WO2018158892A1 - レーザ発振装置 - Google Patents

レーザ発振装置 Download PDF

Info

Publication number
WO2018158892A1
WO2018158892A1 PCT/JP2017/008175 JP2017008175W WO2018158892A1 WO 2018158892 A1 WO2018158892 A1 WO 2018158892A1 JP 2017008175 W JP2017008175 W JP 2017008175W WO 2018158892 A1 WO2018158892 A1 WO 2018158892A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
media
diffraction grating
lenses
wavelength dispersion
Prior art date
Application number
PCT/JP2017/008175
Other languages
English (en)
French (fr)
Inventor
西前 順一
智毅 桂
大嗣 森田
裕章 黒川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017005700.0T priority Critical patent/DE112017005700B4/de
Priority to US16/338,694 priority patent/US10714902B2/en
Priority to PCT/JP2017/008175 priority patent/WO2018158892A1/ja
Priority to CN201780074812.2A priority patent/CN110036544B/zh
Priority to JP2017539693A priority patent/JP6227212B1/ja
Publication of WO2018158892A1 publication Critical patent/WO2018158892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1092Multi-wavelength lasing
    • H01S5/1096Multi-wavelength lasing in a single cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Definitions

  • the present invention relates to a laser oscillation device that obtains a high-power laser beam by combining a plurality of laser beams having different wavelengths.
  • wavelength coupling means that a plurality of laser beams having different wavelengths are emitted at the same emission angle, that is, a plurality of laser beams having different wavelengths are overlapped together.
  • another wavelength dispersion element is installed outside the external resonator by determining the wavelength of the laser beam from the plurality of laser media to a specific value using an external resonator including a plurality of laser media and a wavelength dispersion element. Discloses a technique for combining laser beams from a plurality of laser media.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser oscillation device that improves the condensing property of a laser beam output from an external resonator.
  • the present invention provides a wavelength dispersion element for emitting a plurality of laser media having different wavelengths of emitted laser beams and a plurality of laser beams incident from the plurality of laser media. And a part of the plurality of laser beams emitted from the wavelength dispersion element to be reflected back to the wavelength dispersion element and transmitted through the rest, and individually between each of the plurality of laser media and the wavelength dispersion element And a plurality of lenses disposed on the surface. Each of the plurality of lenses is arranged for each optical path formed between the plurality of laser media and the wavelength dispersion element, and the laser beams from the plurality of laser media are the same on the incident surface to the wavelength dispersion element. Superimpose with outer diameter.
  • the laser oscillation apparatus has an effect of improving the condensing property of the laser beam output from the external resonator.
  • action in the diffraction grating of the laser oscillation apparatus which concerns on Embodiment 1 The figure which shows the structure of the laser oscillation apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing the configuration of the laser oscillation apparatus according to Embodiment 1 of the present invention.
  • the laser oscillation apparatus 100 includes a control unit 90, drive circuits 71 and 72, drive power supplies 81 and 82, and an external resonator 10.
  • the external resonator 10 includes laser media 1 and 2 having different wavelengths of emitted laser beams, and a partial reflection mirror 4 that is a partial reflection element that reflects part of incident light and transmits the remaining part.
  • a diffraction grating 3 which is a wavelength dispersion element that emits laser beams having different wavelengths incident from the laser media 1 and 2, and lenses 5 and 6 are installed.
  • the lenses 5 and 6 are installed between the laser media 1 and 2 and the diffraction grating 3 and have different focal lengths.
  • the lenses 5 and 6 are arranged for each optical path formed between the laser media 1 and 2 and the diffraction grating 3, and the laser beams from the laser media 1 and 2 are incident on the incident surface to the diffraction grating 3. Overlap with the same outer diameter. If the laser beam does not enter the incident surface of the diffraction grating 3 perpendicularly, the laser beam has an elliptical shape on the incident surface of the diffraction grating 3, but in this specification, the laser that does not enter the diffraction grating 3 perpendicularly.
  • the drive circuits 71 and 72 have on / off control of the laser media 1 and 2 and a protection function for cutting off power supply to the laser media 1 and 2 when a short circuit occurs.
  • the drive power supplies 81 and 82 are power supplies that supply power to the drive circuits 71 and 72.
  • the control unit 90 controls the drive circuits 71 and 72 based on a command input from the numerical control device.
  • Laser mediums 1 and 2 generate laser light by applying energy such as light or electricity.
  • the laser media 1 and 2 include, but are not limited to, an active layer of a semiconductor laser and a core of a fiber laser.
  • Reflective coatings 11 and 21 having high reflectivity are formed on the rear end faces of the laser media 1 and 2 to reflect most of the light. Therefore, the light generated in the laser media 1 and 2 is emitted forward from the front ends 12 and 22.
  • the divergence angles of the laser beams emitted from the laser media 1 and 2 are adjusted by the lenses 5 and 6 having different focal lengths installed at the distance adjusted for each of the laser media 1 and 2.
  • the distance between the laser medium 1 and the lens 5 on the optical axis of the laser beam is L 1
  • the distance between the laser medium 2 and the lens 6 on the optical axis of the laser beam is a L 2 .
  • the laser beam that has passed through the lenses 5 and 6 is incident on the diffraction grating 3 that is separated by a distance adjusted for each of the laser media 1 and 2.
  • the distance between the center and the diffraction grating 3 of the lens 5 on the optical axis of the laser beam is l 1
  • the distance between the center and the diffraction grating 3 of the lens 6 on the optical axis of the laser beam a l 2.
  • the lenses 5 and 6 may be axially symmetric lenses such as spherical lenses, but more preferably cylindrical lenses having power only in the beam coupling dimension which is a plane parallel to the paper surface. This is because, as will be described below, the correction of the beam diameter conversion action by the lenses 5 and 6 is performed in the beam coupling dimension, and does not affect the non-beam coupling dimension which is a plane perpendicular to the paper surface. This is desirable. Further, the distances L 1 and L 2 between the laser media 1 and 2 and the centers of the lenses 5 and 6 and the distances l 1 and l 2 between the centers of the lenses 5 and 6 and the diffraction grating 3 are determined as the concave lenses. Then, it becomes shorter than the case where the lenses 5 and 6 are convex lenses. Therefore, the external resonator 10 can be reduced in size by using the lenses 5 and 6 as concave lenses.
  • the laser beam from the laser medium 1 and the laser beam from the laser medium 2 enter the diffraction grating 3 at different incident angles and are emitted at the same diffraction angle. That is, the laser beam emitted from the laser medium 1 and the laser beam emitted from the laser medium 2 are overlapped on the diffraction grating 3 and emitted to the partial reflection mirror 4 side. A part of the laser beam diffracted by the diffraction grating 3 is reflected by the partial reflection mirror 4, and the remaining laser beam passes through the partial reflection mirror 4 and is output outside the external resonator 10. The laser beam output to the outside of the external resonator 10 is used for various applications including laser processing.
  • the laser beam reflected by the partial reflection mirror 4 follows the optical path described above in reverse, passes through the diffraction grating 3 and the lenses 5 and 6, and returns to the laser medium 1 and 2.
  • the laser beams that have returned to the laser media 1 and 2 are amplified in the laser media 1 and 2, reflected by the reflective coatings 11 and 21 on the rear side of the laser media 1 and 2, and then emitted from the laser media 1 and 2 again. .
  • the optical path is determined for each of the laser media 1 and 2 depending on the positional relationship between the partial reflection mirror 4, the diffraction grating 3, the lenses 5 and 6, and the laser media 1 and 2. Then, by determining the optical path, a unique wavelength that satisfies the above formula (1) is determined.
  • the laser oscillation device 100 according to the first embodiment superimposes laser beams from laser media 1 and 2 having different wavelengths on the incident surface to the diffraction grating 3 with the same outer diameter, and from the diffraction grating 3 to the partial reflection mirror. It is possible to improve the brightness of the laser beam by superimposing the laser beams emitted to the four sides into one.
  • the diffraction grating 3 has a beam diameter converting action when the incident angle ⁇ and the diffraction angle ⁇ are different.
  • FIG. 2 is a diagram for explaining the beam diameter converting action in the diffraction grating of the laser oscillation apparatus according to the first embodiment.
  • the following equation (2) is established between the beam diameter 2 ⁇ i of the incident beam 41 and the beam diameter 2 ⁇ d of the diffracted beam 42.
  • ⁇ d (cos ⁇ / cos ⁇ ) ⁇ i (2)
  • the divergence angle ⁇ 2 of the diffracted beam 42 is (cos ⁇ / cos ⁇ ) times the divergence angle ⁇ 1 of the incident beam 41. Therefore, the ray matrix A of the diffraction grating 3 is expressed by the following equation (5).
  • Equation (5) indicates that when laser beams having different wavelengths and the same beam diameter and divergence angle are incident on the diffraction grating 3 at different incident angles ⁇ , the laser beams are diffracted with different diameters and divergence angles. ing.
  • the efficiency of the output laser beam is lowered and the light condensing property is also deteriorated.
  • the distances L 1 , l 1 , L 2 , l 2 and the like so that the beam diameters of the laser beams emitted from the diffraction grating 3 from the laser media 1 and 2 have the same outer diameter.
  • the focal lengths of the lenses 5 and 6 are adjusted.
  • the laser media 1 and 2 are used. For each light emitting point, the propagation of the laser beam from the laser media 1 and 2 through the diffraction grating 3 can be calculated.
  • the beam diameter of the laser beam after diffracting by the diffraction grating 3 is between the laser medium 1 and the laser medium 2.
  • the distances L 1 , l 1 , L 2 , and l 2 and the focal lengths of the lenses 5 and 6 are matched. It is possible. Therefore, the distance L 1 between the laser medium 1 and the lens 5 is different from the distance L 2 between the laser medium 2 and the lens 6. Further, the lens 5 and the distance l 1 between the diffraction grating 3 becomes different from the distance l 2 between the lens 6 and the diffraction grating 3. Further, the focal length of the lens 5 and the focal length of the lens 6 are different.
  • one of the laser media 1 and 2 is used as a reference laser medium in which the lenses 5 and 6 are not disposed, and the laser beam after passing the diffraction grating 3 from the laser media 1 and 2 in which the lenses 5 and 6 are not disposed is used as another laser. It is possible to match the laser beams from the media 1 and 2 after passing through the diffraction grating 3. In this case, since the number of lenses can be reduced in the optical path of the laser beam from the reference laser medium as compared with the optical path of the laser beam from the other laser medium, the configuration is simplified and the cost is reduced. There is an effect.
  • the laser beams having different wavelengths from the laser media 1 and 2 are superposed with the same outer diameter on the incident surface to the diffraction grating 3.
  • the laser beams 5 and 6 By installing the laser beams 5 and 6 and superimposing the laser beams emitted from the diffraction grating 3 toward the partial reflection mirror 4 side, it is possible to improve the efficiency of the external resonator 10 and to suppress the deterioration of the light collecting property.
  • the lenses 5 and 6 are separated from the laser media 1 and 2 on the entrance surface of the diffraction grating 3.
  • the difference in the beam diameters of the laser beams is made smaller than when a plurality of laser beams are incident on the diffraction grating 3 from the laser media 1 and 2, the efficiency of the external resonator 10 is improved and the deterioration of the light condensing property is suppressed. The effect is obtained.
  • the configuration using the diffraction grating 3 as the wavelength dispersion element is shown, but the wavelength dispersion element is not limited to the diffraction grating.
  • a prism can also be used for the wavelength dispersion element.
  • the partial reflection mirror 4 is used as the partial reflection element.
  • the partial reflection element can also be realized by a total reflection mirror installed so that the laser beam partially hits it.
  • FIG. FIG. 3 is a diagram showing the configuration of the laser oscillation apparatus according to Embodiment 2 of the present invention.
  • the laser oscillation device 101 according to the second embodiment is different in the configuration of the external resonator 10 from the laser oscillation device 100 according to the first embodiment.
  • laser media 17 and 18 in which a plurality of light emitting points such as semiconductor laser bars are aligned are used as the laser medium.
  • the diffraction grating 23 is the same as the diffraction grating 3 of the first embodiment.
  • the partial reflection mirror 24 is the same as the partial reflection mirror 4 of the first embodiment.
  • the laser medium 17 includes light emitting points 19a, 19b, and 19c
  • the laser medium 18 includes light emitting points 20a, 20b, and 20c.
  • Reflective coatings 171 and 181 with high reflectivity are formed on the rear end faces of the laser media 17 and 18 to reflect most of the light. Therefore, the light generated in the laser media 17 and 18 is emitted forward from the front ends 172 and 182.
  • each laser medium 17 and 18 is different from each other. Different optical system.
  • a lens 25 is disposed at a distance L 1 with respect to the laser medium 17, and a lens 26 is disposed at a distance L 2 with respect to the laser medium 18.
  • the rate of fluctuation of the beam diameter due to the beam diameter conversion action of the diffraction grating 23 is small.
  • the light emitting points 20a, 20b, and 20c in the laser medium 18 have a small angle viewed from the diffraction grating 23
  • the rate of variation in the beam diameter due to the beam diameter conversion action of the diffraction grating 23 is small.
  • the difference in the beam diameter of the laser beam can be reduced. It is possible to obtain an effect that the plurality of laser beams are made smaller than the case where the laser beams are incident on the diffraction grating 23 from the laser media 17 and 18.
  • a laser medium 17 including a plurality of light emission points 19a, 19b, and 19c and a laser medium 18 including a plurality of light emission points 20a, 20b, and 20c laser beams from more light emission points can be combined. Therefore, a high-output and high-intensity wavelength coupled laser device can be obtained at low cost.
  • the laser medium 17 includes three light emitting points 19a, 19b, and 19c
  • the laser medium 18 includes three light emitting points 20a, 20b, and 20c.
  • the number of light emitting points mounted on the laser mediums 17 and 18 is generally about several tens, and in many cases may be several hundreds.
  • FIG. FIG. 4 is a diagram showing the configuration of the laser oscillation apparatus according to Embodiment 3 of the present invention.
  • the laser oscillation device 102 according to the third embodiment is different from the first and second embodiments in the configuration of the external resonator 10.
  • the partial reflection mirrors 4 and 24 are provided for the first-order diffracted light of the laser beam in the diffraction gratings 3 and 23.
  • the laser beam in the diffraction grating 33 is changed.
  • the second-order diffracted light is returned to the laser media 1 and 2. That is, in the laser oscillation device 102 according to the third embodiment, the laser resonators 1 and 2 and the diffraction grating 33 constitute the external resonator 10.
  • the first-order diffracted light is diffracted at a diffraction angle of zero degrees. That is, the first-order diffracted light is emitted perpendicular to the diffraction grating 33.
  • the first-order diffracted light is used for the output beam of the laser oscillation device 102.
  • the laser oscillation device 102 has a plurality of laser media 1 and 2, the first-order diffracted light is emitted perpendicular to the diffraction grating 33, so that a plurality of laser beams from the plurality of laser media 1 and 2 are superimposed on one. Is possible.
  • the laser medium 1 and the lens 35 are arranged so that the beam diameter of the laser beam after diffraction by the diffraction grating 33 is the same between the laser medium 1 and the laser medium 2.
  • the diffraction grating 33 is set by setting the distance, the distance between the lens 35 and the diffraction grating 33, the distance between the laser medium 2 and the lens 36, the distance between the lens 36 and the diffraction grating 33, and the focal length of the lenses 35 and 36.
  • the beam diameter of each laser beam after diffracting at can be matched to improve the beam quality.
  • the laser oscillation device 102 does not use a partial reflection mirror, the device can be simplified and miniaturized, and the loss inside the external resonator 10 can be reduced to increase the efficiency of laser oscillation. .
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

発するレーザビームの波長が異なる複数のレーザ媒質(1,2)と、複数のレーザ媒質(1,2)から入射した複数のレーザビームを重ねて出射する回折格子(3)と、回折格子(3)から出射された複数のレーザビームの一部を反射して回折格子(3)に戻し、残りを透過させる部分反射ミラー(4)と、複数のレーザ媒質(1,2)の各々と回折格子(3)との間に個別に配置された複数のレンズ(5,6)とを備え、複数のレンズ(5,6)の各々は、複数のレーザ媒質(1,2)と回折格子(3)との間に形成される光路ごとに配置されており、複数のレーザ媒質(1,2)からのレーザビームを、回折格子(3)への入射面上において同一外径で重畳する。

Description

レーザ発振装置
 本発明は、波長の異なる複数のレーザビームを結合することによって高出力のレーザビームを得るレーザ発振装置に関する。
 レーザビームの輝度を高めるために、複数のレーザ媒質から発せられる波長の異なる複数のレーザビームを波長分散素子で波長結合させることが試みられている。なお、本明細書において「波長結合」とは、波長の異なる複数のレーザビームを同じ出射角で出射させること、すなわち、波長の異なる複数のレーザビームを一つに重ねることを意味する。
 特許文献1には、複数のレーザ媒質及び波長分散素子を含む外部共振器により、複数のレーザ媒質からレーザビームの波長を固有の値に決定し、外部共振器外に設置した別の波長分散素子で複数のレーザ媒質からのレーザビームを結合する技術が開示されている。
特表2013-521666号公報
 しかしながら、上記特許文献1に開示される発明では、同じ波長かつ同じ光学特性を有する複数のレーザビームを波長分散素子上に入射させるため、同じビーム径で波長分散素子上にレーザビームを重ねることはできず、レーザビームの重なりにずれが生じてしまう。その結果、ビーム径が異なる複数のレーザビームを外部共振器で共振させることになるため、外部共振器から出力されるレーザビームの集光性が低下し、外部共振器の出力が低下するという課題があった。
 本発明は、上記に鑑みてなされたものであって、外部共振器から出力されるレーザビームの集光性を高めたレーザ発振装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、発するレーザビームの波長が異なる複数のレーザ媒質と、複数のレーザ媒質から入射した複数のレーザビームを重ねて出射する波長分散素子と、波長分散素子から出射された複数のレーザビームの一部を反射して波長分散素子に戻し、残りを透過させる部分反射素子と、複数のレーザ媒質の各々と波長分散素子との間に個別に配置された複数のレンズとを備える。複数のレンズの各々は、複数のレーザ媒質と波長分散素子との間に形成される光路ごとに配置されており、複数のレーザ媒質からのレーザビームを、波長分散素子への入射面上において同一外径で重畳する。
 本発明に係るレーザ発振装置は、外部共振器から出力されるレーザビームの集光性を高められるという効果を奏する。
本発明の実施の形態1に係るレーザ発振装置の構成を示す図 実施の形態1に係るレーザ発振装置の回折格子でのビーム径変換作用を説明するための図 本発明の実施の形態2に係るレーザ発振装置の構成を示す図 本発明の実施の形態3に係るレーザ発振装置の構成を示す図
 以下に、本発明の実施の形態に係るレーザ発振装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係るレーザ発振装置の構成を示す図である。実施の形態1に係るレーザ発振装置100は、制御部90と、駆動回路71,72と、駆動電源81,82と、外部共振器10とを備えている。外部共振器10は、発するレーザビームの波長が異なるレーザ媒質1,2と、入射光の一部を反射し残りを透過させる部分反射素子である部分反射ミラー4とで構成されている。外部共振器10の内部には、レーザ媒質1,2から入射した波長の異なるレーザビームを重ねて出射する波長分散素子である回折格子3と、レンズ5,6とが設置されている。レンズ5,6は、レーザ媒質1,2と回折格子3との間に設置され、焦点距離が互いに異なっている。レンズ5,6は、レーザ媒質1,2と回折格子3との間に形成される光路ごとに配置されており、レーザ媒質1,2からのレーザビームを、回折格子3への入射面上において同一外径で重畳する。なお、レーザビームが回折格子3の入射面に垂直に入射しない場合、回折格子3の入射面上においてレーザビームは楕円形状となるが、本明細書において回折格子3に対して垂直に入射しないレーザビームを同一外径で重畳することは、楕円の長径を一致させてレーザビームを重畳させることを意味する。駆動回路71,72は、レーザ媒質1,2のオンオフの制御及び短絡発生時にレーザ媒質1,2への電力供給を遮断する保護機能を有する。駆動電源81,82は、駆動回路71,72に電力を供給する電源である。制御部90は、数値制御装置から入力される指令に基づいて駆動回路71,72を制御する。
 レーザ媒質1,2は、光又は電気といったエネルギーを与えることで、レーザ光を発生する。レーザ媒質1,2には、半導体レーザの活性層及びファイバレーザのコアを例示できるが、これらに限定されない。レーザ媒質1,2の後側の端面には、高反射率の反射コーティング11,21が形成され、光の大部分を反射する。したがって、レーザ媒質1,2で生じた光は、前端12,22から前方に出射される。
 レーザ媒質1,2から発せられたレーザビームは、レーザ媒質1,2ごとに調整された距離に設置した焦点距離の異なるレンズ5,6で発散角が調整される。図1においては、レーザビームの光軸上でのレーザ媒質1とレンズ5との距離はLであり、レーザビームの光軸上でのレーザ媒質2とレンズ6との距離はLである。レンズ5,6を通過したレーザビームは、レーザ媒質1,2ごとに調整された距離離れた回折格子3に入射する。図1においては、レーザビームの光軸上でのレンズ5の中心と回折格子3との距離はlであり、レーザビームの光軸上でのレンズ6の中心と回折格子3との距離はlである。
 レンズ5,6は、球面レンズといった軸対称のレンズでも良いが、より好適には、紙面と平行な面であるビーム結合次元のみにパワーを有する円筒面レンズが適当である。なぜなら、以下で説明するように、レンズ5,6によるビーム径変換作用の補正は、ビーム結合次元においてなされるものであり、紙面と垂直な面である非ビーム結合次元に影響を与えないことが望ましいからである。また、レーザ媒質1,2とレンズ5,6の中心との距離L,L及びレンズ5,6の中心と回折格子3との距離l,lは、レンズ5,6を凹レンズとすると、レンズ5,6が凸レンズである場合よりも短くなる。したがって、レンズ5,6を凹レンズとすることにより、外部共振器10を小型化できる。
 レーザ媒質1,2で発生したレーザビームは、レンズ5,6を経由して回折格子3に到達する。回折格子3への入射角αと回折格子3における出射角である回折角βとの関係は、回折格子3の溝間隔d、波長λを用いて下記式(1)のように表わされる。mは、回折の次数と呼ばれる自然数である。
 d(sinα+sinβ)=mλ ・・・(1)
 図1に示すように、レーザ媒質1からのレーザビーム及びレーザ媒質2からのレーザビームは、異なる入射角で回折格子3に入射し、同じ回折角で出射される。すなわち、レーザ媒質1から発せられたレーザビームと、レーザ媒質2から発せられたレーザビームとは、回折格子3において1本に重ねられて部分反射ミラー4側へ出射される。回折格子3において回折されたレーザビームの一部は、部分反射ミラー4で反射され、残りのレーザビームは部分反射ミラー4を透過して外部共振器10の外に出力される。外部共振器10の外に出力されるレーザビームは、レーザ加工を始めとする各種の用途に使用される。
 部分反射ミラー4で反射されたレーザビームは、上述した光路を逆にたどって、回折格子3及びレンズ5,6を経て、レーザ媒質1,2に戻る。レーザ媒質1,2まで戻ったレーザビームは、レーザ媒質1,2中で増幅され、レーザ媒質1,2の後側の反射コーティング11,21で反射され、再びレーザ媒質1,2から出射される。
 外部共振器10が成立している時には、部分反射ミラー4、回折格子3、レンズ5,6及びレーザ媒質1,2の位置関係により、レーザ媒質1,2ごとに光路が決まる。そして、光路が決まることにより上記式(1)を満たす固有の波長が決定される。実施の形態1に係るレーザ発振装置100は、異なる波長を持つレーザ媒質1,2からのレーザビームを、回折格子3への入射面上において同一外径で重畳させ、回折格子3から部分反射ミラー4側へ出射するレーザビームを一本に重ね合わせることにより、レーザビームの輝度を向上させることが可能である。
 回折格子3は、入射角αと回折角βとが異なる場合には、ビーム径変換作用がある。図2は、実施の形態1に係るレーザ発振装置の回折格子でのビーム径変換作用を説明するための図である。図2において、回折格子3上のビーム幅xは、入射ビーム41のビーム径2ω及び回折ビーム42のビーム径2ωを用いて、x=2ω/cosα=2ω/cosβで表わされるため、入射ビーム41のビーム径2ωと回折ビーム42のビーム径2ωとの間には、下記式(2)が成立する。
 ω=(cosβ/cosα)ω ・・・(2)
 すなわち、回折格子3を通過する前後でレーザビームのビーム径は、(cosβ/cosα)倍になる。つまり、入射角α又は回折角βが異なると、回折格子3を通過後のレーザビームのビーム径は異なる値となる。回折格子3の前後でビーム径と発散角との積は保存されるという関係がある。したがって、入射ビーム41の発散角がθであり、回折ビーム42の発散角がθであれば、下記式(3)が成立する。
 2ω×θ=2ω×θ ・・・(3)
 上記式(2)を用いて上記式(3)を変形すると、下記式(4)となる。
 θ=(cosα/cosβ)θ ・・・(4)
 したがって、回折ビーム42の発散角θは、入射ビーム41の発散角θの(cosα/cosβ)倍となる。よって、回折格子3の光線行列Aは、下記式(5)で表わされる。
Figure JPOXMLDOC01-appb-M000001
 式(5)は、波長が異なり、ビーム径及び発散角が同じであるレーザビームを異なる入射角αで回折格子3に入射すると、レーザビームごとに異なる径及び発散角で回折されることを示している。
 外部共振器10で異なるビーム特性のレーザビームを共振させると、出力されるレーザビームの効率が低下するとともに、集光性も劣化する。
 実施の形態1においては、回折格子3から出射される、各レーザ媒質1,2からのレーザビームのビーム径が同一外径になるように、距離L,l,L,l及びレンズ5,6の焦点距離が調整されている。式(5)に示した回折格子3の光線行列、距離L,L,l,lの自由伝搬の光線行列、及びレンズ5,6の光線行列を用いると、レーザ媒質1,2発光点ごとに、レーザ媒質1,2から、回折格子3を通過した後までのレーザビームの伝搬を計算できる。
 レーザ媒質1,2から、回折格子3を通過した後までのレーザビームの伝搬の計算結果を基に、回折格子3での回折後のレーザビームのビーム径がレーザ媒質1とレーザ媒質2とで同じになるように、距離L,l,L,lとレンズ5,6の焦点距離とを設定することにより、回折格子3での回折後の各レーザビームのビーム径を一致させることが可能である。したがって、レーザ媒質1とレンズ5との距離Lと、レーザ媒質2とレンズ6との距離Lとは異なるものとなる。また、レンズ5と回折格子3との距離lと、レンズ6と回折格子3との距離lとは異なるものとなる。また、レンズ5の焦点距離とレンズ6の焦点距離とは異なるものとなる。
 ここで、レーザ媒質1,2の一方はレンズ5,6を配置しない基準のレーザ媒質にし、レンズ5,6を配置しないレーザ媒質1,2からの回折格子3通過後のレーザビームに他のレーザ媒質1,2からの回折格子3通過後のレーザビームを合わせることが可能である。この場合には、基準のレーザ媒質からのレーザビームの光路中には、他のレーザ媒質からのレーザビームの光路と比較して、レンズを少なくすることができるので、構成単純化及び低コスト化の効果がある。
 以上のように、実施の形態1に係るレーザ発振装置100においては、レーザ媒質1,2からの波長が異なるレーザビームを、回折格子3への入射面上において同一外径で重畳させるようにレンズ5,6を設置し、回折格子3から部分反射ミラー4側へ出射するレーザビームを一本に重ね合わせることで、外部共振器10の効率向上及び集光性の劣化抑制が可能である。なお、回折格子3への入射面においてレーザ媒質1,2からのレーザビームのビーム径が同一外径とならない場合でも、レンズ5,6が、回折格子3の入射面におけるレーザ媒質1,2からのレーザビームのビーム径の差を、複数のレーザビームがレーザ媒質1,2から回折格子3に入射する場合よりも小さくするのであれば、外部共振器10の効率向上及び集光性の劣化抑制の効果が得られる。
 上記の説明においては、波長分散素子に回折格子3を用いた構成を示したが、波長分散素子は回折格子に限定されることはない。波長分散素子にはプリズムを用いることもできる。また、上記の説明においては、部分反射素子に部分反射ミラー4を用いた構成を示したが、部分反射素子は、レーザビームが部分的に当たるように設置した全反射ミラーでも実現できる。
実施の形態2.
 図3は、本発明の実施の形態2に係るレーザ発振装置の構成を示す図である。実施の形態2に係るレーザ発振装置101は、実施の形態1に係るレーザ発振装置100と比較して、外部共振器10の構成が異なる。実施の形態2に係るレーザ発振装置101の外部共振器10では、レーザ媒質には、半導体レーザバーといった発光点が複数個整列したレーザ媒質17,18が用いられている。回折格子23は、実施の形態1の回折格子3と同様である。部分反射ミラー24は、実施の形態1の部分反射ミラー4と同様である。
 図3に示すように、レーザ媒質17は、発光点19a,19b,19cを備えており、レーザ媒質18は、発光点20a,20b,20cを備えている。レーザ媒質17,18の後側の端面には、高反射率の反射コーティング171,181が形成され、光の大部分を反射する。したがって、レーザ媒質17,18で生じた光は、前端172,182から前方に出射される。
 実施の形態1では、レーザ媒質1,2ごとにレンズ5,6との距離を調整するとともに、レンズ5,6の焦点距離が異なったが、実施の形態2では、レーザ媒質17,18ごとに異なる光学系となる。図3の例では、レーザ媒質17に対しては距離Lの地点にレンズ25が、レーザ媒質18に対しては距離Lの地点にレンズ26が配置される。
 レーザ媒質17内の発光点19a,19b,19c同士は、回折格子23から見た角度が小さいため、回折格子23のビーム径変換作用によるビーム径の変動の割合は小さい。同様に、レーザ媒質18内の発光点20a,20b,20c同士は、回折格子23から見た角度が小さいため、回折格子23のビーム径変換作用によるビーム径の変動の割合は小さい。したがって、発光点19a,19b,19c,20a,20b,20cごとに異なるレンズを用いるのではなく、レーザ媒質17,18ごとに異なるレンズ25,26を用いることで、レーザビームのビーム径の差を、複数のレーザビームがレーザ媒質17,18から回折格子23に入射する場合よりも小さくする効果を得ることができる。
 複数の発光点19a,19b,19cを含んだレーザ媒質17及び複数の発光点20a,20b,20cを含んだレーザ媒質18を使用することで、より沢山の発光点からのレーザビームを結合することができ、高出力で高輝度の波長結合レーザ装置を安価に得ることができる。
 実施の形態2では、説明を簡単にするために、レーザ媒質17が三つの発光点19a,19b,19cを備え、レーザ媒質18が三つの発光点20a,20b,20cを備える構成を示したが、レーザ媒質17,18に搭載される発光点の数は、一般的には数十程度で、多いものでは数百に及ぶこともある。
実施の形態3.
 図4は、本発明の実施の形態3に係るレーザ発振装置の構成を示す図である。実施の形態3に係るレーザ発振装置102は、外部共振器10の構成が実施の形態1,2と相違する。
 実施の形態1,2において、回折格子3,23におけるレーザビームの一次回折光に対して部分反射ミラー4,24を設置していたが、実施の形態3においては、回折格子33におけるレーザビームの二次回折光をレーザ媒質1,2に戻す。すなわち、実施の形態3に係るレーザ発振装置102においては、レーザ媒質1,2と回折格子33とで外部共振器10が構成されている。このとき、一次回折光は、回折角ゼロ度で回折される。すなわち、一次回折光は、回折格子33に対して垂直に出射される。レーザ発振装置102の出力ビームに使用されるのは、一次回折光である。レーザ発振装置102は、複数のレーザ媒質1,2を有するが、一次回折光は回折格子33と垂直に出射されるため、複数のレーザ媒質1,2からの複数のレーザビームを一本に重畳することが可能である。
 実施の形態3に係るレーザ発振装置102においても、回折格子33での回折後のレーザビームのビーム径がレーザ媒質1とレーザ媒質2とで同じになるように、レーザ媒質1とレンズ35との距離、レンズ35と回折格子33との距離、レーザ媒質2とレンズ36との距離及びレンズ36と回折格子33との距離と、レンズ35,36の焦点距離とを設定することにより、回折格子33での回折後の各レーザビームのビーム径を一致させ、ビーム品質を向上させることができる。
 実施の形態3に係るレーザ発振装置102は、部分反射ミラーを使用しないため装置を簡略化及び小型化できることに加え、外部共振器10内部の損失を低減させてレーザ発振の効率を高めることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,2,17,18 レーザ媒質、3,23,33 回折格子、4,24 部分反射ミラー、5,6,25,26,35,36 レンズ、10 外部共振器、11,21 反射コーティング、12,22 前端、19a,19b,19c,20a,20b,20c 発光点、41 入射ビーム、42 回折ビーム、71,72 駆動回路、81,82 駆動電源、90 制御部、100,101,102 レーザ発振装置。

Claims (5)

  1.  発するレーザビームの波長が異なる複数のレーザ媒質と、複数の前記レーザ媒質から入射した複数の前記レーザビームを重ねて出射する波長分散素子と、前記波長分散素子から出射された複数の前記レーザビームの一部を反射して前記波長分散素子に戻し、残りを透過させる部分反射素子と、複数の前記レーザ媒質の各々と前記波長分散素子との間に個別に配置された複数のレンズとを備え、
     複数の前記レンズの各々は、複数の前記レーザ媒質と前記波長分散素子との間に形成される光路ごとに配置されており、複数の前記レーザ媒質からの前記レーザビームを、前記波長分散素子への入射面上において同一外径で重畳することを特徴とするレーザ発振装置。
  2.  複数の前記レーザ媒質の各々は、前記レーザビームを発する発光点を複数備えることを特徴とする請求項1に記載のレーザ発振装置。
  3.  複数の前記レーザ媒質が発する前記レーザビームの光路ごとに、前記レーザ媒質と前記レンズとの距離が異なり、かつ前記レンズと前記波長分散素子との距離が異なることを特徴とする請求項1又は2に記載のレーザ発振装置。
  4.  前記レンズは、凹レンズであることを特徴とする請求項1から3のいずれか1項に記載のレーザ発振装置。
  5.  発するレーザビームの波長が異なる複数のレーザ媒質と、複数の前記レーザ媒質から入射した複数の前記レーザビームの一部を反射して前記レーザ媒質に戻し、残りの複数の前記レーザビームを重ねて出射する波長分散素子と、複数の前記レーザ媒質の各々と前記波長分散素子との間に個別に配置された複数のレンズとを備え、
     複数の前記レンズの各々は、複数の前記レーザ媒質と前記波長分散素子との間に形成される光路ごとに配置されており、複数の前記レーザ媒質からの前記レーザビームを、前記波長分散素子への入射面上において同一外径で重畳することを特徴とするレーザ発振装置。
PCT/JP2017/008175 2017-03-01 2017-03-01 レーザ発振装置 WO2018158892A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017005700.0T DE112017005700B4 (de) 2017-03-01 2017-03-01 Laseroszillator
US16/338,694 US10714902B2 (en) 2017-03-01 2017-03-01 Laser oscillator
PCT/JP2017/008175 WO2018158892A1 (ja) 2017-03-01 2017-03-01 レーザ発振装置
CN201780074812.2A CN110036544B (zh) 2017-03-01 2017-03-01 激光振荡装置
JP2017539693A JP6227212B1 (ja) 2017-03-01 2017-03-01 レーザ発振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008175 WO2018158892A1 (ja) 2017-03-01 2017-03-01 レーザ発振装置

Publications (1)

Publication Number Publication Date
WO2018158892A1 true WO2018158892A1 (ja) 2018-09-07

Family

ID=60265767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008175 WO2018158892A1 (ja) 2017-03-01 2017-03-01 レーザ発振装置

Country Status (5)

Country Link
US (1) US10714902B2 (ja)
JP (1) JP6227212B1 (ja)
CN (1) CN110036544B (ja)
DE (1) DE112017005700B4 (ja)
WO (1) WO2018158892A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195659A1 (ja) * 2019-03-25 2020-10-01 パナソニック株式会社 半導体レーザ装置
WO2020202395A1 (ja) * 2019-03-29 2020-10-08 三菱電機株式会社 半導体レーザ装置
US10840670B2 (en) 2017-02-13 2020-11-17 Mitsubishi Electric Corporation Laser oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115301A1 (ja) * 2014-01-30 2015-08-06 三菱電機株式会社 ビーム結合装置およびビーム結合装置の出力回復方法
WO2016152404A1 (ja) * 2015-03-25 2016-09-29 株式会社アマダホールディングス 半導体レーザ発振器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250465A (en) 1978-08-29 1981-02-10 Grumman Aerospace Corporation Radiation beam deflection system
WO2005085947A1 (ja) 2004-03-08 2005-09-15 Nikon Corporation レーザ光源装置、このレーザ光源装置を用いた露光装置及びマスク検査装置
US7199924B1 (en) * 2005-01-26 2007-04-03 Aculight Corporation Apparatus and method for spectral-beam combining of high-power fiber lasers
US7769068B2 (en) 2006-05-31 2010-08-03 University Of New Hampshire Spectral-narrowing diode laser array system
JP5981855B2 (ja) 2010-03-05 2016-08-31 テラダイオード, インコーポレーテッド 波長ビーム結合システムおよび方法
US9124065B2 (en) * 2010-03-05 2015-09-01 TeraDiode, Inc. System and method for wavelength beam combination on a single laser emitter
US9823480B2 (en) 2012-02-22 2017-11-21 TeraDiode, Inc. Wavelength beam combining laser systems with micro-optics
US20140044436A1 (en) * 2012-08-09 2014-02-13 Electronics And Telecommunications Research Institute Optical transmitter and optical transceiver comprising optical transmitter
US9343868B2 (en) 2012-08-28 2016-05-17 Optical Engines Inc. Efficient generation of intense laser light from multiple laser light sources using misaligned collimating optical elements
US9690107B2 (en) 2013-03-15 2017-06-27 Trumpf Laser Gmbh Device for wavelength combining of laser beams
JP6058166B2 (ja) * 2014-01-14 2017-01-11 三菱電機株式会社 半導体レーザ装置
JP6223650B1 (ja) 2017-02-13 2017-11-01 三菱電機株式会社 レーザ発振装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115301A1 (ja) * 2014-01-30 2015-08-06 三菱電機株式会社 ビーム結合装置およびビーム結合装置の出力回復方法
WO2016152404A1 (ja) * 2015-03-25 2016-09-29 株式会社アマダホールディングス 半導体レーザ発振器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840670B2 (en) 2017-02-13 2020-11-17 Mitsubishi Electric Corporation Laser oscillator
WO2020195659A1 (ja) * 2019-03-25 2020-10-01 パナソニック株式会社 半導体レーザ装置
WO2020202395A1 (ja) * 2019-03-29 2020-10-08 三菱電機株式会社 半導体レーザ装置
JPWO2020202395A1 (ja) * 2019-03-29 2021-05-06 三菱電機株式会社 半導体レーザ装置

Also Published As

Publication number Publication date
CN110036544B (zh) 2020-07-24
DE112017005700T5 (de) 2019-09-05
DE112017005700B4 (de) 2021-12-30
JP6227212B1 (ja) 2017-11-08
US20190363517A1 (en) 2019-11-28
CN110036544A (zh) 2019-07-19
JPWO2018158892A1 (ja) 2019-03-07
US10714902B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US9596034B2 (en) High brightness dense wavelength multiplexing laser
WO2017197883A1 (zh) 一种激光阵列合束装置
US9256073B2 (en) Optical cross-coupling mitigation system for multi-wavelength beam combining systems
US20210063758A1 (en) High brightness, monolithic, multispectral semiconductor laser
JP6368250B2 (ja) 二次元マルチビームのスタビライザーおよびコンバイニングシステムおよび方法
JP6157194B2 (ja) レーザ装置および光ビームの波長結合方法
JP2020523793A (ja) 超高密度波長ビーム結合レーザシステム
US11108214B2 (en) Wavelength combining laser apparatus
WO2017022142A1 (ja) 半導体レーザ装置
JP2019505093A (ja) ビーム品質改良および帯域幅低減のためのプリズムを利用する波長ビーム組み合わせレーザシステム
WO2018006559A1 (zh) 一种激光阵列合束装置
JP6585171B2 (ja) 波長ビーム結合レーザシステムのための光学相互結合軽減システム
US9124065B2 (en) System and method for wavelength beam combination on a single laser emitter
JP6227212B1 (ja) レーザ発振装置
WO2015107792A1 (ja) 半導体レーザ装置
EP3761463A1 (en) Light resonator and laser processing machine
JP2015106707A (ja) 高パワーwbcシステムの安定化
JP7126137B2 (ja) 波長合成技術用レーザシステムにおけるパワー及びスペクトラムのモニタリング
JP2016096333A (ja) 半導体レーザ装置
JP6223650B1 (ja) レーザ発振装置
JP6227216B1 (ja) レーザ加工装置
KR20220002251A (ko) 적어도 2개의 레이저 빔을 결합하는 레이저 빔 결합 장치
CN104820286B (zh) 单发射器线束***
WO2022163245A1 (ja) 光共振器及びレーザ加工装置
WO2023017644A1 (ja) 光学系及びレーザ装置、コリメータレンズ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017539693

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898887

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17898887

Country of ref document: EP

Kind code of ref document: A1