WO2018158914A1 - 合わせガラス及びそれに用いる合わせガラス用光学フィルム - Google Patents

合わせガラス及びそれに用いる合わせガラス用光学フィルム Download PDF

Info

Publication number
WO2018158914A1
WO2018158914A1 PCT/JP2017/008337 JP2017008337W WO2018158914A1 WO 2018158914 A1 WO2018158914 A1 WO 2018158914A1 JP 2017008337 W JP2017008337 W JP 2017008337W WO 2018158914 A1 WO2018158914 A1 WO 2018158914A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
optical film
half mirror
mirror layer
reflectance
Prior art date
Application number
PCT/JP2017/008337
Other languages
English (en)
French (fr)
Inventor
金野公彦
大谷紀昭
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2019502389A priority Critical patent/JP6871359B2/ja
Priority to PCT/JP2017/008337 priority patent/WO2018158914A1/ja
Publication of WO2018158914A1 publication Critical patent/WO2018158914A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a laminated glass for windshield, which can also be used as an information display panel, and an optical film for laminated glass used therefor.
  • the present invention solves the above-described problems, and provides a laminated glass applicable to a head-up display in which no ghost occurs in projection information, the brightness of a projected image is high, and the impact resistance is excellent.
  • the laminated glass of the present invention is a laminated glass including a first glass substrate, a first intermediate film, an optical film, a second intermediate film, and a second glass substrate in this order.
  • the film includes a transparent base material and a half mirror layer formed on the transparent base material, and the reflectance of incident light when light is incident from the first glass substrate side is R1, When the reflectance of the incident light excluding interface reflection between the second glass substrate and the outside is R2, R1 / R2 is 0.9 to 1.4.
  • the optical film for laminated glass of the present invention is an optical film for laminated glass comprising a transparent base material and a half mirror layer formed on the transparent base material, and the half mirror layer is a metal oxide.
  • the half mirror layer has a refractive index of 1.75 or more, and the optical film has a reflectance of 15% or more.
  • the present invention it is possible to provide a laminated glass applicable to a head-up display in which no ghost is generated in the projection information, the brightness of the projected image is high, and the impact resistance is excellent.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical film for laminated glass.
  • FIG. 2 is a schematic cross-sectional view showing an example of laminated glass.
  • the present inventors have investigated the cause of inferior impact resistance in a windshield glass in which an optical film provided with a cholesteric liquid crystal layer as a half mirror layer is sandwiched between intermediate films, and found that the cholesteric liquid crystal layer and polyvinyl butyral It was found that the adhesiveness with the manufactured intermediate film was inferior to the adhesiveness between the glass and the intermediate film. Therefore, as a result of studying the material of the half mirror layer provided on the film in order to increase the brightness of the projected image and improve the adhesion between the optical film and polyvinyl butyral, the adhesion between the metal oxide and polyvinyl butyral It was found to be good. As a result of further studies, the inventors have found that the half mirror layer containing a metal oxide and an acrylic resin also has good adhesiveness to polyvinyl butyral, and have completed the present invention.
  • the conventional half mirror layer is formed from a metal vapor deposition film made of aluminum or the like.
  • radio wave transmission may be inconvenient. There is. For this reason, the present inventors decided to use a high refractive index film instead of the metal vapor deposition film for the half mirror layer.
  • the half mirror layer is covered with an intermediate film made of a resin such as polyvinyl butyral having a refractive index of about 1.5, and the difference in refractive index between the half mirror layer and the intermediate film layer is Since the refractive index difference is smaller than that of air, the reflectance is not improved as in the air, and the half mirror effect is considered to be reduced. As a result, the luminance improvement is considered to be slight.
  • the inventors of the present invention have made a study without being bound by such a fixed idea.
  • the refractive index of the half mirror layer is made larger than 1.75, and the thickness thereof is adjusted so that the reflectance of the optical film is 15%. If it was set as the above, it confirmed that the brightness
  • the optical film for laminated glass of this embodiment includes a transparent substrate and a half mirror layer formed on the transparent substrate, and the half mirror layer includes a metal oxide and an acrylic resin.
  • the refractive index of the half mirror layer is 1.75 or more, and the reflectance of the optical film is 15% or more.
  • the optical film for laminated glass of the present embodiment includes the half mirror layer, it can reflect a certain visible ray and improves the adhesiveness with the resin layer. For this reason, when the optical film for laminated glass is incorporated in laminated glass, the back reflection of incident light can be suppressed, ghosting is not generated in the projection information, the brightness of the projected image is increased, and the impact resistance is excellent. Can provide a head-up display. This will be described in detail in the description of the embodiment of the laminated glass of the present invention.
  • a resin layer is disposed on both sides of the laminated glass optical film, a first glass substrate and a second glass substrate are disposed on both sides of the resin layer, and the first glass substrate side.
  • R1 / R2 where R1 is the reflectance of the incident light when light is incident from R1, and R2 is the reflectance of the incident light excluding the interface reflection between the second glass substrate and the outside (air).
  • R1 is the reflectance of the incident light when light is incident from R1
  • R2 is the reflectance of the incident light excluding the interface reflection between the second glass substrate and the outside (air).
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical film for laminated glass of the present embodiment.
  • the optical film 10 for laminated glass of the present embodiment includes a transparent base material 11 and a half mirror layer 12 formed on the transparent base material 11.
  • Transparent substrate> As a transparent base material which comprises the optical film for laminated glasses of this embodiment, if it is formed with the material which has translucency, it will not specifically limit.
  • the transparent substrate include polyester resins (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resins, polyacrylate resins (eg, polymethyl methacrylate), alicyclic polyolefin resins, Polystyrene resin (for example, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc.), polyvinyl chloride resin, polyvinyl acetate resin, polyethersulfone resin, cellulose resin (for example, diacetyl cellulose, triacetyl) Cellulose or the like) or a resin such as norbornene-based resin processed into a film or sheet can be used.
  • polyester resins eg, polyethylene terephthalate, polyethylene naphthalate, etc
  • Examples of methods for processing the resin into a film or sheet include an extrusion molding method, a calender molding method, a compression molding method, an injection molding method, a method in which the resin is dissolved in a solvent, and the like. You may add additives, such as antioxidant, a flame retardant, a ultraviolet absorber, an easy lubricant, and an antistatic agent, to the said resin.
  • the thickness of the transparent substrate may be, for example, 10 to 500 ⁇ m.
  • the half mirror layer constituting the optical film for laminated glass of the present embodiment contains a metal oxide and an acrylic resin, and the refractive index of the half mirror layer needs to be 1.75 or more. 1.8 or more is more preferable.
  • the thickness of the half mirror layer is preferably adjusted so that the reflectance of the optical film is 15% or more.
  • the thickness of the half mirror at which the reflectance of the optical film is 15% or more varies depending on the transparent substrate, the type of metal oxide, the amount added, the type of the acrylic resin, and the like. Moreover, if the thickness of the half mirror layer is 30 nm or more, the radiation curing reaction of an acrylic resin containing a radiation curable functional group, which will be described later, is sufficiently advanced, or scratches during optical film production can be suppressed.
  • the metal oxide is not particularly limited as long as the half mirror layer has a refractive index of 1.75 or more.
  • zirconium oxide, titanium oxide, niobium pentoxide, tantalum oxide, cerium oxide Etc. can be used.
  • titanium oxide is most preferable because it has a high refractive index and can easily form a half mirror layer having a refractive index of 1.75 or more.
  • the average particle diameter of the metal oxide is preferably 70 nm or less, more preferably 50 nm or less, and still more preferably 30 nm or less.
  • the lower limit of the average particle diameter of the metal oxide is about 5 nm. If the particle size is smaller than this, dispersion treatment becomes difficult, or the amount of metal oxide added cannot be increased, and it becomes difficult to make the refractive index of the half mirror layer 1.8 or more.
  • the average particle diameter is the average value of the major axis diameter and the minor axis diameter of at least 10 particles of the metal oxide particles using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Further, the average value of the major axis diameter and the average value of the minor axis diameter are obtained by averaging.
  • the acrylic resin a radiation curable resin is preferable.
  • the radiation curable resin can be obtained, for example, by subjecting an acrylic monomer, acrylic oligomer, urethane acrylate, epoxy acrylate or the like containing a radiation curable functional group to a radiation curing treatment.
  • the method for producing the optical film is not particularly limited.
  • the optical film is dispersed after mixing the metal oxide, the radiation curable monomer, a photopolymerization initiator, a solvent, and a dispersant as necessary.
  • a half-mirror layer-forming coating material is prepared by applying a treatment, and the half-mirror layer-forming coating material is applied to the transparent substrate, then dried, and irradiated with ultraviolet rays or the like to cure the half-mirror layer-forming coating material. It can produce by doing.
  • the dispersion treatment of the paint for forming the half mirror layer can be performed by a technique such as a ball mill, a sand mill, or an ultrasonic dispersion.
  • the coating for forming the half mirror layer can be performed by a technique such as gravure coating, reverse roll coating, bar coating, slit die coating or the like.
  • the solvent include ketone solvents such as methyl ethyl ketone and cyclohexanone, aromatic solvents such as toluene and xylene, alcohol solvents such as ethanol and isopropanol, aliphatic solvents such as octane and decane, and other glycols. Solvents such as solvents and glycol ether solvents can be used.
  • the laminated glass of the present embodiment includes a first glass substrate, a first intermediate film, an optical film, a second intermediate film, and a second glass substrate in this order, and the optical film is transparent.
  • R1 / R2 can be set to 0.9 to 1.4, more preferably 1.0 to 1.4.
  • the optical film used for the laminated glass of this embodiment will not be specifically limited if the said characteristic can be exhibited, It is preferable to use the optical film for laminated glasses of the above-mentioned embodiment of this invention. Since the optical film for laminated glass of the above-described embodiment includes the above-described half mirror layer, it can reflect a certain visible ray and improves the adhesiveness with an intermediate film made of a resin layer. For this reason, when the optical film for laminated glass is incorporated in laminated glass, the back reflection of incident light can be suppressed, ghosting is not generated in the projection information, the brightness of the projected image is increased, and the impact resistance is excellent. Can provide a head-up display.
  • FIG. 2 is a schematic cross-sectional view showing an example of the laminated glass of the present embodiment.
  • the laminated glass 20 of this embodiment comprises a first glass substrate 22a, a first intermediate film 21a, an optical film 10, a second intermediate film 21b, and a second glass substrate 22b.
  • the optical film 10 includes a transparent substrate 11 and a half mirror layer 12 formed on the transparent substrate 11.
  • the reflectance of incident light when light is incident from the glass substrate 22a side is R1, and the reflection of the incident light excluding interface reflection between the second glass substrate and the outside (air) is removed.
  • R1 / R2 is set to 0.9 to 1.4, more preferably 1.0 to 1.4. That is, R1 is a reflectance based on reflected light at the outer surface of the glass substrate 22a with respect to incident light, the surface of the half mirror layer 12, and the interface between the second glass substrate and the outside, and R2 is a glass substrate with respect to incident light. It is a reflectance based on the reflected light on the outer surface of 22a and the surface of the half mirror layer 12.
  • the visible light transmittance of the laminated glass 20 measured in accordance with Japanese Industrial Standard (JIS) R3211 is 70% or more.
  • JIS Japanese Industrial Standard
  • optical film used in the laminated glass of this embodiment is preferably the optical film for laminated glass of the above-described embodiment of the present invention, but the description thereof is omitted.
  • the intermediate film used in the present embodiment is formed from a transparent resin.
  • the intermediate film functions as an adhesive layer for joining two glass substrates.
  • the transparent resin for forming the intermediate film is not particularly limited as long as it has adhesiveness.
  • polyvinyl butyral resin, ethylene-vinyl acetate copolymer resin, polyvinyl acetal resin, or the like may be used. it can.
  • the intermediate film preferably has a wedge-shaped cross-sectional shape. Thereby, generation
  • the method of processing the cross-sectional shape of the intermediate film into a wedge shape is not particularly limited, but for example, the method described in Patent Document 1 (Japanese Patent Laid-Open No. Hei 2-279437) can be used.
  • the intermediate film may contain various adjusting agents such as an ultraviolet absorber, an antioxidant, an antistatic agent, and a heat stabilizer.
  • the thickness of the intermediate film is not particularly limited, but may be 0.05 to 3 mm, for example, to ensure transparency and penetration resistance when a laminated glass is used.
  • the glass substrate used in the present embodiment is not particularly limited, and for example, a transparent glass substrate having a thickness of 1 to 3 mm can be used.
  • Example 1 ⁇ Production of optical film> First, a polyethylene terephthalate (PET) film (trade name “Lumirror U34”, thickness: 50 ⁇ m, manufactured by Toray Industries, Inc.) was prepared as a transparent substrate.
  • PET polyethylene terephthalate
  • a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 50:50 is prepared, the dispersion is diluted 12.5 times with the mixed solvent, and the diluted solution is filtered through a half mirror layer. A forming coating solution was obtained.
  • the coating solution for forming the half mirror layer was applied on the PET film using a bar coater so that the thickness of the half mirror layer after curing was 80 nm, and dried at 100 ° C. Formed.
  • Its UV coating film (the maximum wavelength: 365 nm, light source: high pressure mercury lamp, integrated light quantity: 400 mJ / cm 2) to cure the coating by irradiation with, to form a half mirror layer on the PET film, Example 1 optical film was produced.
  • a polyvinyl butyral (PVB) film (PVB film manufactured by Sekisui Chemical Co., Ltd., trade name “ESREC film”, thickness: 0.38 mm) used for an interlayer film is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. Hei 2-279437). ) was processed in the same manner as in Example 2 to prepare two PVB films having a wedge-shaped cross-sectional shape. Further, two glass sheets with a thickness of 2 mm (manufactured by Nippon Sheet Glass Co., Ltd.) were prepared as glass substrates.
  • the optical film produced above is sandwiched between the two PVB films so that the cross-sectional shape becomes a wedge shape, and further, the two float glasses are laminated on both sides of the PVB film to produce a laminate.
  • the laminate was wrapped in a rubber bag and vacuum deaerated for 10 minutes in an autoclave heated to 90 ° C. to pre-adhere each layer of the laminate.
  • the pre-adhered laminate was cooled to room temperature, then removed from the rubber bag, and again heated and pressurized in an autoclave at 135 ° C. under a pressure of 12 kg / cm 2 for 30 minutes to produce the laminated glass of Example 1. did.
  • Example 2 An optical film was prepared in the same manner as in Example 1 except that the thickness of the half mirror layer after curing was adjusted to 100 nm, and the optical film was used in the same manner as in Example 1 except that this optical film was used.
  • the laminated glass of Example 2 was produced.
  • Example 3 The following materials were stirred and mixed, and then subjected to dispersion treatment with a sand grind mill to prepare a dispersion.
  • Metal oxide (ultrafine particle titanium oxide manufactured by Ishihara Sangyo Co., Ltd., trade name “TTO51 (A)”, average particle diameter: 20 nm): 80 parts
  • Dispersant (trade name “Solspers, manufactured by Lubrizol Co., Ltd.” 32000 ”): 7.6 parts
  • UV curable resin (urethane acrylate manufactured by Nippon Kayaku Co., Ltd., trade name" KAYARAD DPHA-40H "): 25.36 parts
  • Photopolymerization initiator (manufactured by BASF) , Trade name "Irgacure 907”): 1.33 parts (5) methyl ethyl ketone: 171.1 parts (6) cyclohexanone: 171.1 parts
  • a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 50:50 is prepared, the dispersion is diluted 12.5 times with the mixed solvent, and the diluted solution is filtered through a half mirror layer. A forming coating solution was obtained.
  • Example 2 An optical film was produced in the same manner as in Example 1 except that the coating solution for forming the half mirror layer was used, and the laminated glass of Example 3 was obtained in the same manner as in Example 1 except that this optical film was used. Produced.
  • Comparative Example 1 A laminated glass of Comparative Example 1 having a configuration of float glass / intermediate film / intermediate film / float glass was produced in the same manner as in Example 1 except that the optical film produced in Example 1 was not used.
  • Comparative Example 2 A laminated glass of Comparative Example 2 having a configuration of float glass / intermediate film / PET film / intermediate film / float glass was produced in the same manner as in Example 1 except that the half mirror layer was not formed on the PET film.
  • Example 3 An optical film was prepared in the same manner as in Example 1 except that the thickness of the half mirror layer after curing was adjusted to 140 nm, and a comparison was made in the same manner as in Example 1 except that this optical film was used.
  • the laminated glass of Example 3 was produced.
  • a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 50:50 is prepared, the dispersion is diluted 12.5 times with the mixed solvent, and the diluted solution is filtered through a half mirror layer. A forming coating solution was obtained.
  • ⁇ Reflectance of optical film> The reflectance of the optical film was measured using a simultaneous photometric spectral color difference meter “SQ-2000” manufactured by Nippon Denshoku Industries Co., Ltd.
  • the measurement conditions were a circular region with a diameter of 10 mm of the optical film as a measurement region, reflection measurement was performed under conditions including regular reflection, a Y value was obtained, and the obtained Y value was taken as the reflectance of the optical film.
  • the reflectance ratio R1 / R2 was measured by combining a spectrophotometer “V-570” manufactured by JASCO Corporation and an integrating sphere unit “ILN-472” manufactured by JASCO Corporation. The measurement was performed in the wavelength range of 380 to 780 nm and converted into the total light reflectance. Specifically, first, the reflectance when light was incident from one side of the float glass of the laminated glass was measured and set to R1. Next, the outside of the outer surface of the float glass on the side opposite to the incident light side was roughened with sandpaper, then painted with oil-based black ink, and the reflectance was measured with a black tape applied, and R2 was obtained. Finally, the reflectance ratio R1 / R2 was calculated.
  • the brightness of the projected image was measured using a goniophotometer “GP200” manufactured by Murakami Color Research Laboratory. Specifically, the reflection characteristics of light incident on the laminated glass at an incident angle of 60 ° were measured, the light intensity at the reflection angle of 60 ° was relatively evaluated, and the obtained relative value was defined as the luminance.
  • the produced laminated glass has a wedge shape in cross section, but light is incident from the side with the thinner cross section of the laminated glass, and the reflected light is emitted from the side with the thicker cross section of the laminated glass. Set in the device.
  • the laminated glass was stored at room temperature and ⁇ 20 ° C. for 24 hours or more.
  • the laminated glass after storage was placed on an aluminum plate having a thickness of 10 mm, and the center of the laminated glass was struck with a hammer.
  • Samples stored at ⁇ 20 ° C. were removed from the freezer and immediately placed on an aluminum plate and struck with a hammer.
  • Laminated glasses other than Comparative Examples 1 and 2 were placed on an aluminum plate with the glass surface on the half mirror layer side of the optical film facing up. The impact resistance of the laminated glass was evaluated according to the following criteria.
  • Display information light from the display unit installed on the lower side of the laminated glass is projected in a state where the incident angle is 60 ° with respect to the laminated glass, and the presence or absence of a ghost is visually confirmed at a predetermined position.
  • the quality of the displayed image was evaluated.
  • the laminated glass was set so that the upper end cross section was thick. (1) When a ghost was not confirmed remarkably in the display image, it was judged that the display image was “good”. (2) When a ghost was remarkably confirmed in the display image, the display image was determined to be “defective”.
  • the laminated glass of Examples 1 to 3 having a reflectance ratio of 1.4 or less had high projected image brightness and good display image because the reflectance of the optical film was 15% or more. It turns out that it is. Further, in the laminated glasses of Examples 1 to 3, since the optical film was provided with a half mirror layer containing a metal oxide, the impact resistance was good at both room temperature and low temperature.
  • Comparative Example 1 since no optical film was used, it can be seen that the reflectance ratio of the laminated glass is large and the brightness of the projected image is low.
  • Comparative Example 2 since the PET film without the half mirror layer was used for the optical film, the reflectance of the optical film was small, the reflectance ratio of the laminated glass was larger than 1.4, and the brightness of the projected image was the optical film. It can be seen that there is no significant difference from Comparative Example 1 in which no is used. Moreover, in the comparative example 2, since the half mirror layer containing a metal oxide is not provided in the optical film, it turns out that impact resistance is inferior.
  • Comparative Example 3 a half mirror layer is provided, but since an optical film having a reflectance of less than 15% is used, the reflectance ratio of the laminated glass is greater than 1.4, and the brightness of the projected image is the same as that of Comparative Example 1. It turns out that there is not much difference.
  • Comparative Example 4 since the reflectance ratio of the laminated glass is greater than 1.4, it can be seen that the brightness of the projected image is not significantly different from that of Comparative Example 1. This is considered because the reflectance of the optical film provided with the half mirror layer used in Comparative Example 4 is smaller than 15%. In Comparative Example 4, it can be seen that the impact resistance at ⁇ 20 ° C. is inferior because the refractive index of the half mirror layer is lower than 1.75.
  • the present invention it is possible to provide a laminated glass applicable to a head-up display in which no ghost is generated in the projection information, the brightness of the projected image is high, and the impact resistance is excellent.

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明に係る合わせガラスは、第1のガラス基板22aと、第1の中間膜21aと、光学フィルム10と、第2の中間膜21bと、第2のガラス基板22bとをこの順に備え、光学フィルム10は、透明基材11とハーフミラー層12とを備え、第1のガラス基板22aの側から光を入射させた際の入射光の反射率をR1とし、第2のガラス基板22bと外部との界面反射を除いた、前記入射光の反射率をR2とすると、R1/R2が0.9~1.4である。

Description

合わせガラス及びそれに用いる合わせガラス用光学フィルム
 本発明は、ウインドシールド用合わせガラスであって、情報表示パネルとしても用いることができる合わせガラス及びそれに用いる合わせガラス用光学フィルムに関する。
 自動車の安全運転支援システムの拡大に伴い、運転中に少ない視線移動ですばやく各種情報をキャッチし、安全運転を支援する目的でヘッドアップディスプレイシステムの自動車への搭載が加速されている。
 自動車のヘッドアップディスプレイシステムでは、情報をプロジェクターの光でフロントガラスに投影し、フロントガラスからの反射光がドライバーの目に入り、その情報をドライバーが認識することになる。ところで、プロジェクターの投影光は、フロントガラスの車室内面側及び車室外面側の2か所で反射するため、その反射光が同じ視線上になければ反射像はいわゆるゴースト(二重映り)を生じることになる。このような、ゴーストをなくすため、自動車のウインドシールドガラスは、その端面の上部の厚みが、その下部より厚い、いわゆるくさび形状の断面形状を有する合わせガラスを用いることが行われる(例えば、特許文献1)。
 一方、このようなくさび形のウインドシールガラスを用いると、ゴーストは低減されるが、投影像の輝度が低くなるという課題は残っていた。この課題に対しては、コレステリック液晶を用いたハーフミラー層を設けた光学フィルムをくさび形の合わせガラスに貼り付ける方法、又は、くさび形の合わせガラスの中間膜に上記光学フィルムを挟み込む方法により、輝度の向上を図ることが提案されている(特許文献2)。
特開平2-279437号公報 特開2016-153281号公報
 確かに、特許文献2に記載の光学フィルムを中間膜に挟み込んだウインドシールドガラスを用いると、ゴーストが低減した高輝度の投影像が確認される。しかしながら、コレステリック液晶をハーフミラー層とした光学フィルムをウインドシールドガラスに用いると、ウインドシールドガラスの耐衝撃性が劣るという問題が新たに確認された。
 本発明は上記問題を解決したもので、投影情報にゴーストの発生がなく、投影像の輝度が高く、耐衝撃性に優れたヘッドアップディスプレイに適用可能な合わせガラスを提供するものである。
 本発明の合わせガラスは、第1のガラス基板と、第1の中間膜と、光学フィルムと、第2の中間膜と、第2のガラス基板とをこの順に含む合わせガラスであって、前記光学フィルムは、透明基材と、前記透明基材の上に形成されたハーフミラー層とを含み、前記第1のガラス基板の側から光を入射させた際の入射光の反射率をR1とし、前記第2のガラス基板と外部との界面反射を除いた、前記入射光の反射率をR2とすると、R1/R2が0.9~1.4である。
 また、本発明の合わせガラス用光学フィルムは、透明基材と、前記透明基材の上に形成されたハーフミラー層とを含む合わせガラス用光学フィルムであって、前記ハーフミラー層は、金属酸化物と、アクリル系樹脂とを含み、前記ハーフミラー層の屈折率が、1.75以上であり、前記光学フィルムの反射率が、15%以上である。
 本発明によれば、投影情報にゴーストの発生がなく、投影像の輝度が高く、耐衝撃性に優れたヘッドアップディスプレイに適用可能な合わせガラスを提供できる。
図1は、合わせガラス用光学フィルムの一例を示す概略断面図である。 図2は、合わせガラスの一例を示す概略断面図である。
 本発明者らは、前述のハーフミラー層としてコレステリック液晶層を設けた光学フィルムを中間膜に挟み込んだウインドシールドガラスにおいて、耐衝撃性が劣る原因について検討を進めたところ、コレステリック液晶層とポリビニルブチラール製の中間膜との接着性が、ガラスと中間膜との接着性に比較して劣るためであることが判明した。そこで、投影像の輝度が高く、光学フィルムとポリビニルブチラールとの接着性を良好とするため、フィルム上に設けるハーフミラー層の材質について検討を進めた結果、金属酸化物とポリビニルブチラールとの接着が良好であることを見出した。更に、検討を進めたところ、金属酸化物とアクリル系樹脂とを含むハーフミラー層についてもポリビニルブチラールとの接着性は良好であることを見出し、本発明を完成するに至った。
 ところで、昨今の自動車はAV機器、ETC等の電子機器用のアンテナをウインドシールドガラス近傍に設けることが行われている。このため、合わせガラスを用いたウインドシールドガラスは電波透過性も必要である。従来のハーフミラー層は、アルミニウム等からなる金属蒸着膜から形成されていたが、金属蒸着膜からなるハーフミラー層を備えた合わせガラスをウインドシールドガラスに用いると、電波透過性に不都合を生じる懸念がある。このため、本発明者らはハーフミラー層に金属蒸着膜に代えて高屈折率膜を用いることにした。
 例えば、ハーフミラー層の屈折率を1.7以上とすることで、空気の屈折率(約1.0)との差を大きくすると、空気との界面での反射率が高くなり、ハーフミラー効果が得られる。しかしながら、合わせガラスに用いた場合、ハーフミラー層は屈折率が約1.5のポリビニルブチラール等の樹脂製の中間膜で覆われることになり、ハーフミラー層と中間膜層との屈折率差は、空気との屈折率差より小さくなるため、空気中ほど反射率が向上せず、ハーフミラー効果は小さくなると考えられる。その結果、輝度向上はわずかと考えられる。本発明者らは、このような固定観念にとらわれずに検討を進めたところ、ハーフミラー層の屈折率を1.75より大きくし、更にその厚みを調整して光学フィルムの反射率を15%以上とすれば、投影情報の輝度向上効果が得られることを確認し、本発明に至った。また、ハーフミラー層の屈折率を1.75以上とすると、金属酸化物の含有量が増えるためか、合わせガラスの耐衝撃性が向上した。
 以下、本発明の実施形態について説明する。
 (合わせガラス用光学フィルム)
 先ず、本発明の合わせガラス用光学フィルムの実施形態について説明する。本実施形態の合わせガラス用光学フィルムは、透明基材と、上記透明基材の上に形成されたハーフミラー層とを備え、上記ハーフミラー層は、金属酸化物と、アクリル系樹脂とを含み、上記ハーフミラー層の屈折率は、1.75以上であり、上記光学フィルムの反射率は、15%以上である。
 本実施形態の合わせガラス用光学フィルムは、上記ハーフミラー層を備えているので、一定の可視光線を反射できると共に、樹脂層との接着性が向上する。このため、上記合わせガラス用光学フィルムを合わせガラスに組み込んだ際に、入射光の裏面反射を抑制でき、投影情報にゴーストの発生がなく、投影像の輝度が高くなると共に、耐衝撃性に優れたヘッドアップディスプレイを提供できる。この点については、本発明の合わせガラスの実施形態の説明で詳述する。
 具体的には、上記合わせガラス用光学フィルムの両側に樹脂層を配置し、上記樹脂層の両側に第1のガラス基板と第2のガラス基板とを配置し、上記第1のガラス基板の側から光を入射させた際の入射光の反射率をR1とし、上記第2のガラス基板と外部(空気)との界面反射を除いた、上記入射光の反射率をR2とすると、R1/R2を0.9~1.4、より好ましくは1.0~1.4とすることができる。即ち、上記第2のガラス基板と外部との界面における入射光の反射(裏面反射)を抑制できる。この点についても、本発明の実施形態の合わせガラスの説明で詳述する。
 以下、本実施形態の合わせガラス用光学フィルムを図面に基づき説明する。
 図1は、本実施形態の合わせガラス用光学フィルムの一例を示す概略断面図である。図1において、本実施形態の合わせガラス用光学フィルム10は、透明基材11と、透明基材11の上に形成されたハーフミラー層12とを備えている。
 <透明基材>
 本実施形態の合わせガラス用光学フィルムを構成する透明基材としては、透光性を有する材料で形成されていれば特に限定されない。上記透明基材としては、例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂(例えば、ポリメチルメタクリレート等)、脂環式ポリオレフィン系樹脂、ポリスチレン系樹脂(例えば、ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等)、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエーテルスルホン系樹脂、セルロース系樹脂(例えば、ジアセチルセルロース、トリアセチルセルロース等)、ノルボルネン系樹脂等の樹脂を、フィルム状又はシート状に加工したものを用いることができる。上記樹脂をフィルム状又はシート状に加工する方法としては、押し出し成形法、カレンダー成形法、圧縮成形法、射出成形法、上記樹脂を溶剤に溶解させてキャスティングする方法等が挙げられる。上記樹脂には、酸化防止剤、難燃剤、紫外線吸収剤、易滑剤、帯電防止剤等の添加剤を添加してもよい。上記透明基材の厚さは、例えば、10~500μmとすればよい。
 <ハーフミラー層>
 本実施形態の合わせガラス用光学フィルムを構成するハーフミラー層は、金属酸化物とアクリル系樹脂とを含んでおり、上記ハーフミラー層の屈折率は、1.75以上とすることが必要であり、1.8以上がより好ましい。
 上記ハーフミラー層の厚さは、上記光学フィルムの反射率が15%以上になるように調整することが好ましい。上記透明基材、上記金属酸化物の種類、添加量、上記アクリル系樹脂の種類等により、上記光学フィルムの反射率が15%以上となる上記ハーフミラーの厚さは異なる。また、上記ハーフミラー層の厚さを30nm以上とすると、後述する放射線硬化性官能基を含むアクリル系樹脂の放射線硬化反応が十分に進むためか、光学フィルム作製時の擦り傷を抑制できる。
 以下、上記ハーフミラー層の構成材料について説明する。
 [金属酸化物]
 上記金属酸化物としては、上記ハーフミラー層の屈折率を1.75以上とできる金属酸化物であれば特に限定されず、例えば、酸化ジルコニウム、酸化チタン、五酸化二ニオブ、酸化タンタル、酸化セリウム等を用いることができる。これらの中でも酸化チタンは、屈折率が高いので、屈折率1.75以上のハーフミラー層を形成しやすいため、最も好ましい。
 上記金属酸化物の平均粒子径は、70nm以下が好ましく、より好ましくは50nm以下であり、更に好ましくは30nm以下である。また、上記金属酸化物の平均粒子径の下限値は、5nm程度である。これより粒子径が小さくなると、分散処理が困難となる、あるいは金属酸化物の添加量を高められず、ハーフミラー層の屈折率を1.8以上とすることが困難になる。上記平均粒子径は、金属酸化物粒子を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)等を用いて、少なくとも10個の粒子の長軸径の平均値と短軸径の平均値とを求め、更に上記長軸径平均値と上記短軸径平均値とを平均して求める。
 [アクリル系樹脂]
 上記アクリル系樹脂としては、放射線硬化性樹脂が好ましい。上記放射線硬化性樹脂は、例えば、放射線硬化性官能基を含むアクリル系モノマー、アクリル系オリゴマー、ウレタンアクリレート、エポキシアクリレート等を放射線硬化処理することにより得ることができる。
 <光学フィルム>
 上記光学フィルムの製造方法は特に限定されず、例えば、上記金属酸化物と、上記放射線硬化性のモノマーと、光重合開始剤と、溶剤と、必要に応じて分散剤とを混合した後に、分散処理を行ってハーフミラー層形成用塗料を作製し、上記ハーフミラー層形成用塗料を上記透明基材に塗布した後、乾燥し、紫外線等の照射を行って上記ハーフミラー層形成用塗料を硬化することにより作製できる。
 上記ハーフミラー層形成用塗料の分散処理は、ボールミル、サンドミル、超音波分散等の手法により行うことができる。また、上記ハーフミラー層形成用塗料の塗布は、グラビア塗布、リバースロール塗布、バーコート、スリットダイコート等の手法により行うことができる。更に、上記溶剤には、例えば、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤、エタノール、イソプロパノール等のアルコール系溶剤、オクタン、デカン等の脂肪族系溶剤、その他、グリコール系溶剤、グリコールエーテル系溶剤等を用いることができる。
 (合わせガラス)
 次に、本発明の合わせガラスの実施形態を説明する。本実施形態の合わせガラスは、第1のガラス基板と、第1の中間膜と、光学フィルムと、第2の中間膜と、第2のガラス基板とをこの順に備え、上記光学フィルムは、透明基材と、上記透明基材の上に形成されたハーフミラー層とを含み、上記第1のガラス基板の側から光を入射させた際の入射光の反射率をR1とし、上記第2のガラス基板と外部(空気)との界面反射を除いた、上記入射光の反射率をR2とすると、R1/R2が0.9~1.4である。
 本実施形態の合わせガラスでは、R1/R2を0.9~1.4、より好ましくは1.0~1.4とすることができる。これにより、上記第2のガラス基板と外部との界面における入射光の反射(裏面反射)を抑制できるため、投影情報にゴーストの発生がなく、投影像の輝度を高くすることができる。
 本実施形態の合わせガラスに用いる光学フィルムは、上記特性を発揮できれば特に限定されないが、前述の本発明の実施形態の合わせガラス用光学フィルムを用いることが好ましい。上記実施形態の合わせガラス用光学フィルムは、前述のハーフミラー層を備えているので、一定の可視光線を反射できると共に、樹脂層からなる中間膜との接着性が向上する。このため、上記合わせガラス用光学フィルムを合わせガラスに組み込んだ際に、入射光の裏面反射を抑制でき、投影情報にゴーストの発生がなく、投影像の輝度が高くなると共に、耐衝撃性に優れたヘッドアップディスプレイを提供できる。
 以下、本実施形態の合わせガラスを図面に基づき説明する。
 図2は、本実施形態の合わせガラスの一例を示す概略断面図である。図2において、本実施形態の合わせガラス20は、第1のガラス基板22aと、第1の中間膜21aと、光学フィルム10と、第2の中間膜21bと、第2のガラス基板22bとをこの順に備えている。また、光学フィルム10は、透明基材11と、透明基材11の上に形成されたハーフミラー層12とを備えている。
 また、図2において、ガラス基板22a側から光を入射させた際の入射光の反射率をR1とし、上記第2のガラス基板と外部(空気)との界面反射を除いた、上記入射光の反射率をR2とすると、R1/R2が0.9~1.4、より好ましくは1.0~1.4に設定されている。即ち、R1は、入射光に対するガラス基板22aの外表面、ハーフミラー層12の表面及び第2のガラス基板と外部との界面における反射光に基づく反射率であり、R2は、入射光に対するガラス基板22aの外表面及びハーフミラー層12の表面における反射光に基づく反射率である。
 また、合わせガラス20の、日本工業規格(JIS)R3211に準拠して測定した可視光線透過率は、70%以上であることが好ましい。これにより、上記合わせガラスをウインドシールドとして用いることができる。
 <光学フィルム>
 本実施形態の合わせガラスで用いる光学フィルムは、前述の本発明の実施形態の合わせガラス用光学フィルムが好ましいが、その説明は省略する。
 <中間膜>
 本実施形態で用いる中間膜は、透明樹脂から形成されている。上記中間膜は、2枚のガラス基板を接合させる接着層として機能する。従って、上記中間膜を形成する透明樹脂は、接着性を有していれば特に限定されず、例えば、ポリビニルブチラール系樹脂、エチレン-酢酸ビニル共重合系樹脂、ポリビニルアセタール系樹脂等を用いることができる。
 上記中間膜は、くさび形の断面形状を有することが好ましい。これにより、より確実にゴースト(二重映り)の発生を防止できる。上記中間膜の断面形状をくさび形に加工する方法は特に限定されないが、例えば、特許文献1(特開平2-279437号公報)に記載の方法で行うことができる。
 また、上記中間膜には、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤等の各種調整剤を含めることができる。
 上記中間膜の厚さは特に限定されないが、透明性と合わせガラスにした際の耐貫通性を確保するためには例えば、0.05~3mmとすればよい。
 <ガラス基板>
 本実施形態で用いるガラス基板は特に限定されず、例えば、厚さが1~3mmの透明ガラス基板を用いることができる。
 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。また、特に指摘がない場合、下記において、「部」は「質量部」を意味する。
 (実施例1)
 <光学フィルムの作製>
 先ず、透明基材として、ポリエチレンテレフタレート(PET)フィルム(東レ社製、商品名“ルミラーU34”、厚さ:50μm)を用意した。
 次に、下記材料を攪拌して混合した後、サンドグラインドミルにより分散処理を行い、分散液を作製した。
(1)金属酸化物(石原産業社製の超微粒子酸化チタン、商品名“TTO51(A)”、平均粒子径:20nm):80部
(2)分散剤(ルーブリゾール社製、商品名“ソルスパーズ32000”):7.6部
(3)紫外線硬化性樹脂(日本化薬社製のウレタンアクリレート、商品名“KAYARAD DPHA-40H”):11.78部
(4)光重合開始剤(BASF社製、商品名“イルガキュア907”):0.62部
(5)メチルエチルケトン:150部
(6)シクロヘキサノン:150部
 次に、メチルエチルケトンとシクロヘキサノンとの質量比50:50の混合溶剤を準備し、上記分散液を上記混合溶剤で12.5倍に希釈し、その希釈液をフィルターに通してろ過し、ハーフミラー層形成用塗布液を得た。
 続いて、上記ハーフミラー層形成用塗布液を上記PETフィルムの上に、バーコーターを用いて硬化後のハーフミラー層の厚さが80nmとなるように塗布し、100℃で乾燥させて塗膜を形成した。その塗膜に紫外線(最大波長:365nm、光源:高圧水銀ランプ、積算光量:400mJ/cm2)を照射して塗膜を硬化させ、上記PETフィルムの上にハーフミラー層を形成し、実施例1の光学フィルムを作製した。
 <合わせガラスの作製>
 先ず、中間膜に用いるポリビニルブチラール(PVB)フィルム(積水化学工業社製のPVBフィルム、商品名“エスレックフィルム”、厚さ:0.38mm)を、特許文献1(特開平2-279437号公報)の実施例2に記載の方法と同様にして加工し、くさび形の断面形状を有するPVBフィルムを2枚用意した。更に、ガラス基板として、厚さ2mmのフロートガラス(日本板硝子社製)を2枚用意した。
 次に、上記で作製した光学フィルムを上記2枚のPVBフィルムで断面形状がくさび形状となるように挟み込み、更に、PVBフィルムの両面に上記2枚のフロートガラスをそれぞれ重ね合わせて積層体を作製した。その後、この積層体をゴムバッグで包み、90℃に加熱したオートクレーブ中で10分間真空脱気して、上記積層体の各層を予備接着した。続いて、予備接着した積層体を室温まで冷却後、ゴムバッグから取り出し、再度、オートクレーブ中で135℃、12kg/cm2の圧力下で30分間加熱・加圧し、実施例1の合わせガラスを作製した。
 (実施例2)
 硬化後のハーフミラー層の厚さが100nmとなるように調整した以外は、実施例1と同様にして光学フィルムを作製し、この光学フィルムを用いた以外は、実施例1と同様にして実施例2の合わせガラスを作製した。
 (実施例3)
 下記材料を攪拌して混合した後、サンドグラインドミルにより分散処理を行い、分散液を作製した。
(1)金属酸化物(石原産業社製の超微粒子酸化チタン、商品名“TTO51(A)”、平均粒子径:20nm):80部
(2)分散剤(ルーブリゾール社製、商品名“ソルスパーズ32000”):7.6部
(3)紫外線硬化性樹脂(日本化薬社製のウレタンアクリレート、商品名“KAYARAD DPHA-40H”):25.36部
(4)光重合開始剤(BASF社製、商品名“イルガキュア907”):1.33部
(5)メチルエチルケトン:171.1部
(6)シクロヘキサノン:171.1部
 次に、メチルエチルケトンとシクロヘキサノンとの質量比50:50の混合溶剤を準備し、上記分散液を上記混合溶剤で12.5倍に希釈し、その希釈液をフィルターに通してろ過し、ハーフミラー層形成用塗布液を得た。
 上記ハーフミラー層形成用塗布液を用いた以外は、実施例1と同様にして光学フィルムを作製し、この光学フィルムを用いた以外は、実施例1と同様にして実施例3の合わせガラスを作製した。
 (比較例1)
 実施例1で作製した光学フィルムを用いなかった以外は、実施例1と同様にして、フロートガラス/中間膜/中間膜/フロートガラスの構成を有する比較例1の合わせガラスを作製した。
 (比較例2)
 PETフィルムにハーフミラー層を形成しなかった以外は、実施例1と同様にして、フロートガラス/中間膜/PETフィルム/中間膜/フロートガラスの構成を有する比較例2の合わせガラスを作製した。
 (比較例3)
 硬化後のハーフミラー層の厚さが140nmとなるように調整した以外は、実施例1と同様にして光学フィルムを作製し、この光学フィルムを用いた以外は、実施例1と同様にして比較例3の合わせガラスを作製した。
 (比較例4)
 下記材料を攪拌して混合した後、サンドグラインドミルにより分散処理を行い、分散液を作製した。
(1)金属酸化物(石原産業社製の超微粒子酸化チタン、商品名“TTO51(A)”、平均粒子径:20nm):72部
(2)分散剤(ルーブリゾール社製、商品名“ソルスパーズ32000”):6.84部
(3)紫外線硬化性樹脂(日本化薬社製のウレタンアクリレート、商品名“KAYARAD DPHA-40H”):39.10部
(4)光重合開始剤(BASF社製、商品名“イルガキュア907”):2.06部
(5)メチルエチルケトン:180部
(6)シクロヘキサノン:180部
 次に、メチルエチルケトンとシクロヘキサノンとの質量比50:50の混合溶剤を準備し、上記分散液を上記混合溶剤で12.5倍に希釈し、その希釈液をフィルターに通してろ過し、ハーフミラー層形成用塗布液を得た。
 上記ハーフミラー層形成用塗布液を用いた以外は、実施例1と同様にして光学フィルムを作製し、この光学フィルムを用いた以外は、実施例1と同様にして比較例4の合わせガラスを作製した。
 次に、作製した実施例1~3及び比較例1~4の合わせガラスを用いて下記特性を評価した。
 <光学フィルムの反射率>
 光学フィルムの反射率は、日本電色工業社製の同時測光方式分光式色差計“SQ-2000”を用いて測定した。測定条件は、光学フィルムの直径10mmの円形領域を測定領域とし、正反射入りの条件で反射測定を行い、Y値を求め、求めたY値を光学フィルムの反射率とした。
 <ハーフミラー層の屈折率>
 ハーフミラー層の屈折率は、大塚電子社製の反射分光膜厚計“FE3000”及び標準ソフトウェア“FE Series ver4”を用いて測定した。測定条件は、絶対反射、マニュアルモードで、レファランスにアルミニウムの反射板を用い、レンズはRefrec×20、NA=0.400、フィルターなしとし、スリットは0.2×2mm、サンプリングは524msec、積算は9回、ゲインはノーマルとした。
 <反射率の比R1/R2>
 反射率の比R1/R2は、日本分光社製の分光光度計“V-570”と、日本分光社製の積分球ユニット“ILN-472”とを組み合わせて測定した。測定は、波長380~780nmの範囲で行い、全光線反射率に換算して行った。具体的には、先ず、合わせガラスのフロートガラスの片面側から光を入射させた際の反射率を測定しR1とした。次に、入射光側とは反対側のフロートガラスの外表面の外側をサンドペーパにて荒らした後に油性黒インクにて塗りつぶし、更に黒テープを貼りつけた状態で反射率を測定しR2とした。最後に、反射率の比R1/R2を算出した。
 <投影像の輝度>
 投影像の輝度は、村上色彩技術研究所製の変角光度計“GP200”を用いて測定した。具体的には、合わせガラスについて入射角60°で入射する光の反射特性を測定し、反射角60°の光強度を相対評価し、求めた相対値を輝度とした。作製した合わせガラスは、断面形状がくさび形となっているが、光の入射は合わせガラスの断面が薄い方から行い、反射光は合わせガラスの断面が厚い方から出射するように、合わせガラスを装置にセットした。
 <合わせガラスの耐衝撃性>
 先ず、合わせガラスを室温及び-20℃で24時間以上それぞれ保存した。次に、保存後の合わせガラスを厚さ10mmのアルミニウム板の上に置き、合わせガラスの中央部をハンマーで強くたたいた。-20℃に保存したサンプルは、冷凍庫から取り出して直ぐにアルミニウム板の上に置いてハンマーでたたいた。比較例1及び2以外の合わせガラスは、光学フィルムのハーフミラー層側のガラス面を上にして、アルミニウム板の上に置いた。上記合わせガラスの耐衝撃性の評価は、下記の基準で行った。
(1)中間膜と光学フィルムとの接着面の剥離領域が、全接着面の30%未満の場合、耐衝撃性は「良好」と判断した。
(2)中間膜と光学フィルムとの接着面の剥離領域が、全接着面の30%以上50%未満の場合、耐衝撃性は「良」と判断した。
(3)中間膜と光学フィルムとの接着面の剥離領域が、全接着面の50%以上の場合、耐衝撃性は「不良」と判断した。
 <表示像の良否>
 合わせガラスの下側に設置した表示ユニットからの表示情報光を、合わせガラスに対して入射角60°となる状態で投影し、所定の位置でゴーストの有無を目視で確認し、以下の基準により表示像の良否を評価した。上記合わせガラスは、その上端断面が厚くなるようにセットした。
(1)表示像に顕著にゴーストが確認されなかった場合、表示像は「良好」と判断した。
(2)表示像に顕著にゴーストが確認された場合、表示像は「不良」と判断した。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、反射率比が1.4以下であった実施例1~3の合わせガラスは、光学フィルムの反射率が15%以上であったためか、投影像の輝度が高く、表示像が良好であることが分かる。また、実施例1~3の合わせガラスでは、光学フィルムに金属酸化物を含むハーフミラー層を設けたので、室温及び低温ともに耐衝撃性が良好であった。
 一方、比較例1では、光学フィルムを用いなかったため、合わせガラスの反射率比が大きく、投影像の輝度が低いことが分かる。比較例2では、光学フィルムにハーフミラー層を設けていないPETフィルムを用いたので、光学フィルムの反射率が小さく、合わせガラスの反射率比が1.4より大きく、投影像の輝度は光学フィルムを用いない比較例1と大差ないことが分かる。また、比較例2では、光学フィルムに金属酸化物を含むハーフミラー層を設けていないため、耐衝撃性が劣ることが分かる。比較例3では、ハーフミラー層を設けているが、反射率が15%より小さい光学フィルムを用いたので、合わせガラスの反射率比が1.4より大きく、投影像の輝度が比較例1と大差ないことが分かる。比較例4では、合わせガラスの反射率比が1.4より大きいので、投影像の輝度が比較例1と大差ないことが分かる。これは、比較例4に用いたハーフミラー層を設けた光学フィルムの反射率が15%より小さいためと考えられる。また、比較例4では、ハーフミラー層の屈折率が1.75より低いため、-20℃の耐衝撃性が劣ることが分かる。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 本発明によれば、投影情報にゴーストの発生がなく、投影像の輝度が高く、耐衝撃性に優れたヘッドアップディスプレイに適用可能な合わせガラスを提供できる。
 10 合わせガラス用光学フィルム
 11 透明基材
 12 ハーフミラー層
 20 合わせガラス
 21a、b 中間膜
 22a、b ガラス基板

Claims (16)

  1.  第1のガラス基板と、第1の中間膜と、光学フィルムと、第2の中間膜と、第2のガラス基板とをこの順に含む合わせガラスであって、
     前記光学フィルムは、透明基材と、前記透明基材の上に形成されたハーフミラー層とを含み、
     前記第1のガラス基板の側から光を入射させた際の入射光の反射率をR1とし、前記第2のガラス基板と外部との界面反射を除いた、前記入射光の反射率をR2とすると、R1/R2が0.9~1.4であることを特徴とする合わせガラス。
  2.  前記ハーフミラー層は、金属酸化物と、アクリル系樹脂とを含む請求項1に記載の合わせガラス。
  3.  前記金属酸化物の平均粒子径が、70nm以下である請求項2に記載の合わせガラス。
  4.  前記金属酸化物が、酸化チタンである請求項2又は3に記載の合わせガラス。
  5.  前記ハーフミラー層の屈折率が、1.75以上である請求項1~4のいずれか1項に記載の合わせガラス。
  6.  前記光学フィルムの反射率が、15%以上である請求項1~5のいずれか1項に記載の合わせガラス。
  7.  R1/R2が、1.0~1.4である請求項1~6のいずれか1項に記載の合わせガラス。
  8.  前記中間膜は、透明樹脂からなる請求項1~7のいずれか1項に記載の合わせガラス。
  9.  前記中間膜は、くさび形の断面形状を有する請求項1~8のいずれか1項に記載の合わせガラス。
  10.  JIS R3211に準拠して測定した可視光線透過率が、70%以上である請求項1~9のいずれか1項に記載の合わせガラス。
  11.  透明基材と、前記透明基材の上に形成されたハーフミラー層とを含む合わせガラス用光学フィルムであって、
     前記ハーフミラー層は、金属酸化物と、アクリル系樹脂とを含み、
     前記ハーフミラー層の屈折率が、1.75以上であり、
     前記光学フィルムの反射率が、15%以上であることを特徴とする合わせガラス用光学フィルム。
  12.  前記金属酸化物の平均粒子径が、70nm以下である請求項11に記載の合わせガラス用光学フィルム。
  13.  前記金属酸化物が、酸化チタンである請求項11又は12に記載の合わせガラス用光学フィルム。
  14.  前記アクリル系樹脂が、放射線硬化性樹脂を含む請求項11~13のいずれか1項に記載の合わせガラス用光学フィルム。
  15.  前記合わせガラス用光学フィルムの両側に樹脂層を配置し、
     前記樹脂層の両側に第1のガラス基板と第2のガラス基板とを配置し、
     前記第1のガラス基板の側から光を入射させた際の入射光の反射率をR1とし、前記第2のガラス基板と外部との界面反射を除いた、前記入射光の反射率をR2とすると、R1/R2が0.9~1.4である請求項11~14のいずれか1項に記載の合わせガラス用光学フィルム。
  16.  R1/R2が、1.0~1.4である請求項15に記載の合わせガラス用光学フィルム。
PCT/JP2017/008337 2017-03-02 2017-03-02 合わせガラス及びそれに用いる合わせガラス用光学フィルム WO2018158914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019502389A JP6871359B2 (ja) 2017-03-02 2017-03-02 合わせガラス及びそれに用いる合わせガラス用光学フィルム
PCT/JP2017/008337 WO2018158914A1 (ja) 2017-03-02 2017-03-02 合わせガラス及びそれに用いる合わせガラス用光学フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008337 WO2018158914A1 (ja) 2017-03-02 2017-03-02 合わせガラス及びそれに用いる合わせガラス用光学フィルム

Publications (1)

Publication Number Publication Date
WO2018158914A1 true WO2018158914A1 (ja) 2018-09-07

Family

ID=63370641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008337 WO2018158914A1 (ja) 2017-03-02 2017-03-02 合わせガラス及びそれに用いる合わせガラス用光学フィルム

Country Status (2)

Country Link
JP (1) JP6871359B2 (ja)
WO (1) WO2018158914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767080A (zh) * 2019-05-07 2021-12-07 Agc株式会社 车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125025U (ja) * 1990-03-27 1991-12-18
JPH07257226A (ja) * 1994-03-23 1995-10-09 Asahi Glass Co Ltd ヘッドアップディスプレイ
JP2005255480A (ja) * 2004-03-12 2005-09-22 Central Glass Co Ltd 合わせガラス及びその製造方法
JP2009067333A (ja) * 2007-09-17 2009-04-02 Denso Corp 車両用ヘッドアップディスプレイ装置
JP2010230771A (ja) * 2009-03-26 2010-10-14 Nittoh Kogaku Kk ハーフミラー、光学部品、光学機器およびヘッドマウントディスプレイ
WO2013099564A1 (ja) * 2011-12-28 2013-07-04 コニカミノルタ株式会社 赤外遮蔽フィルム、これを用いた熱線反射合わせガラス、および熱線反射合わせガラスの製造方法
JP2014201450A (ja) * 2013-04-01 2014-10-27 コニカミノルタ株式会社 熱線遮断性合わせガラス及び熱線遮断性合わせガラスの製造方法
WO2015125690A1 (ja) * 2014-02-18 2015-08-27 株式会社クラレ 合わせガラス用中間膜
JP2016153281A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 ウインドシールドガラスおよびヘッドアップディスプレイシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966752B2 (ja) * 2011-08-11 2016-08-10 東レ株式会社 ヘッドアップディスプレイおよびそれを用いた移動機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125025U (ja) * 1990-03-27 1991-12-18
JPH07257226A (ja) * 1994-03-23 1995-10-09 Asahi Glass Co Ltd ヘッドアップディスプレイ
JP2005255480A (ja) * 2004-03-12 2005-09-22 Central Glass Co Ltd 合わせガラス及びその製造方法
JP2009067333A (ja) * 2007-09-17 2009-04-02 Denso Corp 車両用ヘッドアップディスプレイ装置
JP2010230771A (ja) * 2009-03-26 2010-10-14 Nittoh Kogaku Kk ハーフミラー、光学部品、光学機器およびヘッドマウントディスプレイ
WO2013099564A1 (ja) * 2011-12-28 2013-07-04 コニカミノルタ株式会社 赤外遮蔽フィルム、これを用いた熱線反射合わせガラス、および熱線反射合わせガラスの製造方法
JP2014201450A (ja) * 2013-04-01 2014-10-27 コニカミノルタ株式会社 熱線遮断性合わせガラス及び熱線遮断性合わせガラスの製造方法
WO2015125690A1 (ja) * 2014-02-18 2015-08-27 株式会社クラレ 合わせガラス用中間膜
JP2016153281A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 ウインドシールドガラスおよびヘッドアップディスプレイシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767080A (zh) * 2019-05-07 2021-12-07 Agc株式会社 车辆
CN113767080B (zh) * 2019-05-07 2023-09-26 Agc株式会社 车辆

Also Published As

Publication number Publication date
JPWO2018158914A1 (ja) 2019-12-19
JP6871359B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
US10746911B2 (en) Transparent heat-shielding/heat-insulating member having transparent screen function
JP6361700B2 (ja) 光学積層体、偏光板及び画像表示装置
US9678256B2 (en) Transparent heat-shielding member
JP6237796B2 (ja) 光学積層体、偏光板及び画像表示装置
US20070253064A1 (en) Antiglare light diffusing member and display having antiglare light diffusing member
JP2008122832A (ja) 防眩性光拡散部材
US7538947B2 (en) Antiglare light diffusing member
WO2009107536A1 (ja) 防眩フィルム、防眩性偏光板および画像表示装置
JPWO2016203915A1 (ja) 透明スクリーンおよびそれを備えた映像投影システム
JP6266844B2 (ja) シート状透明積層体、それを備えた透明スクリーン、およびそれを備えた映像投影システム
US20180074242A1 (en) Optical Laminate Including Infrared Shielding Layer And Polarizing Film
JP2007058204A (ja) 防眩ハードコートフィルム、及びそれを用いた表示装置
KR20170018327A (ko) 광확산성 시트 및 그 시트를 포함하는 백라이트 장치
JP2013205634A (ja) 光学フィルムおよびその製造方法
JP2008299007A (ja) 防眩ハードコートフィルム、及びそれを用いた偏光板並びに表示装置
JP2009103734A (ja) 防眩性フィルム、偏光板、および画像表示装置
US20190025486A1 (en) Polarizing plate and optical display comprising the same
WO2018158914A1 (ja) 合わせガラス及びそれに用いる合わせガラス用光学フィルム
JP2008216538A (ja) 防眩フィルム
WO2019159529A1 (ja) 映像投影システム
JP2017207586A (ja) 光学素子およびそれを備える映像投影システム
JPH11174206A (ja) 保護フィルター
JP2007256962A (ja) 防眩フィルム、偏光フィルム及び透過型表示装置
JP6287007B2 (ja) 反射スクリーンおよび反射スクリーンを備えた映像表示システム
CN115398277A (zh) 光学层叠体、以及使用了该光学层叠体的偏振片、表面板和图像显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899187

Country of ref document: EP

Kind code of ref document: A1