WO2018159969A1 - 전극 구조체 및 이를 포함하는 레독스 흐름 전지 - Google Patents

전극 구조체 및 이를 포함하는 레독스 흐름 전지 Download PDF

Info

Publication number
WO2018159969A1
WO2018159969A1 PCT/KR2018/002335 KR2018002335W WO2018159969A1 WO 2018159969 A1 WO2018159969 A1 WO 2018159969A1 KR 2018002335 W KR2018002335 W KR 2018002335W WO 2018159969 A1 WO2018159969 A1 WO 2018159969A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon block
carbon
electrode structure
plate
monopolar
Prior art date
Application number
PCT/KR2018/002335
Other languages
English (en)
French (fr)
Inventor
이정배
노태근
변수진
박준호
문식원
김성연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/348,363 priority Critical patent/US11309565B2/en
Priority to EP18761044.9A priority patent/EP3525274B1/en
Priority to CN201880013185.6A priority patent/CN110326142B/zh
Priority to JP2019526488A priority patent/JP6847217B2/ja
Publication of WO2018159969A1 publication Critical patent/WO2018159969A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • H01M4/8631Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present specification relates to an electrode structure and a redox flow battery including the same.
  • Electric power storage technology is an important technology for efficient use of the entire energy, such as efficient use of electric power, improvement of the power supply system's ability and reliability, the introduction of renewable energy that fluctuates over time, and the energy regeneration of the moving body. There is an increasing demand for possibilities and social contributions.
  • the energy storage density should be high, and the flow battery is the most popular as a high capacity and high efficiency secondary battery most suitable for such characteristics.
  • the flow battery is configured such that electrodes of the cathode and the anode are positioned at both sides of the separator.
  • Plates for fastening the cell and conducting electricity are respectively provided on the outside of the electrode, and include a cathode tank and an anode tank containing the electrolyte, an inlet for the electrolyte and an outlet for the electrolyte.
  • the present specification is to provide an electrode structure and a redox flow battery comprising the same.
  • a carbon block having pores having pores; And a flow frame in which the carbon block is accommodated on one side or both sides, wherein the porosity of the carbon block is 5% or more and 70% or less, and the compressive strength of the carbon block is 20MPa or more.
  • first end plate First monopolar plate; Separator; Second monopolar plate; And a second end plate sequentially, wherein at least one of the first and second monopolar plates is the electrode structure described above.
  • the electrode of the electrode structure according to the present specification has an advantage in that porosity can be maintained during manufacture with little compression due to the clamping pressure of the battery cell.
  • Redox flow battery according to the present specification has an advantage that can supply the electrolyte at a high flow rate to the electrode.
  • FIG. 1 is an exploded cross-sectional view of fastening a battery using an electrode structure according to the prior art.
  • FIG. 2 is a cross-sectional view of a battery fastened using the electrode structure according to the prior art.
  • FIG 3 is a cross-sectional view of the electrode structure of the embodiment according to the present specification.
  • Figure 4 is an exploded cross-sectional view of fastening the battery using the electrode structure of one embodiment according to the present specification.
  • FIG 5 is a cross-sectional view of a battery fastened using the electrode structure of one embodiment according to the present specification.
  • FIG. 6 is an exploded cross-sectional view of a redox flow battery to which an electrode structure according to another exemplary embodiment of the present disclosure is applied.
  • FIG. 7 is an image of the shape of the carbon block according to the present disclosure observed with a scanning electron microscope 150x magnification.
  • the electrode structure of the present specification is a carbon block having pores; And a flow frame in which the carbon block is accommodated on one side or both sides.
  • the electrode structure is a carbon block; And a flow frame in which the carbon block is accommodated on one surface, the electrode structure is a monopolar plate.
  • the monopolar plate means a plate serving as an electrode on only one surface provided with a carbon block.
  • the electrode structure is a carbon block; And a flow frame in which the carbon blocks are accommodated on both sides, the electrode structure is a bipolar plate.
  • the bipolar plate means a plate on which both surfaces with a carbon block serve as electrodes. Electrodes on both sides of the bipolar plate are opposite electrodes or the same electrode. Specifically, when one electrode is an anode, the other electrode may serve as a cathode.
  • the porosity of the carbon block is 5% or more and 70% or less, specifically 20% or more and 50% or less, and more specifically 30% or more and 40% or less.
  • the thickness change of the carbon block is 10% or less, specifically 2% or less, and more specifically, may hardly change.
  • the carbon block hardly shrinks, so that even when the battery cell is fastened, the porosity of the carbon block can be maintained.
  • the change in porosity means the difference between the porosity before pressurization and the porosity after pressurization.
  • the average thickness of the carbon block may be selected in consideration of the depth and the fastening structure of the carbon block receiving groove, specifically, the average thickness of the carbon block is the same as the average depth of the carbon block receiving groove, or the carbon block receiving groove It can be thinner or thicker than the average depth. For example, when the depth of the receiving groove is 2mm, the thickness of the carbon block is generally 2mm, but depending on the shape and thickness of the gasket, the thickness of the carbon block may be thicker or thinner than the depth of the receiving groove.
  • the gasket sheet when the gasket sheet is applied to the entire surface of the non-conductive region of the flow frame, an effect of deepening the depth of the carbon block accommodating groove as much as the thickness of the applied gasket occurs, but as another example, the O-ring which is not the face gasket type Alternatively, when the gasket in the joule-ring type is applied to the recessed patterned groove, there may be no increase in the depth of the receiving groove.
  • the carbon block may be filled with a composition comprising a spherical phenol resin and a binder in a block-type mold, and then compressed and carbonized to prepare a porous carbon block.
  • the carbon block is made of a spherical phenolic resin and filled with a composition containing the spherical phenolic resin and a liquid polyphenol in a block-type mold and compressed and then dried, degreasing, sintering and high-purification process of porous carbon Blocks can be produced.
  • the spherical phenol resin is a polymer
  • the phenol resin is a resin obtained from phenols (phenol, cresol, xylenol, resorcinol) and aldehydes (formaldehyde, acetaldehyde, furfural) and their modified resins. It means the thermosetting resin containing.
  • the liquid polyphenol is a relatively low molecular material, which is liquid at room temperature, and may serve as a binder resin connecting the spherical phenolic resin.
  • the spherical phenolic resin particles used may be spherical polyresin particles having an average diameter of 100 ⁇ m to 800 ⁇ m.
  • the carbon block has a compressive strength of 20 MPa or more, specifically 25 MPa or more.
  • the carbon block hardly shrinks, so that even when the battery cell is fastened, the porosity of the carbon block can be maintained.
  • the higher the compressive strength is the better the higher the compressive strength is.
  • the compressive strength means a value measured by the test analysis method specified in KS L 1601: 2006.
  • the sintered density of the carbon block is 0.6 g / cm 3 or more, specifically 0.7 g / cm 3 or more.
  • the carbon block hardly shrinks, so that even when the battery cell is fastened, the porosity of the carbon block can be maintained.
  • the sintered density means the value measured by the test method specified in KS L 3409: 2010.
  • the average pore size of the carbon block may be 25 ⁇ m or more and 200 ⁇ m or less, specifically 70 ⁇ m or more and 120 ⁇ m or less, and more specifically 90 ⁇ m or more and 110 ⁇ m or less.
  • the carbon block may further perform heat treatment before battery fastening. Specifically, the carbon block may be heat-treated for a predetermined time at a high temperature while supplying air. At this time, the heat treatment temperature may be around 500 °C, heat treatment time may be 5 hours or more and 7 hours or less.
  • the method may further include an interface resistance reduction layer including any one selected from carbon paper, carbon cloth, and thin carbon felt provided on at least one surface of the carbon block.
  • the electrode structure may further include carbon paper provided on one side or both sides of the carbon block. In this case, the interface resistance can be lowered and the reaction speed can be improved.
  • the thickness of the interface resistance reducing layer may be 0.01 mm or more and 1 mm or less, and 0.1 mm or more and 0.7 mm or less. In this case, the interface resistance can be lowered and the reaction speed can be improved.
  • the average thickness of the carbon block may be selected in consideration of the thickness of the interfacial resistance reduction layer. Specifically, in the at least one surface of the carbon block provided with an interfacial resistance reduction layer, the sum of the average thickness of the carbon block and the interfacial resistance reduction layer is equal to the average depth of the carbon block receiving groove, or the average depth of the carbon block receiving groove. It may be thinner or thicker. For example, when the average depth of the carbon block receiving groove is 2mm, the average thickness of the carbon block may be 2mm, and the thickness of the interface resistance reducing layer may be 0.5mm.
  • Carbon paper refers to a material such as a thin paper manufactured by coating a carbon material such as carbon black, carbon fiber or carbon nanotubes together with a binder resin and heating the same.
  • the carbon cloth and the carbon felt are made of carbon fiber.
  • Carbon fiber is a fibrous carbon material having a carbon content of 90% or more by weight. It is ten times stronger than steel and is a lightweight material with only 25% weight.
  • the carbon fiber has high thermal conductivity and low coefficient of thermal expansion, excellent electrical conductivity and chemical resistance in addition to excellent mechanical properties.
  • the carbon cloth is woven fabric made of carbon fiber
  • the carbon felt is made of carbon fiber such as non-woven fabric bonded by thermal bonding, chemical bonding, or entangled with needles, that is, without woven carbon fiber.
  • non-woven fabric is in the form of felt prepared.
  • the carbon felt receiving groove having a depth of h1 is a carbon felt having a thickness of t1 before the unit cell is fastened ( 4) and the unit cell is fastened, the thickness of the carbon felt is changed to t2.
  • the compressibility of the carbon felt is calculated as ⁇ (t 1 -t 2) ⁇ 100 ⁇ / t 1. The higher the compression rate of the carbon felt, the lower the resistance of the interface between the materials, but the porosity of the carbon felt decreases, the electrolyte flow may deteriorate.
  • the carbon felt having a thickness of 5mm is inserted into the felt receiving groove of the flow frame, and the depth of the receiving groove is 3mm, it can be said that the carbon felt has a compression ratio of 40%.
  • the electrode structure of the present specification is provided with a carbon block, there is little change in thickness due to the pressure at the time of fastening the battery, and thus the porosity and pore size of the carbon block are almost maintained while the resistance of the interface is low. This has a good advantage.
  • the carbon block having the thickness of T1 is inserted into the carbon block receiving groove 30 having the depth of H1.
  • T2 is almost equal to T1, the thickness of the carbon block before fastening.
  • the flow frame has a structure in which a carbon block can be accommodated on one surface or both surfaces, a flow path for supplying and discharging the electrolyte solution to the carbon block, a member for sealing the electrolyte solution to prevent leakage, and a current collecting structure.
  • the flow frame may be provided with a carbon block receiving groove on one side or both sides.
  • a carbon block may be inserted into the carbon block receiving groove, or a carbon block having carbon paper provided on at least one surface thereof.
  • the flow frame may be provided with a graphite plate which may collect current by contacting the housed carbon block and contacting the opposite side of the carbon block with the current collector so as not to leak the electrolyte.
  • the flow frame may be provided with a carbon block receiving hole penetrated in the thickness direction.
  • the electrode structure When the flow frame includes a carbon block accommodating hole, the electrode structure further includes a graphite plate provided on one surface of the carbon block, and the carbon block provided with the graphite plate on one surface of the carbon block accommodating hole of the flow frame. Can be inserted in In this case, the electrolyte may be sealed to prevent leakage of the electrolyte between the carbon block accommodating hole of the flow frame and the graphite plate.
  • the redox flow cell of the present specification includes a first end plate; First monopolar plate; Separator; Second monopolar plate; And a second end plate sequentially.
  • At least one of the first and second monopolar plates may be the electrode structure described above. Specifically, any one of the first and second monopolar plates may be the above-described electrode structure, or the first and second monopolar plates may each be the electrode structure described above.
  • the monopolar plate means a plate serving as an electrode on only one surface provided with a carbon block
  • at least one of the first and second monopolar plates includes an electrode structure including a flow frame in which the carbon block is accommodated on one surface. Can be.
  • the sum of the average thicknesses of the carbon blocks accommodated in the first and second monopolar plates, respectively is the first and second monopolar plates, respectively. It may be equal to or less than the sum of the average depth of the carbon block receiving groove of the pressurized thickness of the sealing member when the redox flow battery is fastened.
  • the redox flow battery may further comprise one or more bipolar plates between the first and second monopolar plates. At least one of the one or more bipolar plates may be the electrode structure described above.
  • one bipolar plate 600 may be further included between the first and second monopolar plates 200 and 400.
  • the bipolar plate means a plate on which both surfaces with the carbon block serve as an electrode
  • the bipolar plate including the above-described electrode structure includes a carbon block; And a flow frame in which the carbon blocks are accommodated on both sides.
  • the redox flow battery may further include a separator provided between the first monopolar plate and the bipolar plate and between the second monopolar plate and the bipolar plate. Specifically, as shown in FIG. 6, provided between the first monopolar plate 200 and the bipolar plate 600 and between the second monopolar plate 400 and the bipolar plate 600.
  • the separator 300 may be further included.
  • the redox flow battery may further include a separator provided between the two or more bipolar plates.
  • the separator is not particularly limited, and may be a material generally used in the art, and may be, for example, Nafion.
  • the redox flow battery may further include a sealing member provided between the first and second monopolar plates.
  • the sealing member is not particularly limited as long as the sealing member is a structure and a material capable of sealing the first and second monopolar plates.
  • the sealing member is inserted into a groove formed around a carbon block accommodated in the first and second monopolar plates. It may be a sealing sheet in which the through-hole is formed so as not to cover the finished gasket line or the carbon blocks accommodated in the first and second monopolar plates.
  • a change in porosity of the carbon block may be 10% or less, and specifically 2% or less. In this case, the target porosity is almost maintained even after the battery is fastened, so that the flow of the electrolyte is good.
  • the torque applied to the battery cell in general may be 50 kgf ⁇ cm or more and 300 kgf ⁇ cm or less, and specifically 100 kgf ⁇ cm or more and 250 kgf ⁇ cm or less.
  • a fuel cell comprising the electrode structure of the present specification.
  • the electrode structure of the present specification may be a monopolar plate or a bipolar plate, respectively provided on one side or both sides of a membrane electrode assembly (MEA) in a fuel cell.
  • the electrode structure of the present specification may replace a plate provided with a gas diffusion layer and a flow path of the membrane electrode assembly.
  • the electrode structure of the present invention can replace the plate provided with the gas diffusion layer and the flow path of the membrane electrode assembly without forming a separate flow path in the carbon block.
  • the carbon block in which carbon paper was laminated on both sides was inserted into a flow frame provided with one side with a size of 325 cm 2 and a depth of 2.5 mm.
  • Nafion 212 was provided as a separator and pressurized at a torque of 250 kgf ⁇ cm to connect a unit cell.
  • the carbon block in which carbon paper was laminated on both sides was inserted into a flow frame having a receiving groove having a size of 5 cm ⁇ 5 cm and a depth of 2.5 mm on one side.
  • Nafion 212 was provided as a separator and pressurized at a torque of 250 kgf ⁇ cm to connect a unit cell.
  • Example 2 Before the unit cell was fastened, the unit cell was fastened in the same manner as in Example 2 except that the carbon block of Example 2 was replaced by heat treatment at high temperature (500 ° C.) for 6 hours while supplying air.
  • a single cell was fastened in the same manner as in Example 1, except that carbon felt (XF30A manufactured by Toyobo) having a thickness of 4 mm and a porosity of 90% was used instead of the carbon block in which carbon paper was laminated on both surfaces.
  • carbon felt XF30A manufactured by Toyobo
  • the compression rate of the carbon felt fastened by the unit cell was about 38%.
  • Example 1 Comparative example mA / cm 2 Dch. mAh CE% VE% EE% Dch. mAh CE% VE% EE% 50 34468 90.4 91.9 83.1 33413 90.8 92.5 84.0 100 29954 94.6 84.8 80.2 28978 94.2 85.8 80.8 150 24583 95.9 78.3 75.1 23599 95.2 79.4 75.6 200 18465 97.2 72.0 70.0 17138 96.5 72.9 70.3 250 10953 98.3 65.1 64.0 9400 97.0 65.4 63.4
  • Example 1 has a slightly lower voltage efficiency due to an increase in resistance due to the increase in the number of interfacial waters, it was confirmed that the energy efficiency of the Comparative Example was reversed in the high current (high power) evaluation condition of 250 mA / cm 2 . This means that when the current density is increased, it is necessary to apply a high flow rate of the electrolyte.
  • Example 1 Two monopolar plates of Example 1 and two bipolar plates on which both surfaces of the same battery (the carbon block having carbon paper laminated on both sides) were stacked in three cells, and an increase in flow rate was confirmed.
  • the flow rate of the electrolyte solution of Example 1 applying the porous carbon block was increased by 57% compared to the comparative example.
  • Example 2 Example 3 Dch. mAh CE% VE% EE% Dch. mAh CE% VE% EE% 10th 632 95.9% 59.0% 56.6% 1062 96.3% 65.6% 63.2%
  • Example 3 using the heat-treated carbon block significantly improved performance compared to Example 2. It is understood that the high temperature heat treatment gives hydrophilicity to the material, and an oxygen functional group is formed, thereby improving performance.
  • the carbon blocks of Examples 1 to 3 have compressive strengths of 29 ⁇ 2 MPa and 29 ⁇ 2 MPa, respectively, and can maintain their shape even if more pressure is applied thereto. Confirmed.
  • the carbon felt is easily changed in thickness even when pressurized by hand, and when the carbon felt specimens with a thickness of 3.53 mm and an area of 3 cm 2 are subjected to respective pressures as shown in Table 4 below, the thickness decreases. .
  • first end plate 110 fastening protrusion
  • first monopolar plate 210 graphite plate
  • bipolar plate 610 graphite plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 명세서는 5% 이상 70% 이하의 기공율 및 20MPa 이상의 압축강도를 갖는 기공을 포함하는 카본 블록을 일면 또는 양면에 수용하는 플로우 프레임을 포함하는 전극 구조체 및 전술한 전극 구조체를 포함하는 레독스 흐름 전지에 관한 것이다.

Description

전극 구조체 및 이를 포함하는 레독스 흐름 전지
본 명세서는 2017년 2월 28일자 한국 특허청에 제출된 한국 특허출원 제10-2017-0026394호의 출원일의 이익을 주장하고, 그 내용은 전부 본 명세서에 포함된다.
본 명세서는 전극 구조체 및 이를 포함하는 레독스 흐름 전지에 관한 것이다.
전력 저장 기술은 전력 이용의 효율화, 전력 공급 시스템의 능력이나 신뢰성 향상, 시간에 따라 변동 폭이 큰 신재생 에너지의 도입 확대, 이동체의 에너지 회생 등 에너지 전체에 걸쳐 효율적 이용을 위해 중요한 기술이며 그 발전 가능성 및 사회적 기여에 대한 요구가 점점 증대되고 있다.
마이크로 그리드와 같은 반 자율적인 지역 전력 공급 시스템의 수급 균형의 조정 및 풍력이나 태양광 발전과 같은 신재생 에너지 발전의 불균일한 출력을 적절히 분배하고 기존 전력 계통과의 차이에서 발생하는 전압 및 주파수 변동 등의 영향을 제어하기 위해서 이차 전지에 대한 연구가 활발히 진행되고 있으며 이러한 분야에서 이차 전지의 활용도에 대한 기대치가 높아지고 있다.
대용량 전력 저장용으로 사용될 이차 전지에 요구되는 특성을 살펴보면 에너지 저장 밀도가 높아야 하며 이러한 특성에 가장 적합한 고용량 및 고효율의 2차 전지로서 흐름 전지가 가장 각광받고 있다.
흐름 전지는 분리막을 중심으로 양측에 캐소드 및 애노드의 전극이 위치하도록 구성된다.
전극의 외부에 각각 전지 체결 및 전기 전도를 위한 플레이트가 구비되며, 전해질을 담아놓는 캐소드 탱크와 애노드 탱크 그리고 전해질이 들어가는 유입구와 전해질이 다시 나오는 배출구를 포함하여 구성된다.
본 명세서는 전극 구조체 및 이를 포함하는 레독스 흐름 전지를 제공하고자 한다.
본 명세서는 기공을 갖는 카본 블록; 및 상기 카본 블록이 일면 또는 양면에 수용되는 플로우 프레임을 포함하며, 상기 카본 블록의 기공율은 5% 이상 70%이하이고, 상기 카본 블록의 압축강도가 20MPa 이상인 것인 전극 구조체를 제공한다.
또한, 본 명세서는 제1 엔드 플레이트; 제1 모노폴라 플레이트; 분리막; 제2 모노폴라 플레이트; 및 제2 엔드 플레이트를 순차적으로 포함하고, 상기 제1 및 제2 모노폴라 플레이트 중 적어도 하나는 전술한 전극 구조체인 것인 레독스 흐름 전지를 제공한다.
본 명세서에 따른 전극 구조체의 전극은 전지셀의 체결압에 의해 거의 압축이 되지 않고 제조시 기공율을 유지할 수 있는 장점이 있다.
본 명세서에 따른 레독스 흐름 전지는 전극으로 전해액을 높은 유량으로 공급할 수 있는 장점이 있다.
도 1은 종래기술에 따른 전극 구조체를 이용하여 전지를 체결하는 분해단면도이다.
도 2는 종래기술에 따른 전극 구조체를 이용하여 체결된 전지의 단면도이다.
도 3은 본 명세서에 따른 실시상태의 전극 구조체의 단면도이다.
도 4는 본 명세서에 따른 일 실시상태의 전극 구조체를 이용하여 전지를 체결하는 분해단면도이다.
도 5는 본 명세서에 따른 일 실시상태의 전극 구조체를 이용하여 체결된 전지의 단면도이다.
도 6은 본 명세서에 따른 다른 실시상태의 전극 구조체가 적용된 레독스 흐름 전지의 분해단면도이다.
도 7은 본 명세서에 따른 카본블록의 형상을 주사전자현미경 150배율로 관찰한 이미지이다.
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서의 전극 구조체는 기공을 갖는 카본 블록; 및 상기 카본 블록이 일면 또는 양면에 수용되는 플로우 프레임을 포함한다.
상기 전극 구조체가 카본 블록; 및 카본 블록이 일면에 수용되는 플로우 프레임을 포함하는 경우, 상기 전극 구조체는 모노폴라 플레이트이다. 이때, 상기 모노폴라 플레이트는 카본 블록이 구비된 일면만 전극으로서 역할을 하는 플레이트를 의미한다.
상기 전극 구조체가 카본 블록; 및 카본 블록이 양면에 수용되는 플로우 프레임을 포함하는 경우, 상기 전극 구조체는 바이폴라 플레이트이다. 이때, 상기 바이폴라 플레이트는 카본 블록이 구비된 양면이 모두 전극으로서 역할을 하는 플레이트를 의미한다. 상기 바이폴라 플레이트의 양면의 전극은 서로 반대되는 전극이거나 동일한 전극이며, 구체적으로 일면의 전극이 애노드인 경우 타면의 전극은 캐소드로 역할을 할 수 있다.
상기 카본 블록의 기공율은 5% 이상 70% 이하이고, 구체적으로 20% 이상 50% 이하이며, 더 구체적으로 30% 이상 40% 이하일 수 있다.
흐름 전지 체결 시 카본블록의 두께변화는 10% 이하이고, 구체적으로는 2%이하이며, 더 구체적으로 거의 변화하지 않을 수 있다. 이 경우, 상기 카본 블록이 적용된 흐름 전지셀을 체결할 때 카본 블록이 거의 수축하지 않아 체결된 전지셀에서도 제조시 카본 블록의 기공율을 유지할 수 있다. 여기서, 상기 기공율의 변화는 가압전 기공율과 가압후 기공율의 차이를 의미한다.
상기 카본 블록의 평균두께는 상기 카본 블록 수용홈의 깊이와 체결구조를 고려하여 선택할 수 있으며, 구체적으로 상기 카본 블록의 평균두께는 상기 카본 블록 수용홈의 평균깊이와 동일하거나, 상기 카본 블록 수용홈의 평균깊이보다 얇거나 두꺼울 수 있다. 예를 들면, 수용홈의 깊이가 2mm인 경우, 일반적으로 카본블록의 두께는 2mm이나, 가스켓의 형태와 두께에 따라서 카본블록의 두께는 수용홈의 깊이보다 더 두껍거나 더 얇을 수 있다. 구체적으로, 플로우 프레임의 비전도성 영역 전체 면에 가스켓 시트를 적용할 경우, 적용되는 가스켓의 두께만큼 카본블록 수용홈의 깊이가 깊어지는 효과가 발생하나, 또 다른 예로, 상기의 면가스켓 형태가 아닌 오링 또는 줄오링 형태의 가스켓을 음각으로 패턴된 홈에 넣어 적용하면, 수용홈의 깊이의 증가가 없을 수 있다.
상기 카본 블록은 구형의 페놀수지와 바인더를 포함하는 조성물을 블록형 몰드에 충진하고 이를 압축한 후 탄화시켜 다공성의 카본 블록을 제조할 수 있다.
상기 카본 블록은 구형의 페놀수지를 제조하여 상기 구형의 페놀수지와 액상의 폴리페놀을 포함하는 조성물을 블록형 몰드에 충진하고 이를 압축한 후 건조/탈지/소결/고순화 공정을 거쳐 다공성의 카본 블록을 제조할 수 있다.
이때, 구형의 페놀수지는 고분자이며, 상기 페놀수지는 페놀류(페놀, 크레졸, 크실레놀, 레조르시놀)과 알데히드류(포름알데히드, 아세트알데히드, 푸르푸랄) 로부터 얻어지는 수지 및 그것들의 변성 수지를 포함하는 열경화성 수지를 의미한다.
액상의 폴리페놀은 상대적으로 저분자 물질로서 상온에서 액상이며, 구형의 페놀수지를 연결하는 바인더 수지로서 역할을 할 수 있다.
이때, 사용된 구형의 페놀수지 입자는 100㎛ 내지 800㎛의 평균직경을 갖는 구형의 폴리수지 입자일 수 있다.
상기 카본 블록의 압축 강도는 20MPa 이상이며, 구체적으로 25MPa 이상이다. 이 경우, 상기 카본 블록이 적용된 흐름 전지셀을 체결할 때 카본 블록이 거의 수축하지 않아 체결된 전지셀에서도 제조시 카본 블록의 기공율을 유지할 수 있다. 여기서, 압축 강도는 높으면 높을수록 좋으므로 상한치를 특정하지 않는다. 이때, 압축 강도는 KS L 1601 : 2006 에 명시된 시험분석법으로 측정한 값을 의미한다.
상기 카본 블록의 소결 밀도는 0.6g/cm3 이상이며, 구체적으로 0.7g/cm3 이상이다. 이 경우, 상기 카본 블록이 적용된 흐름 전지셀을 체결할 때 카본 블록이 거의 수축하지 않아 체결된 전지셀에서도 제조시 카본 블록의 기공율을 유지할 수 있다. 여기서, 소결 밀도는 높으면 높을수록 좋으므로 상한치를 특정하지 않는다. 이때, 소결 밀도는 KS L 3409 : 2010 에 명시된 시험분석법으로 측정한 값을 의미한다.
상기 카본 블록의 평균 기공 크기는 25㎛ 이상 200㎛ 이하일 수 있으며, 구체적으로 70㎛ 이상 120㎛ 이하일 수 있고, 더 구체적으로 90㎛ 이상 110㎛ 이하일 수 있다.
상기 카본 블록은 전지 체결 전 열처리를 추가로 수행할 수 있다. 구체적으로, 상기 카본 블록은 공기를 공급하면서 고온에서 일정 시간 이상 열처리될 수 있다. 이때, 열처리 온도는 500℃ 내외일 수 있고, 열처리 시간은 5시간 이상 7시간 이하일 수 있다.
상기 카본 블록의 적어도 일면에 구비된 카본 페이퍼, 카본천(cloth) 및 얇은 카본펠트 중 선택된 어느 하나를 포함하는 계면저항감소층을 더 포함할 수 있다. 구체적으로, 상기 전극 구조체는 상기 카본 블록의 일면 또는 양면에 구비된 카본 페이퍼를 더 포함할 수 있다. 이 경우, 계면저항을 낮추고, 반응속도가 향상될 수 있다.
상기 계면저항감소층의 두께는 0.01mm 이상 1mm 이하일 수 있고, 0.1mm 이상 0.7mm 이하일 수 있다. 이 경우, 계면저항을 낮추고, 반응속도가 향상될 수 있다.
상기 카본 블록의 적어도 일면에 계면저항감소층을 구비하는 경우, 상기 카본 블록의 평균두께는 계면저항감소층의 두께를 고려하여 선택할 수 있다. 구체적으로, 상기 적어도 일면에 계면저항감소층이 구비된 카본 블록은 카본 블록과 계면저항감소층의 평균두께의 합이 상기 카본 블록 수용홈의 평균깊이와 동일하거나, 상기 카본 블록 수용홈의 평균깊이보다 얇거나 두꺼울 수 있다. 예를 들면, 상기 카본 블록 수용홈의 평균깊이가 2mm인 경우 상기 카본 블록의 평균두께는 2mm이고, 계면저항감소층의 두께는 0.5mm일 수 있다.
카본페이퍼는 카본 블랙, 카본 섬유 또는 카본나노튜브 등 탄소소재를 바인더 수지와 함께 코팅한 후 가열하여 제조된 얇은 종이와 같은 재료를 의미한다.
여기서, 카본천 및 카본펠트는 카본섬유로 제작된다. 카본섬유는 탄소함량이 중량비 90% 이상인 섬유상의 탄소 재료이다. 강도는 강철의 10배 수준이며, 중량은 25%에 불과한 경량 소재이다. 상기 카본섬유는 우수한 기계적 특성 외에도 높은 열전도성 및 낮은 열팽창계수, 우수한 전기 전도성 및 내화학성을 갖는다.
카본천(카본시트)은 카본섬유로 직조(woven fabric)된 것이고, 카본펠트는 부직포같이 카본섬유를 열접착 또는 화학약품으로 접착시키거나 니들 등으로 엉키게 만든 것이며, 즉 카본섬유를 직조하지 않고(non-woven fabric) 제조된 펠트형태의 것이다.
도 1 및 도 2를 바탕으로 설명하면, 본 명세서의 카본블록 대신 카본펠트(1)를 사용하는 경우, 단위전지의 체결전 t1의 두께를 갖는 카본펠트를 h1의 깊이를 갖는 카본 펠트 수용홈(4)에 삽입하고, 단위전지를 체결하면 t2로 카본펠트의 두께가 변경된다. 이때, 카본펠트의 압축률은 {(t1-t2)×100}/t1으로 계산된다. 카본펠트의 압축률이 높을수록 소재간 계면의 저항은 낮아지는 효과가 발생하나, 카본펠트의 기공율은 감소하기 때문에 전해액 흐름성이 악화될 수 있다.
예를 들면, 5mm 두께를 갖는 카본펠트가 플로우 프레임의 펠트 수용홈에 삽입되고, 수용홈의 깊이가 3mm일 경우, 카본펠트는 40%의 압축률을 갖는다고 말할 수 있다.
그러나, 본원 명세서의 전극 구조체는 카본 블록이 구비됨으로써, 전지 체결시의 압력에 의해 두께의 변화가 적으므로, 계면의 저항이 낮으면서도 카본 블록의 기공율 및 기공의 크기가 거의 유지되어 전해액의 흐름성이 좋은 장점이 있다.
도 4 및 도 5를 바탕으로 설명하면, 단위전지의 체결전 T1의 두께를 갖는 카본 블록을 H1의 깊이를 갖는 카본 블록 수용홈(30)에 삽입하고, 단위전지를 체결하면 체결 후 카본 블록의 T2는 체결전 카본 블록의 두께인 T1과 거의 동일하다.
상기 플로우 프레임은 일면 또는 양면에 카본 블록이 수용될 수 있는 구조, 상기 카본 블록으로 전해액을 공급하고 배출할 수 있는 유로, 전해액이 새지 않도록 실링하는 부재 및 집전구조가 형성되어 있다.
상기 플로우 프레임은 일면 또는 양면에 카본 블록 수용홈이 구비될 수 있다. 상기 카본 블록 수용홈에 카본 블록이 삽입되거나, 적어도 일면에 카본 페이퍼가 구비된 카본 블록이 삽입될 수 있다.
상기 플로우 프레임에는 수용된 카본 블록과 접촉하고 카본 블록과 접촉한 반대면을 집전체와 접하여 집전할 수 있는 흑연판이 전해액이 새지 않도록 구비될 수 있다.
상기 플로우 프레임은 두께방향으로 관통된 카본 블록 수용홀이 구비될 수 있다.
상기 플로우 프레임이 카본 블록 수용홀을 구비할 경우, 상기 전극 구조체는 상기 카본 블록의 일면에 구비된 흑연판을 더 포함하며, 상기 일면에 흑연판이 구비된 카본 블록이 상기 플로우 프레임의 카본 블록 수용홀에 삽입될 수 있다. 이때, 상기 플로우 프레임의 카본 블록 수용홀과 흑연판 사이로 전해액이 새지 않도록 실링할 수 있다.
본 명세서의 레독스 흐름 전지는 제1 엔드 플레이트; 제1 모노폴라 플레이트; 분리막; 제2 모노폴라 플레이트; 및 제2 엔드 플레이트를 순차적으로 포함한다.
상기 제1 및 제2 모노폴라 플레이트 중 적어도 하나는 전술한 전극 구조체일 수 있다. 구체적으로, 상기 제1 및 제2 모노폴라 플레이트 중 어느 하나는 전술한 전극 구조체이거나, 상기 제1 및 제2 모노폴라 플레이트는 각각 전술한 전극 구조체일 수 있다.
이때, 상기 모노폴라 플레이트는 카본 블록이 구비된 일면만 전극으로서 역할을 하는 플레이트를 의미하므로, 상기 제1 및 제2 모노폴라 플레이트 중 적어도 하나는 카본 블록이 일면에 수용된 플로우 프레임을 포함하는 전극 구조체일 수 있다.
상기 제1 및 제2 모노폴라 플레이트가 각각 상기 전극 구조체를 포함하는 경우, 상기 제1 및 제2 모노폴라 플레이트에 각각 수용된 카본 블록의 평균두께의 합은, 상기 제1 및 제2 모노폴라 플레이트 각각의 카본 블록 수용홈의 평균깊이와 상기 레독스 흐름 전지의 체결시 실링부재의 가압된 두께의 합과 동일하거나 이보다 작을 수 있다.
상기 레독스 흐름 전지는 상기 제1 및 제2 모노폴라 플레이트 사이에 1 이상의 바이폴라 플레이트를 더 포함할 수 있다. 상기 1 이상의 바이폴라 플레이트 중 적어도 하나는 전술한 전극 구조체일 수 있다.
도 6에 도시된 바와 같이, 상기 제1 및 제2 모노폴라 플레이트(200, 400) 사이에 하나의 바이폴라 플레이트(600)를 더 포함할 수 있다.
이때, 상기 바이폴라 플레이트는 카본 블록이 구비된 양면이 모두 전극으로서 역할을 하는 플레이트를 의미하므로, 전술한 전극 구조체를 포함하는 바이폴라 플레이트는 카본 블록; 및 카본 블록이 양면에 수용되는 플로우 프레임을 포함하는 전극 구조체일 수 있다.
상기 레독스 흐름 전지는 상기 제1 모노폴라 플레이트와 상기 바이폴라 플레이트의 사이 및 상기 제2 모노폴라 플레이트와 상기 바이폴라 플레이트 사이에 구비된 분리막을 더 포함할 수 있다. 구체적으로, 도 6에 도시된 바와 같이, 상기 제1 모노폴라 플레이트(200)와 상기 바이폴라 플레이트(600)의 사이 및 상기 제2 모노폴라 플레이트(400)와 상기 바이폴라 플레이트(600) 사이에 구비된 분리막(300)을 더 포함할 수 있다.
상기 레독스 흐름 전지가 2 이상의 바이폴라 플레이트를 포함하는 경우, 상기 2 이상의 바이폴라 플레이트 사이에 구비된 분리막을 더 포함할 수 있다.
상기 분리막은 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 재료를 채용할 수 있으며, 예를 들면 나피온일 수 있다.
상기 레독스 흐름 전지는 상기 제1 및 제2 모노폴라 플레이트 사이에 구비된 실링부재를 더 포함할 수 있다.
상기 실링부재는 상기 제1 및 제2 모노폴라 플레이트를 실링할 수 있는 구조 및 재료라면 특별히 한정하지 않으나, 예를 들면, 제1 및 제2 모노폴라 플레이트에 수용된 카본 블록의 둘레에 형성된 홈에 삽입된 가스켓라인, 또는 제1 및 제2 모노폴라 플레이트에 수용된 카본 블록을 덮지 않도록 관통홀이 형성된 실링시트일 수 있다.
상기 레독스 흐름 전지의 체결시, 상기 카본 블록의 기공율의 변화는 10 % 이하일 수 있으며, 구체적으로 2 % 이하일 수 있다. 이 경우 전지를 체결한 후에도 타킷 기공율이 거의 유지되어 전해액의 흐름이 좋은 장점이 있다.
상기 레독스 흐름 전지의 체결시, 일반적으로 전지셀에 가해지는 토크는 50kgf·cm 이상 300kgf·cm 이하일 수 있으며, 구체적으로 100kgf·cm 이상 250kgf·cm 이하일 수 있다.
본 명세서의 전극 구조체를 포함하는 연료전지를 제공한다.
본 명세서의 전극 구조체는 연료전지에서 막전극 접합체(MEA)의 일면 또는 양면에 구비된 각각 모노폴라 플레이트 또는 바이폴라 플레이트일 수 있다. 이때, 본 명세서의 전극 구조체는 막전극 접합체의 기체확산층 및 유로가 구비된 플레이트를 대체할 수 있다. 특히, 본원발명의 전극 구조체는 카본 블록 내에 별도의 유로를 형성하지 않더라도 막전극 접합체의 기체확산층 및 유로가 구비된 플레이트를 대체할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
코멕스카본사의 PC009 다공성 카본 블록(기공율: 35.64%, 두께: 2.3mm, 카본블록 제조시 압력: 30kgf/cm2, 압축강도: 29±2MPa, 소결밀도: 0.76g/cm3)의 양면에 각각 0.4mm 두께를 갖는 JNTG사의 GF040H(카본 페이퍼)를 적층했다.
325cm2의 크기 및 2.5mm의 깊이를 수용홈이 일면에 구비된 플로우 프레임에 양면에 카본 페이퍼가 적층된 상기 카본 블록을 삽입했다.
분리막으로서 나피온212를 구비하고 250kgf·cm의 토크로 가압하여 단전지를 체결했다.
[실시예 2]
코멕스카본사의 PC005 다공성 카본 블록(기공율: 35.62%, 두께: 2.3mm, 카본블록 제조시 압력: 50kgf/cm2, 압축강도: 29±3MPa, 소결밀도: 0.75g/cm3)의 양면에 각각 0.4mm 두께를 갖는 JNTG사의 GF040H(카본 페이퍼)를 적층했다.
5cm×5cm의 크기 및 2.5mm의 깊이를 갖는 수용홈이 일면에 구비된 플로우 프레임에 양면에 카본 페이퍼가 적층된 상기 카본 블록을 삽입했다.
분리막으로서 나피온212를 구비하고 250kgf·cm의 토크로 가압하여 단전지를 체결했다.
[실시예 3]
단전지의 체결 전에, 상기 실시예 2의 상기 카본 블록을 공기를 공급하면서 고온(500℃)에서 6시간 동안 열처리한 것으로 대체한 것을 제외하고, 실시예 2와 동일하게 단전지를 체결했다.
[비교예]
상기 양면에 카본 페이퍼가 적층된 카본 블록 대신에, 두께가 4mm, 기공율이 90%인 카본 펠트(도요보사의 XF30A)를 사용한 것을 제외하고, 실시예 1과 동일하게 단전지를 체결했다.
이때, 수용홈의 깊이가 2.5mm이므로, 상기 단전지 체결된 카본 펠트의 압축률은 약 38%이었다.
[실험예 1]
전지성능측정
상기 실시예 1 및 비교예에서 제조된 단전지에 각각 OXKEM사의 상용전해액 1L를 각 전극에 순환공급하고, 충방전은 0.8~1.6V 범위에서 정전류(CC)모드로 진행했다. 이때, 충방전 속도는 50mA/cm2 에서 250mA/cm2으로 50mA/cm2씩 증가시켰고, 각 스텝당 충방전 3회를 진행하여, 3번째 충방전싸이클의 성능을 하기 표 1에 도시하였다.
실시예 1 비교예
mA/cm2 Dch. mAh CE% VE% EE% Dch. mAh CE% VE% EE%
50 34468 90.4 91.9 83.1 33413 90.8 92.5 84.0
100 29954 94.6 84.8 80.2 28978 94.2 85.8 80.8
150 24583 95.9 78.3 75.1 23599 95.2 79.4 75.6
200 18465 97.2 72.0 70.0 17138 96.5 72.9 70.3
250 10953 98.3 65.1 64.0 9400 97.0 65.4 63.4
Dch. (Discharge capacity), CE(전류효율), VE(전압효율), EE(에너지효율), mA/cm2(전극활성면적 당 전류)
실시예 1이 계면수 증가에 따른 저항 증가로 인하여, 전압 효율이 다소 낮으나, 250mA/cm2의 고전류(고출력) 평가 조건에서 비교예 대비 에너지 효율이 역전됨을 확인했다. 이는 전류밀도 증가 시, 전해액 고유량 적용이 필요하다는 것을 의미한다.
[실험예 2]
전해액 유량측정
실시예 1의 모노폴라 플레이트 2개 및 동일 전지(양면에 카본 페이퍼가 적층된 상기 카본 블록)를 양면에 적용한 바이폴라 플레이트 2개를 3셀로 스택하여, 유량 증가를 확인했다.
반면, 비교예의 모노폴라 플레이트 2개 및 동일 전지(카본 펠트)를 양면에 적용한 바이폴라 플레이트 2개를 3셀로 스택하여, 유량 증가를 확인했다.
이때, 셀 차압은 0.65bar 이였다.
SOC(state of charge) 상태에 따라 전해액의 속도는 다소 차이를 보이므로, 하기 표 2의 실험치는 (+)극 전해액을 SOC 0 상태에서 실측하였다.
유량(ml/min·cm2)
비교예 0.67
실시예 1 1.05
다공성 카본 블록을 적용한 실시예 1의 전해액의 유량은 비교예 대비 57% 증가하였다.
[실험예 3]
실시예 2 및 3에서 제조된 단전지에 OXKEM사 전해액 50cc를 음극과 양극에 각기 적용하고, 유속은 단위면적 당 1ml/min의 속도로 공급하고, 충방전 전류밀도는 200mA/cm2이며 0.8~1.7V 조건에서 정전류 모드에서 연속 평가를 진행했다. 그 결과를 하기 표 3에 나타냈다.
실시예 2 실시예 3
Dch. mAh CE% VE% EE% Dch. mAh CE% VE% EE%
10회 632 95.9% 59.0% 56.6% 1062 96.3% 65.6% 63.2%
열처리된 카본 블록을 사용한 실시예 3이 실시예 2보다 성능이 큰폭으로 향상됨을 확인했다. 이는 고온열처리를 통하여, 소재에 친수성을 부여하고, 산소관능기가 형성되어, 성능이 향상된 것으로 파악된다.
[실험예 4]
압축실험
실시예 1 내지 3의 카본블록은 압축강도가 각각 29±2MPa 및 29±2MPa이며, 그 이상의 압력을 가하더라도 형태를 유지할 수 있고, 일정이상의 압력이 가해진다면 두께가 변하면서 압축되기보다는 부서지는 것을 확인했다.
반면, 카본 펠트는 손으로 가압하는 경우에도 쉽게 두께가 변경되며, 두께 3.53mm, 면적이 3cm2인 카본펠트 시편을 하기 표 4와 같이 각각의 압력을 가하는 경우, 두께가 감소하는 것을 알 수 있다.
압력 카본펠트의 두께변화
1Kgf 1.65mm 감소
5kgf 2.75mm 감소
15kgf 3.0mm 감소
[부호의 설명]
1: 카본 펠트
2: 플로우 프레임
3: 흑연판
4: 카본 펠트 수용홈
5: 분리막
10: 카본 블록
20: 블로우 프레임
30: 카본 블록 수용홈
40: 흑연판
50: 분리막
60: 카본 페이퍼
100: 제1 엔드 플레이트 110: 체결 돌출부
120: 집전체
200: 제1 모노폴라 플레이트 210: 흑연판
220: 카본 블록 230: 실링부재
240: 플로우 프레임
300: 분리막
400: 제2 모노폴라 플레이트 410: 흑연판
420: 카본 블록 430: 실링부재
440: 플로우 프레임
500: 제2 엔드 플레이트 510: 체결홀
520: 집전체
600: 바이폴라 플레이트 610: 흑연판
620: 카본 블록 640: 플로우 프레임

Claims (7)

  1. 기공을 갖는 카본 블록; 및
    상기 카본 블록이 일면 또는 양면에 수용되는 플로우 프레임을 포함하며,
    상기 카본 블록의 기공율은 5% 이상 70%이하이고, 상기 카본 블록의 압축강도가 20MPa 이상인 것인 전극 구조체.
  2. 청구항 1에 있어서, 상기 플로우 프레임은 일면 또는 양면에 카본 블록 수용홈이 구비되고,
    상기 카본 블록의 평균두께는 상기 카본 블록 수용홈의 평균깊이보다 얇거나, 상기 카본 블록 수용홈의 평균깊이보다 두꺼운 것인 전극 구조체.
  3. 청구항 1에 있어서, 상기 전극 구조체는 상기 카본 블록의 적어도 일면에 구비된 카본 페이퍼, 카본천(cloth) 및 얇은 카본펠트 중 선택된 어느 하나를 포함하는 계면저항감소층을 더 포함하는 것인 전극 구조체.
  4. 청구항 1에 있어서, 상기 플로우 프레임은 두께방향으로 관통된 카본 블록 수용홀이 구비된 것인 전극 구조체.
  5. 청구항 4에 있어서, 상기 전극 구조체는 상기 카본 블록의 일면에 구비된 흑연판을 더 포함하며,
    상기 일면에 흑연판이 구비된 카본 블록이 상기 플로우 프레임의 카본 블록 수용홀에 삽입되는 것인 전극 구조체.
  6. 제1 엔드 플레이트; 제1 모노폴라 플레이트; 분리막; 제2 모노폴라 플레이트; 및 제2 엔드 플레이트를 순차적으로 포함하고,
    상기 제1 및 제2 모노폴라 플레이트 중 적어도 하나는 청구항 1 내지 5 중 어느 한 항에 따른 전극 구조체인 것인 레독스 흐름 전지.
  7. 청구항 6에 있어서, 상기 레독스 흐름 전지는 상기 제1 및 제2 모노폴라 플레이트 사이에 1 이상의 바이폴라 플레이트를 더 포함하며,
    상기 1 이상의 바이폴라 플레이트 중 적어도 하나는 상기 전극 구조체인 것인 레독스 흐름 전지.
PCT/KR2018/002335 2017-02-28 2018-02-26 전극 구조체 및 이를 포함하는 레독스 흐름 전지 WO2018159969A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/348,363 US11309565B2 (en) 2017-02-28 2018-02-26 Electrode structure and redox flow battery comprising same
EP18761044.9A EP3525274B1 (en) 2017-02-28 2018-02-26 Electrode structure and redox flow battery comprising same
CN201880013185.6A CN110326142B (zh) 2017-02-28 2018-02-26 电极结构和包括其的氧化还原液流电池
JP2019526488A JP6847217B2 (ja) 2017-02-28 2018-02-26 電極構造体およびこれを含むレドックスフロー電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170026394A KR102127037B1 (ko) 2017-02-28 2017-02-28 전극 구조체 및 이를 포함하는 레독스 흐름 전지
KR10-2017-0026394 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159969A1 true WO2018159969A1 (ko) 2018-09-07

Family

ID=63371427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002335 WO2018159969A1 (ko) 2017-02-28 2018-02-26 전극 구조체 및 이를 포함하는 레독스 흐름 전지

Country Status (6)

Country Link
US (1) US11309565B2 (ko)
EP (1) EP3525274B1 (ko)
JP (1) JP6847217B2 (ko)
KR (1) KR102127037B1 (ko)
CN (1) CN110326142B (ko)
WO (1) WO2018159969A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179453B1 (ko) * 2018-09-20 2020-11-16 (주)코멕스카본 레독스 흐름 전지용 전극의 제조방법
DE102022105339A1 (de) 2022-03-08 2023-09-14 Schaeffler Technologies AG & Co. KG Redox-Flow-Converter und Verfahren zur Herstellung eines Redox-Flow-Converters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431070B1 (ko) * 2013-07-16 2014-08-21 주식회사 에이치투 이온교환막 및 플로우프레임 조립체를 구비한 레독스 흐름 전지용 스택
KR20150125710A (ko) * 2013-04-11 2015-11-09 쇼와 덴코 가부시키가이샤 카본 부재, 카본 부재의 제조 방법, 레독스 플로우 전지 및 연료 전지
KR101661570B1 (ko) * 2015-04-27 2016-10-04 주식회사 에이치투 스택에서의 전해질 흐름에 따른 압력강하를 저감한 레독스 흐름전지용 단위셀
KR20160128919A (ko) * 2015-04-29 2016-11-08 주식회사 엘지화학 이차전지용 전극 및 이를 포함하는 이차전지
JP6047799B2 (ja) * 2012-03-23 2016-12-21 アイオン株式会社 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
KR101707570B1 (ko) * 2015-09-23 2017-02-16 롯데케미칼 주식회사 레독스 흐름 전지의 전극 제조용 슬러리 조성물 및 이를 포함하는 레독스 흐름 전지의 전극
KR20170026394A (ko) 2014-07-03 2017-03-08 아르셀러미탈 향상된 강도 및 성형성을 갖는 고강도 강 시트의 제조 방법 및 획득된 시트

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1571997B2 (de) * 1966-10-28 1975-07-10 Robert Bosch Gmbh, 7000 Stuttgart Gasdichter elektrischer Akkumulator mit Ladekontrollelektrode und Verfahren zur Herstellung der Ladekontrollelektrode
KR0170570B1 (ko) 1995-10-25 1999-02-01 김주용 반도체 소자의 캐패시터 제조 방법
JP3601581B2 (ja) 1999-06-11 2004-12-15 東洋紡績株式会社 バナジウム系レドックスフロー電池用炭素電極材
CN100336972C (zh) * 2002-04-17 2007-09-12 三菱丽阳株式会社 碳纤维纸及使用该材料的燃料电池用多孔碳电极基材
KR100649150B1 (ko) 2005-01-07 2006-11-27 요업기술원 다공성 탄소재의 제조방법
KR101049179B1 (ko) 2007-11-05 2011-07-14 한국에너지기술연구원 격리막을 포함하는 레독스 플로우 전지
CN102867978B (zh) 2011-07-05 2015-06-03 中国科学院大连化学物理研究所 一种液流储能电池结构
WO2013011683A1 (ja) * 2011-07-19 2013-01-24 パナソニック株式会社 膜電極接合体およびガス拡散層の製造方法
EP2795696B1 (en) 2011-12-20 2016-08-31 United Technologies Corporation Flow battery with carbon paper
CN102738473B (zh) 2012-07-17 2015-07-08 中国东方电气集团有限公司 复合多孔电极、含有其的单电池和电池堆及其制备方法
CN103633330B (zh) 2012-08-29 2015-12-09 中国科学院大连化学物理研究所 一种液流电池用复合电极及液流储能电池
JP2015018635A (ja) * 2013-07-09 2015-01-29 日東電工株式会社 蓄電デバイス用電極およびその製法、並びにそれを用いた蓄電デバイス
KR101803593B1 (ko) 2013-10-07 2017-11-30 주식회사 엘지화학 카본 펠트의 압축률 조절이 가능한 플로우 배터리
KR20150047804A (ko) * 2013-10-25 2015-05-06 오씨아이 주식회사 레독스 플로우 전지용 탄소구조체 전극, 레독스 플로우 전지용 탄소구조체 전극의 제조 방법 및 레독스 플로우용 전극 구조체
JP2015122229A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 電極、およびレドックスフロー電池
CN104795583B (zh) 2014-01-21 2017-02-08 北京好风光储能技术有限公司 一种锂离子液流电池
JP2015165481A (ja) * 2014-02-05 2015-09-17 日東電工株式会社 電極およびそれを用いた蓄電デバイス
JP6247590B2 (ja) * 2014-05-07 2017-12-13 旭化成株式会社 セル積層体および蓄電池
JP2016085900A (ja) 2014-10-28 2016-05-19 大日本印刷株式会社 レドックスフロー電池用電極及びそれを用いたレドックスフロー電池
JP6607357B2 (ja) * 2014-11-06 2019-11-20 住友電気工業株式会社 電池セル、およびレドックスフロー電池
JP2018510473A (ja) * 2015-03-24 2018-04-12 スリーエム イノベイティブ プロパティズ カンパニー 多孔質電極、膜電極接合体、電極アセンブリ並びにこれらによる電気化学セル及び液体フロー電池
JP2017010809A (ja) 2015-06-23 2017-01-12 住友電気工業株式会社 レドックスフロー電池、及びレドックスフロー電池用電極
US20210143437A1 (en) * 2016-12-28 2021-05-13 Showa Denko K.K Redox flow battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047799B2 (ja) * 2012-03-23 2016-12-21 アイオン株式会社 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
KR20150125710A (ko) * 2013-04-11 2015-11-09 쇼와 덴코 가부시키가이샤 카본 부재, 카본 부재의 제조 방법, 레독스 플로우 전지 및 연료 전지
KR101431070B1 (ko) * 2013-07-16 2014-08-21 주식회사 에이치투 이온교환막 및 플로우프레임 조립체를 구비한 레독스 흐름 전지용 스택
KR20170026394A (ko) 2014-07-03 2017-03-08 아르셀러미탈 향상된 강도 및 성형성을 갖는 고강도 강 시트의 제조 방법 및 획득된 시트
KR101661570B1 (ko) * 2015-04-27 2016-10-04 주식회사 에이치투 스택에서의 전해질 흐름에 따른 압력강하를 저감한 레독스 흐름전지용 단위셀
KR20160128919A (ko) * 2015-04-29 2016-11-08 주식회사 엘지화학 이차전지용 전극 및 이를 포함하는 이차전지
KR101707570B1 (ko) * 2015-09-23 2017-02-16 롯데케미칼 주식회사 레독스 흐름 전지의 전극 제조용 슬러리 조성물 및 이를 포함하는 레독스 흐름 전지의 전극

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525274A4

Also Published As

Publication number Publication date
CN110326142A (zh) 2019-10-11
JP2020500403A (ja) 2020-01-09
CN110326142B (zh) 2022-07-01
US20190260054A1 (en) 2019-08-22
EP3525274A4 (en) 2019-11-20
EP3525274A1 (en) 2019-08-14
JP6847217B2 (ja) 2021-03-24
KR102127037B1 (ko) 2020-06-25
US11309565B2 (en) 2022-04-19
EP3525274B1 (en) 2023-04-19
KR20180099239A (ko) 2018-09-05

Similar Documents

Publication Publication Date Title
US7455700B2 (en) Method for creating solid oxide fuel cell anodes and electrodes for other electrochemical devices
KR101710293B1 (ko) 카본 부재, 카본 부재의 제조 방법, 레독스 플로우 전지 및 연료 전지
KR102478772B1 (ko) 연료 전지용 분리판 및 제조방법
WO2018159969A1 (ko) 전극 구조체 및 이를 포함하는 레독스 흐름 전지
WO2018062694A1 (ko) 고체 산화물 연료전지의 전해질, 이를 포함하는 고체 산화물 연료전지, 상기 전해질용 조성물 및 상기 전해질의 제조방법
US20020150811A1 (en) Fuel cell unit and its manufacturing method
GB2377078A (en) Fuel cell/electrolyser construction
KR102361103B1 (ko) 전극 구조체 및 이를 포함하는 레독스 흐름 전지
KR101364072B1 (ko) 연료전지용 분리판 및 그 제조방법
JP3818149B2 (ja) 燃料電池
KR101983534B1 (ko) 지지체식 세라믹 연결재 제조방법 및 이에 의해 제조된 지지체식 세라믹 연결재
KR20180076949A (ko) 연료전지용 고분자 전해질막 및 그 제조방법
WO2017034163A1 (ko) 평판형 고체산화물 연료전지 및 이를 포함하는 전지모듈
WO2018062692A1 (ko) 고체 산화물 연료전지
WO2017099403A1 (ko) 복합재 분리판 및 그 제조 방법
CN110121806A (zh) 燃料电池的制备方法及燃料电池
WO2012081792A1 (ko) 연료전지의 바이폴라 플레이트 및 이를 이용한 스택 구조
Besmann et al. Carbon composite for a PEM fuel cell bipolar plate
WO2011052843A1 (ko) 고체산화물 연료전지 및 그 제조방법
KR20130113602A (ko) 평관형 고체산화물 단위 셀, 이를 이용한 평관형 고체산화물 연료전지 및 평관형 고체산화물 수전해장치
KR101883401B1 (ko) 금속지지체형 고체산화물 연료전지의 제조방법
WO2014189177A1 (ko) 연료전지용 망사형 분리판 및 그 제조방법
EP1836738A1 (en) Fuel cell separator plate assembly
WO2017183792A1 (ko) 복합재 분리판 및 그 제조 방법
US10665872B2 (en) Fuel cell stack and method for manufacturing fuel cell stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018761044

Country of ref document: EP

Effective date: 20190508

Ref document number: 2019526488

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE