进行采样后与DC-DC芯片IC1内部基准电压进行比较,当正电压输出超过基准电压时,所述DC-DC芯片IC1内的开关管由截止状态转换成导通状态,此时所述储能放能电容C8由于所述的开关管导通接地,并通过所述并联后的第九电容C9、第十电容C10、稳压管ZW1、第六电阻R6等连接所述第五电阻R5、以及电容充放电方向控制双向二极管D3这一回路放电输出负电压并对所述第九电容C9充电储能;同时所述直流电压+VCC通过所述第一电感L1、储能电感L2连接到所述DC-DC芯片IC1的第一端口LX接地回路对所述储能电感L2进行充电储能,另外所述第十一电容C11接地连接正电压输出后进行放电维持正电压输出。当正电压低于DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1内的开关管由导通状态转换成截止状态,电路***如此循环工作,做到只用一个DC-DC芯片实现同时输出正负电压。其中,所述正电压输出值由所述第二电阻R2、第三电阻R3以及所述DC-DC芯片IC1内部基准电压决定,Uout+表示输出的正电压值,R2和R3分别表示第二电阻和第三电阻的电阻值,UFB表示DC-DC芯片IC1的内部电压值,根据公式Uout+=UFB(R2+R3)/R3,可调整第二电阻和第三电阻的大小来选择所需的正电压值;所述负电压输出值由所述稳压管ZW1决定,负电压输出值等于稳压管ZW1的电压值。通过调整所述第二电阻R2、第三电阻R3、稳压管ZW1既可使正负电压做到对称输出,也可做到不对称输出。
本发明还涉及一种正负电源输出控制方法,该方法与本发明上述的一种正负电源输出控制装置相对应,可理解为实现本发明一种正负电源输出控制装置的方法。其实现的硬件电路图可参考附图。该方法利用所述DC-DC芯片IC1中开关管的导通截止状态来控制正负电源输出:开关管截止时,所述直流电源模块1通过所述储能电感L2连接到所述正电源输出模块3形成正电源回路输出正电压并对所述第十一电容C11进行充电储能,同时,所述直流电源模块1通过 所述储能电感L2连接到所述储能放能电容C8和所述电容充放电方向控制双向二极管D3对储能放能电容C8进行充电储能,另外,所述第九电容C9接地并连接负电压输出后放电可维持负电压输出。所述正电源输出模块3中输出的正电压值被实时采样反馈至所述DC-DC芯片IC1中,当正电压值超过DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1中的开关管即从截止转态转换成导通状态。开关管导通时,所述储能放能电容C8通过开关管接地连接所述电容充放电方向控制双向二极管D3和所述负电源输出模块4形成负电源回路输出负电压并对所述第九电容C9进行充电储能,同时,所述直流电源模块1通过所述储能电感L2连接到所述DC-DC电源模块2接地后形成回路对储能电感L2进行充电储能,另外,所述第十一电容C11接地并连接正电压输出后放电维持正电压输出。当正电压低于DC-DC芯片IC1内部基准电压时,所述DC-DC芯片IC1内的开关管由导通状态转换成截止状态,电路***如此循环工作,做到只用一个DC-DC芯片实现同时输出正负电压。
所述DC-DC芯片IC1中的开关管截止时,正电压输出由所述直流电源模块1连接所述储能电感L2、所述单向二极管D1和所述保险丝L105形成回路提供,此时负电压输出由所述第九电容C9放电支持;所述DC-DC芯片IC1中的开关管导通时,负电压输出由所述储能放能电容C8通过开关管导通接地后连接所述电容充放电双向二极管D3和所述第五电阻R5放电提供,此时正电压输出由所述第十一电容C11放电支持。
所述正电压输出值通过所述第二电阻R2、第三电阻R3调整,所述负电压输出值通过所述稳压管ZW1调整。通过调整所述第二电阻R2、第三电阻R3、稳压管ZW1既可使正负电压做到对称输出,也可做到不对称输出。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种正负电源输出控制装置,其特征在于:包括直流电源模块(1)、DC-DC电源模块(2)、储能电感(L2)、储能放能电容(C8)、电容充放电方向控制双向二极管(D3)、正电源输出模块(3)、负电源输出模块(4);其中
    所述直流电源模块(1)的输出端连接所述储能电感(L2)的输入端和所述DC-DC电源模块(2)的输入端,所述储能电感(L2)的输出端连接所述正电源输出模块(3)的输入端和所述储能放能电容(C8)的输入端以及所述DC-DC电源模块(2)的输入端,所述正电源输出模块(3)的输出端连接所述DC-DC电源模块(2)的一个输入端和正电压输出电路,所述储能放能电容(C8)的输出端连接所述电容充放电方向控制双向二极管(D3)的输入端,所述电容充放电方向控制双向二极管(D3)的输出端连接所述储能放能电容(C8)的输入端和所述负电源输出模块(4)的输入端,所述负电源输出模块(4)的输出端连接所述电容充放电方向控制双向二极管(D3)的输入端和负电压输出电路,所述DC-DC电源模块(2)的输出端连接所述储能放能电容(C8)的输入端。
  2. 根据权利要求1所述正负电源输出控制装置,其特征在于:所述DC-DC电源模块(2)包括DC-DC芯片(IC1),第一电阻(R1),第二电阻(R2),第三电阻(R3),第三电容(C3),第五电容(C5);所述DC-DC芯片(IC1)的第四端口(EN)连接所述第一电阻(R1),第五端口(VCC)连接所述直流电源模块(1)的输出端,第三端口(FB)作为反馈输入端连接所述第二电阻(R2),第一端口(LX)连接所述储能放能电容(C8),第二端口(GND)接地;所述第一电阻(R1)一端连接所述DC-DC芯片(IC1)的第四端口(EN),另一端连接所述直流电源模块(1)的输出端;所述第二电阻(R2)的一端连接所述DC-DC芯片(IC1)的第三端口(FB),另一端连接所述正电源输出模块(3);所述第三电阻(R3)的一端连接所述第五电容(C5),另一端接地;所述第五电容(C5)的一端连接所述正电源输出模块(3),另一端连接所述第三电阻(R3);所述第三电容(C3)一端连接所述直流电源模块(1),另一端接地。
  3. 根据权利要求1所述正负电源输出控制装置,其特征在于:所述直流电源 模块(1)包括直流电源(+VCC),第一电感(L1),第一电容(C1),第二电容(C2);所述第一电感(L1)的一端连接所述直流电源(+VCC),另一端连接所述第二电容(C2);所述第一电容(C1)的一端连接所述直流电源(+VCC),另一端接地;所述第二电容(C2)的一端连接所述第一电感(L1),另一端接地。
  4. 根据权利要求1所述正负电源输出控制装置,其特征在于:所述负电源输出模块(4)包括第九电容(C9),第十电容(C10),稳压管(ZW1),第五电阻(R5),第六电阻(R6);所述第六电阻(R6)与所述稳压管(ZW1)、所述第十电容(C10)并联后一端连接所述第五电阻(R5),另一端接地;所述第五电阻(R5)一端连接并联后的第六电阻(R6)、稳压管(ZW1)和第十电容(C10),另一端与所述第九电容(C9)并联后连接所述电容充放电方向控制双向二极管(D3),所述第九电容(C9)的一端接地,另一端与所述第五电阻(R5)并联后连接所述电容充放电方向控制双向二极管(D3)。
  5. 根据权利要求4所述正负电源输出控制装置,其特征在于:所述正电源输出模块(3)包括单向二极管(D1),保险丝(L105),第四电阻(R4),第六电容(C6),第七电容(C7),第十一电容(C11),第十二电容(C12);所述单向二极管(D1)的一端连接所述储能电感(L2),另一端连接所述保险丝(L105);所述保险丝(L105)的一端连接所述单向二极管(D1)和所述第七电容(C7),另一端连接正电压输出;所述第六电容(C6)的一端连接所述DC-DC电源模块(2)的第五电容(C5)和第二电阻(R2),另一端接地;所述第七电容(C7)的一端连接所述保险丝(L105),另一端连接所述电容充放电方向控制双向二极管(D3);所述第十一电容(C11)的一端连接正电压输出,另一端连接所述稳压管(ZW1);所述第十二电容(C12)的一端连接正电压输出,另一端连接所述第六电阻(R6);所述第四电阻(R4)的一端连接所述正电压输出,另一端连接所述第六电阻(R6)。
  6. 根据权利要求1所述正负电源输出控制装置,其特征在于:所述电容充放 电方向控制为双向二极管。
  7. 一种正负电源输出控制方法,其特征在于,包含以下步骤:
    利用DC-DC芯片(IC1)中开关管的导通截止状态控制正负电源输出;
    开关管截止时,直流电源模块(1)通过第十一电容(C11)进行充电储能,同时,直流电源模块(1)通过储能电感(L2)连接到储能放能电容(C8)和电容充放电方向控制双向二极管(D3)对储能放能电容(C8)进行充电储能,另外,第九电容(C9)接地并连接负电压输出后放电能够维持负电压输出;
    开关管导通时,储能放能电容(C8)通过开关管接地连接电容充放电方向控制双向二极管(D3)和负电源输出模块(4)形成负电源回路输出负电压并对第九电容(C9)进行充电储能,同时,直流电源模块(1)通过储能电感(L2)连接到DC-DC电源模块(2)接地后形成回路对储能电感(L2)进行充电储能,另外,第十一电容(C11)接地并连接正电压输出后放电维持正电压输出。
  8. 根据权利要求7所述正负电源输出控制方法,其特征在于,所述DC-DC芯片(IC1)中的开关管截止时,正电压输出由所述直流电源模块(1)连接所述储能电感(L2)、单向二极管(D1)和保险丝(L105)形成回路提供,此时负电压输出由所述第九电容(C9)放电支持;所述DC-DC芯片(IC1)中的开关管导通时,负电压输出由所述储能放能电容(C8)通过开关管导通接地后连接所述电容充放电双向二极管(D3)和第五电阻(R5)放电提供,此时正电压输出由所述第十一电容(C11)放电支持。
  9. 根据权利要求7所述正负电源输出控制方法,其特征在于,所述DC-DC芯片(IC1)实时采样反馈正电源输出模块(3)中输出的正电压值,当正电压值超过DC-DC芯片(IC1)内部基准电压时,所述DC-DC芯片(IC1)中的开关管即从截止转态转换成导通状态;当正电压值低于DC-DC芯片(IC1)内部基准电压时,所述DC-DC芯片(IC1)中的开关管则从导通状态转换成截止状态。
  10. 根据权利要求7所述正负电源输出控制方法,其特征在于,所述正电压输出的设定值通过第二电阻(R2)、第三电阻(R3)调整,所述负电压输出值 通过稳压管(ZW1)调整。
PCT/CN2017/115171 2017-03-07 2017-12-08 一种正负电源输出控制装置及方法 WO2018161663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710131117.7A CN106685217A (zh) 2017-03-07 2017-03-07 一种正负电源输出控制装置及方法
CN201710131117.7 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018161663A1 true WO2018161663A1 (zh) 2018-09-13

Family

ID=58826310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115171 WO2018161663A1 (zh) 2017-03-07 2017-12-08 一种正负电源输出控制装置及方法

Country Status (2)

Country Link
CN (1) CN106685217A (zh)
WO (1) WO2018161663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023091212A1 (en) * 2021-11-22 2023-05-25 Microsoft Technology Licensing, Llc. Dual polarity power supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685217A (zh) * 2017-03-07 2017-05-17 广州龙之杰科技有限公司 一种正负电源输出控制装置及方法
CN110289759A (zh) * 2019-06-21 2019-09-27 深圳市思榕科技有限公司 一种产生负压的电源电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127483A (zh) * 2006-08-18 2008-02-20 盛群半导体股份有限公司 应用于场发射显示器的电源供应器
US20140354349A1 (en) * 2013-05-29 2014-12-04 Chengdu Monolithic Power Systems, Inc. Charge pump and method of having negative output voltage tracking positive output voltage thereof
CN104967306A (zh) * 2015-06-10 2015-10-07 上海鼎讯电子有限公司 电压转换电路
CN106685217A (zh) * 2017-03-07 2017-05-17 广州龙之杰科技有限公司 一种正负电源输出控制装置及方法
CN206673830U (zh) * 2017-03-07 2017-11-24 广州龙之杰科技有限公司 一种正负电源输出控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127483A (zh) * 2006-08-18 2008-02-20 盛群半导体股份有限公司 应用于场发射显示器的电源供应器
US20140354349A1 (en) * 2013-05-29 2014-12-04 Chengdu Monolithic Power Systems, Inc. Charge pump and method of having negative output voltage tracking positive output voltage thereof
CN104967306A (zh) * 2015-06-10 2015-10-07 上海鼎讯电子有限公司 电压转换电路
CN106685217A (zh) * 2017-03-07 2017-05-17 广州龙之杰科技有限公司 一种正负电源输出控制装置及方法
CN206673830U (zh) * 2017-03-07 2017-11-24 广州龙之杰科技有限公司 一种正负电源输出控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023091212A1 (en) * 2021-11-22 2023-05-25 Microsoft Technology Licensing, Llc. Dual polarity power supply device
US11716027B2 (en) 2021-11-22 2023-08-01 Microsoft Technology Licensing, Llc Dual polarity power supply device

Also Published As

Publication number Publication date
CN106685217A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN107689663B (zh) 电池充电架构
EP3514915B1 (en) Docking station having function of adapter and terminal accessory
CN106452124B (zh) 电源转换装置
US8901900B2 (en) Buck power factor correction system
WO2018161663A1 (zh) 一种正负电源输出控制装置及方法
US7894213B2 (en) DC to DC converter
US11128215B2 (en) Direct current voltage step-down regulation circuit structure
CN107947539B (zh) 开关电源驱动供电电路及开关电源
CN104779783B (zh) 一种供电电路和开关电源
CN102882359A (zh) 一种偏置电压产生电路以及应用其的开关电源
CA2616728C (en) Step-down voltage converter
TW201843915A (zh) 具有主動式突波吸收器的控制模組及相關的返馳式電源轉換裝置
JP5505429B2 (ja) 交流電源装置
CN110212765B (zh) 一种电源及其电源电路
WO2011131015A1 (zh) 获取稳定低压的直流/直流变换器以及电话机供电电路
CN106602883B (zh) 无辅助绕组的功率mos管开关电源集成供电电路
Xu et al. Energy harvesting circuit with input matching in boundary conduction mode for electromagnetic generators
CN103916020A (zh) 开关电源及其控制电路
Hua et al. A 1.2-A dual-output SC DC–DC regulator with continuous gate-drive modulation achieving≤ 0.01-mV/mA cross regulation
CN107911899B (zh) 一种开关电源及led驱动电路
KR101456654B1 (ko) 공용코어 역률보정 공진 컨버터
US11916492B2 (en) Device for supplying power from an AC voltage
CN211701851U (zh) 一种开关电源
US20020145410A1 (en) Supply circuit for an electronic circuit connected to an SMPS converter operating at low output voltage
CN103269165A (zh) 功率转换器的切换式控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899662

Country of ref document: EP

Kind code of ref document: A1