WO2018159400A1 - 能動マニピュレータ装置 - Google Patents

能動マニピュレータ装置 Download PDF

Info

Publication number
WO2018159400A1
WO2018159400A1 PCT/JP2018/006154 JP2018006154W WO2018159400A1 WO 2018159400 A1 WO2018159400 A1 WO 2018159400A1 JP 2018006154 W JP2018006154 W JP 2018006154W WO 2018159400 A1 WO2018159400 A1 WO 2018159400A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
manipulator device
fibrous
active manipulator
pulley
Prior art date
Application number
PCT/JP2018/006154
Other languages
English (en)
French (fr)
Inventor
翔一郎 井出
敦 西川
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Publication of WO2018159400A1 publication Critical patent/WO2018159400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present invention relates to an active manipulator device using a fibrous actuator as a drive source.
  • contraction-type high-torque actuators such as SCP (super-coiled polymer) actuators (fiber actuators) twisted in a coil shape and SMA (shape memory alloy) actuators using shape memory alloys have been developed.
  • SCP actuator is a twisted synthetic fiber in a coil shape that shrinks when heated (fiber) and returns to its original length when cooled.
  • Such an actuator has a high output weight ratio and responsiveness, and since it is a synthetic fiber, it can be manufactured at low cost, and is being applied as an actuator used in a low-cost robot (Non-patent Documents 1 to 4).
  • the SCP actuator described above is a so-called heat-driven actuator that contracts in the length direction when heated, and expands in the length direction when cooled and returns to its original state.
  • a thermally driven actuator an actuator formed by twisting a conductive nylon fiber into a coil shape is known.
  • the conductive fibrous actuator can be used as an actuator that expands and contracts in the length direction by ON-OFF control of the voltage applied between both ends.
  • the contraction rate of the fibrous actuator acting as a heat-driven type is about 10 to 20%, and the rotary joint mechanism using pulleys and pins cannot sufficiently drive the joint.
  • the generated force of a single actuator obtained by heating a fibrous actuator is about 1 N, it is necessary to integrate the actuator to obtain a large generated force when mounted on a joint mechanism of a robot. .
  • the contraction rate of the actuator is further reduced as compared with a case where the actuator is used alone, so that a long actuator must be used.
  • the present invention makes it possible to obtain a large rotation angle by using a heat-driven fibrous actuator that is expanded and contracted by controlling heating and cooling, and is suitably used for various applications such as a robot apparatus. It is an object of the present invention to provide an active manipulator device that can be used.
  • An active manipulator device is disposed between a first member and a second member each having an arc-shaped contact portion, and a center axis of an arc of each of the contact portions, and the contact portions are opposed to each other.
  • a carrier that rotatably supports the first member and the second member while being in contact with each other; a pulley that is fixed to the carrier and provided concentrically with the shaft of the first member; And a heat-driven actuator that is connected to the pulley and is driven to expand and contract by heating and cooling.
  • an energization type actuator that is extended and contracted by energization can be used as well as a thermally driven actuator that is extended and contracted by heating and cooling.
  • the heat-driven actuator is configured to expand and contract in accordance with heating / cooling action (for example, twisting a fiber in a coil shape) and controls heating / cooling of a functional part (movable part: expansion / contraction part).
  • heating / cooling action for example, twisting a fiber in a coil shape
  • a functional part movable part: expansion / contraction part
  • the expansion / contraction action can be controlled.
  • an appropriate method such as heating with a heater or the like can be used.
  • a method of heating / cooling by using current is effective, and particularly a fibrous material having conductivity.
  • the actuator is advantageous in that it can control the generation of Joule heat by connecting electrodes at both ends thereof and performing ON / OFF control of energization, and can easily perform heating and cooling operations.
  • an energization type actuator that is extended and contracted by controlling energization
  • an actuator that is extended and contracted by heating and cooling is effective, and a fibrous actuator imparted with conductivity can be suit
  • the contact portion is formed as a gear portion, so that the first member and the second member are reliably engaged with each other, and a stable rotation operation is possible.
  • the first member may be configured as a circular gear
  • the second member may be configured as a circular gear
  • the first member is provided with an arc-shaped gear portion on one end side of the substrate.
  • the two members may be configured by providing an arcuate gear portion on one end side of the substrate.
  • the first unit and the second member are combined as a single unit, and the drive unit includes a configuration in which the pair of thermally driven or energized actuators are attached to the substrate of the first member.
  • the active manipulator device thus made can be suitably used as a basic unit when configuring a robot device or the like.
  • the drive unit is formed into an articulated type in which a plurality of drive units are connected, and the substrate of one of the adjacent drive units and the substrate of the other drive unit are arranged in series or in the direction of the substrate.
  • An active manipulator device connected as an intersecting cross shape can be suitably used as an articulated active manipulator device.
  • the active manipulator device can be provided as a joint mechanism (bending mechanism) that can obtain a large rotation angle by using a fibrous actuator having a small contraction rate, and is small and easily used for a robot or the like. It can be provided as a device that can
  • FIG. 1 shows a basic configuration of an active manipulator device.
  • the sun gear 10 and the planetary gear 12 are supported by being linked to each other between the central axes via the carrier 14, and the sun gear 10 and the planetary gear 12 mesh with each other,
  • the planetary gear 12 is configured to freely roll around.
  • the sun gear 10 corresponds to the first member of the present invention
  • the planetary gear 12 corresponds to the second member.
  • a pulley 16 is pivotally supported coaxially at the center of the sun gear 10, and the shaft 16 a of the pulley 16 and the carrier 14 are connected. That is, when the pulley 16 rotates, the carrier 14 rotates together with the pulley 16 about the shaft 16a.
  • a fibrous actuator 18 is stretched over the pulley 16, and the fibrous actuator 18 expands and contracts, whereby the pulley 16 rotates about the shaft 16 a, and the planetary gear 12 rotates together with the pulley 16 via the carrier 14. (The planetary gear 12 rolls on the circumference of the sun gear 10).
  • An arm 19 is connected to the planetary gear 12, and the planetary gear 12 rolls on the sun gear 10, whereby the arm 19 rotates together with the planetary gear 12.
  • the planetary gear 12 rotates (rightward) on the circumference of the sun gear 10 and the arm 19 rotates from the upper position to the right position. .
  • the fibrous actuator has the property of contracting in the length direction when heated, and extending in the length direction and returning to the original state when cooled, and twists the conductive nylon fiber to form a coil. What is formed in the is known. When a voltage is applied across the conductive fibrous actuator, the fibrous actuator is heated and contracted by Joule heat, and when the voltage application is released, the fibrous actuator returns to its original length.
  • the conductive fibrous actuator can be used as an actuator that expands and contracts in the length direction by ON-OFF control of the voltage applied between both ends.
  • conductive nylon fiber was used as the fibrous actuator, but the material and form of the fibrous actuator are not limited.
  • the joint angle of the active manipulator device shown in FIG. 1 is an angle q [rad] formed by the center line of the sun gear 10 and the center line of the planetary gear 12 when the planetary gear 12 rolls on the sun gear 10.
  • ⁇ [rad] the rotation angle of the pulley 16 and the carrier 14
  • q (1 + r sg / r pg ) ⁇ (1)
  • r sg [m] and r pg [m] represent the reference pitch circle radii of the sun gear 10 and the planetary gear 12, respectively.
  • the joint angle q is (1 + r sg / r pg ) times the rotation angle ⁇ of the pulley 16 and the carrier 14. Therefore, the angle amplification factor can be changed by changing the radius ratio r sg / r pg .
  • the relationship between the contraction amount of the fibrous actuator 18 and the rotation amounts of the pulley 16 and the carrier 14 is as follows.
  • the contraction amount of the fibrous actuator 18 is l c [m] and the radius of the pulley 16 is r p [m]
  • l c r p ⁇ (2) It is.
  • FIG. 2 shows that the minimum shrinkage of the fibrous actuator 18 decreases as the radial ratio of each gear increases. Further, the smaller the radius of the pulley 16, the smaller the contraction amount of the fibrous actuator 18.
  • Table 1 shows parameter values of design examples of the active manipulator device.
  • the gear was designed with a radius ratio of 2.
  • FIG. 3 shows a prototype active manipulator device. From the value of the radius of each gear and pulley 16 shown in Table 1, the minimum contraction amount of the fibrous actuator required to achieve the target angle when the target joint angle is ⁇ / 2 rad is about 4.7 ⁇ 10 ⁇ 3 m. . Therefore, it is possible to achieve a joint angle of ⁇ / 2 rad with a very small contraction amount of 5.0 ⁇ 10 ⁇ 3 m or less.
  • FIG. 4 shows the appearance of the experimental apparatus
  • FIG. 5 shows the signal flow.
  • a conductive nylon fiber AGposs: registered trademark 100/3, Mitsufuji Corporation
  • a fibrous actuator was produced in a coil shape based on the method shown in Non-Patent Document 1. .
  • the fibrous actuator is heated by Joule heat and performs a contraction operation.
  • a fiber actuator is mounted on the active manipulator device, and the command voltage from the control PC (MDV-ASG8310B, Linux (registered trademark), 3.5 GHz) is converted into a DA converter (PCI-3346A, Interface Corporation) and a DC power supply ( Applied to the fibrous actuator via AD-8735D, A & D Corporation.
  • PC PCI-3346A, Interface Corporation
  • DC power supply Applied to the fibrous actuator via AD-8735D, A & D Corporation.
  • the rotational angle ⁇ of the pulley 16 and the carrier 14 is measured with a potentiometer (CP-2FBJ, Green Sokki Co., Ltd.) attached to the central axis of the sun gear 10, and the AD converter (PEX- 321416, Interface Co., Ltd.) and saved in the control PC with a sampling period of 1 ms. Then, the joint angle q is calculated based on the equation (1).
  • a potentiometer CP-2FBJ, Green Sokki Co., Ltd.
  • the AD converter PEX- 321416, Interface Co., Ltd.
  • a voltage is applied to the fibrous actuator from the initial state until the joint angle q reaches a steady state.After the steady state is reached, the voltage application is stopped, and after sufficient time has elapsed, the arm is manually moved to the initial state. It was. The applied voltage was 3 V.
  • FIG. 6 shows values of the rotation angle ⁇ and the joint angle q in the steady state for each trial.
  • FIG. 7 shows the behavior of the rotation angle ⁇ and the joint angle q in the third trial.
  • the unit of angle is expressed in [deg]. From FIG. 6, the average value of the joint angle q in 15 trials was 85.5 deg, and a large joint angle could be achieved with a short fibrous actuator of 4.7 ⁇ 10 ⁇ 2 m.
  • a value exceeding the target joint angle of 90 deg is achieved in the first, fifth, and 14th trials, but in the sixth, 10th, and 12th trials, the joint angle is less than 80 deg. There was a difference of up to 30deg in joint angle.
  • the reason for the variation in the joint angle in the steady state is that the state of the fibrous actuator in the initial state (length, rigidity of the coil) in each trial is slightly different.
  • the torque changes due to slight fluctuations in the rate of temperature rise, resulting in a large difference in angular acceleration, and the variation in rotational speed of the joint is reflected in the joint angle in the steady state, and the rotational speed due to the amplification of the angle. It is thought that the effect of the variation in the joints was amplified, resulting in a difference in joint angle.
  • a method of stabilizing the rotational speed variation due to torque fluctuation by incorporating a lightweight flywheel adjusted so that the moment of inertia does not become too large can be considered. It is also considered effective to arrange a pair of fibrous actuators on both sides of the pulley so that the generated forces antagonize and adjust the torque using the springs and damper elements of the fibrous actuator.
  • Human joints are arranged so that two or more muscles antagonize, and each antagonized muscle contracts simultaneously under a certain antagonist ratio and activity, so that the equilibrium point between the antagonist ratio and the joint angle Is in a linear relationship, and it is pointed out that the activity has a linear relationship with the stiffness at the equilibrium point. Therefore, it is possible to perform more stable operation by adopting a control method for simultaneously contracting the fibrous actuators arranged in an antagonistic manner as described above.
  • the active manipulator device is characterized in that the second member (planetary gear) is configured to roll through a pulley and a carrier connected to a fibrous actuator.
  • the configuration example shown in FIG. 1 is an example in which the first member and the second member are circular gears, but the form of the first member and the second member is not limited to the circular gear.
  • a contact portion where the first member and the second member abut is not provided as a gear portion, but is provided as a simple arcuate surface.
  • a method is also possible. However, in consideration of slipping in a contact state, the method of providing the contact portion as a gear portion is effective in that a reliable rolling operation is possible.
  • the contact portions (contact portions) provided on the first member and the second member do not need to be provided over the entire circumference of the member as in the case of a circular gear. This is because when the active manipulator device is applied as the joint mechanism (bending mechanism), it is not necessary to ensure the rotation angle over the entire circumference. That is, as a form of the first member and the second member, as in the configuration example of the drive unit described later, a contact portion (gear portion) is partially provided at one end of the substrate and abuts (contacts) with each other ) Can be configured such that the second member rolls on the contact portion. Such a configuration is also a basic configuration of the active manipulator device according to the present invention.
  • FIG. 8 shows an example of a drive unit 20 having the same function as the active manipulator device shown in FIG. 1 and having a small and easy-to-use configuration when constructing a robot or the like.
  • the drive unit 20 includes a first member 22 provided with a gear portion 22b at one end of the substrate 22a, a second member 24 provided with a gear portion 24b engaged with the gear portion 22b at one end of the substrate 24a, A carrier 26 that connects the first member 22 and the second member 24 to each other.
  • the carrier 26 is such that the second member 24 is like a planetary gear with respect to the first member 22 in a state where the gear portion 22b of the first member 22 and the gear portion 24b of the second member 24 are engaged with each other. They are linked to roll.
  • the first member 22 and the second member 24 are formed in substantially the same shape, and the gear portion 22b of the first member 22 is provided with teeth in an arc-shaped region at the end of the substrate 22a.
  • the gear portion 24b is also provided with teeth in an arc-shaped region at the end of the substrate 24a.
  • the gear portion 22b and the gear portion 24b have the same diameter, but the gear portion 22b and the gear portion 24b are not limited to the same diameter.
  • the carrier 26 is connected to the pulley 26 integrally with the carrier 26 with the core position aligned with the center of the gear portion 22 b of the first member 22.
  • the pulley 28 is provided in an arrangement in which the expansion and contraction action by the two fibrous actuators 30a and 30b is antagonized. That is, the base end of one fibrous actuator 30a is fixed to the end of the substrate 22a of the first member 22, and the base end of the other fibrous actuator 30b is fixed to the end of the substrate 22a.
  • the fibrous actuators 30 a and 30 b are arranged in parallel on the side surface of the substrate 22 in a state where the fibrous actuators 30 a and 30 b are stretched over the pulley 28.
  • the carrier 26 is disposed on both sides of the first member 22 and the second member 24 so as to sandwich the pulley 28 and the substrate 22a, the gear portion 22b, the gear portion 24b and the like. In this way, the rolling operation (rotating operation) by the first member 22 and the second member 24 is stably performed.
  • FIG. 8B shows a state in which a voltage is applied between both ends of the fibrous actuator 30b to rotate the tip side of the second member 24 downward.
  • the fibrous actuator 30b contracts, the pulley 28 rotates, the carrier 26 rotates with the pulley 28, and the second member 24 rotates.
  • No voltage is applied to the other fibrous actuator 30a, and the fibrous actuator 30a is extended by the contraction force of the fibrous actuator 30b.
  • the fibrous actuator 30b returns to its original length, and the other fibrous actuator 30a that has been extended also returns to its original length, and the second member 24 is restored. Is also restored to the state of FIG.
  • a voltage is applied to the fibrous actuator 30a, the second member 24 rotates upward.
  • the drive unit 20 acts as an active manipulator device that rotates the second member 24 upward or downward by controlling the voltage applied to the fibrous actuators 30a and 30b.
  • the drive unit 20 is provided in an arrangement in which the generated forces of the pair of fibrous actuators 30a and 30b antagonize via the pulley 28, so that the rotation operation of the drive unit 20 can be stabilized.
  • the operations of the first member 22 and the second member 24 are relative. As described above, the first member 22 is the fixed side and the second member 24 is the movable side.
  • the second member 24 can be used to rotate with respect to the member 22, or the first member 22 is rotated with the second member 24 as a fixed side and the first member 22 as a movable side. Can also be used.
  • FIG. 9 shows an example of an active manipulator device assembled by connecting two drive units 20 described above.
  • the substrate 24a of the second member 24 of the drive unit 20 and the substrate 22a of the first member 22 of the drive unit 21 are connected in an arrangement in which the orientation of the substrates intersects 90 degrees.
  • the active manipulator device can perform a moving operation in which the rotation operation by the drive unit 20 and the rotation operation by the drive unit 21 are combined.
  • FIG. 9B shows a second member of the drive unit 20 by applying a voltage to the fibrous actuator 30b attached to the drive unit 20 and applying a voltage to the fibrous actuator 30a attached to the drive unit 21.
  • 24 shows a state in which the second member 24 of the drive unit 21 and the drive unit 21 are rotated.
  • the direction of the substrate when connecting the drive unit 20 and the drive unit 21 is 90 degrees (orthogonal arrangement), but the connection angle when connecting the drive units 20 and 21 is set appropriately. can do.
  • a configuration for applying a voltage to the fibrous actuators 30a and 30b of the drive units 20 and 21 is omitted.
  • An electric circuit that applies a voltage to each of the fibrous actuators 30a and 30b is connected to each of the fibrous actuators 30a and 30b of the drive units 20 and 21.
  • FIG. 10 shows an example of an active manipulator device assembled by connecting three drive units described above.
  • three drive units 20, 21, and 23 are connected in series, that is, the end face of the substrate 24a of the second member of the drive unit 20 and the end surface of the substrate 22a of the first member of the drive unit 21 are connected to each other.
  • the substrate 24a of the second member of the drive unit 21 and the end face of the substrate 22a of the first member of the drive unit 23 are abutted and connected.
  • each drive unit 20, 21, 23 the controller for applying a voltage to each of the fibrous actuators 30a, 30b attached to each drive unit 20, 21, 23 is connected to each of the above-described embodiments. It is the same as the form.
  • the active manipulator device of this embodiment can obtain a larger rotation angle and rotation range by connecting three drive units, compared to an active manipulator device composed of one or two drive units. it can.
  • FIG. 11 shows an example of an active manipulator device that acts as a walking robot using a drive unit.
  • This walking robot is configured by attaching composite drive units 42a, 42b, 42c, and 42d in which two drive units 20 and 21 are connected to each of the four corners of the casing 40 having an I-shaped planar shape. .
  • the composite drive units 42a, 42b, 42c, and 42d connect the drive units 20 and 21 in series, and the drive unit 20 and the drive unit 21 are connected. And rotate (bend) in a common rotation plane (in the rotation plane).
  • the composite drive units 42a, 42b, 42c, and 42d bend in the front-rear direction of the housing portion 40 by controlling the voltage applied to the fibrous actuators 30a and 30b. Therefore, the voltage applied to the fibrous actuators 30a, 30b attached to each composite drive unit 42a, 42b, 42c, 42d is controlled, and the composite drive units 42a, 42b, 42c, 42d are the same as the legs that perform the walking motion.
  • the walking motion can be performed by bending the back and forth.
  • FIG. 12 shows an example of an active manipulator device that acts as a gripping (clamping) robot using a drive unit.
  • this gripping robot five composite drive units 52a, 52b, 52c, 52d, and 52e are attached to the end face of a polygonal support member 50.
  • the compound drive units 52a to 52e are obtained by connecting three drive units 20, 21, and 23, respectively.
  • the drive units 20, 21, and 23 are connected in series.
  • the first member and the second member in the connection position are connected. Incorporates crossing connection methods.
  • This active manipulator device controls the voltage applied to the fibrous actuators mounted on the drive units 20, 21 and 23, thereby opening and closing the composite drive units 52a, 52b, 52c, 52d and 52e like a finger. Can be held (clamped).
  • FIG. 14 shows an example of an active manipulator device that is used as an endoscopic robot using a plurality of drive units.
  • a pair of support frames 60a and 60b formed in the shape of a regular triangular frame are arranged so that the sides and vertices of the triangle intersect when viewed from the plane direction (the plan view is a star).
  • the support units 60a and 60b are arranged apart from each other, the support positions (axial support) of the two drive units are arranged on one side of the support frames 60a and 60b, and the drive unit is installed between the support frames 60a and 60b.
  • Six drive units are provided in total, two on each side.
  • the drive units 20a, 20b, 20c, 20d, 20e, and 20f are connected to the support frames 60a and 60b by spherical bearings 62, and the drive units 20a to 20f can tilt in any direction.
  • This active manipulator device controls the voltage applied to the fibrous actuator to expand and contract the fibrous actuator, whereby the drive units 20a to 20f bend and swing the support frames 60a and 60b. Therefore, for example, when the lower support frame 60b is fixedly supported, and the drive units 20a to 20f are selected and bent, the upper support frame 60a that is horizontally supported is tilted from the horizontal position and tilted in the tilt direction. It can be operated.
  • FIG. 14 shows an example in which the above-described active manipulator device is used as the endoscopic robot 70.
  • the endoscope The direction of 80 can be changed as appropriate.
  • the operation of the endoscope robot 70 is performed by controlling a control unit 82 connected to the endoscope robot 70 by a surgical assistant.
  • a control unit 82 connected to the endoscope robot 70 by a surgical assistant.
  • the endoscope robot 70 By using the endoscope robot 70, a reliable and safe operation can be performed.
  • Endoscopic robots that use a fibrous actuator as a drive source have a simpler device configuration and lighter weight compared to conventional endoscopic robots that operate using motors or pneumatic or fluid pressure. There is an advantage that downsizing can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

円弧状の接触部(22b、24b)をそれぞれ備える第1の部材(22)および第2の部材(24)と、それぞれの接触部(22b、24b)の円弧の中心軸間に配置され、接触部(22b、24b)を対向して当接させながら、第1の部材(22)と第2の部材(24)を相互に回動可能に支持するキャリア(26)と、キャリア(26)に固定され、第1の部材(22)の軸と同芯に設けられたプーリ(28)と、プーリ(28)と連繋して設けられ、通電を制御することにより伸縮する繊維状アクチュエータ(30a、30b)とを備える。繊維状アクチュエータを用いて大きな回動角度が得られる能動マニピュレータ装置を実現できる。

Description

能動マニピュレータ装置
 本発明は繊維状アクチュエータを駆動源として使用する能動マニピュレータ装置に関する。
  近年、合成繊維をコイル状にツイストしたSCP(super-coiled polymer)アクチュエータ(繊維状アクチュエータ)や形状記憶合金を用いたSMA(shape memory alloy)アクチュエータに代表される収縮型高トルクアクチュエータが開発されている。SCPアクチュエータは合成繊維をコイル状にツイストしたもので、コイル(繊維)を加熱することにより収縮し、冷やすと元の長さに復帰する特性を有する。このようなアクチュエータは高い出力重量比と応答性を有しており、合成繊維であるため低コストで作製することができ、低コストロボットに用いられるアクチュエータとして応用されつつある(非特許文献1~4)。
Michael C. Yip and G¨unter Niemeyer, "High-PerformanceRobotic Muscles from Conductive Nylon Sewing Thread", Proceedings of IEEE International Conference on Robotics and Automation, (2015), pp.2313-2318. Yonas Tadesse, Lianjun Wu and Lokesh K. Saharan,"Musculoskeletal System for Bio-inspired Robotic Systems",FOCUS ON DYNAMIC SYSTEMS & CONTROL,(2016), pp.11-16. Lokesh Saharan and Yonas Tadesse, "Robotic Hand with Locking Mechanism Using TCP Muscles for Applications in Prosthetic Hand and Humanoids", Proceedings of SPIE, Vol. 9797(2016), p.97970V. Lianjun Wu, Monica Jung de Andrade, Tarang Brahme, Yonas Tadesse and Ray H. Baughman, "A reconfigurable robot with tensegrity structure using nylon artificial muscles", Proceedings of SPIE, Vol. 9799(2016), p.97993K.
 上述したSCPアクチュエータは、加熱すると長さ方向に収縮し、冷却すると長さ方向に伸長して元の状態に復帰する、いわゆる熱駆動型のアクチュエータである。熱駆動型のアクチュエータとしては、導電性ナイロン繊維をツイストしてコイル状に形成したものが知られている。導電性の繊維状アクチュエータの両端間に電圧を印加すると、ジュール熱により繊維状アクチュエータが加熱されて収縮し、電圧印加を解除すると繊維状アクチュエータは元の状態に復帰する。このように、導電性の繊維状アクチュエータは、両端間に印加する電圧をON-OFF制御することにより、長さ方向に伸縮するアクチュエータとして使用することができる。
 しかしながら、熱駆動型として作用する繊維状アクチュエータの収縮率は10~20%程度であり、プーリやピンを用いた回転関節機構では関節を十分に駆動させることができない。
 また、繊維状アクチュエータを加熱して得られるアクチュエータ単体の発生力は1N程度であるため、ロボットの関節機構に実装するような場合には、大きな発生力を得るためにアクチュエータを集積する必要がある。しかしながら、繊維状アクチュエータを集積するとアクチュエータの収縮率が単体で使用した場合よりもさらに低下するため、長いアクチュエータを使用しなければならない。
 本発明は、加熱・冷却を制御することにより伸縮駆動される熱駆動型の繊維状アクチュエータを利用して大きな回動角度を得ることを可能とし、ロボット装置等の種々の用途に好適に利用することができる能動マニピュレータ装置を提供することを目的とする。
 本発明に係る能動マニピュレータ装置は、円弧状の接触部をそれぞれ備える第1の部材および第2の部材と、前記それぞれの接触部の円弧の中心軸間に配置され、前記接触部を対向して当接させながら、前記第1の部材と第2の部材を相互に回動可能に支持するキャリアと、前記キャリアに固定され、第1の部材の軸と同芯に設けられたプーリと、前記プーリに連繋して設けられ、加熱・冷却により伸縮駆動される熱駆動型のアクチュエータとを備えることを特徴とする。
 また、本発明に係る能動マニピュレータ装置としては、加熱・冷却により伸縮駆動される熱駆動型のアクチュエータと同様に、通電により伸縮駆動される通電型のアクチュエータを使用することができる。
 熱駆動型のアクチュエータは、加熱・冷却作用にともなって伸縮するように構成(たとえば繊維をコイル状にツイストする)されたものであり機能部分(可動部分:伸縮部分)の加熱・冷却を制御することにより伸縮作用を制御することができる。機能部分を加熱・冷却する方法は、ヒータ等により加熱するといった適宜方法を利用することができるが、通電を利用して加熱・冷却する方法が有効であり、とくに導電性を付与した繊維状のアクチュエータは、その両端に電極を接続して通電をON-OFF制御することにより、ジュール熱の発生を制御することができ、容易に加熱・冷却作用をすることができるという利点がある。
 また、通電を制御することにより伸縮駆動される通電型のアクチュエータとしては、加熱・冷却により伸縮駆動されるアクチュエータが有効であり、導電性を付与した繊維状のアクチュエータが好適に利用できる。
 なお、前記接触部は、ギヤ部として形成することにより第1の部材と第2の部材とが確実に係合し、安定した回動動作が可能になる。
 また、前記第1の部材が円形ギヤ、前記第2の部材が円形ギヤとして構成することもできるし、前記第1の部材が基板の一端側に円弧状のギヤ部を設けたもの、前記第2の部材が基板の一端側に円弧状のギヤ部を設けたものとして構成することもできる。
 また、前記熱駆動型または通電型のアクチュエータを設ける場合には、前記プーリを介して、伸縮力が拮抗する配置に一対の熱駆動型のアクチュエータあるいは通電型のアクチュエータを設けることにより、部材の回動動作が安定し回動動作の精度を向上させることができる。
 また、前記第1の部材と前記第2の部材のそれぞれの単体を組み合わせ、前記一対の熱駆動型または通電型のアクチュエータが前記第1の部材の基板に取り付けられた構成を備える駆動ユニットとして構成された能動マニピュレータ装置は、ロボット装置等を構成する際の基本ユニットとして好適に利用することができる。
 また、前記駆動ユニットが複数個連結された多関節型に形成され、隣接する一方の駆動ユニットの基板と他方の駆動ユニットの基板とが、基板の向きを一致させた直列形または基板の向きを交差させた交差形として連結された能動マニピュレータ装置は、多関節型の能動マニピュレータ装置として好適に利用することができる。
 本発明に係る能動マニピュレータ装置は、収縮率が小さい繊維状アクチュエータを使用して大きな回動角度が得られる関節機構(屈曲機構)として提供することができ、ロボット等に小型で容易に使用することができる装置として提供することができる。
能動マニピュレータ装置の基本構成とその作用を示す図である。 プーリの半径および、ギヤの半径比と、目標関節角度を達成するための繊維状アクチュエータの収縮量との関係を示すグラフである。 試作した能動マニピュレータ装置の外観写真である。 実験装置の外観写真である。 実験装置のブロック図である。 各試行ごとの定常状態時の回転角度θと関節角度qの値を示すグラフである。 3試行目における回転角度θと関節角度qの挙動を示すグラフである。 駆動ユニットの構成と作用を示す斜視図である。 駆動ユニットを2個連結した能動マニピュレータ装置の斜視図である。 駆動ユニットを3個連結した能動マニピュレータ装置の斜視図である。 駆動ユニットを用いて構成した歩行ロボットの斜視図である。 駆動ユニットを用いて構成した把持型のロボットの斜視図である。 駆動ユニットを用いて構成した内視鏡ロボットの斜視図である。 内視鏡ロボットの使用例を示す図である。
(能動マニピュレータ装置の構成例)
 本発明に係る能動マニピュレータ装置においては、収縮率が小さな繊維状アクチュエータを利用して大きな回動角度を得ることを可能にするため、関節部分(屈曲部分)の機構として、転動関節機構を採用する。
 図1は能動マニピュレータ装置の基本となる構成を示す。この能動マニピュレータ装置では、太陽ギヤ10と遊星ギヤ12とがキャリア14を介して中心軸間で相互に連繋して支持され、太陽ギヤ10と遊星ギヤ12とが歯合しながら、太陽ギヤ10の周囲を遊星ギヤ12が自在に転動する構成となっている。
 この例では、太陽ギヤ10が本発明の第1の部材に相当し、遊星ギヤ12が第2の部材に相当する。
 太陽ギヤ10の中心には同芯上にプーリ16が軸支され、プーリ16の軸16aとキャリア14とは連結されている。すなわち、プーリ16が回動すると、キャリア14はプーリ16とともに軸16aを支点として回動する。
 プーリ16には繊維状アクチュエータ18が掛け渡され、繊維状アクチュエータ18が伸縮することにより、プーリ16が軸16aを中心として回動し、キャリア14を介してプーリ16とともに遊星ギヤ12が回動する(太陽ギヤ10の周上を遊星ギヤ12が転動する)。
 遊星ギヤ12にはアーム19が連結され、遊星ギヤ12が太陽ギヤ10上を転動することにより、遊星ギヤ12とともにアーム19が回動する。
 図1では、繊維状アクチュエータ18が収縮することにより、太陽ギヤ10の周上を遊星ギヤ12が(右方向に)回動し、アーム19が上位置から右方位置に回動する作用を示す。
 なお、繊維状アクチュエータは、加熱することで長さ方向に収縮し、冷却すると長さ方向に伸長して元の状態に復帰する特性を備えるものであり、導電性ナイロン繊維をツイストしてコイル状に形成したものが知られている。
 導電性の繊維状アクチュエータの両端間に電圧を印加すると、ジュール熱により繊維状アクチュエータが加熱されて収縮し、電圧印加を解除すると繊維状アクチュエータは元の長さに復帰する。このように、導電性の繊維状アクチュエータは、両端間に印加する電圧をON-OFF制御することにより、長さ方向に伸縮するアクチュエータとして使用することができる。実験では、繊維状アクチュエータとして導電性ナイロン繊維を使用したが、繊維状アクチュエータの素材および形態が限定されるものではない。
(関節角度の設定)
 図1に示す能動マニピュレータ装置の関節角度は、遊星ギヤ12が太陽ギヤ10上を転動したときにおける太陽ギヤ10の中心線と遊星ギヤ12の中心線とのなす角q[rad]である。プーリ16およびキャリア14の回転角度をθ[rad]とすると、関節角度qとプーリ16およびキャリア14の回転角度θとの幾何学的関係は以下の式で表される。
   q = (1 + rsg/rpg)θ   (1)
 ここで、rsg[m]およびrpg[m]はそれぞれ太陽ギヤ10と遊星ギヤ12の各基準ピッチ円半径を表す。
 (1)式より、関節角度qはプーリ16およびキャリア14の回転角度θの(1+rsg/rpg)倍となる。したがって、半径比rsg/rpgを変化させることで角度の増幅率を変化させることができる。
 繊維状アクチュエータ18の収縮量とプーリ16およびキャリア14の回転量との関係は繊維状アクチュエータ18の収縮量をlc[m]、プーリ16の半径をrp[m]とすると、
   lc = rθ   (2)
である。式(1)および式(2)より、繊維状アクチュエータの収縮量と関節角度qとの関係は
   lc = rp/(1 + rsg/rpg)・q
となる。
 ここで、目標関節角度をq = qd とすれば、目標関節角度を達成するために必要な繊維状アクチュエータ18の最小収縮量lcmin [m]は、
   lcmin = rp/(1 + rsg/rpg)・q   (3)
 式(3)より、目標関節角度を達成するために必要な繊維状アクチュエータの最小長さは太陽ギヤ10および遊星ギヤ12の半径比とプーリ16の半径により変化することがわかる。
 図2にさまざまなプーリ16の半径における各ギヤの半径比と目標関節角度を達成するために必要な繊維状アクチュエータ18の収縮量との関係を目標関節角度qd = π/2 radとした場合にて示す。
 図2は、各歯車の半径比が増大するにつれて繊維状アクチュエータ18の最小収縮量が減少していくことを示す。また、プーリ16の半径が小さいほど繊維状アクチュエータ18の収縮量も小さくなる。
(実験方法)
 以上の関係を踏まえて能動マニピュレータ装置を設計し、実験により検証した。
 表1に能動マニピュレータ装置の設計例のパラメータ値を示す。本設計例では、各ギヤの半径比を2として設計した。図3に試作した能動マニピュレータ装置を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す各ギヤおよびプーリ16の半径の値より、目標関節角度をπ/2 radとしたときの目標角度達成に必要な繊維状アクチュエータの最小収縮量は約4.7×10-3 m となる。したがって、5.0×10-3 m 以下という非常に小さな収縮量でπ/2 radの関節角度を達成することが可能である。
 図4に実験装置の外観、図5に信号の流れを示す。本実験では繊維状アクチュエータとして導電性ナイロン繊維(AGposs:登録商標 100/3、ミツフジ株式会社)を使用し、非特許文献1に示されている方法に基づいてコイル状に繊維状アクチュエータを作製した。
 この繊維状アクチュエータに電圧を印加することで、ジュール熱により繊維状アクチュエータが加熱され、収縮動作を行う。
 能動マニピュレータ装置に繊維状アクチュエータを実装し、制御用PC(MDV-ASG8310B、Linux(登録商標)、3.5 GHz)からの指令電圧をDA変換器(PCI-3346A,株式会社インタフェース)および直流電源装置(AD-8735D,株式会社エー・アンド・デイ)を介して繊維状アクチュエータに印加する。
 能動マニピュレータ装置の関節角度は、まず太陽ギヤ10の中心軸に取り付けたポテンショメータ(CP-2FBJ、株式会社緑測器)でプーリ16およびキャリア14の回転角度θを計測し、AD変換器(PEX-321416、株式会社インタフェース)を介してサンプリング周期1 ms で制御用PC に保存する。そして式(1)に基づいて関節角度qを計算する。
 実験では、繊維状アクチュエータ単体では発生力が弱く、試作した能動マニピュレータ装置を駆動できなかったため、プーリの片側に2本の長さの等しい繊維状アクチュエータを集積し、ねじれないよう並列に配置して実験を行った。並列に配置した理由は、繊維状アクチュエータをねじるようにして集積させると、コイル同士の摩擦により収縮率に影響が出る場合があるためである。
 2本の繊維状アクチュエータの末端同士を接続し、繊維状アクチュエータの末端に電極を接続し、電極間に電圧を印加することで2本同時に電圧が印加され、ジュール熱により加熱され収縮する。2本集積した繊維状アクチュエータの収縮率は10%であった。
 実験では、2本の繊維状アクチュエータの駆動による関節角度の目標駆動範囲をπ/2 rad と設定した。目標駆動範囲を達成するために必要な繊維状アクチュエータの収縮長さは式(3)から4.7×10-3 m となり、目標駆動範囲を達成するために必要な繊維状アクチュエータの最小長さは、繊維状アクチュエータの収縮率から4.7×10-2 m となる。したがって、4.7×10-2 m の長さの繊維状アクチュエータを実装して実験した。
 実験において、能動マニピュレータ装置のキャリアと遊星ギヤに接続されたアームが太陽ギヤの中心線と平行となる状態を初期状態(θ= q = 0) とした。初期状態から関節角度qが定常状態となるまで繊維状アクチュエータに電圧を印加し、定常状態となった後、電圧の印加を止め、十分に時間が経過した後に手動で初期状態までアームを移動させた。印加する電圧は3 V とした。
(実験結果)
 上述した方法により15回の動作検証を繰り返し行った。図6に各試行ごとの定常状態時の回転角度θと関節角度qの値を示す。図7に3試行目における回転角度θと関節角度qの挙動を示す。ただし、各図において角度の単位は[deg]で表記している。
 図6より、15回の試行における関節角度qの平均値は85.5degとなり、4.7×10-2 m という短い繊維状アクチュエータで大きな関節角度を達成することができた。なお、図6では、第1、5、14試行目において、目標関節角度90degを上回る値を達成しているが、第6、10、12試行目では80degを下回る関節角度となり、定常状態時の関節角度に最大30deg程度の差が生じた。
 また、図7に見られるように、すべての試行において電圧印加開始時より約2秒後から角度が増加しており、定常状態になるまでに2回に分けて関節角度が増加していることが確認できた。
 試作した能動マニピュレータ装置は慣性モーメントの関係から関節を駆動させるために大きなトルクが必要となる。繊維状アクチュエータはコイル(繊維)の温度上昇にともなって発生力が増加していく。電圧印加開始時から約2秒間は発生力が十分に上昇していないためにプーリを回転させるだけのトルクが得られていなかったためと考えられる。
 また、定常状態時の関節角度にばらつきがあった理由としては、各試行における初期状態の繊維状アクチュエータの状態(長さ,コイルの剛性)がわずかに異なっており、電圧印加による繊維状アクチュエータの温度上昇率がわずかに変動したことでトルクが変化し、角加速度に大きな差が生じ、関節の回転速度のばらつきが定常状態時の関節角度に反映されたことと、角度の増幅作用により回転速度のばらつきによる影響が増幅され、関節角度の差が生じたと考えられる。
 これらの問題を解消する方法としては、慣性モーメントが大きくなりすぎないように調整した軽量フライホイールを組み込むことによりトルク変動による回転速度のばらつきを安定化させる方法が考えられる。
 また、プーリの両側に一対の繊維状アクチュエータを発生力が拮抗するように配置し、繊維状アクチュエータのバネおよびダンパ要素を利用してトルクを調整する方法も有効であると考えられる。ヒトの関節は2つもしくは2つ以上の筋が拮抗するように配置されており、拮抗した各筋が、ある拮抗比および活性度の下で同時に収縮することで拮抗比と関節角度の平衡点が線形関係にあり、かつ活性度が平衡点における剛性と線形関係にあることが指摘されている。したがって、拮抗配置した繊維状アクチュエータを上記のように同時に収縮させる制御方法を取り入れることでより安定した動作を行うことが可能である。
(能動マニピュレータ装置の基本構成)
 本発明に係る能動マニピュレータ装置は、繊維状アクチュエータが連繋するプーリとキャリアを介して第2の部材(遊星ギヤ)を転動させる構成としたことを特徴とする。
 図1に示した構成例は第1の部材と第2の部材を円形ギヤとした例であるが、第1の部材と第2の部材の形態が円形ギヤに限定されるものではない。第1の部材に対し第2の部材を転動させる作用を満足させる構成としては、たとえば第1の部材と第2の部材が当接する接触部をギヤ部として設けず、単なる円弧状面として設ける方法も可能である。ただし、当接した状態での滑り等を考慮すると、接触部をギヤ部として設ける方法は確実な転動操作を可能にする点で有効である。
 また、第1の部材と第2の部材に設ける接触部(当接部)については、円形ギヤのように部材の全周にわたって接触部(当接部)を設ける必要はない。関節機構(屈曲機構)として能動マニピュレータ装置を適用する場合は、回転角度を全周にわたって確保する必要がないからである。すなわち、第1の部材および第2の部材の形態としては、後述する駆動ユニットの構成例と同様に、基板の一端に部分的に接触部(ギヤ部)を設けて、相互に当接(接触)する接触部上で第2の部材が転動するように構成することができる。このような構成も、本発明に係る能動マニピュレータ装置の基本的な構成である。
(駆動ユニット)
 図8は、図1に示した能動マニピュレータ装置と同様な機能を備えるとともに、ロボット等を構築する際に小型で使いやすい構成とした駆動ユニット20の例を示す。
 この駆動ユニット20は、基板22aの一端にギヤ部22bを設けた第1の部材22と、基板24aの一端にギヤ部22bと歯合するギヤ部24bを設けた第2の部材24と、第1の部材22と第2の部材24とを連繋するキャリア26とを備える。キャリア26は、第1の部材22のギヤ部22bと第2の部材24のギヤ部24bとが歯合した状態で、第1の部材22に対して第2の部材24が遊星ギヤのように転動するように連繋している。
 第1の部材22と第2の部材24とは略同形に形成され、第1の部材22のギヤ部22bは基板22aの端部の円弧状の領域に歯を設け、第2の部材24のギヤ部24bも基板24aの端部の円弧状の領域に歯を設けている。この実施形態では、ギヤ部22bとギヤ部24bは同一径としているが、ギヤ部22bとギヤ部24bとが同一径に限定されるものではない。ギヤ部22bとギヤ部24bの径を適宜設定することにより、マニピュレータの回動角度を適宜設定することができる。
 キャリア26の軸支位置をギヤ部22bとギヤ部24bの中心位置に設定することも前述した能動マニピュレータ装置の例と同様である。
 キャリア26には第1の部材22のギヤ部22bの中心に芯位置を一致させて、キャリア26と一体にプーリ28を連結する。プーリ28には2つの繊維状アクチュエータ30a、30bによる伸縮作用が拮抗する配置に設ける。すなわち、一方の繊維状アクチュエータ30aの基端を第1の部材22の基板22aの端部に固定し、他方の繊維状アクチュエータ30bの基端を基板22aの端部に固定する。こうして、繊維状アクチュエータ30a、30bをプーリ28に掛け渡した状態で、繊維状アクチュエータ30a、30bが基板22の側面に並列にして配置される。このように繊維状アクチュエータ30a、30bを配置することにより、繊維状アクチュエータ30a、30bが第1の部材22にコンパクトに装着される。
 キャリア26はプーリ28と基板22a、ギヤ部22b、ギヤ部24b等を挟む配置で、第1の部材22と第2の部材24の両側面に設ける。こうして第1の部材22と第2の部材24による転動動作(回動動作)が安定してなされる。
 図8(b)は、繊維状アクチュエータ30bの両端間に電圧を印加して第2の部材24の先端側を下方に回転させた状態を示す。繊維状アクチュエータ30bに電圧を印加したことにより繊維状アクチュエータ30bが収縮し、プーリ28が回転し、プーリ28とともにキャリア26が回転して第2の部材24が回転している。他方の繊維状アクチュエータ30aには電圧を印加せず、繊維状アクチュエータ30bの収縮力によって繊維状アクチュエータ30aが伸びている。
 繊維状アクチュエータ30bに印加していた電圧を解除すると、繊維状アクチュエータ30bは元の長さに復帰し、伸びていた他方の繊維状アクチュエータ30aも元の長さに復帰し、第2の部材24も図8(a)の状態に復帰する。
 なお、繊維状アクチュエータ30aに電圧を印加すると、第2の部材24は上向きに回転する。
 こうして駆動ユニット20は、繊維状アクチュエータ30a、30bに印加する電圧を制御することにより、第2の部材24を上方向あるいは下方向に回転させる能動マニピュレータ装置として作用する。この駆動ユニット20は、プーリ28を介して一対の繊維状アクチュエータ30a、30bの発生力が拮抗する配置に設けたことで、駆動ユニット20の回動動作を安定させることができる。
 なお、第1の部材22と第2の部材24の動作は相対的なものであり、第1の部材22を固定側、第2の部材24を可動側として、上述したように、第1の部材22に対し第2の部材24を回転動作させるように使用することもできるし、第2の部材24を固定側とし第1の部材22を可動側として、第1の部材22を回動させるように使用することもできる。
(構成例1)
 図9は、上述した駆動ユニット20を2個連結して組み立てた能動マニピュレータ装置の例を示す。
 この能動マニピュレータ装置は、駆動ユニット20の第2の部材24の基板24aと駆動ユニット21の第1の部材22の基板22aとを基板の向きが90度交差する配置として連結したものである。このように2つの駆動ユニット20、21を連結することにより、この能動マニピュレータ装置は、駆動ユニット20による回転動作と駆動ユニット21による回転動作を組み合わせた移動動作を行うことができる。
 図9(b)は、駆動ユニット20に装着した繊維状アクチュエータ30bに電圧を印加するとともに、駆動ユニット21に装着した繊維状アクチュエータ30aに電圧を印加することによって、駆動ユニット20の第2の部材24と駆動ユニット21の第2の部材24を回転動作させた状態を示す。
 このように駆動ユニット20と駆動ユニット21に装着した繊維状アクチュエータ30a、30bに印加する電圧を制御することにより、駆動ユニット21の第2の部材24は、一方の駆動ユニット20による回転と他方の駆動ユニット21の回転を組み合わせた動作をなすことになる。
 図9に示す実施形態では、駆動ユニット20と駆動ユニット21とを連結するときの基板の向きを90度(直交配置)としているが、駆動ユニット20、21を連結するときの連結角度は適宜設定することができる。
 なお、図9では駆動ユニット20、21の繊維状アクチュエータ30a、30bに電圧を印加する構成を省略している。駆動ユニット20、21のそれぞれの繊維状アクチュエータ30a、30bには、それぞれの繊維状アクチュエータ30a、30bに個別に電圧を印加する電気回路が接続される。
(構成例2)
 図10は前述した駆動ユニットを3個連結して組み立てた能動マニピュレータ装置の例である。この能動マニピュレータ装置では、3個の駆動ユニット20、21、23を直列に、すなわち駆動ユニット20の第2の部材の基板24aと駆動ユニット21の第1の部材の基板22aの端面を突き合わせて連結し、駆動ユニット21の第2の部材の基板24aと駆動ユニット23の第1の部材の基板22aの端面とを突き合わせて連結している。
 このように3個の駆動ユニット20、21、23を直列に連結したことにより、いずれの駆動ユニット20、21、23とも同一の回転面上で回動する。
 各々の駆動ユニット20、21、23を回転駆動するため、各々の駆動ユニット20、21、23に装着した繊維状アクチュエータ30a、30bにそれぞれ電圧を印加する制御部を接続することは前述した各実施形態と同様である。
 本実施形態の能動マニピュレータ装置は、駆動ユニットを3個連結したことにより、1個あるいは2個の駆動ユニットからなる能動マニピュレータ装置と比較して、より大きな回動角度と回動範囲を得ることができる。
 なお、駆動ユニット20、21、23を連結する際に、本例のようにすべて直列に連結せず、構成例1のように、基板の向きが交差するように連結する方法を組み合わせることももちろん可能である。
(構成例3)
 図11は駆動ユニットを利用して歩行ロボットとして作用する能動マニピュレータ装置の例である。
 この歩行ロボットは、平面形状がI形の躯体部40の4つのコーナー部のそれぞれに、二つの駆動ユニット20、21を連結した複合駆動ユニット42a、42b、42c、42dを取り付けて構成されている。複合駆動ユニット42a、42b、42c、42dは、図9に示した二つの駆動ユニット20、21を連結した例とは異なり、駆動ユニット20、21を直列に連結し、駆動ユニット20と駆動ユニット21とが共通の回転面内(回動面内)で回動(屈曲)する。
 複合駆動ユニット42a、42b、42c、42dは繊維状アクチュエータ30a、30bへ印加する電圧を制御することにより、躯体部40の前後方向に屈曲する。したがって、各々の複合駆動ユニット42a、42b、42c、42dに装着した繊維状アクチュエータ30a、30bに印加する電圧を制御し、複合駆動ユニット42a、42b、42c、42dが歩行動作をなす脚部と同様に前後に屈曲動作させることにより歩行動作を行わせることができる。
(構成例4)
 図12は駆動ユニットを利用して把持型(クランプ)のロボットとして作用する能動マニピュレータ装置の例である。
 この把持型のロボットは多角形状の支持部材50の端面に、5個の複合駆動ユニット52a、52b、52c、52d、52eを取り付けたものである。複合駆動ユニット52a~52eは、それぞれ3個の駆動ユニット20、21、23を連結したものである。図10に示す複合駆動ユニットでは駆動ユニット20、21、23を直列に連結しているが、本実施形態の複合駆動ユニット52a~52eでは、連結位置にある第1の部材と第2の部材を交差させる連結方法を組み込んでいる。
 この能動マニピュレータ装置は、駆動ユニット20、21、23に装着した繊維状アクチュエータに印加する電圧を制御することにより、複合駆動ユニット52a、52b、52c、52d、52eを指のように開閉して物体を把持する(クランプする)操作を行うことができる。
(構成例5)
 図14は駆動ユニットを複数個利用して内視鏡ロボットとして利用する能動マニピュレータ装置の例である。
 この能動マニピュレータ装置は、正三角形の枠体状に形成された一対の支持枠60a、60bを、平面方向から見て三角形の辺と頂点とが交差する配置(平面視が星形になる)で上下に離間させて配置し、支持枠60a、60bの一辺上にそれぞれ二つの駆動ユニットの支持位置(軸支)を配置して、支持枠60a、60b間に駆動ユニットを設置したものである。駆動ユニットは各辺上に2個ずつ、全体で6個設けられる。
 それぞれの駆動ユニット20a、20b、20c、20d、20e、20fは、支持枠60a、60bとの連結位置が球面軸受62によって連結され、駆動ユニット20a~20fは任意の方向に傾動可能である。
 この能動マニピュレータ装置は、繊維状アクチュエータに印加する電圧を制御して繊維状アクチュエータを伸縮させることにより、駆動ユニット20a~20fが屈曲し、支持枠60a、60bを揺動させる。したがって、たとえば、下台の支持枠60bを固定支持し、駆動ユニット20a~20fを選択して屈曲させると、上台の水平支持されていた支持枠60aを水平位置から傾斜させ、傾斜方向に倒れるように動作させることができる。
 図14は、上述した能動マニピュレータ装置を内視鏡ロボット70として使用する例を示す。内視鏡80の先端部をたとえば腹腔内に差し込み、内視鏡80の操作ロッドを内視鏡ロボット70の支持枠70a、70bで支持した状態で駆動ユニット20を駆動させることにより、内視鏡80の向きを適宜変えることができる。内視鏡ロボット70の操作は手術の補助者により、内視鏡ロボット70に接続する制御部82を制御することによってなされる。内視鏡を用いる手術では内視鏡の位置を正確に保持するといった必要があり、内視鏡ロボット70を使用することにより確実で安全な手術を行うことができる。
 繊維状アクチュエータを駆動源とする内視鏡ロボットは、従来のようなモータや空圧あるいは流体圧を用いて操作する内視鏡ロボットと比較して、装置構成が簡素化され、装置の軽量化、小型化を図ることができるという利点がある。

Claims (9)

  1.  円弧状の接触部をそれぞれ備える第1の部材および第2の部材と、
     前記それぞれの接触部の円弧の中心軸間に配置され、前記接触部を対向して当接させながら、前記第1の部材と第2の部材を相互に回動可能に支持するキャリアと、
     前記キャリアに固定され、第1の部材の軸と同芯に設けられたプーリと、
     前記プーリに連繋して設けられ、加熱・冷却により伸縮駆動される熱駆動型のアクチュエータとを備えることを特徴とする能動マニピュレータ装置。
  2.  円弧状の接触部をそれぞれ備える第1の部材および第2の部材と、
     前記それぞれの接触部の円弧の中心軸間に配置され、前記接触部を対向して当接させながら、前記第1の部材と第2の部材を相互に回動可能に支持するキャリアと、
     前記キャリアに固定され、第1の部材の軸と同芯に設けられたプーリと、
     前記プーリに連繋して設けられ、通電を制御することにより伸縮駆動される通電型のアクチュエータとを備えることを特徴とする能動マニピュレータ装置。
  3.  前記アクチュエータとして、導電性の繊維状アクチュエータを備える請求項1または2記載の能動マニピュレータ装置。
  4.  前記接触部が、ギヤ部として形成されている請求項1~3のいずれか一項記載の能動マニピュレータ装置。
  5.  前記第1の部材が円形ギヤであり、前記第2の部材が円形ギヤである請求項4記載の能動マニピュレータ装置。
  6.  前記第1の部材が基板の一端側に円弧状のギヤ部を設けたものであり、前記第2の部材が基板の一端側に円弧状のギヤ部を設けたものである請求項4記載の能動マニピュレータ装置。
  7.  前記プーリを介して、伸縮力が拮抗する配置に一対の前記アクチュエータが設けられている請求項1~6のいずれか一項記載の能動マニピュレータ装置。
  8.  前記第1の部材と前記第2の部材を組み合わせた駆動ユニットを備え、
     一対の前記アクチュエータが、前記第1の部材の前記基板に取り付けられている請求項6記載の能動マニピュレータ装置。
  9.  前記駆動ユニットが複数個連結された多関節型に形成され、
     隣接する一方の前記駆動ユニットの前記基板と他方の前記駆動ユニットの前記基板とが、これらの基板の向きを一致させた直列形または、これらの基板の向きを交差させた交差形として連結されている請求項8記載の能動マニピュレータ装置。
PCT/JP2018/006154 2017-02-28 2018-02-21 能動マニピュレータ装置 WO2018159400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036078A JP2018140463A (ja) 2017-02-28 2017-02-28 能動マニピュレータ装置
JP2017-036078 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159400A1 true WO2018159400A1 (ja) 2018-09-07

Family

ID=63370349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006154 WO2018159400A1 (ja) 2017-02-28 2018-02-21 能動マニピュレータ装置

Country Status (2)

Country Link
JP (1) JP2018140463A (ja)
WO (1) WO2018159400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135716B2 (en) * 2016-03-30 2021-10-05 B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University Minimally actuated serial robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102167907B1 (ko) * 2018-11-16 2020-10-21 한국기계연구원 인체모사 관절 및 인체모사 관절의 구동방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228095A (ja) * 1984-04-20 1985-11-13 株式会社日立製作所 駆動装置
JPH071376A (ja) * 1993-06-21 1995-01-06 Yoshikazu Asakura 可撓管を挿通し得て屈曲する自在関節
JP3912251B2 (ja) * 2002-10-02 2007-05-09 株式会社日立製作所 マニピュレータ
US20140366523A1 (en) * 2011-09-28 2014-12-18 Fg-Innovation Gmbh Actuator for generating positioning movements
WO2015115129A1 (ja) * 2014-01-28 2015-08-06 株式会社 村田製作所 駆動装置
WO2016136614A1 (ja) * 2015-02-26 2016-09-01 オリンパス株式会社 操作入力装置および医療用マニピュレータシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228095A (ja) * 1984-04-20 1985-11-13 株式会社日立製作所 駆動装置
JPH071376A (ja) * 1993-06-21 1995-01-06 Yoshikazu Asakura 可撓管を挿通し得て屈曲する自在関節
JP3912251B2 (ja) * 2002-10-02 2007-05-09 株式会社日立製作所 マニピュレータ
US20140366523A1 (en) * 2011-09-28 2014-12-18 Fg-Innovation Gmbh Actuator for generating positioning movements
WO2015115129A1 (ja) * 2014-01-28 2015-08-06 株式会社 村田製作所 駆動装置
WO2016136614A1 (ja) * 2015-02-26 2016-09-01 オリンパス株式会社 操作入力装置および医療用マニピュレータシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIP, MICHAEL C. ET AL.: "High-Performance Robotic Muscles from Conductive Nylon Sewing Thread", IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 26 May 2015 (2015-05-26), Washington State, pages 2313 - 2318, XP033168720 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135716B2 (en) * 2016-03-30 2021-10-05 B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University Minimally actuated serial robot

Also Published As

Publication number Publication date
JP2018140463A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6556697B2 (ja) 広い剛性範囲を有する可変剛性アクチュエータ
US10371128B2 (en) Compliant actuator
JP5560495B2 (ja) 2つのピボット連結部を有する電動関節およびこの関節を実装したヒューマノイドロボット
KR101806002B1 (ko) 형상기억합금 회전 액추에이터를 이용한 로봇 손
JPH04226885A (ja) ロボット関節
CA3020920A1 (en) Variable stiffness series elastic actuator
WO2018159400A1 (ja) 能動マニピュレータ装置
CN107253188A (zh) 一种基于ipmc驱动的多自由度简易机械手臂
US10967524B1 (en) System and method for conversion of rotational motion into linear actuation by mechanical stacking or unstacking of connected links
Schimmels et al. The arched flexure VSA: A compact variable stiffness actuator with large stiffness range
Yang et al. A compact and low-cost robotic manipulator driven by supercoiled polymer actuators
JP2021525902A (ja) 小型の可変焦点構成
Nagua et al. Design and performance validation of a cable-driven soft robotic neck
JP7175212B2 (ja) 重力補償機構付パラレルリンク作動装置
Lai et al. A two-degrees-of-freedom miniature manipulator actuated by antagonistic shape memory alloys
US7195441B2 (en) Manipulator having arm mechanism for hand
US10272562B2 (en) Parallel kinematics robot with rotational degrees of freedom
JP2004105609A (ja) 駆動装置
Ono et al. Trajectory tracking of a one-DOF manipulator using multiple fishing line actuators by iterative learning control
WO2018008254A1 (ja) 伸縮機構及び4足ロボット
KR102485764B1 (ko) 열구동기 기반의 구동 시스템 및 상기 열구동기 기반의 구동 시스템을 이용한 로봇관절 및 로봇손
Sheng et al. A novel meso-scale SMA-actuated torsion actuator
CN109849047B (zh) 一种具有可控刚度的机械臂关节
KR101899633B1 (ko) 토션 엑츄에이터를 이용한 자벌레 로봇
Singh et al. Development and workspace analysis of smart actuation based planar parallel robotic motion stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761211

Country of ref document: EP

Kind code of ref document: A1