WO2018157685A1 - 一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用 - Google Patents

一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用 Download PDF

Info

Publication number
WO2018157685A1
WO2018157685A1 PCT/CN2018/074144 CN2018074144W WO2018157685A1 WO 2018157685 A1 WO2018157685 A1 WO 2018157685A1 CN 2018074144 W CN2018074144 W CN 2018074144W WO 2018157685 A1 WO2018157685 A1 WO 2018157685A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
catalyst
content
coated
preparing
Prior art date
Application number
PCT/CN2018/074144
Other languages
English (en)
French (fr)
Inventor
赵永祥
李海涛
赵丽丽
张鸿喜
孙自瑾
王永钊
Original Assignee
山西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西大学 filed Critical 山西大学
Priority to US16/483,369 priority Critical patent/US11504698B2/en
Publication of WO2018157685A1 publication Critical patent/WO2018157685A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/172Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with the obtention of a fully saturated alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • C07C31/2071,4-Butanediol; 1,3-Butanediol; 1,2-Butanediol; 2,3-Butanediol

Definitions

  • the invention belongs to a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst, a preparation method and application thereof.
  • the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran is a by-product which is difficult to avoid during the hydrogenation of Reppe 1,4-butynediol to produce 1,4-butanediol, which itself cannot It is removed by direct hydrogenation and forms an azeotrope with 1,4-butanediol, which is difficult to separate by conventional distillation.
  • the residue of acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran seriously affects the purity and color of the 1,4-butanediol product, directly affecting the quality of 1,4-butanediol and its downstream field. application.
  • US 6,137,016 describes a process for the purification of 1,4-butanediol containing a small amount of cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran by hydrogenation, since the hydrogenation catalyst used is a universal hydrogenation Catalyst, its hydrogenation effect is not ideal.
  • CN 102145286 B discloses a Ni-SiO 2 /Al 2 O 3 catalyst and a preparation method thereof, which can effectively realize hydrolysis and hydrogenation conversion of a cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran. However, its preparation process is relatively complicated.
  • the object of the present invention is to provide a catalyst and a preparation method and application for coating a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst which is simple and selective.
  • the present invention provides a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst in which an active component Ni particles are present in an amorphous or highly dispersed state in a carrier Al 2 O 3 .
  • the present invention also provides a preparation method of the above coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst, comprising the following steps:
  • Impregnation step introducing an active component Ni on the Al 2 O 3 support by a dipping method, and distributing tetrahedral and octahedral holes on the surface of the alumina, and growing the crystal into microcrystalline particles;
  • Deposition step the surface of the Ni/Al 2 O 3 catalyst obtained in the impregnation step is introduced into the Al 2 O 3 -SiO 2 layer by deposition, and Al 2 O 3 -SiO 2 is deposited only on the surface of the alumina exposed by the gap of the Ni particles. ;as well as
  • Washing step The deposited sample is washed and removed to remove weakly adsorbed components remaining on the surface of the catalyst.
  • the present invention also provides another preparation method of the above-mentioned Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst, comprising the following steps:
  • the Al 2 O 3 carrier is treated at 100 ° C to 150 ° C and then lowered to room temperature for use;
  • the nickel salt aqueous solution prepared in the step (2) is immersed in the carrier of the step (1) at a ratio of 80 mL to 130 mL of the nickel salt aqueous solution per 100 g of the Al 2 O 3 carrier, and allowed to stand, dried, and calcined to obtain NiO/Al 2 O 3 precursor;
  • NiO obtained in the step (3) is obtained by taking the amount of 1000-2000 mL of the aluminum precursor and the ethanol-aqueous solution of the silicon precursor per 100 g of Al 2 O 3 in the NiO/Al 2 O 3 precursor in the step (3).
  • the Al 2 O 3 precursor is suspended in the solution prepared in the step (4), stirred under reflux at a constant temperature, filtered, and then washed with absolute ethanol, dilute nitric acid, deionized water, and dried;
  • the present invention also provides a further preparation method of the above-mentioned Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst, comprising the following steps:
  • the Al 2 O 3 carrier is subjected to vacuum treatment at 100 ° C to 150 ° C for 10 min to 30 min, or directly at 100 ° C to 150 ° C for 1 h to 10 h, and then lowered to room temperature for use;
  • NiO obtained in the step (3) is obtained by taking the amount of 1000-2000 mL of the aluminum precursor and the ethanol-aqueous solution of the silicon precursor per 100 g of Al 2 O 3 in the NiO/Al 2 O 3 precursor in the step (3).
  • the Al 2 O 3 precursor is suspended in the solution prepared in the step (4), and stirred under reflux at 20 ° C to 60 ° C for 1 h to 24 h. After filtration, the mixture is washed with absolute ethanol, 0.01 M diluted nitric acid and deionized water. After 5 to 5 times, the sample is dried at 80 ° C ⁇ 150 ° C for 2 h ⁇ 24 h;
  • the sample obtained in the step (5) is calcined in an air or nitrogen atmosphere, and is heated from 2 ° C / min to 10 ° C / min to 400 ° C to 550 ° C, at a constant temperature of 1 h to 24 h; The reduction was carried out at 350 ° C to 650 ° C for 1 h to 24 h under h to 2000/h; a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst was obtained.
  • the method for preparing a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention wherein the specific surface area of the Al 2 O 3 support described in the step (1) is preferably 110 m 2 /g ⁇
  • the pore volume is preferably from 0.5 cm 3 /g to 1.3 cm 3 /g at 260 m 2 /g.
  • the method for preparing a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention wherein the nickel salt in the aqueous solution of the nickel salt in the step (2) is preferably nickel nitrate, nickel sulfate or chlorine.
  • the nickel salt in the aqueous solution of the nickel salt in the step (2) is preferably nickel nitrate, nickel sulfate or chlorine.
  • the nickels is preferably nickel nitrate, nickel sulfate or chlorine.
  • the method for preparing a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst coated according to the present invention wherein the drying time in the step (3) is preferably from 3 h to 12 h.
  • the method for preparing a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention wherein the silicon precursor in the step (3) is preferably tetraethyl orthosilicate or methyl orthosilicate.
  • the silicon precursor in the step (3) is preferably tetraethyl orthosilicate or methyl orthosilicate.
  • the method for preparing a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst coated according to the present invention wherein the silicon precursor is further preferably ethyl orthosilicate.
  • the method for preparing a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention wherein the aluminum precursor described in the step (3) is preferably aluminum isopropoxide or aluminum n-butoxide.
  • the aluminum precursor described in the step (3) is preferably aluminum isopropoxide or aluminum n-butoxide.
  • the method for preparing a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention wherein the aluminum precursor is further preferably aluminum nitrate.
  • the method for preparing a coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention wherein the molar ratio of ethanol:water in the ethanol-water solution described in the step (3) is preferably 4 to 100. : 1.
  • the method for preparing a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst coated according to the present invention wherein the drying time in the step (5) is preferably from 3 h to 12 h.
  • the present invention further provides the use of the above-mentioned Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst for hydrogenation catalytic synthesis of 1,4-butynediol, 4-butanediol.
  • step A The use of the coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst of the present invention, wherein preferably, comprises the following step A:
  • the catalyst is used for the catalytic synthesis of 1,4-butanediol by high-pressure hydrogenation of 1,4-butynediol, the water content of the raw material is 64wt%-72wt%; the content of 1,4-butanediol in the organic phase is 90wt%-91.5wt% ; butanol content 1wt% ⁇ 2wt%; 4-hydroxybutyraldehyde content 1.3wt% ⁇ 1.8wt%; 1,4-butynediol content 1.5wt% ⁇ 2wt%; 1,4-butenediol content 2.7 From wt% to 3.2 wt%; cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran content: 0.8 wt% to 1.2 wt%; carbonyl number: 8 mg (KOH) / g to 12 mg (KOH) / g, The hydrogenation is carried out at a reaction temperature of 100
  • the invention relates to the coating of the Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst, wherein the content of the 1,4-butanediol in the organic phase product after the step A hydrogenation is 96.44 wt% to 97.76 wt.
  • step B The application of the coated Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst according to the present invention, wherein preferably, the following step B is included:
  • the catalyst is used for direct hydroconversion of an aqueous solution containing 5% but not more than 5% by weight of 1,4-butynediol, using an external circulation hydrogenation reaction process, feeding mode: up and down; reaction conditions: reaction temperature 105 °C ⁇ 150 ° C, hydrogen pressure 10MPa ⁇ 22MPa, liquid space velocity 1.0 / h ⁇ 1.7 / h, cycle ratio 18 ⁇ 22: 1.
  • the active component Ni is introduced on the alumina support by the impregnation method, and the tetrahedral and octahedral voids of Ni are distributed on the surface of the alumina, and the core is grown into microcrystalline particles, and the particles have high dispersion.
  • Al 2 O 3 -SiO 2 layer is introduced by deposition and precipitation. Since there is no reaction between SiO 2 and NiO, and the interaction is extremely weak, Al 2 O 3 -SiO 2 Deposited only on the surface of the alumina exposed by the NiO particles. As the content of Al 2 O 3 -SiO 2 increases, when the exposed alumina surface is completely covered by a single layer of Al 2 O 3 -SiO 2 , it will be exposed in a single layer. The Al 2 O 3 -SiO 2 surface further grows two, three, four... layers of Al 2 O 3 -SiO 2 .
  • the sample is washed with absolute ethanol, 0.01M dilute nitric acid and deionized water, effectively removing the weakly adsorbed components remaining on the catalyst surface during the grafting process, especially the weakly adsorbed Al on the surface of NiO.
  • the 2 O 3 -SiO 2 species ensure efficient exposure of the active component Ni species.
  • the Al-O-Si structure formed by the Al 2 O 3 -SiO 2 layer has a specific surface acid property and can promote the hydrolysis of the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran to 4-Hydroxybutyraldehyde is then hydroconverted to 1,4-butanediol under the catalysis of an adjacent high activity exposed hydrogenation site, Ni.
  • the synergistic action of the acidic center and the hydrogenation active center in the catalyst achieves efficient conversion of the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran, and finally reduces the cyclic acetal 2-(4'- The content of hydroxybutoxy)-tetrahydrofuran improves the product quality of 1,4-butanediol and achieves the purpose of reducing the color of the product.
  • the Al 2 O 3 -SiO 2 layer is coated on the surface of alumina, which prevents the attack of water on the alumina carrier, inhibits the hydration and desorption structure of the carrier alumina, and effectively improves the hydrothermal stability of the catalyst in the aqueous system. , prolongs the life of the catalyst.
  • Figure 1 is a schematic view showing the structure of a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst of the present invention
  • Figure 2 is an XRD pattern of the catalyst of the present invention.
  • Figure 3 is an FT-IR diagram of the catalyst of the present invention.
  • the preparation method of the Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst provided by the invention comprises the following steps:
  • the Al 2 O 3 carrier is subjected to vacuum treatment at 100 ° C to 150 ° C for 10 min to 30 min, or directly at 100 ° C to 150 ° C for 1 h to 10 h, and then lowered to room temperature for use;
  • step by step (3) 2 O 3 precursor NiO / Al In 2 O 3 taken 1000mL ⁇ 2000mL aluminum, silicon precursor per 100g Al ethanol - the amount of the aqueous solution of step (3) obtained NiO / Al 2
  • the O 3 precursor is suspended in the solution prepared in the step (4), and stirred under reflux at 20 ° C to 60 ° C for 1 h to 24 h. After filtration, the mixture is washed three times with absolute ethanol, 0.01 M diluted nitric acid and deionized water. 5 times, the sample is dried at 80 ° C ⁇ 150 ° C for 2h ⁇ 24h, preferably 3h ⁇ 12h;
  • the sample obtained in the step (5) is calcined in an air or nitrogen atmosphere, and is heated from 2 ° C / min to 10 ° C / min to 400 ° C to 550 ° C, at a constant temperature of 1 h to 24 h; The reduction was carried out at 350 ° C to 650 ° C for 1 h to 24 h under h to 2000/h; a Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst was obtained.
  • Step (1) a specific surface area of the Al 2 O 3 was 110m 2 / g ⁇ 260m 2 / g, a pore volume of 0.5cm 3 /g ⁇ 1.3cm 3 / g.
  • the nickel salt described in the step (2) is one selected from the group consisting of nickel nitrate, nickel sulfate or nickel chloride.
  • the silicon precursor according to the step (4) is one of tetraethyl orthosilicate and methyl orthosilicate, preferably tetraethyl orthosilicate;
  • the aluminum precursor is aluminum isopropoxide and aluminum n-butoxide.
  • One of the aluminum nitrates is preferably aluminum nitrate;
  • the ethanol-water solution has an ethanol:water molar ratio of 4 to 100:1.
  • the application of the catalyst of the invention comprises the following steps:
  • the catalyst is used for the catalytic synthesis of 1,4-butanediol by high-pressure hydrogenation of 1,4-butynediol, the water content of the raw material is 64wt%-72wt%, and the content of 1,4-butanediol in the organic phase is 90wt%-91.5wt%.
  • the content of 1,4-butanediol in the organic phase after hydrogenation is 96.44 wt% to 97.76 wt. %; butanol content 1.3 wt% to 2.5 wt%; 4-hydroxybutyraldehyde content 0.03 wt% to 0.08 wt%; 1,4-butynediol content 0.01 to 0.05 wt%; 1,4-butenediol
  • the content is 0.03 wt% to 0.07 wt%; the content of the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran is 0.01 wt% to 0.03 wt%; the number of carbonyl groups is 0.03 mg (KOH) / g - 0.05 mg (KOH) ) / g.
  • the catalyst can also be applied to direct hydroconversion of an aqueous solution containing 5% but not more than 5% by weight of 1,4-butynediol, using an external circulation hydrogenation reaction process, feeding mode: up and down; reaction conditions: The reaction temperature is 105 ° C to 150 ° C, the hydrogen pressure is 10 MPa to 22 MPa, the liquid space velocity is 1.0/h to 1.7 / h, and the cycle ratio is 18 to 22:1.
  • the content of 1,4-butanediol in the organic phase of the hydrogenated product is ⁇ 96wt%, the butanol content of the by-product is ⁇ 1.2wt%, the unsaturated chromogenic material 1,4-butynediol, 1,4-butene
  • the total content of diol, 4-hydroxybutanal, hemiacetal and acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran is ⁇ 0.06wt%, and the rest is macromolecular polymer.
  • the carbonyl number of the material is 0.03mg. (KOH) / g ⁇ 0.05 mg (KOH) / g.
  • the Al 2 O 3 carrier with a specific surface area of 110 m 2 /g and a pore volume of 0.5 cm 3 /g was vacuum treated at 100 ° C for 10 min, and then cooled to room temperature for use; nickel nitrate with a nickel content of 0.05 g/mL was prepared.
  • aluminum isopropoxide and ethyl orthosilicate were weighed to prepare ethanol of aluminum and silicon precursor with a concentration of 0.0001 g/mL as Al 2 O 3 -SiO 2 .
  • the aqueous solution, the ethanol-water solution has a molar ratio of ethanol:water of 4:1, and the pH of the aqueous solution is adjusted to 8.0 with ammonia water; before the preparation of the above-mentioned Al 2 O 3 : Ni mass ratio of 100:4 by NiO/Al 2 O 3
  • the suspension was suspended in 1000 mL of aluminum and silicon precursor in ethanol-water solution, and stirred under reflux at 20 ° C for 1 h.
  • the catalyst has a specific surface area of 105 m 2 /g and a pore volume of 0.45 cm 3 /g.
  • the Ni particles are amorphous, and the Al 2 O 3 -SiO 2 layer forms Al-O-Si and is filled between the Ni particles.
  • the catalyst number is 1#.
  • the Al 2 O 3 carrier with a specific surface area of 110 m 2 /g and a pore volume of 0.5 cm 3 /g was vacuum treated at 150 ° C for 30 min, and then cooled to room temperature for use; a nickel sulfate having a nickel content of 0.2 g/mL was prepared.
  • a nickel salt aqueous solution 130 mL of the above prepared nickel salt aqueous solution, impregnated onto 100 g of the aforementioned Al 2 O 3 support, allowed to stand for 120 min, heated to 150 ° C for 24 h; and calcined under nitrogen atmosphere at 10 ° C / min to 500 ° C, constant temperature 24 h; a NiO / Al 2 O 3 precursor having an Al 2 O 3 : Ni mass ratio of 100:26 was obtained.
  • Al:Si molar ratio of 0.08:1 aluminum n-butoxide and methyl orthosilicate were weighed to prepare ethanol of aluminum and silicon precursor with a concentration of 0.0015 g/mL as Al 2 O 3 -SiO 2 -
  • the molar ratio of ethanol to water in the aqueous solution, ethanol-water solution is 100:1, and the pH value is adjusted to 8.5 with ammonia water; before the preparation of NiO/Al 2 O 3 with a mass ratio of Al 2 O 3 : Ni of 100:26
  • the suspension was suspended in 2000 mL of aluminum and silicon precursor in ethanol-water solution, and stirred under reflux at 60 ° C for 24 h.
  • the Ni particles are present in a highly dispersed state on the surface of the carrier Al 2 O 3 , the grain size is 8 nm, and the Al 2 O 3 -SiO 2 layers An Al-O-Si bond is formed and filled between the Ni particles.
  • the catalyst number is 2#.
  • Al:Si molar ratio of 0.1:1 aluminum nitrate and methyl orthosilicate were weighed to prepare an ethanol-water solution of aluminum and silicon precursor with a concentration of 0.0001 g/mL as Al 2 O 3 -SiO 2 .
  • the molar ratio of ethanol:water in the ethanol-water solution is 10:1, and the pH value is adjusted to 8.2 with ammonia water; the suspension of NiO/Al 2 O 3 with the mass ratio of Al 2 O 3 : Ni prepared above is 100: 4 .
  • Ni-Al 2 O 3 @Al 2 O 3 -SiO 2 catalyst Al:Si molar in Al 2 O 3 -SiO 2 layer
  • the ratio is 0.1:1
  • the specific surface area of the catalyst is 245 m 2 /g
  • the pore volume is 1.10 cm 3 /g.
  • the Ni particles are present on the surface of the carrier Al 2 O 3 in an amorphous state, and the Al 2 O 3 -SiO 2 layer forms Al-O. -Si key, fill Filled between Ni particles.
  • the catalyst number is 3#.
  • the Al 2 O 3 carrier with a specific surface area of 160 m 2 /g and a pore volume of 0.75 cm 3 /g was heated in a 150 ° C blast oven for 10 h, and then cooled to room temperature for use; the nickel content was 0.10 g/mL.
  • Nickel nitrate aqueous solution of nickel nitrate taking 95 mL of the above prepared nickel salt aqueous solution, immersed in 100 g of the above Al 2 O 3 carrier, allowed to stand for 80 min, heated to 120 ° C for 12 h; and calcined at 2 ° C / min in an air atmosphere The temperature was raised to 400 ° C and the temperature was kept at 5 h; a NiO/Al 2 O 3 precursor having an Al 2 O 3 : Ni mass ratio of 100:9.5 was obtained.
  • Al:Si molar ratio of 0.05:1 aluminum isopropoxide and ethyl orthosilicate were weighed to prepare ethanol of aluminum and silicon precursor with a concentration of 0.0008 g/mL as Al 2 O 3 -SiO 2 -
  • the molar ratio of ethanol to water in the aqueous solution, ethanol-water solution is 20:1, and the pH value is adjusted to 8.4 with ammonia water; before the preparation of NiO/Al 2 O 3 with a mass ratio of Al 2 O 3 : Ni of 100:9.5
  • the suspension was suspended in an ethanol-water solution of 1300 mL of aluminum and silicon precursor, and stirred under reflux at 20 ° C for 24 h.
  • the molar ratio is 0.05:1, the specific surface area of the catalyst is 145 m 2 /g, and the pore volume is 0.61 cm 3 /g.
  • the Ni particles are present in a highly dispersed state on the surface of the carrier Al 2 O 3 with a grain size of 6.3 nm; Al 2 O 3 - SiO 2
  • the layer forms an Al-O-Si bond and is filled between the Ni particles.
  • the catalyst number is 4#.
  • the Al 2 O 3 carrier having a specific surface area of 210 m 2 /g and a pore volume of 1.0 cm 3 /g was heated in a blast oven at 130 ° C for 5 h, and then cooled to room temperature for use; and nickel nitrate having a nickel content of 0.15 g/mL was prepared.
  • An aqueous solution of nickel salt 110 mL of the above-prepared aqueous solution of nickel salt, impregnated onto 100 g of the above-mentioned Al 2 O 3 carrier, allowed to stand for 20 min, heated to 100 ° C for 3 h, and calcined in an air atmosphere at a temperature of 10 ° C / min to 500 °C, constant temperature 1h; a NiO/Al 2 O 3 precursor having an Al 2 O 3 : Ni mass ratio of 100:16.5 was obtained.
  • Al:Si molar ratio of 0.07:1 aluminum n-butoxide and ethyl orthosilicate were weighed to prepare ethanol of aluminum and silicon precursor with a concentration of 0.0012 g/mL as Al 2 O 3 -SiO 2 -
  • the molar ratio of ethanol to water in the aqueous solution, ethanol-water solution is 4:1, and the pH value is adjusted to 8.0 with ammonia water; before the preparation of NiO/Al 2 O 3 with a mass ratio of Al 2 O 3 : Ni of 100:16.5
  • the suspension was suspended in 1700 mL of aluminum and silicon precursor in ethanol-water solution, and stirred under reflux at 20 ° C for 24 h.
  • the catalyst structure was characterized by XRD, IR and XPS techniques using the above catalysts #1 to ##.
  • the FT-IR chart of each catalyst is shown in Fig.
  • the atomic ratio of Ni/Al before the introduction of the SiO 2 -Al 2 O 3 layer on the catalyst is very close to the atomic ratio of Ni/(Al + Si) after the introduction of SiO 2 -Al 2 O 3 , which is further determined.
  • the introduced SiO 2 -Al 2 O 3 layer is selectively deposited on the surface of Al 2 O 3 to form a Si-O-Al bond, forming a cladding structure as shown in FIG.
  • the catalyst is used for the catalytic synthesis of 1,4-butanediol by high-pressure hydrogenation of 1,4-butynediol, the water content of the raw material is about 64wt%-72wt%, and the content of 1,4-butanediol in the organic phase is 90wt%-91.5wt.
  • the content of 1,4-butanediol in the organic phase after hydrogenation is 96.44 wt% to 97.76. Wt%; butanol content 1.3wt% to 2.5% by weight; 4-hydroxybutyraldehyde content 0.03wt% to 0.08wt%; 1,4-butynediol content 0.01wt% to 0.05wt%; 1,4-butyl
  • the content of the olefinic diol is 0.03 wt% to 0.07 wt%; the content of the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran is 0.01 wt% to 0.03 wt%; the number of carbonyl groups is 0.03 mg (KOH) / g - 0.05 Mg (KOH) / g.
  • Table 2. The catalytic hydrogenation reaction conditions are shown in Table 3.
  • the composition of the materials after hydrogenation evaluation of each catalyst is shown in Table 3.
  • reaction condition reaction The temperature is from 105 ° C to 150 ° C, the hydrogen pressure is from 10 MPa to 22 MPa, the liquid space velocity is from 1.0/h to 1.7/h, and the cycle ratio is from 18 to 22:1.
  • the content of 1,4-butanediol in the organic phase of the hydrogenated product is ⁇ 96wt%, the butanol content of the by-product is ⁇ 1.2wt%, the unsaturated chromogenic material 1,4-butynediol, 1,4-butene
  • the total content of diol, 4-hydroxybutanal, hemiacetal and acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran is ⁇ 0.06wt%, and the rest is macromolecular polymer.
  • the carbonyl number of the material is 0.03mg. (KOH) / g ⁇ 0.05 mg (KOH) / g.
  • the specific reaction conditions and results are shown in Table 5.
  • the Al-O-Si structure formed by the Al 2 O 3 -SiO 2 layer in the catalyst of the present invention has a specific surface acid property and can promote the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran. Hydrolysis to 4-hydroxybutanal, followed by hydrogenation to 1,4-butanediol under the catalysis of adjacent high activity exposed hydrogenation center Ni.
  • the synergistic action of the acidic center and the hydrogenation active center in the catalyst achieves efficient conversion of the cyclic acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran, and finally reduces the cyclic acetal 2-(4'- The content of hydroxybutoxy)-tetrahydrofuran improves the product quality of 1,4-butanediol and achieves the purpose of reducing the color of the product.
  • the content of 1,4-butanediol in the organic phase of the hydrogenated product is ⁇ 96wt%, the butanol content of the by-product is ⁇ 1.2wt%, the unsaturated chromogenic material 1,4-butynediol, 1,4-butene
  • the total content of diol, 4-hydroxybutanal, hemiacetal and acetal 2-(4'-hydroxybutoxy)-tetrahydrofuran is ⁇ 0.06wt%, and the rest is macromolecular polymer.
  • the carbonyl number of the material is 0.03mg. (KOH) / g ⁇ 0.05 mg (KOH) / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,其比表面积为98m 2/g~245m 2/g,孔容为0.25cm 3/g~1.1cm 3/g,载体Al 2O 3与活性组分Ni的质量比为Al 2O 3:Ni=100:4~26,载体Al 2O 3与包覆层Al 2O 3-SiO 2的质量比为Al 2O 3:Al 2O 3-SiO 2=100:0.1~3,包覆层Al 2O 3-SiO 2中Al:Si摩尔比为0.01~1,Ni颗粒以无定形或高分散状态存在于载体Al 2O 3表面,晶粒尺寸小于或等于8nm,填充于Ni颗粒之间。该催化剂具有制备简单,选择性好的优点。

Description

一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用 技术领域
本发明属于一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法及应用。
背景技术
环状缩醛2-(4′-羟基丁氧基)-四氢呋喃是Reppe法1,4-丁炔二醇加氢制备1,4-丁二醇反应过程中难以避免的副产物,其本身无法通过直接加氢的方法脱除,而且与1,4-丁二醇形成共沸物,用常规的蒸馏法难以分离。缩醛2-(4′-羟基丁氧基)-四氢呋喃的残留严重影响1,4-丁二醇产品的纯度与色度,直接影响1,4-丁二醇品质及其在下游领域中的应用。
US6137016描述了一种通过加氢纯化含有少量环状缩醛2-(4′-羟基丁氧基)-四氢呋喃的1,4-丁二醇的方法,由于所使用加氢催化剂为通用型加氢催化剂,其加氢效果并不理想。CN 102145286 B公开了一种Ni-SiO 2/Al 2O 3催化剂及制备方法,该催化剂可有效实现环状缩醛2-(4′-羟基丁氧基)-四氢呋喃的水解、加氢转化,但其制备过程较为繁锁。
发明内容
本发明的目的是提供一种制备简单,选择性好的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用。
为了达到上述目的,本发明提供了一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,催化剂中活性组分Ni颗粒以无定形或高分散状态存在于载体Al 2O 3表面,晶粒尺寸小于或等于8nm,载体Al 2O 3与包覆层Al 2O 3-SiO 2的质量比为Al 2O 3∶Al 2O 3-SiO 2=100∶0.1~3,包覆层Al 2O 3-SiO 2中Al∶Si摩尔比为0.01~0.1∶1,包覆层填充于Ni颗粒之间。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,其中,所述催化剂比表面积优选为98m 2/g~245m 2/g,孔容优选为0.25cm 3/g~1.1cm 3/g,催化剂中载体Al 2O 3与活性组分Ni的质量比优选为Al 2O 3∶Ni=100∶4~26。
为了达到上述目的,本发明还提供了上述包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的一制备方法,包括以下步骤:
浸渍步骤:以浸渍法在Al 2O 3载体上引入活性组分Ni,Ni分布于氧化铝表面的四面体、八面体空穴,并以此为核生长成为微晶颗粒;
沉积步骤:在浸渍步骤中得到的Ni/Al 2O 3催化剂表面,以沉积的方式引入Al 2O 3-SiO 2层,Al 2O 3-SiO 2仅沉积在Ni颗粒间隙暴露的氧化铝表面;以及
洗涤步骤:沉积完成后的样品,经过洗涤,去除残留于催化剂表面的弱吸附组分。
为了达到上述目的,本发明还提供了上述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的另一制备方法,包括以下步骤:
(1)将Al 2O 3载体经100℃~150℃处理后降至室温备用;
(2)配制镍含量0.05g/mL~0.2g/mL的镍盐水溶液;
(3)按每100g Al 2O 3载体取80mL~130mL镍盐水溶液的比例,将步骤(2)配制的镍盐水溶液浸渍到步骤(1)的载体上,静置,烘干,焙烧,得到NiO/Al 2O 3前体;
(4)配制铝前驱物、硅前驱物的乙醇-水溶液,以Al 2O 3和SiO 2计,其总浓度为0.0001g/mL~0.0015g/mL,以氨水调节其pH值在8.0~8.5之间;其中Al∶Si摩尔比为0.01~0.1∶1;
(5)按步骤(3)NiO/Al 2O 3前体中每100g Al 2O 3取1000~2000mL铝前驱物、硅前驱物的乙醇-水溶液的量,将步骤(3)得到的NiO/Al 2O 3前体悬浮于步骤(4)配制的溶液中,恒温搅拌回流,过滤后分别以无水乙醇、稀硝酸、去离子水离心洗涤,烘干;
(6)将步骤(5)所得的样品焙烧,之后氢气还原,得到Ni-Al 2O 3@Al 2O 3-SiO 2催化剂。
为了达到上述目的,本发明还提供了上述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的更一制备方法,包括以下步骤:
(1)将Al 2O 3载体经100℃~150℃抽真空处理10min~30min,或直接在100℃~150℃加热1h~10h,后降至室温备用;
(2)配制镍含量0.05g/mL~0.2g/mL的镍盐水溶液;
(3)按每100g Al 2O 3载体取80mL~130mL镍盐水溶液的比例,将步骤(2)配制的镍盐水溶液浸渍到步骤(1)所述的载体上,静置20min~120min;然后升温至100℃~150℃烘干2h~24h,在空气或氮气气氛下焙烧,以2℃ /min~10℃/min升温至350℃~500℃,恒温1h~24h;得到NiO/Al 2O 3前体;(4)配制铝前驱物、硅前驱物的乙醇-水溶液,以Al 2O 3和SiO 2计,其总浓度为0.0001g/mL~0.0015g/mL,以氨水调节其pH值在8.0~8.5之间;其中Al∶Si摩尔比为0.01~0.1∶1;
(5)按步骤(3)NiO/Al 2O 3前体中每100g Al 2O 3取1000~2000mL铝前驱物、硅前驱物的乙醇-水溶液的量,将步骤(3)得到的NiO/Al 2O 3前体悬浮于步骤(4)配制的溶液中,于20℃~60℃恒温搅拌回流1h~24h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤3次~5次,样品于80℃~150℃烘干2h~24h;
(6)将步骤(5)所得的样品在空气或氮气气氛下焙烧,以2℃/min~10℃/min升温至400℃~550℃,恒温1h~24h;后经氢气在空速500/h~2000/h条件下于350℃~650℃还原1h~24h;得到Ni-Al 2O 3@Al 2O 3-SiO 2催化剂。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤(1)所述的Al 2O 3载体的比表面积优选为110m 2/g~260m 2/g,孔容优选为0.5cm 3/g~1.3cm 3/g。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤(2)所述镍盐水溶液中的镍盐优选为硝酸镍、硫酸镍或氯化镍中的一种。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤(3)所述的烘干时间优选为3h~12h。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤(3)中硅前驱物优选为正硅酸乙酯、正硅酸甲酯中的一种。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,所述的硅前驱物进一步优选为正硅酸乙酯。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤(3)所述的铝前驱物优选为异丙醇铝、正丁醇铝、硝酸铝中的一种。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,所述的铝前驱物进一步优选为硝酸铝。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤(3)所述的乙醇-水溶液中乙醇∶水的摩尔比优选为4~100∶1。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其中,步骤 (5)所述的烘干时间优选为3h~12h。
为了达到上述目的,本发明更提供了上述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,该催化剂用于1,4-丁炔二醇加氢催化合成1,4-丁二醇。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其中优选的是,包括如下步骤A:
催化剂用于1,4-丁炔二醇高压加氢催化合成1,4-丁二醇,原料中含水64wt%~72wt%;有机相中1,4-丁二醇含量90wt%~91.5wt%;丁醇含量1wt%~2wt%;4-羟基丁醛含量1.3wt%~1.8wt%;1,4-丁炔二醇含量1.5wt%~2wt%;1,4-丁烯二醇含量2.7wt%~3.2wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.8wt%~1.2wt%;羰基数:8mg(KOH)/g~12mg(KOH)/g,在反应温度100℃~150℃,压力10MPa~20MPa,空速1.1/h~1.7/h条件下进行加氢。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其中,步骤A加氢后有机相产品中1,4-丁二醇含量96.44wt%~97.76wt%;丁醇含量1.3wt%~2.5wt%;4-羟基丁醛含量0.03wt%~0.08wt%;1,4-丁炔二醇含量0.01~0.05wt%;1,4-丁烯二醇含量0.03wt%~0.07wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.01wt%~0.03wt%;羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其中优选的是,包括如下步骤B:
催化剂用于原料为含25wt%~35wt%的1,4-丁炔二醇的水溶液的直接加氢转化,采用外循环加氢反应工艺,进料方式:上进下出;反应条件:反应温度105℃~150℃,氢气压力10MPa~22MPa,液体空速1.0/h~1.7/h,循环比18~22∶1。
本发明所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其中,步骤B加氢后的物料有机相中1,4-丁二醇含量≥96wt%,副产物丁醇含量≤1.2wt%,不饱和生色物质总含量≤0.06wt%,其余为大分子聚合物,该物料羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
本发明与现有技术相比具有的优点:
1、以浸渍法在氧化铝载体上引入活性组分Ni,Ni分布于氧化铝表面的四面体、八面体空穴,并以此为核生长成为微晶颗粒,该颗粒具有高的分散度。
2、在Ni/Al 2O 3催化剂表面,以沉积沉淀的方式引入Al 2O 3-SiO 2层,由于 SiO 2与NiO间不发生反应,且相互作用极弱,Al 2O 3-SiO 2仅沉积在NiO颗粒间隙暴露的氧化铝表面,随Al 2O 3-SiO 2含量的增加,当暴露的氧化铝表面全部被单层Al 2O 3-SiO 2覆盖后,将在暴露的单层Al 2O 3-SiO 2表面进一步生长二、三、四……层的Al 2O 3-SiO 2
3、沉积完成后的样品,先后经过无水乙醇、0.01M的稀硝酸、去离子水洗涤,有效去除了嫁接过程中残留于催化剂表面的弱吸附组分,特别是在NiO表面弱吸附的Al 2O 3-SiO 2物种,保证了活性组分Ni物种的有效暴露。
4、传统催化剂制备过程中,由于NiO与Al 2O 3间强的相互作用,往往需要在较高的温度下才能将NiO还原为活性金属Ni,而高的还原温度又促使了金属Ni的迁移聚集,降低表面活性位点的数目,加氢活性也相应降低。本发明中,Al 2O 3-SiO 2层存在于NiO颗粒的间隙,通过限域效应可以有效阻止高温还原过程中金属Ni的迁移聚集,使活性金属镍保持高的分散度,从而使催化剂表现出高的加氢活性。
5、Al 2O 3-SiO 2层形成的Al-O-Si结构,使其具有了特定的表面酸性质,可以促使环状缩醛2-(4′-羟基丁氧基)-四氢呋喃水解为4-羟基丁醛,后在相邻高活性暴露加氢中心Ni的催化作用下加氢转化为1,4-丁二醇。该催化剂中酸性中心与加氢活性中心的协同作用,实现了环状缩醛2-(4′-羟基丁氧基)-四氢呋喃的高效转化,最终达到降低环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量,提高1,4-丁二醇的产品品质,达到降低产品色度的目的。
6、Al 2O 3-SiO 2层包覆于氧化铝表面,阻止了水对氧化铝载体的进攻,抑制了载体氧化铝的水合脱结构,有效提高了催化剂在含水体系中的水热稳定性,延长了催化剂使用寿命。
附图说明
图1是本发明Ni-Al 2O 3@Al 2O 3-SiO 2催化剂结构示意图;
图2是本发明催化剂的XRD图;
图3是本发明催化剂的FT-IR图。
具体实施方式
以下对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提 下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例,下列实施例中未注明具体条件的实验方法,通常按照常规条件。
本发明催化剂比表面积98m 2/g~245m 2/g,孔容0.25cm 3/g~1.1cm 3/g,催化剂中载体Al 2O 3与活性组分Ni的质量比为Al 2O 3∶Ni=100∶4~26,Ni颗粒以无定形或高分散状态存在于载体Al 2O 3表面,晶粒尺寸小于8nm,载体Al 2O 3与包覆层Al 2O 3-SiO 2的质量比为Al 2O 3∶Al 2O 3-SiO 2=100∶0.1~3,包覆层Al 2O 3-SiO 2中Al∶Si摩尔比为0.01~0.1∶1,填充于Ni颗粒之间。
本发明提供的Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,包括以下步骤:
(1)将Al 2O 3载体经100℃~150℃抽真空处理10min~30min,或直接在100℃~150℃加热1h~10h,后降至室温备用;
(2)配制镍含量0.05g/mL~0.2g/mL的镍盐水溶液;
(3)按每100g Al 2O 3载体取80mL~130mL镍盐水溶液的比例,将步骤(2)配制的镍盐水溶液浸渍到步骤(1)所述的载体上,静置20min~120min;然后升温至100℃~150℃烘干2h~24h,优选3h~12h;在空气或氮气气氛下焙烧,以2℃/min~10℃/min升温至350℃~500℃,恒温1h~24h;得到NiO/Al 2O 3前体;
(4)配制铝前驱物、硅前驱物的乙醇-水溶液,溶液中以Al 2O 3和SiO 2计,总浓度为0.0001g/mL~0.0015g/mL,以氨水调节其pH值在8.0~8.5之间;
(5)按步骤(3)NiO/Al 2O 3前体中每100g Al 2O 3取1000mL~2000mL铝、硅前驱物的乙醇-水溶液的量,将步骤(3)得到的NiO/Al 2O 3前体悬浮于步骤(4)配制的溶液中,于20℃~60℃恒温搅拌回流1h~24h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤3次~5次,样品于80℃~150℃烘干2h~24h,优选3h~12h;
(6)将步骤(5)所得的样品在空气或氮气气氛下焙烧,以2℃/min~10℃/min升温至400℃~550℃,恒温1h~24h;后经氢气在空速500/h~2000/h条件下于350℃~650℃还原1h~24h;得到Ni-Al 2O 3@Al 2O 3-SiO 2催化剂。
步骤(1)所述的Al 2O 3的比表面积为110m 2/g~260m 2/g,孔容为0.5cm 3/g~1.3cm 3/g。
步骤(2)所述的镍盐选自硝酸镍、硫酸镍或氯化镍中的一种。
步骤(4)所述的硅前驱物为正硅酸乙酯、正硅酸甲酯中的一种,优选正硅酸乙酯;所述的铝前驱物为异丙醇铝、正丁醇铝、硝酸铝中的一种,优选硝酸铝;所述的乙醇-水溶液中乙醇∶水的摩尔比为4~100∶1。
本发明催化剂的应用包括如下步骤:
催化剂用于1,4-丁炔二醇高压加氢催化合成1,4-丁二醇,原料中含水64wt%~72wt%,有机相中1,4-丁二醇含量90wt%~91.5wt%;丁醇含量1wt%~2wt%;4-羟基丁醛含量1.3wt%~1.8wt%;1,4-丁炔二醇含量1.5wt%~2wt%;1,4-丁烯二醇含量2.7wt%~3.2wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.8wt%~1.2wt%;羰基数:8mg(KOH)/g~12mg(KOH)/g,在反应温度100℃~150℃,压力10MPa~20MPa,空速1.1/h~1.7/h条件下进行加氢,经加氢后有机相中1,4-丁二醇含量96.44wt%~97.76wt%;丁醇含量1.3wt%~2.5wt%;4-羟基丁醛含量0.03wt%~0.08wt%;1,4-丁炔二醇含量0.01~0.05wt%;1,4-丁烯二醇含量0.03wt%~0.07wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.01wt%~0.03wt%;羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
该催化剂也可适用于原料为含25wt%~35wt%的1,4-丁炔二醇的水溶液的直接加氢转化,采用外循环加氢反应工艺,进料方式:上进下出;反应条件:反应温度105℃~150℃,氢气压力10MPa~22MPa,液体空速1.0/h~1.7/h,循环比18~22∶1。加氢后的物料有机相中1,4-丁二醇含量≥96wt%,副产物丁醇含量≤1.2wt%,不饱和生色物质1,4-丁炔二醇、1,4-丁烯二醇、4-羟基丁醛、半缩醛及缩醛2-(4′-羟基丁氧基)-四氢呋喃等总含量≤0.06wt%,其余为大分子聚合物,该物料羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
实施例1
(1)取比表面积为110m 2/g,孔容为0.5cm 3/g的Al 2O 3载体经100℃抽真空处理10min,后降至室温备用;配制镍含量0.05g/mL的硝酸镍水溶液;取80mL上述配制的镍盐水溶液,浸渍到100g前述的Al 2O 3载体上,静置20min,升温至100℃烘干2h;在空气气氛下焙烧以2℃/min升温至350℃,恒温1h;得到Al 2O 3∶Ni质量比为100∶4的NiO/Al 2O 3前体。
按Al∶Si摩尔比为0.01∶1,称取异丙醇铝与正硅酸乙酯,配制以Al 2O 3-SiO 2计算其浓度为0.0001g/mL的铝、硅前驱物的乙醇-水溶液,乙醇-水溶液中乙 醇∶水的摩尔比为4∶1,以氨水调节其pH值在8.0;取上述制备的Al 2O 3∶Ni质量比为100∶4的NiO/Al 2O 3前体悬浮于1000mL铝、硅前驱物的乙醇-水溶液中,20℃恒温搅拌回流1h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤3次,样品于80℃烘干2h;所得的样品置于焙烧炉中,在空气气氛下焙烧:以2℃/min升温至400℃,恒温1h;后经氢气在空速500/h条件于350℃还原1h;得到质量组成为Al 2O 3∶Al 2O 3-SiO 2∶Ni=100∶0.1∶4的Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,其中Al 2O 3-SiO 2层中Al∶Si摩尔比为0.01∶1。该催化剂比表面积105m 2/g,孔容0.45cm 3/g,Ni颗粒以无定形,Al 2O 3-SiO 2层形成Al-O-Si,填充于Ni颗粒之间。该催化剂编号为1#。
实施例2
(1)取比表面积为110m 2/g,孔容为0.5cm 3/g的Al 2O 3载体经150℃抽真空处理30min,后降至室温备用;配制镍含量0.2g/mL的硫酸镍的镍盐水溶液;取130mL上述配制的镍盐水溶液,浸渍到100g前述的Al 2O 3载体上,静置120min,升温至150℃烘干24h;在氮气气氛下焙烧以10℃/min升温至500℃,恒温24h;得到Al 2O 3∶Ni质量比为100∶26的NiO/Al 2O 3前体。
按Al∶Si摩尔比为0.08∶1,称取正丁醇铝与正硅酸甲酯,配制以Al 2O 3-SiO 2计算其浓度为0.0015g/mL的铝、硅前驱物的乙醇-水溶液,乙醇-水溶液中乙醇∶水的摩尔比为100∶1,以氨水调节其pH值在8.5;取上述制备的Al 2O 3∶Ni质量比为100∶26的NiO/Al 2O 3前体悬浮于2000mL铝、硅前驱物的乙醇-水溶液中,60℃恒温搅拌回流24h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤5次,样品于150℃烘干24h;所得的样品置于焙烧炉中,在氮气气氛下焙烧:以10℃/min升温至550℃,恒温24h;后经氢气在空速2000/h条件下于650℃还原24h;得到质量组成为Al 2O 3∶Al 2O 3-SiO 2∶Ni=100∶3∶26的Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,Al 2O 3-SiO 2层中Al∶Si摩尔比为0.08∶1,该催化剂比表面积98m 2/g,孔容0.25cm 3/g,Ni颗粒以高分散状态存在于载体Al 2O 3表面,晶粒尺寸8nm,Al 2O 3-SiO 2层形成Al-O-Si键,填充于Ni颗粒之间。该催化剂编号为2#。
实施例3
(1)取比表面积为260m 2/g,孔容为1.3cm 3/g的Al 2O 3载体100℃鼓风烘箱中加热1h,后降至室温备用;配制镍含量0.05g/mL的氯化镍的镍盐水 溶液;取80mL上述配制的镍盐水溶液,浸渍到100g前述的Al 2O 3载体上,静置80min,升温至120℃烘干3h;在空气气氛下焙烧以8℃/min升温至450℃,恒温18h;得到Al 2O 3∶Ni质量比为100∶4的NiO/Al 2O 3前体。
按Al∶Si摩尔比为0.1∶1,称取硝酸铝与正硅酸甲酯,配制以Al 2O 3-SiO 2计算其浓度为0.0001g/mL的铝、硅前驱物的乙醇-水溶液,乙醇-水溶液中乙醇∶水的摩尔比为10∶1,以氨水调节其pH值在8.2;取上述制备的Al 2O 3∶Ni质量比为100∶4的NiO/Al 2O 3前体悬浮于1000mL铝、硅前驱物的乙醇-水溶液中,40℃恒温搅拌回流12h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤4次,样品于150℃烘干3h;所得的样品置于焙烧炉中,在氮气气氛下焙烧:以8℃/min升温至500℃,恒温12h;后经氢气在空速1000/h条件下于550℃还原10h;得到质量组成为Al 2O 3∶Al 2O 3-SiO 2∶Ni=100∶0.1∶4的Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,Al 2O 3-SiO 2层中Al∶Si的摩尔比为0.1∶1,该催化剂比表面积245m 2/g,孔容1.10cm 3/g,Ni颗粒以无定形状态存在于载体Al 2O 3表面,Al 2O 3-SiO 2层形成Al-O-Si键,填充于Ni颗粒之间。该催化剂编号为3#。
实施例4
(1)取比表面积为160m 2/g,孔容为0.75cm 3/g的Al 2O 3载体经150℃鼓风烘箱中加热10h,后降至室温备用;配制镍含量0.10g/mL的硝酸镍的镍盐水溶液;取95mL上述配制的镍盐水溶液,浸渍到100g前述的Al 2O 3载体上,静置80min,升温至120℃烘干12h;在空气气氛下焙烧以2℃/min升温至400℃,恒温5h;得到Al 2O 3∶Ni质量比为100∶9.5的NiO/Al 2O 3前体。
按Al∶Si摩尔比为0.05∶1,称取异丙醇铝与正硅酸乙酯,配制以Al 2O 3-SiO 2计算其浓度为0.0008g/mL的铝、硅前驱物的乙醇-水溶液,乙醇-水溶液中乙醇∶水的摩尔比为20∶1,以氨水调节其pH值在8.4;取上述制备的Al 2O 3∶Ni质量比为100∶9.5的NiO/Al 2O 3前体悬浮于1300mL铝、硅前驱物的乙醇-水溶液中,20℃恒温搅拌回流24h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤3次,样品于100℃烘干12h;所得的样品置于焙烧炉中,在氮气气氛下焙烧:以10℃/min升温至400℃,恒温1h;后经氢气在1500/h空速下于450℃还原24h;得到质量组成为Al 2O 3∶Al 2O 3-SiO 2∶Ni=100∶1.04∶9.5的Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,Al 2O 3-SiO 2层中Al∶Si的摩尔比为0.05∶1,该催 化剂比表面积145m 2/g,孔容0.61cm 3/g,Ni颗粒以高分散状态存在于载体Al 2O 3表面,晶粒尺寸6.3nm;Al 2O 3-SiO 2层形成Al-O-Si键,填充于Ni颗粒之间。该催化剂编号为4#。
实施例5
取比表面积为210m 2/g,孔容为1.0cm 3/g的Al 2O 3载体经130℃鼓风烘箱中加热5h,后降至室温备用;配制镍含量0.15g/mL的硝酸镍的镍盐水溶液;取110mL上述配制的镍盐水溶液,浸渍到100g前述的Al 2O 3载体上,静置20min,升温至100℃烘干3h;在空气气氛下焙烧以10℃/min升温至500℃,恒温1h;得到Al 2O 3∶Ni质量比为100∶16.5的NiO/Al 2O 3前体。
按Al∶Si摩尔比为0.07∶1,称取正丁醇铝与正硅酸乙酯,配制以Al 2O 3-SiO 2计算其浓度为0.0012g/mL的铝、硅前驱物的乙醇-水溶液,乙醇-水溶液中乙醇∶水的摩尔比为4∶1,以氨水调节其pH值在8.0;取上述制备的Al 2O 3∶Ni质量比为100∶16.5的NiO/Al 2O 3前体悬浮于1700mL铝、硅前驱物的乙醇-水溶液中,20℃恒温搅拌回流24h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤5次,样品于80℃烘干3h;所得的样品置于焙烧炉中,在空气气氛下焙烧:以2℃/min升温至400℃,恒温1h;后经氢气在空速1500/h条件下于350℃还原1h;得到质量组成为Al 2O 3∶Al 2O 3-SiO 2∶Ni=100∶2.04∶16.5的Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,Al 2O 3-SiO 2层中Al∶Si的摩尔比为0.07∶1,该催化剂比表面积183m 2/g,孔容0.85cm 3/g,Ni颗粒以高分散状态存在于载体Al 2O 3表面,晶粒尺寸7.5nm;Al 2O 3-SiO 2层形成Al-O-Si键,填充于Ni颗粒之间。该催化剂编号为5#。
取上述1#~5#号催化剂借助XRD、IR及XPS技术对催化剂结构进行表征。还原后催化剂的XRD图示于图2,所有催化剂在2θ=37°、46°和66.5°均出现弥散的γ-Al 2O 3特征衍射峰,2θ=44.5°、51.7°和76.4°处出现金属Ni的特征峰。采用2θ=51.7°处的Ni(200)晶面衍射峰的半高宽,利用Scherrer公式计算Ni晶粒尺寸,列于表1,可以看出,Ni物种高度分散,晶粒尺寸在8nm以下。各催化剂的FT-IR图示于图3,可以看出,在1024cm -1处出现了新的红外吸收峰,归属为Si-O-Al键的振动吸收峰。这一结果表明,引入的SiO 2与Al 2O 3键合形成新的Si-O-Al键。进一步对催化剂进行了XPS分析,依据XPS数据计算得到了1#~5#催化剂表面的Ni/(Al+Si)原子比,为了对比,也计 算了未引入SiO 2-Al 2O 3层时,Ni/Al 2O 3催化剂中Ni/Al的原子比,结果列于表1。可以看出,催化剂上引入SiO 2-Al 2O 3层前的Ni/Al原子比,与引入SiO 2-Al 2O 3后的Ni/(Al+Si)的原子比极为接近,这进一步确定了引入的SiO 2-Al 2O 3层选择性沉积于Al 2O 3表面,形成Si-O-Al键,形成了如图1所示的包覆结构。
表1 Ni晶粒尺寸与表面Ni浓度
Figure PCTCN2018074144-appb-000001
实施例6
催化剂用于1,4-丁炔二醇高压加氢催化合成1,4-丁二醇,原料中含水约64wt%~72wt%,有机相中1,4-丁二醇含量90wt%~91.5wt%;丁醇含量1wt%~2wt%;4-羟基丁醛含量1.3wt%~1.8wt%;1,4-丁炔二醇含量1.5wt%~2wt%;1,4-丁烯二醇含量2.7wt%~3.2wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.8wt%~1.2wt%;羰基数:8mg(KOH)/g~12mg(KOH)/g,在反应温度100℃~150℃,压力10MPa~20MPa,空速1.1/h~1.7/h条件下进行加氢,经加氢后有机相中1,4-丁二醇含量96.44wt%~97.76wt%;丁醇含量1.3wt%~2.5wt%;4-羟基丁醛含量0.03wt%~0.08wt%;1,4-丁炔二醇含量0.01wt%~0.05wt%;1,4-丁烯二醇含量0.03wt%~0.07wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.01wt%~0.03wt%;羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。各催化剂评价所用原料组成见表2,催化加氢反应条件见表3,各催化剂加氢评价后物料组成见表4。
表2 各催化剂评价所用原料组成
Figure PCTCN2018074144-appb-000002
表3 催化加氢反应条件
Figure PCTCN2018074144-appb-000003
表4 各催化剂加氢评价后物料组成
Figure PCTCN2018074144-appb-000004
实施例7
取上述1#-5#号催化剂,以含25wt%~35wt%的1,4-丁炔二醇水溶液为原料,采用外循环加氢反应工艺,进料方式:上进下出;反应条件:反应温度105℃~150℃,氢气压力10MPa~22MPa,液体空速1.0/h~1.7/h,循环比18~22∶1。加氢后的物料有机相中1,4-丁二醇含量≥96wt%,副产物丁醇含量≤1.2wt%,不饱和生色物质1,4-丁炔二醇、1,4-丁烯二醇、4-羟基丁醛、半缩醛及缩醛2-(4′-羟基丁氧基)-四氢呋喃等总含量≤0.06wt%,其余为大分子聚合物,该物料羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。具体的反应条件及结果见表5。
表5 反应条件及加氢后物料组成
Figure PCTCN2018074144-appb-000005
工业应用性
本发明催化剂中Al 2O 3-SiO 2层形成的Al-O-Si结构,使其具有了特定的表面酸性质,可以促使环状缩醛2-(4′-羟基丁氧基)-四氢呋喃水解为4-羟基丁醛,后在相邻高活性暴露加氢中心Ni的催化作用下加氢转化为1,4-丁二醇。该催化剂中酸性中心与加氢活性中心的协同作用,实现了环状缩醛2-(4′-羟基丁氧基)-四氢呋喃的高效转化,最终达到降低环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量,提高1,4-丁二醇的产品品质,达到降低产品色度的目的。
加氢后的物料有机相中1,4-丁二醇含量≥96wt%,副产物丁醇含量≤1.2wt%,不饱和生色物质1,4-丁炔二醇、1,4-丁烯二醇、4-羟基丁醛、半缩醛及缩醛2-(4′-羟基丁氧基)-四氢呋喃等总含量≤0.06wt%,其余为大分子聚合物,该物料羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (19)

  1. 一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,其特征在于,催化剂中活性组分Ni颗粒以无定形或高分散状态存在于载体Al 2O 3表面,晶粒尺寸小于或等于8nm,载体Al 2O 3与包覆层Al 2O 3-SiO 2的质量比为Al 2O 3:Al 2O 3-SiO 2=100:0.1~3,包覆层Al 2O 3-SiO 2中Al:Si摩尔比为0.01~0.1:1,包覆层填充于Ni颗粒之间。
  2. 如权利要求1所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂,其特征在于,所述催化剂比表面积98m 2/g~245m 2/g,孔容0.25cm 3/g~1.1cm 3/g,催化剂中载体Al 2O 3与活性组分Ni的质量比为Al 2O 3:Ni=100:4~26。
  3. 权利要求1或2所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,包括以下步骤:
    浸渍步骤:以浸渍法在Al 2O 3载体上引入活性组分Ni,Ni分布于氧化铝表面的四面体、八面体空穴,并以此为核生长成为微晶颗粒;
    沉积步骤:在浸渍步骤中得到的Ni/Al 2O 3催化剂表面,以沉积的方式引入Al 2O 3-SiO 2层,Al 2O 3-SiO 2仅沉积在Ni颗粒间隙暴露的氧化铝表面;以及
    洗涤步骤:沉积完成后的样品,经过洗涤,去除残留于催化剂表面的弱吸附组分。
  4. 权利要求1或2所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,包括以下步骤:
    (1)将Al 2O 3载体经100℃~150℃处理后降至室温备用;
    (2)配制镍含量0.05g/mL~0.2g/mL的镍盐水溶液;
    (3)按每100g Al 2O 3载体取80mL~130mL镍盐水溶液的比例,将步骤(2)配制的镍盐水溶液浸渍到步骤(1)的载体上,静置,烘干,焙烧,得到NiO/Al 2O 3前体;
    (4)配制铝前驱物、硅前驱物的乙醇-水溶液,以Al 2O 3和SiO 2计,其总浓度为0.0001g/mL~0.0015g/mL,以氨水调节其pH值在8.0~8.5之间;其中Al:Si摩尔比为0.01~0.1:1;
    (5)按步骤(3)NiO/Al 2O 3前体中每100g Al 2O 3取1000~2000mL铝前驱物、硅前驱物的乙醇-水溶液的量,将步骤(3)得到的NiO/Al 2O 3前体悬浮于步骤(4)配制的溶液中,恒温搅拌回流,过滤后分别以无水乙醇、稀硝酸、 去离子水离心洗涤,烘干;
    (6)将步骤(5)所得的样品焙烧,之后氢气还原,得到Ni-Al 2O 3@Al 2O 3-SiO 2催化剂。
  5. 权利要求1或2所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,包括以下步骤:
    (1)将Al 2O 3载体经100℃~150℃抽真空处理10min~30min,或直接在100℃~150℃加热1h~10h,后降至室温备用;
    (2)配制镍含量0.05g/mL~0.2g/mL的镍盐水溶液;
    (3)按每100g Al 2O 3载体取80mL~130mL镍盐水溶液的比例,将步骤(2)配制的镍盐水溶液浸渍到步骤(1)所述的载体上,静置20min~120min;然后升温至100℃~150℃烘干2h~24h,在空气或氮气气氛下焙烧,以2℃/min~10℃/min升温至350℃~500℃,恒温1h~24h;得到NiO/Al 2O 3前体;
    (4)配制铝前驱物、硅前驱物的乙醇-水溶液,以Al 2O 3和SiO 2计,其总浓度为0.0001g/mL~0.0015g/mL,以氨水调节其pH值在8.0~8.5之间;其中Al:Si摩尔比为0.01~0.1:1;
    (5)按步骤(3)NiO/Al 2O 3前体中每100g Al 2O 3取1000~2000mL铝前驱物、硅前驱物的乙醇-水溶液的量,将步骤(3)得到的NiO/Al 2O 3前体悬浮于步骤(4)配制的溶液中,于20℃~60℃恒温搅拌回流1h~24h,过滤后分别以无水乙醇、0.01M的稀硝酸、去离子水离心洗涤3次~5次,样品于80℃~150℃烘干2h~24h;
    (6)将步骤(5)所得的样品在空气或氮气气氛下焙烧,以2℃/min~10℃/min升温至400℃~550℃,恒温1h~24h;后经氢气在空速500/h~2000/h条件下于350℃~650℃还原1h~24h;得到Ni-Al 2O 3@Al 2O 3-SiO 2催化剂。
  6. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,步骤(1)所述的Al 2O 3载体的比表面积为110m 2/g~260m 2/g,孔容为0.5cm 3/g~1.3cm 3/g。
  7. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,步骤(2)所述镍盐水溶液中的镍盐为硝酸镍、硫酸镍或氯化镍中的一种。
  8. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其 特征在于,步骤(3)所述的烘干时间为3h~12h。
  9. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,步骤(3)中硅前驱物为正硅酸乙酯、正硅酸甲酯中的一种。
  10. 如权利要求9所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,所述的硅前驱物为正硅酸乙酯。
  11. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,步骤(3)所述的铝前驱物为异丙醇铝、正丁醇铝、硝酸铝中的一种。
  12. 如权利要求11所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,所述的铝前驱物为硝酸铝。
  13. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,步骤(3)所述的乙醇-水溶液中乙醇:水的摩尔比为4~100:1。
  14. 如权利要求5所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的制备方法,其特征在于,步骤(5)所述的烘干时间为3h~12h。
  15. 权利要求1或2所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其特征在于,该催化剂用于1,4-丁炔二醇加氢催化合成1,4-丁二醇。
  16. 如权利要求15所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其特征在于,包括如下步骤:
    催化剂用于1,4-丁炔二醇高压加氢催化合成1,4-丁二醇,原料中含水64wt%~72wt%;有机相中1,4-丁二醇含量90wt%~91.5wt%;丁醇含量1wt%~2wt%;4-羟基丁醛含量1.3wt%~1.8wt%;1,4-丁炔二醇含量1.5wt%~2wt%;1,4-丁烯二醇含量2.7wt%~3.2wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.8wt%~1.2wt%;羰基数:8mg(KOH)/g~12mg(KOH)/g,在反应温度100℃~150℃,压力10MPa~20MPa,空速1.1/h~1.7/h条件下进行加氢。
  17. 如权利要求16所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其特征在于,加氢后有机相产品中1,4-丁二醇含量96.44wt%~97.76wt%;丁醇含量1.3wt%~2.5wt%;4-羟基丁醛含量0.03wt%~0.08wt%;1,4-丁炔二醇含量0.01~0.05wt%;1,4-丁烯二醇含量0.03wt%~0.07wt%;环状缩醛2-(4′-羟基丁氧基)-四氢呋喃含量0.01wt%~0.03wt%;羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
  18. 如权利要求15所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其特征在于包括如下步骤:
    催化剂用于原料为含25wt%~35wt%的1,4-丁炔二醇的水溶液的直接加氢转化,采用外循环加氢反应工艺,进料方式:上进下出;反应条件:反应温度105℃~150℃,氢气压力10MPa~22MPa,液体空速1.0/h~1.7/h,循环比18~22:1。
  19. 如权利要求18所述的包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂的应用,其特征在于,加氢后的物料有机相中1,4-丁二醇含量≥96wt%,副产物丁醇含量≤1.2wt%,不饱和生色物质总含量≤0.06wt%,其余为大分子聚合物,该物料羰基数:0.03mg(KOH)/g~0.05mg(KOH)/g。
PCT/CN2018/074144 2017-02-28 2018-01-25 一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用 WO2018157685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/483,369 US11504698B2 (en) 2017-02-28 2018-01-25 Ni—Al2O3@Al2O3—SiO2 catalyst with coated structure, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710110022.7 2017-02-28
CN201710110022.7A CN106902826B (zh) 2017-02-28 2017-02-28 一种包覆Ni-Al2O3@Al2O3-SiO2催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018157685A1 true WO2018157685A1 (zh) 2018-09-07

Family

ID=59208035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074144 WO2018157685A1 (zh) 2017-02-28 2018-01-25 一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用

Country Status (3)

Country Link
US (1) US11504698B2 (zh)
CN (1) CN106902826B (zh)
WO (1) WO2018157685A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106902826B (zh) * 2017-02-28 2019-05-17 山西大学 一种包覆Ni-Al2O3@Al2O3-SiO2催化剂及制备方法和应用
CN106902825A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2 O3@SiO2 催化剂及制备方法和应用
CN115155599B (zh) * 2022-04-11 2023-07-25 浙江氢邦科技有限公司 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用
CN114682266B (zh) * 2022-04-14 2023-05-23 厦门大学 一种介孔二氧化硅包覆纳米氧化铝负载的镍钼催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453066A (zh) * 2003-04-30 2003-11-05 山西大学 一种顺酐加氢制丁二酸酐的催化剂及制备和应用
CN101502802A (zh) * 2009-03-18 2009-08-12 山西大学 用于顺酐加氢连续生产丁二酸酐的催化剂及其制备方法
CN102145286A (zh) * 2011-01-11 2011-08-10 山西大学 一种Ni-SiO2/Al2O3催化剂的制备方法
CN106902826A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2O3@Al2O3‑SiO2催化剂及制备方法和应用
CN106902825A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2 O3@SiO2 催化剂及制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759845A (en) * 1970-09-16 1973-09-18 Gaf Corp Catalyst for preparing 1,4-butanediol
US4795733A (en) * 1987-11-27 1989-01-03 Gaf Corporation Hydrogenation catalyst and process for its preparation
ZA972614B (en) 1996-03-29 1997-12-22 Kvaerner Process Tech Ltd Process for the production of butane-1,4-diol.
US20030181327A1 (en) * 2002-03-19 2003-09-25 Conoco Inc. Microencapsulated magnetite support for cobalt fischer-tropsch catalyst
CN101322949B (zh) * 2008-07-18 2010-11-10 山西大学 一种氧化铝载体及其制备方法
FR3064500A1 (fr) * 2017-03-29 2018-10-05 IFP Energies Nouvelles Catalyseur en multicouches d'hyrogenation selective

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453066A (zh) * 2003-04-30 2003-11-05 山西大学 一种顺酐加氢制丁二酸酐的催化剂及制备和应用
CN101502802A (zh) * 2009-03-18 2009-08-12 山西大学 用于顺酐加氢连续生产丁二酸酐的催化剂及其制备方法
CN102145286A (zh) * 2011-01-11 2011-08-10 山西大学 一种Ni-SiO2/Al2O3催化剂的制备方法
CN106902826A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2O3@Al2O3‑SiO2催化剂及制备方法和应用
CN106902825A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2 O3@SiO2 催化剂及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAITAO LI ET AL.: "Study on deactivation of Ni/A1203 catalyst for liquid phase hydrogenation of crude 1, 4-butanediol aqueous solution", CHEMICAL ENGINEERING JOURNAL, 31 December 2012 (2012-12-31), pages 181 - 18 2, XP055540324, ISSN: 1385-8947 *

Also Published As

Publication number Publication date
CN106902826B (zh) 2019-05-17
US20200009538A1 (en) 2020-01-09
US11504698B2 (en) 2022-11-22
CN106902826A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
WO2018157684A1 (zh) 一种包覆Ni-Al2O3@SiO2催化剂及制备方法和应用
WO2018157685A1 (zh) 一种包覆Ni-Al 2O 3@Al 2O 3-SiO 2催化剂及制备方法和应用
WO2020228779A1 (zh) 一种多夹层复合催化剂及其制备方法和应用
CN111592023B (zh) 一种含硼拟薄水铝石的制备方法
CN108067306B (zh) 一种Pt/ZIF-8@Al2O3催化剂的制备方法及其在催化加氢反应中的应用
WO2018192519A1 (zh) 优化型柴油加氢裂化催化剂载体及其制备方法
CN101850273A (zh) 由co气相偶联合成草酸酯的规整催化剂及其制备方法
DE112011105502B4 (de) Verwendung eines Redox-Materials zum Herstellen von Wasserstoff durch thermochemisches Wasserspalten und Verfahren zum Herstellen von Wasserstoff
CN101992085B (zh) 用于氢气选择性燃烧反应的催化剂及其制备方法
CN113042044B (zh) 一种以掺杂ZnO的TiO2-SiO2为载体的铂系催化剂的制备及应用
CN106563490B (zh) 一种同时净化n2o和nh3的复合催化剂制备方法
WO2018205839A1 (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN110961124A (zh) 一种重整生成油加氢脱烯烃催化剂及制备方法与应用
CN112121847A (zh) 一种二甲醚羰基化制备乙酸甲酯用催化剂及其制备和应用
JP5947792B2 (ja) Co気相カップリングによるシュウ酸ジアルキルの合成に用いるモノリス構造体触媒の調製方法、及びシュウ酸ジアルキルの製造方法
CN107442126B (zh) 一种加氢处理催化剂的制备方法
CN106925275B (zh) 一种Ti-Fe-Ni选择加氢催化剂、制备方法及其应用
CN107552047A (zh) 整体式Pd掺杂稀土钙钛矿催化剂制法及其产品和应用
KR101718839B1 (ko) 산화물 일체형 다공성 금속 구조체의 제조방법
CN105727972B (zh) 一种用于甲烷二氧化碳重整制合成气的催化剂制备方法
CN103408330A (zh) 采用铝溶胶对陶瓷表面进行修饰的方法
Zhao et al. Ni—Al 2 O 3@ Al 2 O 3—SiO 2 catalyst with coated structure, preparation method therefor and application thereof
WO2015090127A1 (zh) 一种用于费-托合成的金属基整体式膜催化剂及其制备方法
CN116060024A (zh) 一种酯加氢催化剂,其制备方法和应用
JP4650858B2 (ja) プレート型触媒の製造方法およびプレート型触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760527

Country of ref document: EP

Kind code of ref document: A1