WO2018155588A1 - Method for manufacturing bearing component - Google Patents

Method for manufacturing bearing component Download PDF

Info

Publication number
WO2018155588A1
WO2018155588A1 PCT/JP2018/006574 JP2018006574W WO2018155588A1 WO 2018155588 A1 WO2018155588 A1 WO 2018155588A1 JP 2018006574 W JP2018006574 W JP 2018006574W WO 2018155588 A1 WO2018155588 A1 WO 2018155588A1
Authority
WO
WIPO (PCT)
Prior art keywords
tempering
target material
manufacturing
bearing
quenching
Prior art date
Application number
PCT/JP2018/006574
Other languages
French (fr)
Japanese (ja)
Inventor
美有 佐藤
敬史 結城
大木 力
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017033670A external-priority patent/JP2018138685A/en
Priority claimed from JP2017033677A external-priority patent/JP2018138686A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018155588A1 publication Critical patent/WO2018155588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races

Definitions

  • the present invention relates to a method for manufacturing a bearing component.
  • Japanese Patent Application Laid-Open No. 2013-119930 discloses a method for manufacturing a bearing component, which includes a step of quenching and hardening a molded member and a step of tempering the molded member that has been quenched and hardened.
  • the tempering treatment is an important heat treatment from the viewpoints of imparting toughness, adjusting hardness, removing residual stress, and improving dimensional stability for the bearing parts.
  • the holding time of the tempering temperature in the tempering process is relatively long, for example, about 2 hours, and there is a problem in productivity.
  • productivity can be expected to be improved by using high-temperature and short-time treatment for the tempering treatment in the bearing component manufacturing method.
  • the present invention has been made to solve the above-described problems.
  • the main object of the present invention is to shorten the processing time as compared with a conventional method for manufacturing a bearing component that performs tempering for a long time, and further, it is equivalent to a bearing component obtained by the above-described conventional method for manufacturing a bearing component.
  • An object of the present invention is to provide a method of manufacturing a bearing component having the above material characteristics.
  • a method for manufacturing a bearing component includes a step of preparing a target material made of high carbon chromium bearing steel and to be a bearing component, and a step of performing a quenching process on the target material. And a step of tempering the target material after the step of quenching.
  • the quenching process is performed so that the hardness of the target material is 64 HRC or more and 66 HRC or less.
  • the tempering temperature T (unit: K) and the holding time t (unit: second) in the tempering process satisfy the following formula (1).
  • a method for manufacturing a bearing component according to another embodiment of the present invention is a method for manufacturing a bearing component, comprising a step of preparing a target material made of high carbon chromium bearing steel and to be a bearing component, and a target material And a step of performing a tempering process on the target material by heating the target material after the step of performing the quenching process on the steel and the step of performing the quenching process.
  • the tempering temperature T (unit: K) and the holding time t (unit: second) in the tempering process satisfy the following formula (2).
  • the time required for the tempering process can be shortened as compared with the conventional method for manufacturing a bearing part that performs a tempering process for a long time. Furthermore, according to the present invention, it is possible to provide a method of manufacturing a bearing component having material characteristics equivalent to or higher than those of the bearing component obtained by the conventional method of manufacturing a bearing component.
  • 2 is a flowchart of a method for manufacturing a bearing component according to the first embodiment.
  • the manufacturing method of the bearing component concerning Embodiment 1 it is a graph which shows the tempering temperature and holding time of the 2nd heating process (tempering process).
  • 6 is a graph showing static crushing strength in Example 2.
  • 10 is a graph showing stress amplitude in Example 2.
  • the manufacturing method of the bearing parts concerning Embodiment 2 it is a graph for explaining the tempering temperature and maintenance time which satisfy the 1st prediction formula.
  • the manufacturing method of the bearing component concerning Embodiment 2 it is a graph for explaining the tempering temperature and holding time which satisfy the 2nd prediction formula.
  • the manufacturing method of the bearing component concerning Embodiment 2 it is a graph for explaining the tempering temperature and maintenance time which satisfy formula (2).
  • the method for manufacturing a bearing component according to the first embodiment includes a step of preparing a molded body (target material) to be the inner ring (bearing component) (S10) and a step of performing a quench hardening process on the target material. (S20) and the process (S30) of performing a tempering process with respect to a target material after the process (S20) of performing a quench hardening process.
  • a steel material such as a steel bar or a steel wire is prepared.
  • the steel material is made of SUJ2, for example.
  • the steel material is subjected to processing such as cutting, forging, and turning.
  • a steel material (target material) formed into a rough shape of a bearing component such as a bearing ring for a rolling bearing is produced.
  • Step (S20) a quench hardening process is performed on the target material prepared in the previous step (S10).
  • Step (S20) includes a first heating step (S21) and a cooling step (S22).
  • the entire target material is heated to a temperature T 1 that is equal to or higher than the A 1 point, and is held for a holding time t 1 for soaking.
  • the target material is cooled to a temperature T 2 that is equal to or lower than the Ms point (martensitic transformation point).
  • This cooling process is performed by, for example, immersing the target material in a coolant such as oil or water. Thereby, the said target material is quenching-processed.
  • the quenching process is performed under the condition that the hardness of the target material subjected to the quenching process exceeds the hardness of the target material subjected to the tempering process described later.
  • the quenching process is performed, for example, under conditions such that the hardness of the target material subjected to the quenching process is 64 HRC (800 HV) or more and 66 HRC (865 HV) or less.
  • the temperatures T 1 is less than 1000 ° C. For example 900 ° C. or higher.
  • the holding time t 1 (homogeneous time) is, for example, not less than 3 seconds and not more than 10 minutes.
  • the temperature T 2 is, for example, not less than 80 ° C. and not more than 200 ° C.
  • the quenching process is performed under conditions such that the carbide area ratio of the target material subjected to the quenching process is 8% or more and 12% or less.
  • the holding time t 1 is preferably 11 seconds or longer so that the carbide area ratio of the quenched target material is 12% or less, and the carbide area ratio is 8
  • the holding time t 1 is preferably 58 seconds or less so as to be not less than%.
  • the holding time t 1 is preferably 3 seconds or more so that the carbide area ratio of the quench-treated target material is 12% or less, and the carbide area ratio is 8% or more.
  • the holding time t 1 is preferably 15 seconds or less. That is, when the temperature T 1 is 950 ° C., the holding time t 1 is preferably 3 seconds or longer and 15 seconds or shorter.
  • the rapid cooling of the target material is performed by, for example, immersing the target material in cold oil having an oil temperature of 70 ° C.
  • a tempering process is performed on the target material that has been subjected to the quench hardening process in the previous process (S20).
  • the entire target material is heated to a tempering temperature T 3 less than A 1 point, and is held for a holding time t 2 for soaking.
  • the target material is cooled. Thereby, the said target material is tempered.
  • the tempering process is performed under such a condition that the hardness of the tempered target material is less than the hardness of the tempered target material.
  • the tempering process is performed under conditions such that the hardness of the tempered target material is 60 HRC (696 HV) or more and 62 HRC (746 HV) or less.
  • the tempering temperature T 3 (unit: K) and the holding time t 2 (unit: second) of the tempering process satisfy the following formula (1).
  • Formula (3) shows the relationship between the tempering temperature T 3 (unit: K), the holding time t 2 (unit: second) of the tempering process, and the hardness (unit: HRC) of the target material after the tempering process. It is a formula. Equation (3) is shown in Non-Patent Document 1 (Akira Inoue, “New tempering parameters and their application to the integration method of tempering effects along a continuous temperature rise curve” Iron and Steel, 66, 10 (1980) 1533. ).
  • FIG. 2 is a graph for explaining the tempering temperature T 3 and the holding time t 2 satisfying the expression (1).
  • the horizontal axis of FIG. 2 shows the tempering temperature T 3 (unit: K), and the vertical axis of FIG. 2 shows the holding time t 2 (unit: second).
  • T 3 unit: K
  • T 2 unit: second
  • lines L1 to L5 indicate the relationship between the tempering temperature T 3 and the holding time t 2 in the equation (3) including constants a, b, c calculated from bearing parts having different hardnesses. It is a curve which shows.
  • the tempering temperature T 3 and the holding time t 2 of the tempering process can be arbitrarily selected from coordinates located on the line L2 and the line L4 in FIG. 2 and between the line L2 and the line L4.
  • a finishing process is performed as a process (S40).
  • this step (S40) for example, finishing such as polishing is performed on the rolling surface.
  • the method for manufacturing a bearing component according to the present embodiment a tempering process at a high temperature for a short time is performed. Therefore, according to the method for manufacturing a bearing component according to the present embodiment, compared with the conventional method for manufacturing a bearing component in which the tempering process is performed for several hours, the retention time in the tempering process is the manufacturing of the conventional bearing part. Short compared to the method. As a result, according to the bearing component manufacturing method according to the present embodiment, the manufacturing cost is reduced as compared with the conventional bearing component manufacturing method.
  • the quenching process is performed in the quenching process (S20) so that the carbide area ratio of the target material is 8% or more and 12% or less.
  • the dimensional change rate of bearing parts is influenced by the concentration of carbon (carbon solid solution amount) dissolved in the matrix of the target material by the quenching process.
  • carbon solid solution amount concentration of carbon
  • the area ratio of carbides in the target material reflects the solid solution state of carbon in the target material. Therefore, the area ratio of carbides in the target material can be used to accurately predict the solid solution state of carbon in the target material.
  • the carbide area ratio of the target material is measured, for example, by cutting the target material that has been heat-treated and measuring the area ratio of the carbide in the cross section with an electron microscope.
  • a normalizing step may be performed before the quench hardening step.
  • the normalizing step after the fabricated molded body is heated to a temperature not lower than the A 1 transformation point in the step (S10), normalizing processing is performed by being cooled to a temperature lower than the A 1 transformation point.
  • the cooling rate at the time of cooling in the normalizing process may be a cooling rate at which the steel constituting the formed body is not transformed into martensite, that is, a cooling rate lower than the critical cooling rate.
  • the hardness of the molded body after the normalizing treatment is high when the cooling rate is large, and is low when the cooling rate is small. Therefore, desired hardness can be imparted to the molded body by adjusting the cooling rate.
  • the shaft house part is not limited to the inner ring of the rolling bearing. It may be an outer ring or a rolling element of a rolling bearing, or may be an inner ring, an outer ring, or a rolling element of a deep groove ball bearing or a thrust needle roller bearing.
  • the method for manufacturing a bearing component according to the second embodiment includes a step of preparing a molded body (target material) to be the inner ring (bearing component) (S10) and a step of performing a quench hardening process on the target material. (S20) and the process (S30) of performing a tempering process with respect to a target material by heating a target material after the process (S20) of performing a quench hardening process.
  • a steel material such as a steel bar or a steel wire is prepared.
  • the steel material is made of SUJ2, for example.
  • the steel material is subjected to processing such as cutting, forging, and turning.
  • a steel material (target material) formed into a rough shape of a bearing component such as a bearing ring for a rolling bearing is produced.
  • Step (S20) a quench hardening process is performed on the target material prepared in the previous step (S10).
  • Step (S20) includes a first heating step (S21) and a cooling step (S22).
  • the entire target material is heated to a temperature T 1 that is equal to or higher than the point A 1 and is held for a holding time t 1 (soaking time) for soaking.
  • the target material is cooled to a temperature T 2 that is equal to or lower than the Ms point (martensitic transformation point).
  • This cooling process is performed by, for example, immersing the target material in a coolant such as oil or water. Thereby, the said target material is quenching-processed.
  • the quenching process is performed under the condition that the hardness of the target material subjected to the quenching process exceeds the hardness of the target material subjected to the tempering process described later.
  • the quenching process is performed, for example, under conditions such that the hardness of the target material subjected to the quenching process is 64 HRC (800 HV) or more and 66 HRC (865 HV) or less.
  • the temperatures T 1 is less than 1000 ° C. For example 900 ° C. or higher.
  • the holding time t 1 is not less than 1 second and not more than 10 minutes, for example.
  • the temperature T 2 is, for example, not less than 50 ° C. and not more than 200 ° C.
  • the quenching process is performed under conditions such that the carbide area ratio of the target material subjected to the quenching process is 8% or more and 12% or less.
  • the holding time t 1 is preferably 11 seconds or longer so that the carbide area ratio of the quenched target material is 12% or less, and the carbide area ratio is 8
  • the holding time t 1 is preferably 58 seconds or less so as to be not less than%.
  • the holding time t 1 is preferably 3 seconds or more so that the carbide area ratio of the quench-treated target material is 12% or less, and the carbide area ratio is 8% or more.
  • the holding time t 1 is preferably 15 seconds or less. That is, when the temperature T 1 is 950 ° C., the holding time t 1 is preferably 3 seconds or longer and 15 seconds or shorter.
  • the rapid cooling of the target material is performed by, for example, immersing the target material in cold oil having an oil temperature of 70 ° C.
  • a tempering process is performed on the target material that has been subjected to the quench hardening process in the previous process (S20).
  • the entire target material is heated to a tempering temperature T 3 less than the point A 1 and is held for a holding time t 2 (tempering time) for soaking.
  • the tempering temperature T 3 (unit: K) and the holding time t 2 (unit: second) of the tempering process satisfy the following relational expression (2).
  • Equation (4) is the relationship between the tempering temperature T 3 (unit: K), the holding time t 2 (unit: second), and the hardness M 1 (unit: HV) of the target material after tempering. It is a formula which shows. Equation (4) is shown in Non-Patent Document 1 (Akira Inoue, “New tempering parameters and their application to an integrating method of tempering effects along a continuous temperature rise curve” Iron and Steel, 66, 10 (1980) 1533. )It is described in.
  • Formula (5) is the tempering temperature T 3 (unit: K) of the tempering treatment, the holding time t 2 (unit: second), and the amount of retained austenite M 2 (unit:%) of the target material after the tempering treatment. It is a formula which shows a relationship. Expression (5) is described in Patent Document 2 (Japanese Patent Laid-Open No. 10-102137).
  • M 2 M 0 exp ⁇ Aexp (( ⁇ Q) / RT 3 ) t 2 n ⁇ (5)
  • the inventors experimentally derived the constants a, b, c in the equation (4) and the constants M 0 , A, Q, n in the equation (5).
  • the derived constant a was ⁇ 26.4
  • the constant b was 2.00 ⁇ 10 5
  • the constant c was 408.
  • the derived constant M 0 was 14.4, the constant A was 6.99 ⁇ 10 5 , the constant Q was 7.70 ⁇ 10 4 , and the constant n was 0.510.
  • the above formula (4) in which the constants a, b, and c are specified in this way is a first prediction formula for predicting the relationship between the tempering process conditions and the hardness M 1 after the tempering process.
  • the above equation (5) in which the constants M 0 , A, Q, and n are specified in this way is a second prediction equation for predicting the relationship between the tempering treatment conditions and the amount of retained austenite M 2 after the tempering treatment. It becomes.
  • FIG. 5 is a graph for explaining the tempering temperature T 3 and the holding time t 2 satisfying the first prediction formula.
  • FIG. 6 is a graph for explaining the tempering temperature T 3 and the holding time t 2 satisfying the second prediction formula.
  • FIG. 7 is a graph for explaining the tempering temperature T 3 and the holding time t 2 that satisfy the equation (2) calculated based on the first prediction equation and the second prediction equation.
  • Each horizontal axis in FIGS. 5 to 7 represents the tempering temperature T 3 (unit: K), and each vertical axis in FIGS. 5 to 7 represents the holding time t 2 (unit: seconds).
  • lines L1 to L3 are curves showing the relationship between the tempering temperature T 3 and the holding time t 2 that satisfy the first prediction formula.
  • Line L1 is a line showing predicted values of tempering temperature T 3 and holding time t 2 for obtaining a bearing component of 60HRC
  • line L2 is 61HRC
  • line L3 is 62HRC.
  • the predicted value of the tempering temperature T 3 for obtaining a bearing component having a hardness of 59 HRC is 320 ° C. or higher when the holding time t 2 is 0 second or longer and 300 seconds or shorter. there were.
  • lines L4 to L6 are curves showing the relationship between the tempering temperature T 3 and the holding time t 2 satisfying the second prediction formula.
  • Line L4 residual austenite amount is 3%
  • the line L5 is the amount of retained austenite 4%
  • the line L6 is the predicted value of the tempering temperature T 3 and the holding time t 2 for the amount of retained austenite obtain a bearing part is 5% It is a line which shows.
  • Tempering temperature T 3 and the holding time t 2 of the tempering process for example on line L5 in FIG. 7, and tempering temperature T 3 is longer holding time t 2 than the high temperature side or line L5, than the line L5 It can be arbitrarily selected from the coordinates located on the side.
  • the retention time t 2 is 300 seconds or less.
  • a finishing process is performed as a process (S40).
  • this step (S40) for example, finishing such as polishing is performed on the rolling surface.
  • the method for manufacturing a bearing component according to the present embodiment a tempering process at a high temperature for a short time is performed. Therefore, according to the method for manufacturing a bearing component according to the present embodiment, the tempering process has a shorter holding time in the tempering process than the conventional method for manufacturing a bearing part compared to the conventional method for manufacturing a bearing part. Furthermore, the enlargement of the heating device is suppressed. As a result, according to the bearing component manufacturing method according to the present embodiment, the manufacturing cost is reduced as compared with the conventional bearing component manufacturing method.
  • the tempering temperature T 3 (unit: K) and the holding time t 2 (unit: second) in the tempering process are expressed by the above formula (2).
  • the above formula (2) shows that the present inventor can obtain a bearing part having a hardness equal to or higher than that of a conventional bearing part and a residual austenite amount equal to or lower than that of a conventional bearing part by tempering. Have been experimentally calculated (details will be described later). Therefore, a book obtained by subjecting a target material made of JIS standard SUJ2 to a tempering treatment at a tempering temperature T 3 (unit: K) and a holding time t 2 (unit: second) satisfying the above formula (2).
  • the bearing component according to the embodiment has a hardness equal to or higher than that of a conventional bearing component and a dimensional change rate equal to or lower than that of a conventional bearing component.
  • the high carbon chrome bearing steel is JIS standard SUJ2.
  • the bearing component manufacturing method according to the present embodiment is suitable for a bearing component manufacturing method comprising JIS standard SUJ2.
  • the holding time t 2 (tempering time) is preferably within 300 seconds.
  • the tempering time is relatively long, for example, about 2 hours to 5 hours.
  • the holding time t 2 (tempering time) can be within 300 seconds.
  • the holding time in the tempering process is shorter than the conventional bearing component manufacturing method, and the manufacturing cost is reduced, compared with the conventional bearing component manufacturing method. ing.
  • the present inventors have confirmed that the steel material that has been subjected to such a tempering treatment has the hardness required for the bearing component (details will be described later). Furthermore, the present inventors have confirmed that the steel material subjected to such tempering treatment has a retained austenite amount capable of realizing a dimensional change rate required for the bearing component (details will be described later). To do).
  • a normalizing step may be performed before the quench hardening step.
  • the normalizing step after the fabricated molded body is heated to a temperature not lower than the A 1 transformation point in the step (S10), normalizing processing is performed by being cooled to a temperature lower than the A 1 transformation point.
  • the cooling rate at the time of cooling in the normalizing process may be a cooling rate at which the steel constituting the formed body is not transformed into martensite, that is, a cooling rate lower than the critical cooling rate.
  • the hardness of the molded body after the normalizing treatment is high when the cooling rate is large, and is low when the cooling rate is small. Therefore, desired hardness can be imparted to the molded body by adjusting the cooling rate.
  • the bearing component is not limited to the inner ring of the rolling bearing. It may be an outer ring or a rolling element of a rolling bearing, or may be an inner ring, an outer ring, or a rolling element of a deep groove ball bearing or a thrust needle roller bearing.
  • test piece made of JIS standard SUJ2 was prepared.
  • Table 1 shows the component composition of the test piece.
  • the test piece was quenched.
  • the quenching temperature T 1 was 900 ° C. or more and 950 ° C. or less
  • the holding time t 1 was 3 seconds or more and 60 seconds or less
  • the temperature T 2 was 100 ° C.
  • the Vickers hardness was measured using a Vickers hardness tester.
  • the Vickers hardness measured for samples 1 to 14 is shown in the column of measured hardness in Table 2.
  • the constants a, b, and c were calculated by substituting the tempering temperature T 3 , the holding time T 2 , and the measured hardness for the samples 1 to 14. From the distribution of the calculated values of constants a, b, and c, the sum of the differences between the hardness (estimated hardness) obtained by substituting the values of constants a, b, and c into equation (3) and the measured hardness is minimum. As a result, it was confirmed that the constant a was ⁇ 19.6, the constant b was 2.21 ⁇ 10 5 , and the constant c was 347.
  • the characteristics required for the bearing parts were evaluated for the samples obtained by the same method as the method for manufacturing the bearing parts according to the first embodiment.
  • test piece made of JIS standard SUJ2 was prepared.
  • the component composition of the test piece is as shown in Table 1 above.
  • the shape of the test piece was annular.
  • the dimensions of the test piece were an outer diameter of 60 mm, an inner diameter of 54 mm, and an axial width of 15 mm.
  • the samples 15 to 27 according to the examples were prepared by subjecting the test pieces to quenching and tempering.
  • Table 3 shows the quenching and tempering conditions for Samples 15 to 27.
  • test piece was subjected to quenching so that the carbide area ratio after quenching was 8% or 12%.
  • Samples 15 to 17 were subjected to a quenching process under the conditions of a temperature T 1 of 900 ° C. and a holding time t 1 of 58 seconds so that the carbide area ratio of the test piece after the quenching process was 8%. is there.
  • Samples 21 to 23 were subjected to a quenching process under the conditions of a temperature T 1 of 950 ° C. and a holding time t 1 of 15 seconds so that the carbide area ratio of the test piece after the quenching process was 8%. is there.
  • Samples 18 to 20 were subjected to quenching treatment under the conditions of a temperature T 1 of 900 ° C. and a holding time t 1 of 11 seconds so that the carbide area ratio of the above-mentioned specimen after quenching treatment was 12%. It is. Samples 24 to 26 were subjected to quenching treatment under the conditions of a temperature T 1 of 950 ° C. and a holding time t 1 of 3 seconds so that the carbide area ratio of the test piece after quenching treatment was 12%. is there.
  • Samples 15 to 26 were obtained by tempering the specimens quenched as described above so that the hardness after tempering was 60 HRC or 62 HRC.
  • Samples 15, 18, 21, and 24 were tempered under conditions of a tempering temperature T 3 of 180 ° C. and a time t 2 of 7200 seconds so that the hardness after tempering was 62 HRC.
  • Samples 16, 19, 22, and 25 were tempered under conditions of a tempering temperature T 3 of 240 ° C. and a time t 2 of 43 seconds so that the hardness after tempering was 62 HRC.
  • Samples 17, 20, 23, and 26 were tempered under conditions of a tempering temperature T 3 of 310 ° C. and a time t 2 of 37 seconds so that the hardness after tempering was 60 HRC.
  • Sample 27 as a comparative example was tempered so that the hardness after tempering was 62 HRC after quenching so that the carbide area ratio of the test piece after quenching was 8%. It is a thing.
  • the quenching temperature was 850 ° C. and the holding time was 30 minutes.
  • the tempering temperature was 180 ° C. and the holding time was 7200 seconds.
  • ⁇ Dimensional change rate> The dimensional change rates of Samples 15 to 27 were evaluated as follows. Samples 15 to 27 were heated to 230 ° C. and held for 2 hours, and the dimensional change rate before and after heating was calculated for each sample. Table 4 shows the average values of the dimensional change rates of Samples 15 to 17, Samples 18 to 20, Samples 21 to 23, and Samples 24 to 26 produced under the same quenching treatment conditions.
  • Non-Patent Document 2 (Norioka Sakanaka et al., “Rapid evaluation of shear fatigue properties of rolling bearing steels up to ultra-long life” NTN) TECHNIC REVIEW, 79 (2011) 104.).)
  • the load frequency was 20 kHz.
  • An intermittent loading method was used in which loading and rest were alternately repeated.
  • the maximum number of loads was 10 10 times. If the load did not break even when the number of loadings reached 10 10 times, the evaluation was terminated. In this way, the relationship between the number of loadings and the stress amplitude was obtained for samples 15 to 27.
  • An SN graph was created by applying the obtained values to a fatigue limit type broken line model of JSMS-SD-6-02, a metal material fatigue reliability standard of the Japan Society of Materials Science.
  • FIG. 4 shows the stress amplitude required for the samples 15 to 27 to be damaged when the number of times of loading is 3 ⁇ 10 9 derived from the above relationship. Note that the bar in FIG. 4 indicates the standard deviation of the stress amplitude calculated from the above model.
  • the number of loads of 3 ⁇ 10 9 times is the number of loads at which fatigue failure can occur when a life test is performed with the maximum contact surface pressure Pmax being 2.5 GPa.
  • the upper limit value of the stress amplitude required for damaging the samples 15 to 27 when the number of times of loading is 3 ⁇ 10 9 times is defined as the shear fatigue strength of the samples 15 to 27.
  • test piece made of JIS standard SUJ2 was prepared.
  • the component composition of the test piece is equivalent to that shown in Table 1 above.
  • the test piece was quenched.
  • the quenching temperature T 1 was 950 ° C., and the holding time t 1 was 15 seconds. After holding time t 1 , the test piece was immersed in cold oil having an oil temperature of 70 ° C. and quenched and cooled.
  • the temperature T 2 was about 100 ° C.
  • the hardness of the test piece after the quenching treatment was 64.5 HRC, and the amount of retained austenite of the test piece was 14.7%.
  • tempering treatment was performed on the test piece subjected to the quenching treatment.
  • the tempering conditions were 15 conditions shown in Table 5.
  • samples 28 to 42 tempered under different conditions were produced.
  • Fifteen tempering treatment conditions are five tempering temperatures T 3 240 ° C., 260 ° C., 280 ° C., 300 ° C., 320 ° C., and three holding times t 2 19 seconds, 74 seconds, 300 seconds. It was a combination.
  • Vickers hardness was measured using a Vickers hardness tester on samples 28 to 42 that had been tempered. Further, the amount of retained austenite was measured for the samples 28 to 42 subjected to the tempering treatment using an X-ray diffractometer. Table 5 shows the tempering conditions, the measured Vickers hardness, and the amount of retained austenite for Samples 28 to 42.
  • Equation (4) in which the constants a, b, and c are specified in this manner is a first prediction equation for predicting the relationship between the tempering treatment conditions and the hardness after the tempering treatment.
  • Each of the lines L1 to L3 in FIGS. 5 and 7 indicates tempering processing conditions for obtaining a bearing component having a predetermined hardness based on the first prediction formula.
  • the tempering temperature T 3 , the holding time t 2 , and the actual measurement values of the retained austenite amount of the samples 28 to 42 are substituted into the constants T, t, M in the equation (5), and the constants M 0 , A, Q, n was calculated.
  • the constant M 0 is 14.4
  • the constant A is 6.99 ⁇ 10 5
  • the constant Q is 7.70 ⁇ 10 4
  • the constant n is 0.510. confirmed.
  • the constant M 0 means the amount of retained austenite of each sample before tempering.
  • Equation (5) in which the constants M 0 , A, Q, and n are specified in this way is a second prediction equation for predicting the relationship between the tempering treatment conditions and the amount of retained austenite after the tempering treatment. .
  • Each of lines L4 to L6 in FIG. 6 and FIG. 7 indicates tempering conditions for obtaining a bearing component having a predetermined retained austenite amount based on the second prediction formula.
  • formula (2) is derived as showing the tempering treatment conditions for the hardness after tempering to be 59 HRC or more (674 HV or more) and the amount of retained austenite after tempering to be 4% or less. did.
  • the tempering temperature T 3 and the holding time t 2 satisfying the expression (2) are shown as coordinates located on the line 5 and on the upper side of the vertical axis from the line 5 (right side on the horizontal axis). ing.
  • the tempering process conditions shown by Formula (2) have the hardness more than equivalent to the rolling bearing obtained by the manufacturing method of the said conventional rolling bearing, and have the amount of residual austenite equivalent to or less than the said rolling bearing. This is a condition for manufacturing a rolling bearing.
  • the present inventors performed a quenching treatment and a tempering treatment similar to those of the conventional rolling bearing manufacturing method on a test piece made of JIS standard SUJ2 having the same component composition as the above-described test piece in this example, A plurality of samples of comparative examples were produced.
  • the conditions for the quenching treatment and the tempering treatment for the sample of the comparative example were such that the hardness after the tempering treatment was about 60 HRC and the amount of retained austenite was about 4%.
  • the quenching temperature was 855 ° C., and the holding time was 30 minutes or more and 55 or less.
  • each composition ratio of R gas carbon monoxide (CO), hydrogen (H 2 ), nitrogen (N 2 ), carbon dioxide (CO 2 ) is about 20%, about 30%, about 50%, Less than about 1%).
  • the test piece was immersed in cold oil having an oil temperature of 60 ° C. or higher and 100 ° C. or lower and quenched and cooled.
  • the tempering temperature was 230 ° C., and the holding time was 2 hours or more and 3 hours or less.
  • the tempering process was performed in the R gas atmosphere.
  • the minimum value of the hardness of the comparative example sample thus obtained was 60 HRC, and the maximum value of the retained austenite amount of the comparative example sample was 4.1%.
  • the rolling bearing manufacturing method according to the present embodiment has a higher tempering temperature T 3 and a shorter holding time t compared to the conventional bearing component manufacturing method. It was confirmed that a rolling bearing having material properties equivalent to or better than conventional bearing parts can be obtained by tempering in 2 .
  • Example 4 the prediction accuracy of the second prediction formula and the third prediction formula was evaluated. Specifically, the hardness and the amount of retained austenite of the sample subjected to the tempering treatment under the tempering treatment conditions satisfying the equation (2), and the second prediction equation and the third The hardness and the amount of retained austenite predicted from the prediction formula were compared.
  • Example 3 a test piece composed of JIS standard SUJ2 and having the component composition shown in Table 1 was prepared.
  • the test piece was subjected to the same quenching treatment as in Example 3.
  • the quenching temperature T 1 was 950 ° C., and the holding time t 1 was 15 seconds.
  • the test piece was immersed in cold oil having an oil temperature of 70 ° C. and quenched and cooled.
  • the temperature T 2 was about 100 ° C.
  • the hardness of the test piece after the quenching treatment was 64.5 HRC, and the amount of retained austenite of the test piece was 14.7%.
  • Table 6 shows four tempering treatment conditions.
  • the samples 43 to 46 subjected to the tempering treatment were measured for Vickers hardness using a Vickers hardness tester and converted to Rockwell hardness. Further, the amount of retained austenite was measured for the samples 43 to 46 subjected to the tempering treatment using an X-ray diffractometer.
  • Table 6 shows the measured values of the Rockwell hardness and residual austenite amount of samples 43 to 46, and the Rockwell hardness calculated by the first prediction formula and the second prediction formula under each tempering treatment condition. Table 6 shows the predicted value of the amount of retained austenite.
  • the measured values of the Rockwell hardness of the samples 43 to 46 are the Rockwell hardness predicted from the second prediction formula and the third prediction formula when the conditions are satisfied. It was confirmed that it was in good agreement with each predicted value. Regarding Rockwell hardness, the difference between the measured value and the predicted value with respect to the predicted value was 3% or less. Further, it was confirmed that the measured values of Rockwell hardness of Samples 43 to 46 were 59 HRC or more.
  • the measured values of the retained austenite amounts of the samples 43 to 46 are the respective values of the retained austenite amounts predicted from the second prediction formula and the third prediction formula when the conditions are satisfied. It was confirmed that it was in good agreement with the predicted value. In addition, it was confirmed that each measured value of the retained austenite amount of Samples 43 to 46 was 4% or less.
  • each sample according to Example 4 obtained by performing the tempering process under the tempering process conditions satisfying the above formula (2) has a hardness equal to or higher than that of the above comparative example, and the above comparison. It was confirmed that the amount of retained austenite was equal to or less than that of the example.

Abstract

Provided is a method for manufacturing a bearing component that can reduce the time required for tempering treatment compared with conventional manufacturing methods for bearing components wherein tempering treatment is performed for a long time and, further, has material characteristics equal to or greater than bearing components obtained by the conventional methods for manufacturing bearing components. The method is provided with: a step for preparing target material for forming the bearing component formed from high carbon chromium bearing steel; a step for performing quenching treatment on the target material; and a step for performing tempering treatment on the target material by heating the target material after the step for performing quenching treatment. In the step for performing quenching treatment, quenching treatment is performed such that the hardness of the target material becomes 64 – 66 HRC. In the step for performing tempering treatment, the tempering temperature T (units: K) and the holding time t (units: seconds) satisfy a prescribed formula.

Description

軸受部品の製造方法Manufacturing method of bearing parts
 本発明は、軸受部品の製造方法に関する。 The present invention relates to a method for manufacturing a bearing component.
 特開2013-119930号公報には、成形部材を焼入硬化処理する工程と、焼入硬化処理された成形部材を焼戻処理する工程とを備える軸受部品の製造方法が開示されている。 Japanese Patent Application Laid-Open No. 2013-119930 discloses a method for manufacturing a bearing component, which includes a step of quenching and hardening a molded member and a step of tempering the molded member that has been quenched and hardened.
 焼戻処理は、軸受部品に対し、靱性を付与する、硬度を調整する、残留応力を除去する、および寸法安定性を向上させる等の観点から、重要な熱処理である。 The tempering treatment is an important heat treatment from the viewpoints of imparting toughness, adjusting hardness, removing residual stress, and improving dimensional stability for the bearing parts.
特開2013-119930号公報JP 2013-119930 A
 しかしながら、焼戻処理における焼戻温度の保持時間は、例えば2時間程度と比較的長く、生産性に課題がある。 However, the holding time of the tempering temperature in the tempering process is relatively long, for example, about 2 hours, and there is a problem in productivity.
 そこで、軸受部品の製造方法における焼戻処理に高温短時間処理を用いることで、生産性の向上を見込める。 Therefore, productivity can be expected to be improved by using high-temperature and short-time treatment for the tempering treatment in the bearing component manufacturing method.
 本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、長時間の焼戻処理を行う従来の軸受部品の製造方法と比べて処理時間を短くすることができ、さらに上記従来の軸受部品の製造方法により得られる軸受部品と同等以上の材料特性を有する軸受部品を製造する方法を提供することにある。 The present invention has been made to solve the above-described problems. The main object of the present invention is to shorten the processing time as compared with a conventional method for manufacturing a bearing component that performs tempering for a long time, and further, it is equivalent to a bearing component obtained by the above-described conventional method for manufacturing a bearing component. An object of the present invention is to provide a method of manufacturing a bearing component having the above material characteristics.
 本発明の一実施の形態に係る軸受部品の製造方法は、高炭素クロム軸受鋼からなり、かつ軸受部品となるべき対象材を準備する工程と、対象材に対して焼入処理を行う工程と、焼入処理を行う工程の後に、対象材に対して焼戻処理を行う工程とを備える。焼入処理を行う工程では、対象材の硬度が64HRC以上66HRC以下となるように焼入処理が行われる。焼戻処理を行う工程における焼戻温度T(単位:K)および保持時間t(単位:秒)が以下の式(1)を満たす。 A method for manufacturing a bearing component according to an embodiment of the present invention includes a step of preparing a target material made of high carbon chromium bearing steel and to be a bearing component, and a step of performing a quenching process on the target material. And a step of tempering the target material after the step of quenching. In the step of performing the quenching process, the quenching process is performed so that the hardness of the target material is 64 HRC or more and 66 HRC or less. The tempering temperature T (unit: K) and the holding time t (unit: second) in the tempering process satisfy the following formula (1).
 2.21×105/(19.6logt+399)≦T≦2.21×105/(19.6logt+349)・・・(1) 2.21 × 10 5 /(19.6logt+399)≦T≦2.21×10 5 /(19.6logt+349) ··· (1)
 本発明の他の実施の形態に係る軸受部品の製造方法は、軸受部品の製造方法であって、高炭素クロム軸受鋼からなり、かつ軸受部品となるべき対象材を準備する工程と、対象材に対して焼入処理を行う工程と、焼入処理を行う工程の後に、対象材を加熱することにより対象材に対して焼戻処理を行う工程とを備える。焼戻処理を行う工程における焼戻温度T(単位:K)および保持時間t(単位:秒)が以下の式(2)を満たす。 A method for manufacturing a bearing component according to another embodiment of the present invention is a method for manufacturing a bearing component, comprising a step of preparing a target material made of high carbon chromium bearing steel and to be a bearing component, and a target material And a step of performing a tempering process on the target material by heating the target material after the step of performing the quenching process on the steel and the step of performing the quenching process. The tempering temperature T (unit: K) and the holding time t (unit: second) in the tempering process satisfy the following formula (2).
 9.27×103/(0.51logt2+13.2)≦T3≦1.00×105/(13.2logt2+133)・・・(2) 9.27 × 10 3 /(0.51 log 2 +13.2) ≦ T 3 ≦ 1.00 × 10 5 /(13.2 log 2 +133) (2)
 本発明によれば、長時間の焼戻処理を行う従来の軸受部品の製造方法と比べて、焼戻処理に要する時間を短くすることができる。さらに本発明によれば、上記従来の軸受部品の製造方法により得られる軸受部品と同等以上の材料特性を有する軸受部品を製造する方法を提供することができる。 According to the present invention, the time required for the tempering process can be shortened as compared with the conventional method for manufacturing a bearing part that performs a tempering process for a long time. Furthermore, according to the present invention, it is possible to provide a method of manufacturing a bearing component having material characteristics equivalent to or higher than those of the bearing component obtained by the conventional method of manufacturing a bearing component.
実施の形態1に係る軸受部品の製造方法のフローチャートである。2 is a flowchart of a method for manufacturing a bearing component according to the first embodiment. 実施の形態1に係る軸受部品の製造方法において、第2加熱工程(焼戻工程)の焼戻温度および保持時間を示すグラフである。In the manufacturing method of the bearing component concerning Embodiment 1, it is a graph which shows the tempering temperature and holding time of the 2nd heating process (tempering process). 実施例2における静的圧壊強度を示すグラフである。6 is a graph showing static crushing strength in Example 2. 実施例2における応力振幅を示すグラフである。10 is a graph showing stress amplitude in Example 2. 実施の形態2に係る軸受部品の製造方法において、第1の予測式を満たす焼戻温度および保持時間を説明するためのグラフである。In the manufacturing method of the bearing parts concerning Embodiment 2, it is a graph for explaining the tempering temperature and maintenance time which satisfy the 1st prediction formula. 実施の形態2に係る軸受部品の製造方法において、第2の予測式を満たす焼戻温度および保持時間を説明するためのグラフである。In the manufacturing method of the bearing component concerning Embodiment 2, it is a graph for explaining the tempering temperature and holding time which satisfy the 2nd prediction formula. 実施の形態2に係る軸受部品の製造方法において、式(2)を満たす焼戻温度および保持時間を説明するためのグラフである。In the manufacturing method of the bearing component concerning Embodiment 2, it is a graph for explaining the tempering temperature and maintenance time which satisfy formula (2).
 以下、図面を参照して、本発明に係る実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1を参照して、転がり軸受の軌道輪である内輪の製造方法を例に、本実施の形態1に係る軸受部品の製造方法において説明する。本実施の形態1に係る軸受部品の製造方法は、上記内輪(軸受部品)となるべき成形体(対象材)を準備する工程(S10)と、対象材に対して焼入硬化処理を行う工程(S20)と、焼入硬化処理を行う工程(S20)の後に、対象材に対して焼戻処理を行う工程(S30)とを備える。
(Embodiment 1)
With reference to FIG. 1, an example of a method for manufacturing an inner ring, which is a bearing ring of a rolling bearing, will be described in the method for manufacturing a bearing component according to the first embodiment. The method for manufacturing a bearing component according to the first embodiment includes a step of preparing a molded body (target material) to be the inner ring (bearing component) (S10) and a step of performing a quench hardening process on the target material. (S20) and the process (S30) of performing a tempering process with respect to a target material after the process (S20) of performing a quench hardening process.
 工程(S10)では、まず、たとえば棒鋼や鋼線などの鋼材が準備される。鋼材は、例えばSUJ2からなる。次に、当該鋼材に対して切断、鍛造、旋削などの加工が施される。これにより、転がり軸受用の軌道輪などの軸受部品の概略形状に成形加工された鋼材(対象材)が作製される。 In the step (S10), first, a steel material such as a steel bar or a steel wire is prepared. The steel material is made of SUJ2, for example. Next, the steel material is subjected to processing such as cutting, forging, and turning. As a result, a steel material (target material) formed into a rough shape of a bearing component such as a bearing ring for a rolling bearing is produced.
 工程(S20)では、先の工程(S10)において準備された対象材に対し、焼入硬化処理が実施される。工程(S20)は、第1の加熱工程(S21)と、冷却工程(S22)とを含む。まず、工程(S21)において、対象材の全体がA1点以上の温度T1に加熱され、均熱のために保持時間t1だけ保持される。次に、工程(S22)において、対象材がMs点(マルテンサイト変態点)以下の温度T2にまで冷却される。この冷却処理は、例えば油や水などの冷却液中に対象材が浸漬されることにより実施される。これにより、当該対象材が焼入処理される。焼入処理は、焼入処理された対象材の硬度が後述する焼戻処理された対象材の硬度超えとなるような条件で実施される。焼入処理は、例えば焼入処理された対象材の硬度が64HRC(800HV)以上66HRC(865HV)以下となるような条件で実施される。上記温度T1は例えば900℃以上1000℃以下である。保持時間t1(均質時間)は例えば3秒以上10分以下である。温度T2は例えば80℃以上200℃以下である。 In the step (S20), a quench hardening process is performed on the target material prepared in the previous step (S10). Step (S20) includes a first heating step (S21) and a cooling step (S22). First, in the step (S21), the entire target material is heated to a temperature T 1 that is equal to or higher than the A 1 point, and is held for a holding time t 1 for soaking. Next, in the step (S22), the target material is cooled to a temperature T 2 that is equal to or lower than the Ms point (martensitic transformation point). This cooling process is performed by, for example, immersing the target material in a coolant such as oil or water. Thereby, the said target material is quenching-processed. The quenching process is performed under the condition that the hardness of the target material subjected to the quenching process exceeds the hardness of the target material subjected to the tempering process described later. The quenching process is performed, for example, under conditions such that the hardness of the target material subjected to the quenching process is 64 HRC (800 HV) or more and 66 HRC (865 HV) or less. The temperatures T 1 is less than 1000 ° C. For example 900 ° C. or higher. The holding time t 1 (homogeneous time) is, for example, not less than 3 seconds and not more than 10 minutes. The temperature T 2 is, for example, not less than 80 ° C. and not more than 200 ° C.
 好ましくは、焼入処理は、焼入処理された対象材の炭化物面積率が8%以上12%以下となるような条件で実施される。例えば、温度T1が900℃の場合、焼入処理された対象材の炭化物面積率が12%以下となるように保持時間t1は11秒以上であるのが好ましく、当該炭化物面積率が8%以上となるように保持時間t1は58秒以下であるのが好ましい。温度T1が950℃の場合、焼入処理された対象材の炭化物面積率が12%以下となるように保持時間t1は3秒以上であるのが好ましく、当該炭化物面積率が8%以上となるように保持時間t1は15秒以下であるのが好ましい。すなわち、温度T1が950℃の場合、保持時間t1は3秒以上15秒以下であるのが好ましい。 Preferably, the quenching process is performed under conditions such that the carbide area ratio of the target material subjected to the quenching process is 8% or more and 12% or less. For example, when the temperature T 1 is 900 ° C., the holding time t 1 is preferably 11 seconds or longer so that the carbide area ratio of the quenched target material is 12% or less, and the carbide area ratio is 8 The holding time t 1 is preferably 58 seconds or less so as to be not less than%. When the temperature T 1 is 950 ° C., the holding time t 1 is preferably 3 seconds or more so that the carbide area ratio of the quench-treated target material is 12% or less, and the carbide area ratio is 8% or more. Thus, the holding time t 1 is preferably 15 seconds or less. That is, when the temperature T 1 is 950 ° C., the holding time t 1 is preferably 3 seconds or longer and 15 seconds or shorter.
 対象材に対する急冷は、例えば対象材が油温70℃のコールド油に浸漬されることにより実施される。 The rapid cooling of the target material is performed by, for example, immersing the target material in cold oil having an oil temperature of 70 ° C.
 工程(S30)では、先の工程(S20)において焼入硬化処理が実施された対象材に対し、焼戻処理が実施される。まず、対象材の全体がA1点未満の焼戻温度T3に加熱され、均熱のために保持時間t2だけ保持される。 In the step (S30), a tempering process is performed on the target material that has been subjected to the quench hardening process in the previous process (S20). First, the entire target material is heated to a tempering temperature T 3 less than A 1 point, and is held for a holding time t 2 for soaking.
 次に、対象材が冷却される。これにより、当該対象材が焼戻処理される。焼戻処理は、焼戻処理された対象材の硬度が上記焼入処理された対象材の硬度未満となるような条件で実施される。焼戻処理は、例えば焼戻処理された対象材の硬度が60HRC(696HV)以上62HRC(746HV)以下となるような条件で実施される。この場合、焼戻処理の焼戻温度T3(単位:K)および保持時間t2(単位:秒)は以下の式(1)を満たす。 Next, the target material is cooled. Thereby, the said target material is tempered. The tempering process is performed under such a condition that the hardness of the tempered target material is less than the hardness of the tempered target material. The tempering process is performed under conditions such that the hardness of the tempered target material is 60 HRC (696 HV) or more and 62 HRC (746 HV) or less. In this case, the tempering temperature T 3 (unit: K) and the holding time t 2 (unit: second) of the tempering process satisfy the following formula (1).
 2.21×105/(19.6logt+399)≦T≦2.21×105/(19.6logt+349)・・・(1)
 本発明者らは、所定の硬度を有する軸受部品を得るための焼戻処理条件について鋭意研究の結果、実験的に上記式(1)を導出した。さらに本発明者らは、当該式(1)を満たす条件で焼戻処理されて得られた軸受部品が、従来の焼戻処理により得られた軸受部品と同等以上の特性を有していることを確認した(詳細は後述する)。
2.21 × 10 5 /(19.6logt+399)≦T≦2.21×10 5 /(19.6logt+349) ··· (1)
As a result of earnest research on the tempering treatment conditions for obtaining a bearing part having a predetermined hardness, the inventors of the present invention derived the above formula (1) experimentally. Furthermore, the present inventors have found that the bearing parts obtained by tempering under the conditions satisfying the formula (1) have the same or better characteristics as the bearing parts obtained by the conventional tempering treatment. (Details will be described later).
 本発明者らは上記式(1)を以下の式(3)から実験的に導出した。式(3)は、焼戻処理の焼戻温度T3(単位:K)、保持時間t2(単位:秒)および焼戻処理後の対象材の硬度(単位:HRC)との関係を示す式である。式(3)は、非特許文献1(井上毅、「新しい焼もどしパラメータとその連続昇温曲線に沿った焼もどし効果の積算法への応用」鉄と鋼,66,10(1980)1533.)において記載されている。 The present inventors experimentally derived the above formula (1) from the following formula (3). Formula (3) shows the relationship between the tempering temperature T 3 (unit: K), the holding time t 2 (unit: second) of the tempering process, and the hardness (unit: HRC) of the target material after the tempering process. It is a formula. Equation (3) is shown in Non-Patent Document 1 (Akira Inoue, “New tempering parameters and their application to the integration method of tempering effects along a continuous temperature rise curve” Iron and Steel, 66, 10 (1980) 1533. ).
 HV=alogt+b1/T+c・・・(3)
 本発明者らは、式(3)における定数a,b,cを実験的に導出した。導出された定数aが-19.6、定数bが2.21×105、定数cが347である。図2は、式(1)を満たす焼戻温度T3および保持時間t2を説明するためのグラフである。図2の横軸は焼戻温度T3(単位:K)を示し、図2の縦軸は保持時間t2(単位:秒)を示す。図2中、線L1~5は、硬度が異なる軸受部品から実験的に算出された定数a,b,cを含む式(3)における、焼戻温度T3と保持時間t2との関係を示す曲線である。線L1は59HRC、線L2は60HRC、線L3は61HRC、線L4は62HRC、線L5は63HRCであった軸受部品から実験的に算出された定数a,b,cを含む式(3)における、焼戻温度T3と保持時間t2との関係を示す線である。焼戻処理の焼戻温度T3および保持時間t2は、図2中の線L2および線L4上、ならびに線L2と線L4との間に位置する座標のうちから任意に選択され得る。
HV = logt + b1 / T + c (3)
The inventors experimentally derived the constants a, b, and c in Equation (3). The derived constant a is −19.6, the constant b is 2.21 × 10 5 , and the constant c is 347. FIG. 2 is a graph for explaining the tempering temperature T 3 and the holding time t 2 satisfying the expression (1). The horizontal axis of FIG. 2 shows the tempering temperature T 3 (unit: K), and the vertical axis of FIG. 2 shows the holding time t 2 (unit: second). In FIG. 2, lines L1 to L5 indicate the relationship between the tempering temperature T 3 and the holding time t 2 in the equation (3) including constants a, b, c calculated from bearing parts having different hardnesses. It is a curve which shows. In the equation (3) including constants a, b, and c calculated experimentally from the bearing parts in which the line L1 is 59HRC, the line L2 is 60HRC, the line L3 is 61HRC, the line L4 is 62HRC, and the line L5 is 63HRC, is a line indicating the relationship between the tempering temperature T 3 and the holding time t 2. The tempering temperature T 3 and the holding time t 2 of the tempering process can be arbitrarily selected from coordinates located on the line L2 and the line L4 in FIG. 2 and between the line L2 and the line L4.
 次に、工程(S40)として仕上工程が実施される。この工程(S40)では、たとえば転走面に対して研磨加工などの仕上げ加工が実施される。以上により、転がり軸受の内輪が完成し、本実施の形態における内輪の製造は完了する。 Next, a finishing process is performed as a process (S40). In this step (S40), for example, finishing such as polishing is performed on the rolling surface. Thus, the inner ring of the rolling bearing is completed, and the manufacture of the inner ring in the present embodiment is completed.
 以上のように、本実施の形態に係る軸受部品の製造方法によれば、高温短時間の焼戻処理が実施される。そのため、本実施の形態に係る軸受部品の製造方法によれば、焼戻処理が数時間実施される従来の軸受部品の製造方法と比べて、焼戻処理における保持時間が従来の軸受部品の製造方法と比べて短い。その結果、本実施の形態に係る軸受部品の製造方法によれば、従来の軸受部品の製造方法と比べて、製造コストが低減されている。 As described above, according to the method for manufacturing a bearing component according to the present embodiment, a tempering process at a high temperature for a short time is performed. Therefore, according to the method for manufacturing a bearing component according to the present embodiment, compared with the conventional method for manufacturing a bearing component in which the tempering process is performed for several hours, the retention time in the tempering process is the manufacturing of the conventional bearing part. Short compared to the method. As a result, according to the bearing component manufacturing method according to the present embodiment, the manufacturing cost is reduced as compared with the conventional bearing component manufacturing method.
 上記軸受部品の製造方法において、焼入処理を行う工程(S20)では、対象材の炭化物面積率が8%以上12%以下となるように、焼入処理が実施されるのが好ましい。 In the above bearing component manufacturing method, it is preferable that the quenching process is performed in the quenching process (S20) so that the carbide area ratio of the target material is 8% or more and 12% or less.
 このようにすれば、長時間焼入処理および焼戻処理が実施される従来の軸受部品の製造方法と比べて、高温下で長時間使用された場合にも寸法変化率の小さい軸受部品を得ることが出来る(詳細は後述する)。 In this way, a bearing component having a small dimensional change rate is obtained even when used at a high temperature for a long time, compared to a conventional method for manufacturing a bearing component in which a long-time quenching process and a tempering process are performed. (Details will be described later).
 軸受部品の寸法変化率は、焼入処理により対象材の母地に固溶した炭素の濃度(炭素固溶量)の影響を受ける。ただし、炭素固溶量を直接測定することは困難である。一方、対象材中の炭化物の面積率は、対象材中の炭素の固溶状態を反映する。そのため、対象材中の炭化物の面積率は、対象材中の炭素の固溶状態を精度よく予測するために用いることができる。なお、対象材の炭化物面積率は、例えば熱処理が実施された対象材を切断し、断面における炭化物の面積率を電子顕微鏡で計測することにより、測定される。 The dimensional change rate of bearing parts is influenced by the concentration of carbon (carbon solid solution amount) dissolved in the matrix of the target material by the quenching process. However, it is difficult to directly measure the amount of carbon solid solution. On the other hand, the area ratio of carbides in the target material reflects the solid solution state of carbon in the target material. Therefore, the area ratio of carbides in the target material can be used to accurately predict the solid solution state of carbon in the target material. Note that the carbide area ratio of the target material is measured, for example, by cutting the target material that has been heat-treated and measuring the area ratio of the carbide in the cross section with an electron microscope.
 上記軸受部品の製造方法において、焼入硬化工程の前に、焼ならし工程が実施されてもよい。焼きならし工程では、工程(S10)において作製された成形体がA変態点以上の温度に加熱された後、A変態点未満の温度に冷却されることにより焼ならし処理が実施される。このとき、焼ならし処理の冷却時における冷却速度は、成形体を構成する鋼がマルテンサイトに変態しない冷却速度、すなわち臨界冷却速度未満の冷却速度であればよい。そして、焼ならし処理後の成形体の硬度は、この冷却速度が大きくなると高く、冷却速度が小さくなると低くなる。そのため、当該冷却速度を調整することにより、所望の硬度を成形体に付与することができる。 In the method for manufacturing a bearing component, a normalizing step may be performed before the quench hardening step. The normalizing step, after the fabricated molded body is heated to a temperature not lower than the A 1 transformation point in the step (S10), normalizing processing is performed by being cooled to a temperature lower than the A 1 transformation point The At this time, the cooling rate at the time of cooling in the normalizing process may be a cooling rate at which the steel constituting the formed body is not transformed into martensite, that is, a cooling rate lower than the critical cooling rate. The hardness of the molded body after the normalizing treatment is high when the cooling rate is large, and is low when the cooling rate is small. Therefore, desired hardness can be imparted to the molded body by adjusting the cooling rate.
 また、本実施の形態において、軸家部品は転がり軸受の内輪に限られるものでは無い。転がり軸受の外輪、または転動体であってもよいし、深溝玉軸受やスラストニードルころ軸受の内輪、外輪、または転動体であってもよい。 Further, in this embodiment, the shaft house part is not limited to the inner ring of the rolling bearing. It may be an outer ring or a rolling element of a rolling bearing, or may be an inner ring, an outer ring, or a rolling element of a deep groove ball bearing or a thrust needle roller bearing.
 (実施の形態2)
 図1を参照して、転がり軸受の軌道輪である内輪の製造方法を例に、本実施の形態2に係る軸受部品の製造方法において説明する。本実施の形態2に係る軸受部品の製造方法は、上記内輪(軸受部品)となるべき成形体(対象材)を準備する工程(S10)と、対象材に対して焼入硬化処理を行う工程(S20)と、焼入硬化処理を行う工程(S20)の後に、対象材を加熱することにより対象材に対して焼戻処理を行う工程(S30)とを備える。
(Embodiment 2)
With reference to FIG. 1, an example of a method for manufacturing an inner ring, which is a bearing ring of a rolling bearing, will be described in the method for manufacturing a bearing component according to the second embodiment. The method for manufacturing a bearing component according to the second embodiment includes a step of preparing a molded body (target material) to be the inner ring (bearing component) (S10) and a step of performing a quench hardening process on the target material. (S20) and the process (S30) of performing a tempering process with respect to a target material by heating a target material after the process (S20) of performing a quench hardening process.
 工程(S10)では、まず、たとえば棒鋼や鋼線などの鋼材が準備される。鋼材は、例えばSUJ2からなる。次に、当該鋼材に対して切断、鍛造、旋削などの加工が施される。これにより、転がり軸受用の軌道輪などの軸受部品の概略形状に成形加工された鋼材(対象材)が作製される。 In the step (S10), first, a steel material such as a steel bar or a steel wire is prepared. The steel material is made of SUJ2, for example. Next, the steel material is subjected to processing such as cutting, forging, and turning. As a result, a steel material (target material) formed into a rough shape of a bearing component such as a bearing ring for a rolling bearing is produced.
 工程(S20)では、先の工程(S10)において準備された対象材に対し、焼入硬化処理が実施される。工程(S20)は、第1の加熱工程(S21)と、冷却工程(S22)とを含む。まず、工程(S21)において、対象材の全体がA1点以上の温度T1に加熱され、均熱のために保持時間t1(均熱時間)だけ保持される。次に、工程(S22)において、対象材がMs点(マルテンサイト変態点)以下の温度T2にまで冷却される。この冷却処理は、例えば油や水などの冷却液中に対象材が浸漬されることにより実施される。これにより、当該対象材が焼入処理される。焼入処理は、焼入処理された対象材の硬度が後述する焼戻処理された対象材の硬度超えとなるような条件で実施される。焼入処理は、例えば焼入処理された対象材の硬度が64HRC(800HV)以上66HRC(865HV)以下となるような条件で実施される。上記温度T1は例えば900℃以上1000℃以下である。保持時間t1は例えば1秒以上10分以下である。温度T2は例えば50℃以上200℃以下である。 In the step (S20), a quench hardening process is performed on the target material prepared in the previous step (S10). Step (S20) includes a first heating step (S21) and a cooling step (S22). First, in the step (S21), the entire target material is heated to a temperature T 1 that is equal to or higher than the point A 1 and is held for a holding time t 1 (soaking time) for soaking. Next, in the step (S22), the target material is cooled to a temperature T 2 that is equal to or lower than the Ms point (martensitic transformation point). This cooling process is performed by, for example, immersing the target material in a coolant such as oil or water. Thereby, the said target material is quenching-processed. The quenching process is performed under the condition that the hardness of the target material subjected to the quenching process exceeds the hardness of the target material subjected to the tempering process described later. The quenching process is performed, for example, under conditions such that the hardness of the target material subjected to the quenching process is 64 HRC (800 HV) or more and 66 HRC (865 HV) or less. The temperatures T 1 is less than 1000 ° C. For example 900 ° C. or higher. The holding time t 1 is not less than 1 second and not more than 10 minutes, for example. The temperature T 2 is, for example, not less than 50 ° C. and not more than 200 ° C.
 好ましくは、焼入処理は、焼入処理された対象材の炭化物面積率が8%以上12%以下となるような条件で実施される。例えば、温度T1が900℃の場合、焼入処理された対象材の炭化物面積率が12%以下となるように保持時間t1は11秒以上であるのが好ましく、当該炭化物面積率が8%以上となるように保持時間t1は58秒以下であるのが好ましい。温度T1が950℃の場合、焼入処理された対象材の炭化物面積率が12%以下となるように保持時間t1は3秒以上であるのが好ましく、当該炭化物面積率が8%以上となるように保持時間t1は15秒以下であるのが好ましい。すなわち、温度T1が950℃の場合、保持時間t1は3秒以上15秒以下であるのが好ましい。 Preferably, the quenching process is performed under conditions such that the carbide area ratio of the target material subjected to the quenching process is 8% or more and 12% or less. For example, when the temperature T 1 is 900 ° C., the holding time t 1 is preferably 11 seconds or longer so that the carbide area ratio of the quenched target material is 12% or less, and the carbide area ratio is 8 The holding time t 1 is preferably 58 seconds or less so as to be not less than%. When the temperature T 1 is 950 ° C., the holding time t 1 is preferably 3 seconds or more so that the carbide area ratio of the quench-treated target material is 12% or less, and the carbide area ratio is 8% or more. Thus, the holding time t 1 is preferably 15 seconds or less. That is, when the temperature T 1 is 950 ° C., the holding time t 1 is preferably 3 seconds or longer and 15 seconds or shorter.
 対象材に対する急冷は、例えば対象材が油温70℃のコールド油に浸漬されることにより実施される。 The rapid cooling of the target material is performed by, for example, immersing the target material in cold oil having an oil temperature of 70 ° C.
 工程(S30)では、先の工程(S20)において焼入硬化処理が実施された対象材に対し、焼戻処理が実施される。まず、対象材の全体がA1点未満の焼戻温度T3に加熱され、均熱のために保持時間t2(焼き戻し時間)だけ保持される。 In the step (S30), a tempering process is performed on the target material that has been subjected to the quench hardening process in the previous process (S20). First, the entire target material is heated to a tempering temperature T 3 less than the point A 1 and is held for a holding time t 2 (tempering time) for soaking.
 これにより、当該対象材が焼戻処理される。焼戻処理の焼戻温度T3(単位:K)および保持時間t2(単位:秒)は以下の関係式(2)を満たす。 Thereby, the said target material is tempered. The tempering temperature T 3 (unit: K) and the holding time t 2 (unit: second) of the tempering process satisfy the following relational expression (2).
 9.27×103/(0.51logt2+13.2)≦T3≦1.00×105/(13.2logt2+133)・・・(2)
 本発明者らは、所定の硬度を有する軸受部品を得るための焼戻処理条件について鋭意研究の結果、実験的に上記式(2)を導出した。さらに本発明者らは、当該式(2)を満たす条件で焼戻処理されて得られた軸受部品が、従来の焼戻処理されて得られた軸受部品と同等以上の特性を有していることを確認した(詳細は後述する)。
9.27 × 10 3 /(0.51 log 2 +13.2) ≦ T 3 ≦ 1.00 × 10 5 /(13.2 log 2 +133) (2)
As a result of earnest research on the tempering treatment conditions for obtaining a bearing part having a predetermined hardness, the inventors of the present invention derived the above formula (2) experimentally. Furthermore, the present inventors have a bearing component obtained by tempering under the condition satisfying the formula (2) has characteristics equivalent to or better than those obtained by conventional tempering treatment. It was confirmed (details will be described later).
 本発明者らは上記式(2)を以下の式(4)および式(5)から実験的に導出した。式(4)は、焼戻処理の焼戻温度T3(単位:K)、保持時間t2(単位:秒)および焼戻処理後の対象材の硬度M1(単位:HV)の関係を示す式である。式(4)は、非特許文献1(井上毅、「新しい焼もどしパラメータとその連続昇温曲線に沿った焼もどし効果の積算法への応用」鉄と鋼,66,10(1980)1533.)に記載されている。 The present inventors experimentally derived the above formula (2) from the following formulas (4) and (5). Equation (4) is the relationship between the tempering temperature T 3 (unit: K), the holding time t 2 (unit: second), and the hardness M 1 (unit: HV) of the target material after tempering. It is a formula which shows. Equation (4) is shown in Non-Patent Document 1 (Akira Inoue, “New tempering parameters and their application to an integrating method of tempering effects along a continuous temperature rise curve” Iron and Steel, 66, 10 (1980) 1533. )It is described in.
 M1=alogt2+b/T3+c・・・(4)
 式(5)は、焼戻処理の焼戻温度T3(単位:K)、保持時間t2(単位:秒)および焼戻処理後の対象材の残留オーステナイト量M2(単位:%)の関係を示す式である。式(5)は、特許文献2(特開平10-102137号公報)に記載されている。
M 1 = log 2 + b / T 3 + c (4)
Formula (5) is the tempering temperature T 3 (unit: K) of the tempering treatment, the holding time t 2 (unit: second), and the amount of retained austenite M 2 (unit:%) of the target material after the tempering treatment. It is a formula which shows a relationship. Expression (5) is described in Patent Document 2 (Japanese Patent Laid-Open No. 10-102137).
 M2=M0exp{-Aexp((-Q)/RT3)t2 n}・・・(5)
 本発明者らは、式(4)における定数a,b,c、および式(5)における定数M、A,Q,nを実験的に導出した。導出された定数aが-26.4、定数bが2.00×105、定数cが408であった。導出された定数Mが14.4、定数Aが6.99×105、定数Qが7.70×104、定数nが0.510であった。このようにして定数a,b,cが特定された上記式(4)は、焼戻処理条件と焼戻処理後の硬度M1との関係を予測する第1の予測式となる。このようにして定数M、A,Q,nが特定された上記式(5)は、焼戻処理条件と焼戻処理後の残留オーステナイト量M2との関係を予測する第2の予測式となる。
M 2 = M 0 exp {−Aexp ((− Q) / RT 3 ) t 2 n } (5)
The inventors experimentally derived the constants a, b, c in the equation (4) and the constants M 0 , A, Q, n in the equation (5). The derived constant a was −26.4, the constant b was 2.00 × 10 5 , and the constant c was 408. The derived constant M 0 was 14.4, the constant A was 6.99 × 10 5 , the constant Q was 7.70 × 10 4 , and the constant n was 0.510. The above formula (4) in which the constants a, b, and c are specified in this way is a first prediction formula for predicting the relationship between the tempering process conditions and the hardness M 1 after the tempering process. The above equation (5) in which the constants M 0 , A, Q, and n are specified in this way is a second prediction equation for predicting the relationship between the tempering treatment conditions and the amount of retained austenite M 2 after the tempering treatment. It becomes.
 図5は、上記第1の予測式を満たす焼戻温度T3および保持時間t2を説明するためのグラフである。図6は、上記第2の予測式を満たす焼戻温度T3および保持時間t2を説明するためのグラフである。図7は、上記第1の予測式および上記第2の予測式に基づいて算出された式(2)を満たす焼戻温度T3および保持時間t2を説明するためのグラフである。図5~図7の各横軸は焼戻温度T3(単位:K)を示し、図5~図7の各縦軸は保持時間t2(単位:秒)を示す。 FIG. 5 is a graph for explaining the tempering temperature T 3 and the holding time t 2 satisfying the first prediction formula. FIG. 6 is a graph for explaining the tempering temperature T 3 and the holding time t 2 satisfying the second prediction formula. FIG. 7 is a graph for explaining the tempering temperature T 3 and the holding time t 2 that satisfy the equation (2) calculated based on the first prediction equation and the second prediction equation. Each horizontal axis in FIGS. 5 to 7 represents the tempering temperature T 3 (unit: K), and each vertical axis in FIGS. 5 to 7 represents the holding time t 2 (unit: seconds).
 図5および図7中、線L1~3は、上記第1の予測式を満足する焼戻温度T3と保持時間t2との関係を示す曲線である。線L1は60HRC、線L2は61HRC、線L3は62HRCである軸受部品を得るための焼戻温度T3および保持時間t2の予測値を示す線である。なお、図5および図7中において、硬度が59HRCである軸受部品を得るための焼戻温度T3の予測値は、保持時間t2が0秒以上300秒以下であるときに320℃以上であった。 5 and 7, lines L1 to L3 are curves showing the relationship between the tempering temperature T 3 and the holding time t 2 that satisfy the first prediction formula. Line L1 is a line showing predicted values of tempering temperature T 3 and holding time t 2 for obtaining a bearing component of 60HRC, line L2 is 61HRC, and line L3 is 62HRC. 5 and 7, the predicted value of the tempering temperature T 3 for obtaining a bearing component having a hardness of 59 HRC is 320 ° C. or higher when the holding time t 2 is 0 second or longer and 300 seconds or shorter. there were.
 図6および図7中、線L4~6は、上記第2の予測式を満足する焼戻温度T3と保持時間t2との関係を示す曲線である。線L4は残留オーステナイト量が3%、線L5は残留オーステナイト量が4%、線L6は残留オーステナイト量が5%である軸受部品を得るための焼戻温度T3および保持時間t2の予測値を示す線である。 In FIGS. 6 and 7, lines L4 to L6 are curves showing the relationship between the tempering temperature T 3 and the holding time t 2 satisfying the second prediction formula. Line L4 residual austenite amount is 3%, the line L5 is the amount of retained austenite 4%, the line L6 is the predicted value of the tempering temperature T 3 and the holding time t 2 for the amount of retained austenite obtain a bearing part is 5% It is a line which shows.
 焼戻処理の焼戻温度T3および保持時間t2は、例えば図7中の線L5上、ならびに線L5よりも焼戻温度T3が高温側、または線L5よりも保持時間t2が長い側に位置する座標のうちから任意に選択され得る。好ましくは、保持時間t2は、300秒以下である。 Tempering temperature T 3 and the holding time t 2 of the tempering process, for example on line L5 in FIG. 7, and tempering temperature T 3 is longer holding time t 2 than the high temperature side or line L5, than the line L5 It can be arbitrarily selected from the coordinates located on the side. Preferably, the retention time t 2 is 300 seconds or less.
 次に、工程(S40)として仕上工程が実施される。この工程(S40)では、たとえば転走面に対して研磨加工などの仕上げ加工が実施される。以上により、転がり軸受の内輪が完成し、本実施の形態における内輪の製造は完了する。 Next, a finishing process is performed as a process (S40). In this step (S40), for example, finishing such as polishing is performed on the rolling surface. Thus, the inner ring of the rolling bearing is completed, and the manufacture of the inner ring in the present embodiment is completed.
 以上のように、本実施の形態に係る軸受部品の製造方法によれば、高温短時間の焼戻処理が実施される。そのため、本実施の形態に係る軸受部品の製造方法によれば、焼戻処理が従来の軸受部品の製造方法と比べて、焼戻処理における保持時間が従来の軸受部品の製造方法と比べて短く、さらに、加熱装置の大型化が抑制されている。その結果、本実施の形態に係る軸受部品の製造方法によれば、従来の軸受部品の製造方法と比べて、製造コストが低減されている。 As described above, according to the method for manufacturing a bearing component according to the present embodiment, a tempering process at a high temperature for a short time is performed. Therefore, according to the method for manufacturing a bearing component according to the present embodiment, the tempering process has a shorter holding time in the tempering process than the conventional method for manufacturing a bearing part compared to the conventional method for manufacturing a bearing part. Furthermore, the enlargement of the heating device is suppressed. As a result, according to the bearing component manufacturing method according to the present embodiment, the manufacturing cost is reduced as compared with the conventional bearing component manufacturing method.
 さらに、本実施の形態に係る軸受部品の製造方法によれば、焼戻処理を行う工程における焼戻温度T3(単位:K)および保持時間t2(単位:秒)が上記式(2)を満たす。上記式(2)は、従来の軸受部品と同等以上の硬度を示し、かつ従来の軸受部品と同等以下の残留オーステナイト量を示す軸受部品を焼戻処理により得ることが出来るように、本発明者らが実験的に算出したものである(詳細は後述する)。そのため、JIS規格SUJ2からなる対象材に対し、上記式(2)を満たす焼戻温度T3(単位:K)および保持時間t2(単位:秒)で焼戻処理を施すことにより得られる本実施の形態に係る軸受部品は、従来の軸受部品と同等以上の硬度を有し、かつ、従来の軸受部品と同等以下の寸法変化率を有している。 Furthermore, according to the method for manufacturing a bearing component according to the present embodiment, the tempering temperature T 3 (unit: K) and the holding time t 2 (unit: second) in the tempering process are expressed by the above formula (2). Meet. The above formula (2) shows that the present inventor can obtain a bearing part having a hardness equal to or higher than that of a conventional bearing part and a residual austenite amount equal to or lower than that of a conventional bearing part by tempering. Have been experimentally calculated (details will be described later). Therefore, a book obtained by subjecting a target material made of JIS standard SUJ2 to a tempering treatment at a tempering temperature T 3 (unit: K) and a holding time t 2 (unit: second) satisfying the above formula (2). The bearing component according to the embodiment has a hardness equal to or higher than that of a conventional bearing component and a dimensional change rate equal to or lower than that of a conventional bearing component.
 上記高炭素クロム軸受鋼は、JIS規格SUJ2である。本実施の形態に係る軸受部品の製造方法によれば、JIS規格SUJ2からなる軸受部品の製造方法に好適である。 The high carbon chrome bearing steel is JIS standard SUJ2. The bearing component manufacturing method according to the present embodiment is suitable for a bearing component manufacturing method comprising JIS standard SUJ2.
 上記焼戻処理を行う工程では、保持時間t2(焼き戻し時間)が300秒以内であるのが好ましい。従来の軸受部品の製造方法において、焼き戻し時間は比較的長時間であり、例えば2時間以上5時間以下程度である。これに対し、本実施の形態に係る軸受部品の製造方法によれば、保持時間t2(焼き戻し時間)は300秒以内とされ得る。実施の形態に係る軸受部品の製造方法によれば、上記従来の軸受部品の製造方法と比べて、焼戻処理における保持時間が従来の軸受部品の製造方法と比べて短く、製造コストが低減されている。本発明者らは、このような焼戻処理が施された鋼材が、軸受部品に要求される硬度を有していることを確認した(詳細は後述する)。さらに、本発明者らは、このような焼戻処理が施された鋼材が、軸受部品に要求される寸法変化率を実現し得る残留オーステナイト量を有していることを確認した(詳細は後述する)。 In the step of performing the tempering treatment, the holding time t 2 (tempering time) is preferably within 300 seconds. In the conventional method for manufacturing a bearing component, the tempering time is relatively long, for example, about 2 hours to 5 hours. On the other hand, according to the method for manufacturing a bearing component according to the present embodiment, the holding time t 2 (tempering time) can be within 300 seconds. According to the bearing component manufacturing method according to the embodiment, the holding time in the tempering process is shorter than the conventional bearing component manufacturing method, and the manufacturing cost is reduced, compared with the conventional bearing component manufacturing method. ing. The present inventors have confirmed that the steel material that has been subjected to such a tempering treatment has the hardness required for the bearing component (details will be described later). Furthermore, the present inventors have confirmed that the steel material subjected to such tempering treatment has a retained austenite amount capable of realizing a dimensional change rate required for the bearing component (details will be described later). To do).
 なお、上記軸受部品の製造方法において、焼入硬化工程の前に、焼ならし工程が実施されてもよい。焼きならし工程では、工程(S10)において作製された成形体がA変態点以上の温度に加熱された後、A変態点未満の温度に冷却されることにより焼ならし処理が実施される。このとき、焼ならし処理の冷却時における冷却速度は、成形体を構成する鋼がマルテンサイトに変態しない冷却速度、すなわち臨界冷却速度未満の冷却速度であればよい。そして、焼ならし処理後の成形体の硬度は、この冷却速度が大きくなると高く、冷却速度が小さくなると低くなる。そのため、当該冷却速度を調整することにより、所望の硬度を成形体に付与することができる。 In the method for manufacturing the bearing component, a normalizing step may be performed before the quench hardening step. The normalizing step, after the fabricated molded body is heated to a temperature not lower than the A 1 transformation point in the step (S10), normalizing processing is performed by being cooled to a temperature lower than the A 1 transformation point The At this time, the cooling rate at the time of cooling in the normalizing process may be a cooling rate at which the steel constituting the formed body is not transformed into martensite, that is, a cooling rate lower than the critical cooling rate. The hardness of the molded body after the normalizing treatment is high when the cooling rate is large, and is low when the cooling rate is small. Therefore, desired hardness can be imparted to the molded body by adjusting the cooling rate.
 また、本実施の形態において、軸受部品は転がり軸受の内輪に限られるものでは無い。転がり軸受の外輪、または転動体であってもよいし、深溝玉軸受やスラストニードルころ軸受の内輪、外輪、または転動体であってもよい。 Further, in the present embodiment, the bearing component is not limited to the inner ring of the rolling bearing. It may be an outer ring or a rolling element of a rolling bearing, or may be an inner ring, an outer ring, or a rolling element of a deep groove ball bearing or a thrust needle roller bearing.
 次に、実施の形態1に係る実施例について説明する。本実施例では、上記式(3)から上記式(1)を実験的に導出した手法について説明する。 Next, examples according to the first embodiment will be described. In this embodiment, a method of experimentally deriving the above equation (1) from the above equation (3) will be described.
 まず、JIS規格SUJ2からなる試験片を準備した。表1に、試験片の成分組成を示す。 First, a test piece made of JIS standard SUJ2 was prepared. Table 1 shows the component composition of the test piece.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記試験片に対し、焼入処理を行った。焼入処理の温度T1は900℃以上950℃以下、保持時間t1は3秒以上60秒以下、温度T2は100℃とした。 The test piece was quenched. The quenching temperature T 1 was 900 ° C. or more and 950 ° C. or less, the holding time t 1 was 3 seconds or more and 60 seconds or less, and the temperature T 2 was 100 ° C.
 次に、焼入処理が施された試験片に対し、焼戻処理を行った。焼戻処理は、表2に示される14通りの条件とした。これにより、試料1~14を作製した。 Next, a tempering treatment was performed on the test piece subjected to the quenching treatment. The tempering treatment was performed under the 14 conditions shown in Table 2. Thus, samples 1 to 14 were produced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試料1~14に対し、ビッカース硬度計を用いてビッカース硬度を測定した。試料1~14について測定されたビッカース硬度を、表2の実測硬度の欄に示す。上記式(3)において、試料1~14についての焼戻処理の焼戻温度T3,保持時間T2、および上記実測硬度を代入し、定数a,b,cを算出した。算出された定数a,b,cの値の分布から、式(3)に定数a,b,cの値を代入して求めた硬度(推定硬度)と実測硬度との差の合計が最小となるような値として、定数aが-19.6、定数bが2.21×105、定数cが347であることが確認された。 For samples 1 to 14, the Vickers hardness was measured using a Vickers hardness tester. The Vickers hardness measured for samples 1 to 14 is shown in the column of measured hardness in Table 2. In the above equation (3), the constants a, b, and c were calculated by substituting the tempering temperature T 3 , the holding time T 2 , and the measured hardness for the samples 1 to 14. From the distribution of the calculated values of constants a, b, and c, the sum of the differences between the hardness (estimated hardness) obtained by substituting the values of constants a, b, and c into equation (3) and the measured hardness is minimum. As a result, it was confirmed that the constant a was −19.6, the constant b was 2.21 × 10 5 , and the constant c was 347.
 実施の形態1に係る軸受部品の製造方法と同等の方法により得られた試料に対し、軸受部品に要求される特性について評価した。 The characteristics required for the bearing parts were evaluated for the samples obtained by the same method as the method for manufacturing the bearing parts according to the first embodiment.
 まず、JIS規格SUJ2からなる試験片を準備した。試験片の成分組成は、上記表1に示した通りである。試験片の形状は環状とした。試験片の寸法は、外径が60mm、内径が54mm、軸方向における幅が15mmとした。 First, a test piece made of JIS standard SUJ2 was prepared. The component composition of the test piece is as shown in Table 1 above. The shape of the test piece was annular. The dimensions of the test piece were an outer diameter of 60 mm, an inner diameter of 54 mm, and an axial width of 15 mm.
 上記試験片に対し、焼入処理よび焼戻処理を行うことにより、実施例に係る試料15~27を作成した。表3に、試料15~27に対する焼入処理および焼戻処理の条件を示す。 The samples 15 to 27 according to the examples were prepared by subjecting the test pieces to quenching and tempering. Table 3 shows the quenching and tempering conditions for Samples 15 to 27.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (試料15~26)
 上記試験片に対し、焼入処理後の炭化物面積率が8%または12%となるように、焼入処理を施した。
(Samples 15-26)
The test piece was subjected to quenching so that the carbide area ratio after quenching was 8% or 12%.
 試料15~17は、焼入処理後の上記試験片の炭化物面積率が8%となるように、温度T1が900℃かつ保持時間t1が58秒の条件で焼入処理されたものである。試料21~23は、焼入処理後の上記試験片の炭化物面積率が8%となるように、温度T1が950℃かつ保持時間t1が15秒の条件で焼入処理されたものである。 Samples 15 to 17 were subjected to a quenching process under the conditions of a temperature T 1 of 900 ° C. and a holding time t 1 of 58 seconds so that the carbide area ratio of the test piece after the quenching process was 8%. is there. Samples 21 to 23 were subjected to a quenching process under the conditions of a temperature T 1 of 950 ° C. and a holding time t 1 of 15 seconds so that the carbide area ratio of the test piece after the quenching process was 8%. is there.
 試料18~試料20は、焼入処理後の上記試験片の炭化物面積率が12%となるように、温度T1が900℃かつ保持時間t1が11秒の条件で焼入処理されたものである。試料24~26は、焼入処理後の上記試験片の炭化物面積率が12%となるように、温度T1が950℃かつ保持時間t1が3秒の条件で焼入処理されたものである。 Samples 18 to 20 were subjected to quenching treatment under the conditions of a temperature T 1 of 900 ° C. and a holding time t 1 of 11 seconds so that the carbide area ratio of the above-mentioned specimen after quenching treatment was 12%. It is. Samples 24 to 26 were subjected to quenching treatment under the conditions of a temperature T 1 of 950 ° C. and a holding time t 1 of 3 seconds so that the carbide area ratio of the test piece after quenching treatment was 12%. is there.
 試料15~26は、上記のように焼入処理された試験片が焼戻処理後の硬度が60HRCまたは62HRCとなるように焼戻処理されたものである。 Samples 15 to 26 were obtained by tempering the specimens quenched as described above so that the hardness after tempering was 60 HRC or 62 HRC.
 試料15,18,21,24は、焼戻処理後の硬度が62HRCとなるように、焼戻温度T3が180℃、時間t2が7200秒の条件で焼戻処理されたものである。試料16,19,22,25は、焼戻処理後の硬度が62HRCとなるように、焼戻温度T3が240℃、時間t2が43秒の条件で焼戻処理されたものである。 Samples 15, 18, 21, and 24 were tempered under conditions of a tempering temperature T 3 of 180 ° C. and a time t 2 of 7200 seconds so that the hardness after tempering was 62 HRC. Samples 16, 19, 22, and 25 were tempered under conditions of a tempering temperature T 3 of 240 ° C. and a time t 2 of 43 seconds so that the hardness after tempering was 62 HRC.
 試料17,20,23,26は、焼戻処理後の硬度が60HRCとなるように、焼戻温度T3が310℃、時間t2が37秒の条件で焼戻処理されたものである。 Samples 17, 20, 23, and 26 were tempered under conditions of a tempering temperature T 3 of 310 ° C. and a time t 2 of 37 seconds so that the hardness after tempering was 60 HRC.
 (試料27)
 比較例としての試料27は、焼入処理後の上記試験片の炭化物面積率が8%となるように焼入処理された後、焼戻処理後の硬度が62HRCとなるように、焼戻し処理されたものである。焼入温度は850℃、保持時間は30分とした。焼戻温度は180℃、保持時間は7200秒とした。
(Sample 27)
Sample 27 as a comparative example was tempered so that the hardness after tempering was 62 HRC after quenching so that the carbide area ratio of the test piece after quenching was 8%. It is a thing. The quenching temperature was 850 ° C. and the holding time was 30 minutes. The tempering temperature was 180 ° C. and the holding time was 7200 seconds.
 <寸法変化率>
 試料15~27の寸法変化率を以下のように評価した。試料15~27を230℃に加熱して2時間保持し、各試料について加熱前後での寸法変化率を算出した。表4に、同一の焼入処理条件で作製された試料15~17、試料18~20、試料21~23、試料24~26の寸法変化率の平均値を示す。
<Dimensional change rate>
The dimensional change rates of Samples 15 to 27 were evaluated as follows. Samples 15 to 27 were heated to 230 ° C. and held for 2 hours, and the dimensional change rate before and after heating was calculated for each sample. Table 4 shows the average values of the dimensional change rates of Samples 15 to 17, Samples 18 to 20, Samples 21 to 23, and Samples 24 to 26 produced under the same quenching treatment conditions.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、試料15~26の寸法変化率は、50×10-5%未満であり、試料27の寸法変化率よりも小さいことが確認された。 As shown in Table 4, it was confirmed that the dimensional change rate of Samples 15 to 26 was less than 50 × 10 −5 %, which was smaller than the dimensional change rate of Sample 27.
 <静的圧壊強度>
 試料15~27の静的圧壊強度を引張試験機((株)島津製作所製の「オートグラフ」)を用いて評価した。試料15~27に対して荷重を負荷するクロスヘッドの速度は、1mm/分とした。試料が破断したときの荷重を応力に換算したものを、静的圧壊強度とした。各試料に対し本評価を3回行った。図3は、3回の評価により算出された静的圧壊強度の平均値を示す。なお図3におけるバーは、3回の評価により算出された静的圧壊強度の標準偏差を示している。
<Static crushing strength>
The static crushing strength of Samples 15 to 27 was evaluated using a tensile tester (“Autograph” manufactured by Shimadzu Corporation). The speed of the crosshead that applies a load to the samples 15 to 27 was 1 mm / min. The static crushing strength was obtained by converting the load when the sample broke into stress. This evaluation was performed three times for each sample. FIG. 3 shows the average value of the static crushing strength calculated by three evaluations. In addition, the bar in FIG. 3 has shown the standard deviation of the static crushing strength calculated by three evaluations.
 試料15~26の静的圧壊強度と試料27の静的圧壊強度とについて、有意水準1%で有意差検定を行った。その結果、試料15~26の静的圧壊強度は、試料27の静的圧壊強度と同等以上であることが確認された。 A significant difference test was performed at a significance level of 1% between the static crushing strength of samples 15 to 26 and the static crushing strength of sample 27. As a result, it was confirmed that the static crushing strengths of the samples 15 to 26 were equal to or higher than the static crushing strength of the sample 27.
 <せん断疲労強度>
 試料15~27のせん断疲労強度を超音波ねじり疲労試験機(自社製(非特許文献2(坂中則暁ほか、「転がり軸受用鋼の超長寿命域までのせん断疲労特性の迅速評価」NTN TECHNICAL REVIEW,79(2011)104.)において記載されている.))を用いて評価した。負荷周波数は20kHzとした。負荷と休止とを交互に繰り返す間欠負荷法を用いた。負荷回数は最大1010回とした。負荷回数が1010回に達しても破損しない場合、評価は打ち切りとした。このようにして試料15~27について負荷回数と応力振幅との関係を求めた。得られた値を日本材料学会の金属材料疲労信頼性標準JSMS-SD-6-02の疲労限度型折れ線モデルにあてはめS-N線図を作成した。
<Shear fatigue strength>
Ultrasonic torsional fatigue testing machine (Non-Patent Document 2 (Norioka Sakanaka et al., “Rapid evaluation of shear fatigue properties of rolling bearing steels up to ultra-long life” NTN) TECHNIC REVIEW, 79 (2011) 104.).)). The load frequency was 20 kHz. An intermittent loading method was used in which loading and rest were alternately repeated. The maximum number of loads was 10 10 times. If the load did not break even when the number of loadings reached 10 10 times, the evaluation was terminated. In this way, the relationship between the number of loadings and the stress amplitude was obtained for samples 15 to 27. An SN graph was created by applying the obtained values to a fatigue limit type broken line model of JSMS-SD-6-02, a metal material fatigue reliability standard of the Japan Society of Materials Science.
 図4は、上記関係から導かれた、負荷回数が3×109回であるときに試料15~27が破損されるために必要とされる応力振幅を示す。なお図4におけるバーは、上記モデルから算出された応力振幅の標準偏差を示している。3×109回という負荷回数は、最大接触面圧Pmaxを2.5GPaとして寿命試験を行った場合に、疲労破壊が生じ得る負荷回数である。負荷回数が3×109回であるときに試料15~27が破損されるために必要とされる応力振幅の上限値を試料15~27のせん断疲労強度とする。せん断疲労強度の標準偏差が応力によらず一定であるとし、試料15~26のせん断疲労強度と試料27のせん断疲労強度とについて、有意水準5%で有意差検定を行った。その結果、試料15~26のせん断疲労強度は、試料27のせん断疲労強度と同等であることが確認された。 FIG. 4 shows the stress amplitude required for the samples 15 to 27 to be damaged when the number of times of loading is 3 × 10 9 derived from the above relationship. Note that the bar in FIG. 4 indicates the standard deviation of the stress amplitude calculated from the above model. The number of loads of 3 × 10 9 times is the number of loads at which fatigue failure can occur when a life test is performed with the maximum contact surface pressure Pmax being 2.5 GPa. The upper limit value of the stress amplitude required for damaging the samples 15 to 27 when the number of times of loading is 3 × 10 9 times is defined as the shear fatigue strength of the samples 15 to 27. Assuming that the standard deviation of the shear fatigue strength is constant regardless of the stress, the shear fatigue strength of samples 15 to 26 and the shear fatigue strength of sample 27 were subjected to a significant difference test at a significance level of 5%. As a result, it was confirmed that the shear fatigue strengths of Samples 15 to 26 were equivalent to the shear fatigue strength of Sample 27.
 次に、実施の形態2に係る実施例について説明する。本実施例3では、上記式(4)および式(5)を導出した手法、および上記式(4)および式(5)から上記式(2)を実験的に導出した手法について説明する。具体的には、(1)まず、パラメータスタディにより、焼戻処理条件(焼戻温度T3および保持時間t2)、硬度および残留オーステナイト量について実測値を取得した。(2)次に、取得された各実測値に基づいて、上記式(4)および上記式(5)の各定数を算出した。(3)次に、各定数が特定された上記式(4)および式(5)に基づき、軸受部品の硬度および残留オーステナイト量が所定の値となるような焼戻処理条件の範囲としての上記式(2)を導出した。 Next, an example according to the second embodiment will be described. In the third embodiment, a method for deriving the above equations (4) and (5) and a method for experimentally deriving the above equation (2) from the above equations (4) and (5) will be described. Specifically, (1) First, measured values were obtained for tempering treatment conditions (tempering temperature T 3 and holding time t 2 ), hardness, and retained austenite amount by parameter study. (2) Next, the constants of the above formula (4) and the above formula (5) were calculated based on the obtained actual measurement values. (3) Next, based on the above formulas (4) and (5) in which each constant is specified, the above as a range of tempering treatment conditions in which the hardness of the bearing parts and the retained austenite amount become predetermined values. Equation (2) was derived.
 (1)パラメータスタディによる実測値の取得
 まず、JIS規格SUJ2からなる試験片を準備した。試験片の成分組成は、上記表1に示されたものと同等である。
(1) Acquisition of measured value by parameter study First, a test piece made of JIS standard SUJ2 was prepared. The component composition of the test piece is equivalent to that shown in Table 1 above.
 上記試験片に対し、焼入処理を行った。焼入処理の温度T1は950℃、保持時間t1は15秒とした。保持時間t1経過後、試験片を油温70℃のコールド油に浸漬させて焼入れ冷却した。温度T2は100℃程度とした。焼入処理後の試験片の硬度は64.5HRCであり、該試験片の残留オーステナイト量は14.7%であった。 The test piece was quenched. The quenching temperature T 1 was 950 ° C., and the holding time t 1 was 15 seconds. After holding time t 1 , the test piece was immersed in cold oil having an oil temperature of 70 ° C. and quenched and cooled. The temperature T 2 was about 100 ° C. The hardness of the test piece after the quenching treatment was 64.5 HRC, and the amount of retained austenite of the test piece was 14.7%.
 次に、焼入処理が施された試験片に対し、焼戻処理を行った。焼戻処理条件は、表5に示される15通りの条件とした。これにより、それぞれ異なる条件で焼戻処理された試料28~42を作製した。15通りの焼戻処理条件は、5通りの焼戻温度T3240℃,260℃,280℃,300℃,320℃と、3通りの保持時間t219秒,74秒,300秒との組み合わせとした。 Next, a tempering treatment was performed on the test piece subjected to the quenching treatment. The tempering conditions were 15 conditions shown in Table 5. Thus, samples 28 to 42 tempered under different conditions were produced. Fifteen tempering treatment conditions are five tempering temperatures T 3 240 ° C., 260 ° C., 280 ° C., 300 ° C., 320 ° C., and three holding times t 2 19 seconds, 74 seconds, 300 seconds. It was a combination.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記焼戻処理が施された試料28~42に対し、ビッカース硬度計を用いてビッカース硬度を測定した。さらに、上記焼戻処理が施された試料28~42に対し、X線回折装置を用いて残留オーステナイト量を測定した。試料28~42について、焼戻処理条件、測定されたビッカース硬度および残留オーステナイト量を、表5に示す。 Vickers hardness was measured using a Vickers hardness tester on samples 28 to 42 that had been tempered. Further, the amount of retained austenite was measured for the samples 28 to 42 subjected to the tempering treatment using an X-ray diffractometer. Table 5 shows the tempering conditions, the measured Vickers hardness, and the amount of retained austenite for Samples 28 to 42.
 (2)式(4)および式(5)の各定数の算出
 上記(1)において取得された試料28~42の実測値に基づいて、式(4)および式(5)の各定数を算出した。
(2) Calculation of constants of formula (4) and formula (5) Calculation of constants of formula (4) and formula (5) based on the actual measurement values of samples 28 to 42 obtained in (1) above. did.
 試料28~42の焼戻温度T3、保持時間t2、硬度の実測値の各々を、式(4)の定数T、t、Mに代入し、定数a,b,cを算出した。算出された値の分布から最適な値として、定数aが-26.4、定数bが2.00×105、定数cが408であることが確認された。このようにして定数a,b,cが特定された式(4)は、焼戻処理条件と焼戻処理後の硬度との関係を予測する第1の予測式とされた。図5および図7中の線L1~L3の各々は、当該第1の予測式に基づき、所定の硬度を有する軸受部品を得るための焼戻処理条件を示している。 The tempering temperature T 3 , the holding time t 2 , and the actually measured values of hardness of the samples 28 to 42 were substituted into the constants T, t, and M in the equation (4), and the constants a, b, and c were calculated. From the calculated distribution of values, it was confirmed that the constant a was −26.4, the constant b was 2.00 × 10 5 , and the constant c was 408. Equation (4) in which the constants a, b, and c are specified in this manner is a first prediction equation for predicting the relationship between the tempering treatment conditions and the hardness after the tempering treatment. Each of the lines L1 to L3 in FIGS. 5 and 7 indicates tempering processing conditions for obtaining a bearing component having a predetermined hardness based on the first prediction formula.
 試料28~42の焼戻温度T3、保持時間t2、残留オーステナイト量の実測値の各々を、式(5)の定数T、t、Mに代入し、定数M0,A,Q,nを算出した。算出された値の分布から最適な値として、定数M0が14.4、定数Aが6.99×105、定数Qが7.70×104、定数nが0.510であることが確認された。式(5)において、定数M0は焼戻処理前の各試料の残留オーステナイト量を意味する。算出された定数M0は、試験片の焼入れ処理後の残留オーステナイト量14.7%と同等の値であり、妥当な値であることが確認された。このようにして定数M0,A,Q,nが特定された式(5)は、焼戻処理条件と焼戻処理後の残留オーステナイト量との関係を予測する第2の予測式とされた。図6および図7中の線L4~L6の各々は、当該第2の予測式に基づき、所定の残留オーステナイト量を有する軸受部品を得るための焼戻処理条件を示している。 The tempering temperature T 3 , the holding time t 2 , and the actual measurement values of the retained austenite amount of the samples 28 to 42 are substituted into the constants T, t, M in the equation (5), and the constants M 0 , A, Q, n Was calculated. As an optimum value from the calculated distribution of values, the constant M 0 is 14.4, the constant A is 6.99 × 10 5 , the constant Q is 7.70 × 10 4 , and the constant n is 0.510. confirmed. In equation (5), the constant M 0 means the amount of retained austenite of each sample before tempering. The calculated constant M 0 is a value equivalent to the amount of retained austenite after the quenching treatment of the test piece, 14.7%, and was confirmed to be a reasonable value. Equation (5) in which the constants M 0 , A, Q, and n are specified in this way is a second prediction equation for predicting the relationship between the tempering treatment conditions and the amount of retained austenite after the tempering treatment. . Each of lines L4 to L6 in FIG. 6 and FIG. 7 indicates tempering conditions for obtaining a bearing component having a predetermined retained austenite amount based on the second prediction formula.
 (3)上記式(2)の導出
 上記(1)および(2)において導出された上記第1の予測式および上記第2の予測式に基づいて、焼戻処理後の硬度および残留オーステナイト量の各々が所定の値となるための焼戻処理条件を示す式(2)を導出した。具体的には、焼戻処理後の硬度が59HRC以上(674HV以上)、焼戻処理後の残留オーステナイト量が4%以下となるための焼戻処理条件を示すものとして、式(2)を導出した。図7において、当該式(2)を満足する焼戻温度T3および保持時間t2は、線5上、および線5よりも縦軸において上側(横軸において右側)に位置する座標として示されている。
(3) Derivation of Formula (2) Based on the first prediction formula and the second prediction formula derived in (1) and (2) above, the hardness after tempering and the amount of retained austenite Formula (2) which shows the tempering process conditions for each to become a predetermined value was derived | led-out. Specifically, formula (2) is derived as showing the tempering treatment conditions for the hardness after tempering to be 59 HRC or more (674 HV or more) and the amount of retained austenite after tempering to be 4% or less. did. In FIG. 7, the tempering temperature T 3 and the holding time t 2 satisfying the expression (2) are shown as coordinates located on the line 5 and on the upper side of the vertical axis from the line 5 (right side on the horizontal axis). ing.
 なお、式(2)により示される焼戻処理条件は、上記従来の転がり軸受の製造方法により得られる転がり軸受と同等以上の硬度を有し、かつ当該転がり軸受と同等以下の残留オーステナイト量を有する転がり軸受を製造するための条件である。 In addition, the tempering process conditions shown by Formula (2) have the hardness more than equivalent to the rolling bearing obtained by the manufacturing method of the said conventional rolling bearing, and have the amount of residual austenite equivalent to or less than the said rolling bearing. This is a condition for manufacturing a rolling bearing.
 本発明者らは、本実施例における上記試験片と同一の成分組成を示すJIS規格SUJ2からなる試験片に、上記従来の転がり軸受の製造方法と同様の焼入処理および焼戻処理を施し、比較例の試料を複数作製した。比較例の試料に対する焼入処理および焼戻処理の条件は、焼戻処理後の硬度が60HRC程度、残留オーステナイト量が4%程度となる条件とした。 The present inventors performed a quenching treatment and a tempering treatment similar to those of the conventional rolling bearing manufacturing method on a test piece made of JIS standard SUJ2 having the same component composition as the above-described test piece in this example, A plurality of samples of comparative examples were produced. The conditions for the quenching treatment and the tempering treatment for the sample of the comparative example were such that the hardness after the tempering treatment was about 60 HRC and the amount of retained austenite was about 4%.
 具体的には、焼入温度は855℃、保持時間は30分以上55以下とした。焼入処理は、Rガス(一酸化炭素(CO)、水素(H2)、窒素(N2)、二酸化炭素(CO2)の各組成比が約20%、約30%、約50%、約1%未満)の雰囲気下で行った。上記保持時間の経過後、試験片を油温60℃以上100℃以下のコールド油に浸漬させて焼入れ冷却した。焼戻温度は230℃、保持時間は2時間以上3時間以下とした。焼戻処理は、上記Rガス雰囲気下で行った。このようにして得られた比較例試料の硬度の最小値は60HRCであり、該比較例試料の残留オーステナイト量の最大値は4.1%であった。 Specifically, the quenching temperature was 855 ° C., and the holding time was 30 minutes or more and 55 or less. In the quenching treatment, each composition ratio of R gas (carbon monoxide (CO), hydrogen (H 2 ), nitrogen (N 2 ), carbon dioxide (CO 2 ) is about 20%, about 30%, about 50%, Less than about 1%). After the elapse of the holding time, the test piece was immersed in cold oil having an oil temperature of 60 ° C. or higher and 100 ° C. or lower and quenched and cooled. The tempering temperature was 230 ° C., and the holding time was 2 hours or more and 3 hours or less. The tempering process was performed in the R gas atmosphere. The minimum value of the hardness of the comparative example sample thus obtained was 60 HRC, and the maximum value of the retained austenite amount of the comparative example sample was 4.1%.
 上記実施例および上記比較例の結果から、本実施の形態に係る転がり軸受の製造方法によれば、上記従来の軸受部品の製造方法と比べて、高い焼戻温度T3、かつ短い保持時間t2で焼戻処理を行うことにより、従来の軸受部品と同等以上の材料特性を有する転がり軸受を得ることが出来ることが確認された。 From the results of the above examples and comparative examples, the rolling bearing manufacturing method according to the present embodiment has a higher tempering temperature T 3 and a shorter holding time t compared to the conventional bearing component manufacturing method. It was confirmed that a rolling bearing having material properties equivalent to or better than conventional bearing parts can be obtained by tempering in 2 .
 本実施例4では、上記第2の予測式および上記第3の予測式の予測精度を評価した。具体的には、上記式(2)を満足する焼戻処理条件により焼き戻し処理が施された試料の硬度および残留オーステナイト量と、当該条件としたときに上記第2の予測式および上記第3の予測式から予測される硬度および残留オーステナイト量とを比較した。 In Example 4, the prediction accuracy of the second prediction formula and the third prediction formula was evaluated. Specifically, the hardness and the amount of retained austenite of the sample subjected to the tempering treatment under the tempering treatment conditions satisfying the equation (2), and the second prediction equation and the third The hardness and the amount of retained austenite predicted from the prediction formula were compared.
 まず、実施例3と同様に、JIS規格SUJ2からなり、表1に示される成分組成を示す試験片を準備した。上記試験片に対し、実施例3と同様の焼入処理を施した。焼入処理の温度T1は950℃、保持時間t1は15秒とした。保持時間t1経過後、試験片を油温70℃のコールド油に浸漬させて焼入れ冷却した。温度T2は100℃程度とした。焼入処理後の試験片の硬度は64.5HRCであり、該試験片の残留オーステナイト量は14.7%であった。 First, similarly to Example 3, a test piece composed of JIS standard SUJ2 and having the component composition shown in Table 1 was prepared. The test piece was subjected to the same quenching treatment as in Example 3. The quenching temperature T 1 was 950 ° C., and the holding time t 1 was 15 seconds. After holding time t 1 , the test piece was immersed in cold oil having an oil temperature of 70 ° C. and quenched and cooled. The temperature T 2 was about 100 ° C. The hardness of the test piece after the quenching treatment was 64.5 HRC, and the amount of retained austenite of the test piece was 14.7%.
 次に、上記式(2)を満足する4通りの焼戻処理条件(焼戻温度T3および保持時間t2)で、上記試験片に対し焼戻処理を施した。表6に、4通りの焼戻処理条件を示す。当該焼戻処理が施された試料43~46に対し、ビッカース硬度計を用いてビッカース硬さを測定し,ロックウェル硬さに換算した。さらに、当該焼戻処理が施された試料43~46に対し、X線回折装置を用いて残留オーステナイト量を測定した。表6に、試料43~46のロックウェル硬さおよび残留オーステナイト量の実測値と、各焼戻処理条件において上記第1の予測式および上記第2の予測式により算出されるロックウェル硬さおよび残留オーステナイト量の予測値とを、表6に示す。 Next, the above formula tempered condition four kinds which satisfies (2) (tempering temperature T 3 and the holding time t 2), it was subjected to tempering process on the test strip. Table 6 shows four tempering treatment conditions. The samples 43 to 46 subjected to the tempering treatment were measured for Vickers hardness using a Vickers hardness tester and converted to Rockwell hardness. Further, the amount of retained austenite was measured for the samples 43 to 46 subjected to the tempering treatment using an X-ray diffractometer. Table 6 shows the measured values of the Rockwell hardness and residual austenite amount of samples 43 to 46, and the Rockwell hardness calculated by the first prediction formula and the second prediction formula under each tempering treatment condition. Table 6 shows the predicted value of the amount of retained austenite.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、試料43~46のロックウェル硬さの各実測値は、当該条件としたときに上記第2の予測式および上記第3の予測式から予測されるロックウェル硬さの各予測値と、よく一致していることが確認された。ロックウェル硬さに関し、上記予測値に対する上記実測値と上記予測値との差は、3%以下であった。また、試料43~46のロックウェル硬さの各実測値は、59HRC以上であることが確認された。 As shown in Table 6, the measured values of the Rockwell hardness of the samples 43 to 46 are the Rockwell hardness predicted from the second prediction formula and the third prediction formula when the conditions are satisfied. It was confirmed that it was in good agreement with each predicted value. Regarding Rockwell hardness, the difference between the measured value and the predicted value with respect to the predicted value was 3% or less. Further, it was confirmed that the measured values of Rockwell hardness of Samples 43 to 46 were 59 HRC or more.
 表6に示されるように、試料43~46の残留オーステナイト量の各実測値は、当該条件としたときに上記第2の予測式および上記第3の予測式から予測される残留オーステナイト量の各予測値と、よく一致していることが確認された。また、試料43~46の残留オーステナイト量の各実測値は、4%以下であることが確認された。 As shown in Table 6, the measured values of the retained austenite amounts of the samples 43 to 46 are the respective values of the retained austenite amounts predicted from the second prediction formula and the third prediction formula when the conditions are satisfied. It was confirmed that it was in good agreement with the predicted value. In addition, it was confirmed that each measured value of the retained austenite amount of Samples 43 to 46 was 4% or less.
 以上により、上記第2の予測式および上記第3の予測式の予測精度が高いことが確認された。また、上記式(2)を満足する焼戻処理条件により焼戻処理が実施されて得られた本実施例4に係る各試料は、上記比較例と同等以上の硬度を有し、かつ上記比較例と同等以下の残留オーステナイト量を有することが確認された。 From the above, it was confirmed that the second prediction formula and the third prediction formula have high prediction accuracy. In addition, each sample according to Example 4 obtained by performing the tempering process under the tempering process conditions satisfying the above formula (2) has a hardness equal to or higher than that of the above comparative example, and the above comparison. It was confirmed that the amount of retained austenite was equal to or less than that of the example.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.

Claims (7)

  1.  軸受部品の製造方法であって、
     高炭素クロム軸受鋼からなり、かつ軸受部品となるべき対象材を準備する工程と、
     前記対象材に対して焼入処理を行う工程と、
     前記焼入処理を行う工程の後に、前記対象材を加熱することにより前記対象材に対して焼戻処理を行う工程とを備え、
     前記焼入処理を行う工程では、前記対象材の硬度が64HRC以上66HRC以下となるように前記焼入処理が行われ、
     前記焼戻処理を行う工程における焼戻温度T(単位:K)および保持時間t(単位:秒)が以下の式(1)を満たす、軸受部品の製造方法。
     2.21×105/(19.6logt+399)≦T≦2.21×105/(19.6logt+349)・・・(1)
    A method for manufacturing a bearing component, comprising:
    A process of preparing a target material made of high carbon chromium bearing steel and to be a bearing part;
    A step of quenching the target material;
    A step of performing a tempering process on the target material by heating the target material after the step of performing the quenching process;
    In the step of performing the quenching process, the quenching process is performed so that the hardness of the target material is 64 HRC or more and 66 HRC or less,
    A method for manufacturing a bearing component, wherein a tempering temperature T (unit: K) and a holding time t (unit: second) in the step of performing the tempering process satisfy the following expression (1).
    2.21 × 10 5 /(19.6logt+399)≦T≦2.21×10 5 /(19.6logt+349) ··· (1)
  2.  前記焼入処理を行う工程では、前記対象材の炭化物面積率が8%以上12%以下となるように前記焼入処理が行われる、請求項1に記載の軸受部品の製造方法。 The method for manufacturing a bearing part according to claim 1, wherein, in the step of performing the quenching process, the quenching process is performed so that a carbide area ratio of the target material is 8% or more and 12% or less.
  3.  前記焼戻処理を行う工程では、前記対象材を加熱することにより前記対象材に対して前記焼戻処理が行われる、請求項1または2に記載の軸受部品の製造方法。 The method for manufacturing a bearing part according to claim 1 or 2, wherein, in the step of performing the tempering process, the tempering process is performed on the target material by heating the target material.
  4.  軸受部品の製造方法であって、
     高炭素クロム軸受鋼からなり、かつ軸受部品となるべき対象材を準備する工程と、
     前記対象材に対して焼入処理を行う工程と、
     前記焼入処理を行う工程の後に、前記対象材を加熱することにより前記対象材に対して焼戻処理を行う工程とを備え、
     前記焼戻処理を行う工程における焼戻温度T3(単位:K)および保持時間t2(単位:秒)が以下の式(2)を満たす、軸受部品の製造方法。
     9.27×103/(0.51logt2+13.2)≦T3≦1.00×105/(13.2logt2+133)・・・(2)
    A method for manufacturing a bearing component, comprising:
    A process of preparing a target material made of high carbon chromium bearing steel and to be a bearing part;
    A step of quenching the target material;
    A step of performing a tempering process on the target material by heating the target material after the step of performing the quenching process;
    A method for manufacturing a bearing component, wherein a tempering temperature T 3 (unit: K) and a holding time t 2 (unit: second) in the step of performing the tempering process satisfy the following formula (2):
    9.27 × 10 3 /(0.51 log 2 +13.2) ≦ T 3 ≦ 1.00 × 10 5 /(13.2 log 2 +133) (2)
  5.  前記高炭素クロム軸受鋼は、JIS規格SUJ2である、請求項4に記載の軸受部品の製造方法。 The method for manufacturing a bearing part according to claim 4, wherein the high carbon chromium bearing steel is JIS standard SUJ2.
  6.  前記焼戻処理を行う工程では、焼き戻し時間が300秒以内である、請求項4または請求項5に記載の軸受部品の製造方法。 The method for manufacturing a bearing part according to claim 4 or 5, wherein in the step of performing the tempering process, a tempering time is within 300 seconds.
  7.  前記焼戻処理を行う工程では、前記対象材を加熱することにより前記対象材に対して前記焼戻処理が行われる、請求項6に記載の軸受部品の製造方法。 The method for manufacturing a bearing part according to claim 6, wherein, in the step of performing the tempering process, the tempering process is performed on the target material by heating the target material.
PCT/JP2018/006574 2017-02-24 2018-02-22 Method for manufacturing bearing component WO2018155588A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017033670A JP2018138685A (en) 2017-02-24 2017-02-24 Method for manufacturing bearing parts
JP2017-033670 2017-02-24
JP2017-033677 2017-02-24
JP2017033677A JP2018138686A (en) 2017-02-24 2017-02-24 Method for manufacturing bearing parts

Publications (1)

Publication Number Publication Date
WO2018155588A1 true WO2018155588A1 (en) 2018-08-30

Family

ID=63253822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006574 WO2018155588A1 (en) 2017-02-24 2018-02-22 Method for manufacturing bearing component

Country Status (1)

Country Link
WO (1) WO2018155588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649071A (en) * 2020-06-12 2020-09-11 河北鑫泰轴承锻造有限公司 Bearing outer ring machining process
CN113699343A (en) * 2021-07-30 2021-11-26 江苏华程工业制管股份有限公司 Heat treatment method for bearing steel pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239044A (en) * 2006-03-09 2007-09-20 Ntn Corp Induction heat-treatment facility
JP2008248349A (en) * 2007-03-30 2008-10-16 Nsk Ltd Method for manufacturing rolling bearing constituting member and rolling bearing
JP2011144448A (en) * 2009-08-10 2011-07-28 Jtekt Corp Method for producing rolling sliding member
WO2016190320A1 (en) * 2015-05-25 2016-12-01 Ntn株式会社 Heat treatment device and heat treatment method
JP2017008400A (en) * 2015-06-25 2017-01-12 Ntn株式会社 Method of manufacturing bearing component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239044A (en) * 2006-03-09 2007-09-20 Ntn Corp Induction heat-treatment facility
JP2008248349A (en) * 2007-03-30 2008-10-16 Nsk Ltd Method for manufacturing rolling bearing constituting member and rolling bearing
JP2011144448A (en) * 2009-08-10 2011-07-28 Jtekt Corp Method for producing rolling sliding member
WO2016190320A1 (en) * 2015-05-25 2016-12-01 Ntn株式会社 Heat treatment device and heat treatment method
JP2017008400A (en) * 2015-06-25 2017-01-12 Ntn株式会社 Method of manufacturing bearing component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649071A (en) * 2020-06-12 2020-09-11 河北鑫泰轴承锻造有限公司 Bearing outer ring machining process
CN113699343A (en) * 2021-07-30 2021-11-26 江苏华程工业制管股份有限公司 Heat treatment method for bearing steel pipe
CN113699343B (en) * 2021-07-30 2022-09-09 江苏华程工业制管股份有限公司 Heat treatment method for bearing steel pipe

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
US20120247619A1 (en) Carburized steel and its process of manufacture
JP2011256456A (en) Method for manufacturing steel for cold forging
Bensely et al. Fatigue behaviour and fracture mechanism of cryogenically treated En 353 steel
Závodská et al. Fatigue resistance of low alloy steel after shot peening
Giordani et al. Mechanical and metallurgical evaluation of carburized, conventionally and intensively quenched steels
Johnson et al. Mechanical properties of heat-treated medium carbon steel in renewable and biodegradable oil
WO2018155588A1 (en) Method for manufacturing bearing component
Clark et al. Comparison of austempering and quench-and-tempering processes for carburized automotive steels
JP5754077B2 (en) Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel
JP2014238118A (en) Bearing component and roller bearing
CN105264247B (en) Parts of bearings and rolling bearing
JP6314648B2 (en) Surface hardened component and method for manufacturing surface hardened component
US9834837B2 (en) Method and steel component
JP2021110032A (en) Production method of bearing ring of rolling bearing
JP7013833B2 (en) Carburized parts
JP2014237869A (en) Bearing component and rolling bearing
JP2018138685A (en) Method for manufacturing bearing parts
SENATORSKI et al. Wear resistance characteristics of thermo-chemically treated structural steels
JP7063070B2 (en) Carburized parts
Mossaab et al. Effect of medium carbon steel microstructure on tensile strength and fatigue crack growth
US11781596B2 (en) Bearing component and method for manufacturing the same
Gonçalves et al. Influence of cryogenic treatment on the fracture toughness of conventional and super clean spring steels
Maminska et al. A new bainitic forging steel for surface induction hardened components
JP6146381B2 (en) Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758332

Country of ref document: EP

Kind code of ref document: A1