JP6314648B2 - Surface hardened component and method for manufacturing surface hardened component - Google Patents

Surface hardened component and method for manufacturing surface hardened component Download PDF

Info

Publication number
JP6314648B2
JP6314648B2 JP2014102250A JP2014102250A JP6314648B2 JP 6314648 B2 JP6314648 B2 JP 6314648B2 JP 2014102250 A JP2014102250 A JP 2014102250A JP 2014102250 A JP2014102250 A JP 2014102250A JP 6314648 B2 JP6314648 B2 JP 6314648B2
Authority
JP
Japan
Prior art keywords
hardened
less
component
steel
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014102250A
Other languages
Japanese (ja)
Other versions
JP2015218359A (en
Inventor
徹志 千田
徹志 千田
崇史 藤田
崇史 藤田
橋村 雅之
雅之 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014102250A priority Critical patent/JP6314648B2/en
Publication of JP2015218359A publication Critical patent/JP2015218359A/en
Application granted granted Critical
Publication of JP6314648B2 publication Critical patent/JP6314648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面硬化処理部品、表面硬化処理部品用鋼及び表面硬化処理部品の製造方法に関する。   The present invention relates to a surface hardened component, a steel for a surface hardened component, and a method for manufacturing a surface hardened component.

機械構造用部品、例えば、動力伝達部品に適用される、軸受け、ハブ、等速ジョイント、歯車、無段変速機等の動力伝達部品には、高い面疲労強度が要求される。従来、これらの機械構造用部品には、JIS SCr420、SCM420等のC量が0.2%前後の肌焼鋼を成形し、浸炭焼入れ処理を施して製造されていた。   High surface fatigue strength is required for power transmission components such as bearings, hubs, constant velocity joints, gears, continuously variable transmissions, and the like, which are applied to mechanical structural components such as power transmission components. Conventionally, these mechanical structural parts have been manufactured by forming a case-hardened steel having a C content of about 0.2% such as JIS SCr420 and SCM420 and carburizing and quenching.

素材のC量は0.2%程度であっても、浸炭焼入れ処理を行うと部品の表面のC量は0.8%前後になり、マルテンサイト組織などの硬化層が形成されて、疲労強度を高めることができる。また、部品の面疲労強度を高めるために、窒化処理が施される場合もある。窒化処理では、部品の表面にはFe窒化物が形成され、最表層より内部では侵入した窒素によって硬化し、面疲労強度を高めることができる。   Even if the carbon content of the material is about 0.2%, when carburizing and quenching is performed, the C content on the surface of the component becomes around 0.8%, and a hardened layer such as a martensite structure is formed, resulting in fatigue strength. Can be increased. Further, nitriding treatment may be performed in order to increase the surface fatigue strength of the component. In the nitriding treatment, Fe nitride is formed on the surface of the component, and is hardened by nitrogen that has entered from the inside of the outermost layer, so that the surface fatigue strength can be increased.

更に、浸炭処理後に続いて窒化処理を施して焼入れる方法や、浸炭焼入れ処理後、窒化処理を施す方法が提案されている(例えば、以下の特許文献1、2を参照。)。また、浸炭焼入れ処理、窒化処理を施した後、更に、焼入れ、焼戻しを施す方法が提案されている(例えば、以下の特許文献3を参照。)。   Furthermore, a method of quenching by performing nitriding after the carburizing treatment and a method of performing nitriding after the carburizing and quenching have been proposed (see, for example, Patent Documents 1 and 2 below). Further, a method of further quenching and tempering after carburizing and quenching and nitriding has been proposed (see, for example, Patent Document 3 below).

特開2007−262506号公報JP 2007-262506 A 特開2013−112827号公報JP 2013-112827 A 特開2006−241480公報JP 2006-241480 A

上記特許文献1〜3に提案されている方法は、窒素を含むマルテンサイトを活用することで表層を硬化し、疲労強度を向上させるものである。しかしながら、潤滑油に水が混入するような厳しい環境で使用される部品は、腐食や腐食に起因する水素の侵入によって、疲労寿命が低下することがあった。   The methods proposed in Patent Documents 1 to 3 use martensite containing nitrogen to harden the surface layer and improve fatigue strength. However, parts used in harsh environments in which water is mixed into the lubricating oil may have a reduced fatigue life due to corrosion and hydrogen penetration due to corrosion.

腐食の発生が懸念されるような厳しい環境で動力伝達用部品が使用される場合、部品の表面では、鋼中に固溶する窒素濃度(表面の固溶窒素濃度)を高めることが必要である。しかしながら、従来技術は、部品の腐食を抑制するものではなく、表面の固溶窒素濃度を高めようとするものではないため、疲労強度の向上にも窒化物を活用しており、成分や窒化処理、焼入れ処理の条件が適切ではなかった。   When power transmission parts are used in harsh environments where the occurrence of corrosion is a concern, it is necessary to increase the concentration of nitrogen dissolved in the steel (surface solid solution nitrogen concentration) on the surface of the parts. . However, since the conventional technology does not suppress corrosion of parts and does not attempt to increase the concentration of dissolved nitrogen on the surface, nitride is also used to improve fatigue strength. The quenching conditions were not appropriate.

本発明は、このような実情に鑑み、潤滑油に水が混入するような厳しい環境で使用される場合においても、耐食性が良好で、面疲労強度が劣化しない、表面硬化処理部品及びその製造方法、表面硬化処理部品の素材である表面硬化処理部品用鋼の提供を課題とするものである。   In view of such circumstances, the present invention provides a surface-cured component that has good corrosion resistance and does not deteriorate surface fatigue strength even when used in a harsh environment where water is mixed into the lubricating oil, and a method for manufacturing the same. An object of the present invention is to provide steel for surface-hardened parts, which is a material for surface-hardened parts.

本発明者らは、表面硬化処理部品に、面疲労強度や転動疲労強度に加えて、耐食性をも付与するため、検討を行った。その結果、部品の疲労特性を向上させるには、ある程度、表面から深い位置まで炭素濃度を高める必要があり、耐食性を向上させるには表面の固溶窒素濃度を高めることが有効であるとの知見が得られた。   The present inventors have studied to impart corrosion resistance to surface-hardened parts in addition to surface fatigue strength and rolling fatigue strength. As a result, in order to improve the fatigue characteristics of parts, it is necessary to increase the carbon concentration from the surface to a deep position to some extent, and it is effective to increase the solid solution nitrogen concentration on the surface to improve the corrosion resistance was gotten.

また、表面硬化処理は、浸炭処理、窒化処理、高周波焼入れの順に行うことが必要であるとの知見が得られた。窒化処理では、アンモニアの分解過程で多くの窒素を浸入させることができるが、鋼中に浸入した窒素は不安定であり、アンモニア以外の雰囲気で加熱するとNとなり、部品の表面にボイドが形成される。ボイドの形成を防ぐためには、窒化処理の前に浸炭処理を行い、窒化処理後の焼入れ処理を短時間で行うことが重要である。 Moreover, the knowledge that it was necessary to perform a surface hardening process in order of a carburizing process, a nitriding process, and induction hardening was acquired. In nitriding treatment, a large amount of nitrogen can be infiltrated during the decomposition process of ammonia, but the nitrogen infiltrated into the steel is unstable, and when heated in an atmosphere other than ammonia, it becomes N 2 and voids are formed on the surface of the part. Is done. In order to prevent the formation of voids, it is important to perform a carburizing process before the nitriding process and perform a quenching process after the nitriding process in a short time.

また、部品の表面の固溶窒素濃度を高めるには、窒化処理を変態温度以下で行い、nmオーダーの微細な窒化物を形成させ、その後の短時間の高周波焼入れ処理によって、微細な窒化物を固溶させることが最適であるとの知見が得られた。更に、低温での窒化処理でも窒素濃度を増加させることができ、高周波焼入れ処理を行った後の窒化物の残留を抑制できるように、SiやAl、更にはCrなどの窒化物形成元素を制御することも重要であるとの知見が得られた。   In addition, in order to increase the concentration of solid solution nitrogen on the surface of the component, nitriding is performed at a temperature lower than the transformation temperature to form fine nitrides on the order of nm, and then the fine nitrides are formed by short-time induction hardening. It was found that it is optimal to make a solid solution. Furthermore, it is possible to increase the nitrogen concentration even at low temperature nitriding treatment, and control nitride forming elements such as Si, Al, and Cr so that the residual nitride after induction hardening can be suppressed. It was found that it was also important to do.

本発明は、上記の知見に基づいてなされたものであり、その要旨とするところは、以下のとおりである。   This invention is made | formed based on said knowledge, The place made into the summary is as follows.

[1]質量%で、C:0.05〜0.30%、Si:0.01〜0.70%、Mn:0.10〜1.50%、Cr:0.50〜1.50%、Al:0.01〜0.20%を含有し、残部が、鉄及び不純物からなる母材部と、前記母材部上に位置する表面硬化処理層と、を有し、前記表面硬化処理層は、表面の窒素濃度が、0.4〜2.0%であり、表面の炭素濃度と窒素濃度との合計が、1.0〜2.5%であり、表面から深さ方向で0.3mmの位置の炭素濃度が、0.5〜1.1%であり、表面の旧オーステナイト粒径が、平均14μm以上30μm以下である、表面硬化処理部品。
[2]表面の残留オーステナイト量は、体積分率で10〜50%である、[1]に記載の表面硬化処理部品。
[3]前記母材部は、質量%で、P:0.03%以下、S:0.03%以下、N:0.015%以下に制限する、[1]又は[2]に記載の表面硬化処理部品。
[4][1]〜[3]の何れか1つに記載の表面硬化処理部品の製造方法であって、質量%で、C:0.05〜0.30%、Si:0.01〜0.70%、Mn:0.10〜1.50%、Cr:0.50〜1.50%、Al:0.01〜0.20%を含有し、残部が、鉄及び不純物からなる表面硬化処理部品用鋼を成形し、900℃以上の温度で浸炭処理を施し、400〜600℃の温度域で窒化処理を行い、最高到達温度での保持時間を5秒以下とする高周波焼入れ処理を行う、表面硬化処理部品の製造方法。
[5]前記表面硬化処理部品用鋼は、質量%で、P:0.03%以下、S:0.03%以下、N:0.015%以下に制限したものである、[4]に記載の表面硬化処理部品の製造方法。
[1] By mass%, C: 0.05 to 0.30%, Si: 0.01 to 0.70%, Mn: 0.10 to 1.50%, Cr: 0.50 to 1.50% , Al: 0.01 to 0.20%, the balance having a base material portion made of iron and impurities, and a surface hardening treatment layer located on the base material portion, the surface hardening treatment The layer has a surface nitrogen concentration of 0.4 to 2.0%, a total of the surface carbon concentration and nitrogen concentration of 1.0 to 2.5%, and is 0 in the depth direction from the surface. carbon concentration position of .3mm is, 0.5 to 1.1% der is, prior austenite grain size of the surface, Ru der least 30μm or less average 14 [mu] m, surface hardening component.
[2] The surface-hardened treated part according to [1], wherein the amount of retained austenite on the surface is 10 to 50% in terms of volume fraction.
[3] The base material part is mass% and is limited to P: 0.03% or less, S: 0.03% or less, and N: 0.015% or less, according to [1] or [2]. Surface hardened parts.
[4] A method for producing a surface-hardened component according to any one of [1] to [3], wherein C: 0.05 to 0.30%, Si: 0.01 to Surface containing 0.70%, Mn: 0.10 to 1.50%, Cr: 0.50 to 1.50%, Al: 0.01 to 0.20%, the balance being iron and impurities Form steel for hardened parts, perform carburizing at a temperature of 900 ° C or higher, perform nitriding in the temperature range of 400 to 600 ° C, and induction hardening to keep the maximum temperature at 5 seconds or less. A method for producing a surface-hardened component.
[5] The steel for surface-treated parts is a mass%, and is limited to P: 0.03% or less, S: 0.03% or less, N: 0.015% or less, [4] A method for producing the surface-cured component described.

本発明は、高い面疲労強度や転動疲労強度を有し、かつ、潤滑油に水の混入を防ぐことが難しいような厳しい環境において使用されても腐食しない、機械構造用部品、該機械構造用部品を製造するための素材、及び、該機械構造用部品の製造法を提供することが可能になり、部品の製造コスト又は部品の長寿命化を通して低コスト化に大きく寄与するなど、産業上の貢献が極めて顕著である。   The present invention relates to a machine structural component that has high surface fatigue strength and rolling fatigue strength, and does not corrode even when used in a severe environment where it is difficult to prevent water from entering the lubricating oil. It is possible to provide raw materials for manufacturing parts for machinery, and methods for manufacturing the parts for machine structures, which contribute greatly to cost reduction through the manufacturing cost of parts or extending the life of parts. The contribution of is very remarkable.

耐食性が良好な本発明例のアノード分極曲線を、基準材と対比して説明する図である。It is a figure explaining the anodic polarization curve of this invention example with favorable corrosion resistance as compared with a reference material.

以下に、本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明において、表面硬化処理とは、浸炭処理、窒化処理、高周波焼入れをいい、表面硬化処理部品とは、部品形状に成形され、浸炭処理、窒化処理、高周波焼入れが施された部品をいう。かかる表面硬化処理部品は、動力伝達部品に適用される高い面疲労強度を有する部品であり、特に軸受け、ハブ、等速ジョイント、歯車、無段変速機等を挙げることができる。また、表面硬化処理部品用鋼とは、表面硬化処理部品の素材として用いられる鋼であり、鋼片や、熱間鍛造や熱間加工によって製造される棒鋼、線材や鋼板などの鋼材である。表面硬化処理部品用鋼は、単に鋼、鋼材という場合がある。   In the present invention, the surface hardening treatment refers to carburizing treatment, nitriding treatment, and induction hardening, and the surface hardening treatment component refers to a component that has been molded into a part shape and subjected to carburizing treatment, nitriding treatment, and induction hardening. Such a surface-hardened component is a component having high surface fatigue strength applied to a power transmission component, and particularly includes a bearing, a hub, a constant velocity joint, a gear, a continuously variable transmission, and the like. The steel for surface-hardened parts is steel used as a material for the surface-hardened parts, and is a steel material such as a steel piece, a bar steel, a wire rod or a steel plate manufactured by hot forging or hot working. The steel for surface hardened parts may be simply referred to as steel or steel.

本発明の表面硬化処理部品は、鋼材を熱間加工や冷間加工によって成形した後、浸炭処理、窒化処理、高周波焼入れを順に施し、必要に応じて切削加工などを行って形状を整え、最終製品とする。切削加工は、表面硬化処理前にも施すことが可能であるが、この場合は、表面硬化処理後、必要に応じて、0.1mm程度を切削する仕上げ加工を行ってもよい。   The surface-hardened parts of the present invention are formed by hot-working or cold-working a steel material, and then subjected to carburizing, nitriding, and induction hardening in order, and by performing cutting or the like as necessary, the shape is adjusted. Product. The cutting process can be performed before the surface hardening process, but in this case, after the surface hardening process, a finishing process of cutting about 0.1 mm may be performed as necessary.

(表面硬化処理部材用鋼及び表面硬化処理部品について)
以下では、まず、本発明の実施形態に係る表面硬化処理部品用鋼及び表面硬化処理部品について説明する。
(About steel for surface-hardened members and surface-hardened parts)
Below, the steel for surface-hardening process components and surface-hardening process components which concern on embodiment of this invention are demonstrated first.

<化学成分について>
まず、本発明の実施形態に係る表面硬化処理部品用鋼の化学成分について説明する。なお、表面硬化処理部品の表層以外の母材部の化学成分も同様である。
<About chemical components>
First, chemical components of the steel for surface-hardened parts according to the embodiment of the present invention will be described. The same applies to the chemical components of the base material portion other than the surface layer of the surface-hardened component.

本実施形態に係る表面硬化処理部品用鋼は、表面硬化処理部品の素材として用いられる鋼材であって、質量%で、C:0.05〜0.30%、Si:0.01〜0.70%、Mn:0.10〜1.50%、Cr:0.50〜1.50%、Al:0.01〜0.20%を含有し、残部が、鉄及び不純物からなる。   The steel for surface-hardened processed parts according to the present embodiment is a steel material used as a material for the surface-hardened processed parts, and is in mass%, C: 0.05 to 0.30%, Si: 0.01 to 0.00. It contains 70%, Mn: 0.10 to 1.50%, Cr: 0.50 to 1.50%, Al: 0.01 to 0.20%, and the balance consists of iron and impurities.

また、かかる表面硬化処理部品用鋼は、質量%で、P:0.03%以下、S:0.03%以下、N:0.015%以下に制限されることが好ましい。   Moreover, it is preferable that the steel for surface-treated parts is limited by mass% to P: 0.03% or less, S: 0.03% or less, and N: 0.015% or less.

以下では、上記のような化学成分の含有量について、詳細に説明する。   Below, content of the above chemical components is demonstrated in detail.

[C:0.05〜0.30%]
Cは、焼入れ性を確保し、必要な強度を得るために有用な元素であり、高周波焼入れ時の硬化能を向上させるために必要な元素である。本実施形態では、表面硬化処理部品の疲労強度向上に求められる表層の炭素量を、浸炭処理によって増加させることを前提としているが、表面硬化処理部品の表層以外の母材部(表面硬化処理の影響を受けない部分)に要求される強度を確保するため、C量を0.05%以上とする。C量は、好ましくは0.10%以上である。一方、C量が0.30%を超えると、部品形状に成形加工する際の鍛造性や切削性が低下し、高周波焼入れによる焼割れが発生する可能性が高くなるため、C量の上限を0.30%とする。C量は、好ましくは0.25%以下であり、より好ましくは0.20%以下である。
[C: 0.05-0.30%]
C is an element useful for ensuring hardenability and obtaining a required strength, and is an element necessary for improving the hardening ability during induction hardening. In the present embodiment, it is assumed that the carbon amount of the surface layer required for improving the fatigue strength of the surface-hardened component is increased by carburizing, but the base material portion (surface-hardened material) other than the surface layer of the surface-hardened component. In order to ensure the strength required for the unaffected part), the C amount is set to 0.05% or more. The amount of C is preferably 0.10% or more. On the other hand, if the amount of C exceeds 0.30%, the forgeability and machinability at the time of forming into a part shape are reduced, and there is a high possibility of quenching cracks due to induction hardening. 0.30%. The amount of C is preferably 0.25% or less, more preferably 0.20% or less.

[Si:0.01〜0.70%]
Siは、脱酸元素であり、また、表面硬化処理部品の表層の軟化抵抗を増大させ、面疲労強度の向上に寄与するため、Si量を0.01%以上とする。Si量は、好ましくは0.05%以上である。一方、Si量が過剰であると、窒化処理によって形成されたSiの窒化物が高周波焼入れ後にも残存し、表面硬化処理部品の表面の固溶窒素濃度が低下し、耐食性を損なうため、上限を0.7%とする。Si量の上限は、0.7%未満が好ましく、より好ましくは0.5%以下であり、更に好ましくは0.25%以下である。
[Si: 0.01 to 0.70%]
Si is a deoxidizing element, and also increases the softening resistance of the surface layer of the surface-hardened component and contributes to the improvement of surface fatigue strength. Therefore, the Si amount is set to 0.01% or more. The amount of Si is preferably 0.05% or more. On the other hand, if the amount of Si is excessive, the nitride of Si formed by nitriding treatment remains even after induction quenching, and the concentration of solid solution nitrogen on the surface of the surface-hardened component is lowered and the corrosion resistance is impaired. 0.7%. The upper limit of Si content is preferably less than 0.7%, more preferably 0.5% or less, and still more preferably 0.25% or less.

[Mn:0.10〜1.50%]
Mnは、焼入れ性を高める元素であり、本実施形態では、表面硬化処理部品の表層の組織をマルテンサイトにして面疲労強度を高めるため、Mn量を0.10%以上とする。Mn量は、好ましくは0.50%以上である。一方、Mn量が1.50%超過となると、鋼材や表面硬化処理部品の硬さが高くなり、成形加工性や切削加工性が劣化するため、上限を1.50%とする。Mn量は、好ましくは1.20%以下であり、より好ましくは1.00%以下である。
[Mn: 0.10 to 1.50%]
Mn is an element that enhances hardenability. In this embodiment, the Mn content is set to 0.10% or more in order to increase the surface fatigue strength by making the structure of the surface layer of the surface-hardened component martensite. The amount of Mn is preferably 0.50% or more. On the other hand, if the amount of Mn exceeds 1.50%, the hardness of the steel material and the surface-hardened component is increased, and the formability and the cutting workability are deteriorated, so the upper limit is made 1.50%. The amount of Mn is preferably 1.20% or less, more preferably 1.00% or less.

[Cr:0.50〜1.50%]
Crは、Nと親和性があり、焼入れ性を高める元素でもある。Crの添加により、窒化処理によって部品の表層に侵入する窒素濃度を高め、また、軟化抵抗を向上させ、面疲労強度を向上させることができる。特に、表面硬化処理部品の表面の固溶窒素濃度を高めて耐食性を向上させるために、本実施形態では、Cr量の下限を0.50%とする。Cr量は、好ましくは0.60%以上であり、より好ましくは0.70%以上である。一方、Cr量が1.5%超過となると、鋼材や表面硬化処理部品の硬さが高くなり、成形加工性や切削加工性が劣化するため、上限を1.50%とする。Cr量は、好ましくは1.20%以下であり、より好ましくは1.00%以下である。
[Cr: 0.50 to 1.50%]
Cr has an affinity for N and is also an element that enhances hardenability. By adding Cr, it is possible to increase the nitrogen concentration penetrating into the surface layer of the component by nitriding treatment, improve the softening resistance, and improve the surface fatigue strength. In particular, in order to improve the corrosion resistance by increasing the solid solution nitrogen concentration on the surface of the surface-hardened component, the lower limit of the Cr amount is set to 0.50% in this embodiment. The amount of Cr is preferably 0.60% or more, and more preferably 0.70% or more. On the other hand, if the Cr content exceeds 1.5%, the hardness of the steel material or surface-hardened component increases, and the formability and cutting workability deteriorate, so the upper limit is made 1.50%. The amount of Cr is preferably 1.20% or less, and more preferably 1.00% or less.

[Al:0.01〜0.20%]
Alは、脱酸元素であり、被削性の向上にも寄与する。かかる効果を得るには、Al量を0.01%以上とする必要がある。Al量は、好ましくは0.02%以上である。一方、Al量が0.20%超過となると、窒化処理によって形成されたAlの窒化物が高周波焼入れ後にも残存し、表面硬化処理部品の表面の固溶窒素濃度が低下し、耐食性を損なうため、上限を0.20%とする。Al量は、好ましくは0.10%以下であり、より好ましくは0.05%以下である。
[Al: 0.01-0.20%]
Al is a deoxidizing element and contributes to improvement of machinability. In order to obtain such an effect, the Al amount needs to be 0.01% or more. The amount of Al is preferably 0.02% or more. On the other hand, if the Al content exceeds 0.20%, Al nitride formed by nitriding treatment remains after induction quenching, and the concentration of solid solution nitrogen on the surface of the surface-hardened component is reduced, thereby impairing corrosion resistance. The upper limit is 0.20%. The amount of Al is preferably 0.10% or less, and more preferably 0.05% or less.

P、S、Nは不純物であり、以下に説明するように、含有量の上限を制限することが好ましい。   P, S, and N are impurities, and it is preferable to limit the upper limit of the content as described below.

[P:0.03%以下]
Pは、不純物であり、表面硬化処理部品の衝撃値を低下させるため、P量を0.03%以下に制限することが好ましい。なお、製造コストの観点から、P量の下限を、0.001%とすることが好ましい。
[P: 0.03% or less]
P is an impurity, and it is preferable to limit the amount of P to 0.03% or less in order to reduce the impact value of the surface-hardened component. From the viewpoint of manufacturing cost, the lower limit of the P amount is preferably 0.001%.

[S:0.03%以下]
Sは、過剰に含有すると、鍛造性が劣化するため、S量を0.03%以下に制限することが好ましい。なお、Sは、被削性を向上させる元素であり、0.01%以上を含有させてもよい。
[S: 0.03% or less]
If S is contained excessively, forgeability deteriorates, so the amount of S is preferably limited to 0.03% or less. S is an element that improves machinability, and may be contained in an amount of 0.01% or more.

[N:0.015%以下]
Nは、過剰に含有すると、熱間加工性を損ない、熱間圧延や熱間鍛造時に割れを発生させることがあるため、N量を0.015%以下に制限することが好ましい。なお、鋼材に含まれるNは、表面硬化処理部品の表層以外の母材部の組織の微細化に有効であり、0.003%以上を含有させてもよい。
[N: 0.015% or less]
If N is contained excessively, hot workability is impaired, and cracking may occur during hot rolling or hot forging. Therefore, the N content is preferably limited to 0.015% or less. Note that N contained in the steel material is effective for refining the structure of the base material portion other than the surface layer of the surface-hardened component, and may be contained in an amount of 0.003% or more.

また、上記した元素以外の残部は実質的にFeからなり、不純物をはじめ、本発明の作用効果を害さない元素を微量に添加することができる。   Further, the balance other than the above-described elements is substantially composed of Fe, and trace amounts of elements including impurities, which do not impair the effects of the present invention, can be added.

以上、本実施形態に係る表面硬化処理部品用鋼及び表面硬化処理部品の母材部の化学成分について、詳細に説明した。   Heretofore, the chemical components of the base material portion of the surface-hardened component steel and the surface-hardened component according to the present embodiment have been described in detail.

<表面硬化処理部品の各種濃度について>
次に、表面硬化処理部品の各種濃度、すなわち、表面の窒素濃度、炭素濃度、表層の炭素濃度(表面硬化処理の表面から0.3mmの位置での炭素濃度)について説明する。なお、表面の窒素濃度、炭素濃度、表層の炭素濃度の単位は、質量%である。
<Various concentrations of surface hardened parts>
Next, various concentrations of the surface-hardened component, that is, the surface nitrogen concentration, the carbon concentration, and the surface layer carbon concentration (carbon concentration at a position of 0.3 mm from the surface of the surface-cured treatment) will be described. The unit of the surface nitrogen concentration, carbon concentration, and surface layer carbon concentration is mass%.

なお、以下の説明では、浸炭処理後、窒化処理によって窒素が拡散することで形成された、窒素濃度が母材部よりも多い層を、「浸炭窒化層」という。かかる「浸炭窒化層」は、高周波焼入れ前に形成された層である。また、浸炭処理及び窒化処理を行った後高周波焼入れ処理を施すことで形成された、炭素濃度が母材部よりも多い層を、「焼入れ浸炭窒化層」という。また、高周波焼入れ処理を施すことで形成された層であって、金属組織が50%以上のマルテンサイト+残留オーステナイトからなる層を、「焼入層」という。かかる「焼入層」は、「焼入れ浸炭窒化層」を含む。   In the following description, a layer formed by diffusing nitrogen by nitriding after the carburizing process and having a higher nitrogen concentration than the base material portion is referred to as a “carbonitriding layer”. Such a “carbonitriding layer” is a layer formed before induction hardening. In addition, a layer having a higher carbon concentration than the base material portion formed by performing induction hardening after carburizing and nitriding is referred to as a “quenched carbonitriding layer”. In addition, a layer formed by performing induction hardening, and a layer made of martensite + residual austenite having a metal structure of 50% or more is referred to as a “quenched layer”. Such a “quenched layer” includes a “quenched carbonitrided layer”.

本実施形態に係る表面硬化処理部品の表面には、浸炭処理、窒化処理、高周波焼入れ処理を順に施して形成された、表面硬化処理層の一例である焼入れ浸炭窒化層が存在する。すなわち、本実施形態に係る表面硬化処理部品は、上記のような所定の化学成分を有する母材部上に、上記のような表面硬化処理によって形成された表面硬化処理層が存在する。表面硬化処理を施した後、表面硬化処理部品の表面を切削した場合も、焼入れ浸炭窒化層は残存しており、母材部に比べて窒素濃度及び炭素濃度が多く、ビッカース硬度が高くなっている。   A hardened carbonitriding layer, which is an example of a surface hardened layer, is formed on the surface of the surface hardened component according to the present embodiment by sequentially performing carburizing, nitriding, and induction hardening. That is, the surface-cured component according to the present embodiment has a surface-cured layer formed by the surface-curing treatment as described above on the base material portion having the predetermined chemical component as described above. Even when the surface of the surface-hardened component is cut after the surface-hardening treatment, the quenching carbonitriding layer remains, the nitrogen concentration and carbon concentration are higher than the base material, and the Vickers hardness is increased. Yes.

焼入れ浸炭窒化層の窒素濃度及び炭素濃度は、深さ方向で変化している。表面硬化処理部品の耐食性を高めるには、腐食環境に曝される最表面の窒素濃度が重要である。一方、表面硬化処理部品の面疲労強度や転動疲労強度を高めるには、最表面の窒素濃度及び炭素濃度だけでなく、ある程度、表面から深い位置での炭素濃度が重要である。面疲労強度や転動疲労強度を高めるためには、少なくとも表面から0.3mmの深さまで炭素を拡散させる必要があり、本実施形態では、炭素濃度を測定する位置を表面から0.3mmの位置とする。   The nitrogen concentration and carbon concentration of the quenched carbonitriding layer change in the depth direction. In order to increase the corrosion resistance of the surface-hardened parts, the nitrogen concentration on the outermost surface exposed to the corrosive environment is important. On the other hand, in order to increase the surface fatigue strength and rolling fatigue strength of the surface-hardened component, not only the nitrogen concentration and carbon concentration on the outermost surface, but also the carbon concentration at a position deep from the surface to some extent is important. In order to increase the surface fatigue strength and rolling fatigue strength, it is necessary to diffuse carbon at least to a depth of 0.3 mm from the surface. In this embodiment, the position where the carbon concentration is measured is a position 0.3 mm from the surface. And

本実施形態に係る表面硬化処理部品の表面の窒素濃度は、優れた耐食性を得るために、0.4%以上とする。窒素濃度は、好ましくは0.5%以上である。一方、窒素濃度を2.0%超過としても、窒化物が形成されて、耐食性の向上に寄与しなくなるため、表面硬化処理部品の表面の窒素濃度の上限を2.0とする。また、窒素濃度を高める場合、窒化処理に要する時間が長くなるので、生産性を考慮すると、窒素濃度を1.0%以下とすることが好ましい。   In order to obtain excellent corrosion resistance, the nitrogen concentration on the surface of the surface-hardened component according to this embodiment is set to 0.4% or more. The nitrogen concentration is preferably 0.5% or more. On the other hand, even if the nitrogen concentration exceeds 2.0%, nitrides are formed and do not contribute to the improvement of corrosion resistance. Therefore, the upper limit of the nitrogen concentration on the surface of the surface-hardened component is set to 2.0. Further, when the nitrogen concentration is increased, the time required for the nitriding treatment is increased. Therefore, in consideration of productivity, the nitrogen concentration is preferably set to 1.0% or less.

本実施形態に係る表面硬化処理部品の表面の炭素濃度と窒素濃度との合計は、面疲労強度や転動疲労強度を高めるために、1.0%以上とする。炭素濃度と窒素濃度との合計は、好ましくは1.2%以上である。表面硬化処理部品の表面の炭素濃度と窒素濃度との合計の上限は特に規定しないが、3.0%超過とするには、浸炭処理や窒化処理に要する時間が長くなる。生産性を考慮すると、表面硬化処理部品の表面の炭素濃度と窒素濃度との合計は、2.5%以下が好ましい。表面硬化処理部品の表面の炭素濃度と窒素濃度との合計は、より好ましくは、2.0%以下である。なお、表面硬化処理部品の表面の炭素濃度は、以下に説明するように、表面硬化処理部品の表面から0.3mmにおける炭素濃度を0.5%以上とする必要があるため、少なくとも0.5%以上である。   The total of the carbon concentration and the nitrogen concentration on the surface of the surface-hardened component according to this embodiment is 1.0% or more in order to increase the surface fatigue strength and the rolling fatigue strength. The total of the carbon concentration and the nitrogen concentration is preferably 1.2% or more. The upper limit of the total of the carbon concentration and the nitrogen concentration on the surface of the surface-hardened component is not particularly defined, but in order to exceed 3.0%, the time required for the carburizing treatment and nitriding treatment becomes longer. In consideration of productivity, the total of the carbon concentration and the nitrogen concentration on the surface of the surface-hardened component is preferably 2.5% or less. The total of the carbon concentration and the nitrogen concentration on the surface of the surface-hardened component is more preferably 2.0% or less. Note that the carbon concentration of the surface of the surface-hardened component is required to be 0.5% or more at 0.3 mm from the surface of the surface-hardened component, as described below. % Or more.

また、表面硬化処理部品の面疲労強度や転動疲労強度を高めるには、表面から深い部位まで、炭素濃度を高め、硬化させる必要がある。表面硬化処理後、部品の表面を研削することがあるが、研削の有無によらず、本実施形態では、表面硬化処理部品の面疲労強度や転動疲労強度を高めるために、表面硬化処理部品の表面から深さ方向で0.3mmの位置での炭素濃度を0.5%以上とする。一方、表面硬化処理部品の表面から0.3mmにおける炭素濃度を1.1%超過としても効果が飽和するため、上限を1.1%とする。   Further, in order to increase the surface fatigue strength and rolling fatigue strength of the surface-hardened component, it is necessary to increase the carbon concentration from the surface to a deep part and cure it. The surface of the part may be ground after the surface hardening treatment. In this embodiment, regardless of the presence or absence of grinding, in this embodiment, the surface hardening treatment part is used to increase the surface fatigue strength and rolling fatigue strength of the surface hardening treatment part. The carbon concentration at a position of 0.3 mm in the depth direction from the surface of is made 0.5% or more. On the other hand, since the effect is saturated even if the carbon concentration at 0.3 mm from the surface of the surface-hardened component exceeds 1.1%, the upper limit is set to 1.1%.

表面硬化処理部品の表面及び表面から0.3mm位置の窒素濃度及び炭素濃度は、表面硬化処理部品を任意の方向に切断し、断面を研磨し、走査型電子顕微鏡(Scanning Electron Microscope:SEM)に付属する電子線マイクロアナライザー(Electron Probe MicroAnalyser:EPMA)を用いて測定することができる。表面硬化処理部品の表面及び表面から0.3mm位置における窒素及び炭素濃度の測定は、任意の5箇所で部品を切断して行い、平均値を求める。   The nitrogen concentration and the carbon concentration at a position of 0.3 mm from the surface and the surface of the surface-hardened processed part are cut in any direction, the cross-section is polished, and the surface is subjected to a scanning electron microscope (SEM). It can be measured using an attached electron beam microanalyzer (Electron Probe MicroAnalyzer: EPMA). The measurement of the nitrogen and carbon concentration at the position of 0.3 mm from the surface of the surface-hardened component and the surface is performed by cutting the component at arbitrary five locations, and the average value is obtained.

<表面硬化処理部品の表面の金属組織について>
本実施形態に係る表面硬化処理部品の表面は、体積率50%以上のマルテンサイトと残留オーステナイトとを含む組織となる。焼入層よりも深い部位、即ち、表面硬化処理の影響を受けない母材部は、フェライト−パーライト組織のままである。即ち、本実施形態に係る表面硬化処理部品では、マルテンサイト変態するのは焼入層のみであるため、表層に圧縮残留応力が付与され、面疲労強度を向上させることができる。
<About the metal structure on the surface of surface-hardened parts>
The surface of the surface-hardened component according to the present embodiment has a structure containing martensite with a volume ratio of 50% or more and retained austenite. The part deeper than the hardened layer, that is, the base material part that is not affected by the surface hardening treatment remains in the ferrite-pearlite structure. That is, in the surface-hardened component according to the present embodiment, only the quenched layer undergoes martensite transformation, so that compressive residual stress is applied to the surface layer and surface fatigue strength can be improved.

残留オーステナイトは、疲労過程で変形し、部品同士の接触部の面積を増大させ、負荷応力を下げるが、硬さはマルテンサイトより劣る。したがって、疲労強度を向上させる観点から、表面硬化処理部品の表面の残留オーステナイト量(体積率)は、10〜50%の範囲が好ましい。   Residual austenite is deformed in the fatigue process, increasing the area of the contact portion between parts and lowering the load stress, but the hardness is inferior to martensite. Therefore, from the viewpoint of improving fatigue strength, the amount of retained austenite (volume ratio) on the surface of the surface-hardened component is preferably in the range of 10 to 50%.

旧オーステイト粒径は、小さいほど衝撃による吸収エネルギーが大きくなるため、疲労き裂発生を抑制できる。き裂は焼入れ浸炭窒化層で発生するため、焼入れ浸炭窒化層の旧オーステナイト粒径の微細化が好ましく、表面硬化処理部品の表面の平均旧オーステナイト粒径が30μm以下であることが好ましい。なお、焼入れ浸炭窒化層中の旧オーステナイト粒径は、深さ方向でほとんど変化しないので、表面硬化処理部品の表面の旧オーステナイト粒径は、焼入れ浸炭窒化層の旧オーステナイト粒径を代表するものである。   The smaller the old austite particle size, the larger the absorbed energy due to impact, so that the occurrence of fatigue cracks can be suppressed. Since cracks occur in the quenched carbonitrided layer, it is preferable to refine the prior austenite grain size of the quenched carbonitrided layer, and the average prior austenite grain size on the surface of the surface-hardened component is preferably 30 μm or less. Since the prior austenite grain size in the quenched carbonitrided layer hardly changes in the depth direction, the former austenite grain size on the surface of the surface-hardened component represents the former austenite grain size of the quenched carbonitrided layer. is there.

なお、旧オーステナイト粒径は、旧オーステナイト粒界が腐食されるエッチングを試験片断面に行い、光学顕微鏡を用いた切片法による測定等といった公知の測定法により、測定することが可能である。   The prior austenite grain size can be measured by a known measurement method such as measurement by a section method using an optical microscope by performing etching that corrodes the prior austenite grain boundary on the test piece cross section.

(表面硬化処理部材用鋼及び表面硬化処理部品の製造方法について)
次に、本発明の表面硬化処理用鋼及び表面硬化処理部品の製造方法について説明する。
本実施形態に係る表面硬化処理用鋼は、上記のような成分を有する鋼を溶製後、鋳造、必要に応じて分塊工程を施して製造される鋼片、更に鋼片に熱間圧延を施して製造される棒鋼、線材や鋼板などの鋼材である。鋼片に熱間鍛造を施して製造される鋼材も含まれる。鋼の溶製は、転炉、電気炉等の通常の方法によって行えばよい。分塊圧延工程の前に均熱拡散処理を施してもよい。熱間圧延、熱間鍛造については、特に、条件は限定されない。熱間圧延、熱間鍛造の後、焼準処理を施してもよい。
(About the manufacturing method of steel for surface-hardened members and surface-hardened parts)
Next, the manufacturing method of the steel for surface hardening processing and surface hardening processing components of this invention is demonstrated.
The steel for surface hardening treatment according to the present embodiment is a steel slab manufactured by melting a steel having the above components, casting, and if necessary, subjecting it to a bundling process, and further hot rolling the steel slab. Steel materials such as steel bars, wire rods, and steel plates manufactured by applying the steel. Steel materials manufactured by hot forging steel slabs are also included. The melting of steel may be performed by a normal method such as a converter or an electric furnace. You may perform a soaking | uniform-diffusion process before a block rolling process. The conditions for hot rolling and hot forging are not particularly limited. After hot rolling and hot forging, a normalizing treatment may be performed.

本実施形態に係る表面硬化処理部品は、表面硬化処理用鋼を素材として製造される。より詳細には、本実施形態に係る表面硬化処理部品は、本実施形態に係る表面硬化処理用鋼を、熱間鍛造などの熱間加工によって所定の形状とし、必要に応じて切削加工を施し、浸炭処理、窒化処理及び高周波焼入れ処理を順に施して製造される。   The surface hardened component according to the present embodiment is manufactured using surface hardened steel. More specifically, the surface-hardened component according to the present embodiment is obtained by forming the surface-hardened steel according to the present embodiment into a predetermined shape by hot working such as hot forging and performing cutting as necessary. It is manufactured by carburizing, nitriding and induction hardening in order.

浸炭処理は、ガス浸炭、真空浸炭など表層の炭素濃度を高めることが可能であれば、何れの方法でも良い。浸炭処理は、表面硬化処理部品の表面及び表面から0.3mmの位置における炭素濃度を確保するため、900℃以上で行う。浸炭処理の温度の上限は規定しないが、設備の制約に応じて決定すればよい。また、浸炭後の冷却は、油冷、ガス冷、空冷の何れの方法でも良い。   The carburizing treatment may be any method as long as the carbon concentration of the surface layer can be increased, such as gas carburizing and vacuum carburizing. The carburizing process is performed at 900 ° C. or higher in order to ensure the surface of the surface-hardened component and the carbon concentration at a position of 0.3 mm from the surface. Although the upper limit of the temperature of the carburizing process is not specified, it may be determined according to the restrictions of the equipment. The cooling after carburizing may be any of oil cooling, gas cooling, and air cooling.

浸炭処理後の窒化処理は、ガス窒化、プラズマ窒化、ガス軟窒化、塩浴軟窒化の何れでもよい。ここで、窒化処理の温度によっては、化合物相が安定して生成させることができず、表面硬化処理部品の表面の窒素濃度を高めることができないことがある。   The nitriding treatment after the carburizing treatment may be any of gas nitriding, plasma nitriding, gas soft nitriding, and salt bath soft nitriding. Here, depending on the temperature of the nitriding treatment, the compound phase cannot be stably generated, and the nitrogen concentration on the surface of the surface-hardened component may not be increased.

窒化処理の温度は、アンモニアを用いて雰囲気を制御する場合、部品の表面からの窒素の浸入を促進させ、表面硬化処理部品の表面の窒素濃度を確保するために、400℃以上とする。短時間の窒化処理で表面硬化処理部品の表面の窒素濃度を高めるには、温度を450℃以上にすることが好ましく、500℃以上にすることが更に好ましい。また、窒化処理の温度の上昇に伴い、雰囲気中のアンモニアの分解が促進して窒化ポテンシャルが低下し、600℃を超えた温度で窒化処理を行うと浸炭窒化層に生成する化合物層が薄くなる。したがって、窒化処理によって浸炭窒化層に安定なFe窒化物を形成し、表面硬化処理部品の表面の窒素濃度を高めるために、窒化処理の温度を600℃以下とする。   When the atmosphere is controlled using ammonia, the temperature of the nitriding treatment is set to 400 ° C. or higher in order to promote the penetration of nitrogen from the surface of the component and to secure the nitrogen concentration on the surface of the surface-hardened component. In order to increase the nitrogen concentration on the surface of the surface-hardened component by a short nitriding treatment, the temperature is preferably 450 ° C. or higher, and more preferably 500 ° C. or higher. In addition, as the temperature of nitriding increases, decomposition of ammonia in the atmosphere accelerates and the nitriding potential decreases, and when nitriding is performed at a temperature exceeding 600 ° C., the compound layer generated in the carbonitriding layer becomes thin. . Therefore, in order to form stable Fe nitride in the carbonitrided layer by nitriding, and to increase the nitrogen concentration on the surface of the surface-hardened component, the nitriding temperature is set to 600 ° C. or lower.

また、表面硬化処理部品の表面の窒素濃度を高めるためには、窒化処理の時間を1時間以上にすることが好ましい。一方、窒化処理の時間が長くなると生産性を損なうため、5時間以下にすることが好ましい。窒化処理後の冷却は、空冷、ガス冷却、油冷の何れの方法で行ってもよい。   In order to increase the nitrogen concentration on the surface of the surface-hardened component, the nitriding time is preferably set to 1 hour or longer. On the other hand, if the time for the nitriding treatment is increased, the productivity is impaired. Cooling after the nitriding treatment may be performed by any of air cooling, gas cooling, and oil cooling.

窒化処理後、高周波焼入れ処理が実施される。高周波焼入れ処理は、高周波加熱によって行う焼入れであり、加熱後の急冷によって表面硬化処理部品の表面の金属組織の50%以上をマルテンサイトとすることが目的であるため、最高到達温度はオーステナイト変態点以上である。高周波による加熱は、昇温速度が速く、保持時間を短時間にすることができる。   After the nitriding treatment, an induction hardening treatment is performed. Induction hardening is quenching performed by induction heating, and the objective is to make 50% or more of the metal structure on the surface of the surface-hardened part martensite by rapid cooling after heating, so the highest temperature reached is the austenite transformation point. That's it. High-frequency heating has a high temperature rising rate and can shorten the holding time.

高周波焼入れ処理では、最高到達温度に達した後、直ちに冷却してもよいので、保持時間の下限は特に限定せず、0秒(s)でもよいが、窒化処理で形成された窒化物を分解して、部品の表面の窒素濃度を高めるため、0.05秒以上にすることが好ましい。保持時間は、より好ましくは0.5秒以上である。なお、高周波焼入れ処理の保持時間は、長すぎると、窒素の拡散が促進されて表面硬化処理部品の表面の窒素濃度が低下する。本実施形態では、表面硬化処理部品の耐食性を高めるために、表面の窒素濃度を確保する必要があり、高周波焼入れ処理の保持時間を5秒以下とする。高周波焼入れ処理の保持時間は、好ましくは4秒以下である。   In the induction hardening process, after reaching the maximum temperature, it may be cooled immediately, so the lower limit of the holding time is not particularly limited and may be 0 second (s), but the nitride formed by the nitriding process is decomposed. Then, in order to increase the nitrogen concentration on the surface of the component, it is preferable to set it to 0.05 seconds or more. The holding time is more preferably 0.5 seconds or longer. If the holding time of the induction hardening process is too long, the diffusion of nitrogen is promoted, and the nitrogen concentration on the surface of the surface-hardened part is lowered. In this embodiment, in order to improve the corrosion resistance of the surface-hardened component, it is necessary to ensure the nitrogen concentration on the surface, and the holding time of the induction hardening process is set to 5 seconds or less. The holding time of the induction hardening process is preferably 4 seconds or less.

高周波焼入れ処理の最高到達温度は特に限定しないが、高すぎると、窒素の拡散が促進されて、表面硬化処理部品の表面の窒素濃度が低下することがある。そのため、高周波焼入れ処理の最高到達温度は、930℃以下が好ましい。高周波焼入れ処理の最高到達温度は、より好ましくは900℃以下である。高周波焼入れ処理の最高到達温度の下限は、オーステナイト変態点以上であればよいが、窒化物の分解を促進して、保持時間を短くするには、880℃以上が好ましい。   The maximum temperature reached by induction hardening is not particularly limited, but if it is too high, the diffusion of nitrogen is promoted, and the nitrogen concentration on the surface of the surface-hardened component may be lowered. For this reason, the highest ultimate temperature in the induction hardening process is preferably 930 ° C. or less. The highest temperature achieved by induction hardening is more preferably 900 ° C. or lower. The lower limit of the maximum attainable temperature of the induction hardening process may be equal to or higher than the austenite transformation point, but is preferably 880 ° C. or higher in order to promote the decomposition of nitride and shorten the holding time.

高周波焼入れ処理の最高到達温度の上限は特に限定されないが、部品形状や設備に応じて、周波数を調整することが好ましい。周波数は、小物部品であれば400kHz前後、大物部品であれば5kHz前後とすることが好ましい。焼入れに用いる冷媒は、水、ポリマー焼入材など水系で冷却能が大きなものを使用するとよい。   The upper limit of the maximum attainable temperature of the induction hardening process is not particularly limited, but it is preferable to adjust the frequency according to the part shape and equipment. The frequency is preferably around 400 kHz for small parts and around 5 kHz for large parts. As the refrigerant used for quenching, a water-based refrigerant having a large cooling capacity such as water or a polymer quenching material may be used.

高周波焼入れ処理を施した後、焼戻しが実施されてもよい。高周波焼入れ処理後の焼戻しは、部品の靱性を確保するため、150℃前後で行うことが好ましい。部品の靱性を向上させるには、焼戻しの加熱温度を100℃以上にすることが好ましい。また、部品の面疲労強度の低下を抑制するには、焼戻しの加熱温度を300℃以下とすることが好ましい。   Tempering may be performed after performing induction hardening processing. Tempering after induction hardening is preferably performed at around 150 ° C. in order to ensure the toughness of the parts. In order to improve the toughness of the parts, it is preferable to set the heating temperature for tempering to 100 ° C. or higher. Moreover, in order to suppress the fall of the surface fatigue strength of components, it is preferable that the heating temperature of tempering shall be 300 degrees C or less.

以下に、実施例を示しながら、本発明に係る表面硬化処理部品、表面硬化処理部品用鋼及び表面硬化処理部品の製造方法について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係る表面硬化処理部品、表面硬化処理部品用鋼及び表面硬化処理部品の製造方法の一例にすぎず、本発明に係る表面硬化処理部品、表面硬化処理部品用鋼及び表面硬化処理部品の製造方法が下記の例に限定されるものではない。   Below, the manufacturing method of the surface hardening processing component which concerns on this invention, the steel for surface hardening processing components, and a surface hardening processing component based on this invention is demonstrated concretely, showing an Example. In addition, the Example shown below is only an example of the manufacturing method of the surface hardening processing component which concerns on this invention, the steel for surface hardening processing components, and the surface hardening processing component based on this invention, The surface hardening processing component which concerns on this invention, surface hardening The manufacturing method of the steel for process parts and the surface hardening process part is not limited to the following example.

表1に示す成分組成を有する鋼を溶製した。ここで、表1中の下線は、本発明の表面硬化処理部品用鋼の成分組成から外れていることを示す。また、表中のP及びSは、不純物として検出されたP及びSの含有量を示し、意図的に添加したものではない。   Steel having the component composition shown in Table 1 was melted. Here, the underline in Table 1 indicates that the component composition of the steel for surface-hardened parts of the present invention is deviated. P and S in the table indicate the contents of P and S detected as impurities, and are not intentionally added.

Figure 0006314648
Figure 0006314648

溶製した鋼を、熱間加工し、直径65mmの丸棒を製造し、900℃で1時間保持し、空冷する焼準処理を施した。   The melted steel was hot-worked to produce a round bar with a diameter of 65 mm, and kept at 900 ° C. for 1 hour, followed by air-cooling normalizing treatment.

被削性を評価するため、焼準後、長さ190mmの試験片を作製した。試験片に対して、試験片側面を切込み深さ2mm、送り速度0.3mm/rev、円周方向の切削速度150m/分の条件でCVDコーティングされた超硬バイトでの旋削試験を実施した。被削性は、バイトの横逃げ面摩耗量が0.05mmとなるまでの切削時間を測定することにより評価した。   In order to evaluate machinability, a test piece having a length of 190 mm was prepared after normalization. The test piece was subjected to a turning test with a carbide coated CVD tool on the side of the test piece at a cutting depth of 2 mm, a feed rate of 0.3 mm / rev, and a circumferential cutting speed of 150 m / min. The machinability was evaluated by measuring the cutting time until the side flank wear amount of the cutting tool reached 0.05 mm.

また、焼準後、切削加工によって直径60mm、厚さ5mmの円盤状の転動疲労試験片とし、浸炭処理、窒化処理、高周波焼入れ処理を順に行った。   In addition, after normalization, a disc-shaped rolling fatigue test piece having a diameter of 60 mm and a thickness of 5 mm was formed by cutting, and carburizing treatment, nitriding treatment, and induction hardening treatment were sequentially performed.

浸炭処理は、炭素ポテンシャルを0.5〜1.1%とし、表2に示す加熱温度で、保持時間を240分とした。浸炭処理後に実施する窒化処理は、ガス軟窒化で行った。ガス軟窒化は、雰囲気を、N:NH:CO=40:55:5のガスとし、表2に示す加熱温度で、保持時間を150〜300分として行った。窒化処理後に実施する高周波焼入れ処理は、周波数100kHzで、表2に示す最高到達温度及び保持時間で行った。続いて、160℃で120分の焼戻し処理を行った。その後、寸法の精度を確保するため、転動疲労試験片に対して、約0.1mmを切削する仕上加工を行った。 In the carburizing treatment, the carbon potential was set to 0.5 to 1.1%, and the holding time was set to 240 minutes at the heating temperature shown in Table 2. The nitriding treatment performed after the carburizing treatment was performed by gas soft nitriding. The gas soft nitriding was performed by setting the atmosphere to a gas of N 2 : NH 3 : CO 2 = 40: 55: 5 at the heating temperature shown in Table 2 and holding time of 150 to 300 minutes. Induction hardening performed after the nitriding was performed at a frequency of 100 kHz and at the maximum temperature and holding time shown in Table 2. Then, the tempering process for 120 minutes was performed at 160 degreeC. Then, in order to ensure the precision of a dimension, the finishing process which cuts about 0.1 mm was performed with respect to the rolling fatigue test piece.

表面硬化処理部品の表面及び表面から0.3mm位置の窒素及び炭素の測定方法は、断面を研磨し、走査型電子顕微鏡(SEM)に付属する電子線マイクロアナライザー(EPMA)を用いて測定した。表面硬化処理部品の表面及び表面から0.3mm位置における窒素及び炭素濃度の測定は5箇所で行い、平均値を求めた。   The method of measuring nitrogen and carbon at a position of 0.3 mm from the surface of the surface-hardened component and the surface was measured using an electron beam microanalyzer (EPMA) attached to a scanning electron microscope (SEM). Measurement of the nitrogen and carbon concentration at the position of 0.3 mm from the surface of the surface-hardened component and the surface was performed at five locations, and the average value was obtained.

その後、旧オーステナイト粒界(旧γ粒界)が腐食されるエッチングを試験片断面に行い、EPMA測定した位置で切片法にて平均旧オーステナイト粒径(平均旧γ粒径)を測定した。具体的には、光学顕微鏡で500倍の写真を10視野撮影し、1視野あたり任意の5本の線を引き、線の長さを交わった結晶粒の数で割ったものを粒径とし、その平均値から求めた。残留オーステナイト(残留γ)の体積率は、X線回折によって測定した。具体的には、転動疲労試験片の表面のα及びγのX線積分強度比から残留γの体積率(旧γ率)を求めた。   Thereafter, etching that corrodes the prior austenite grain boundaries (former γ grain boundaries) was performed on the cross section of the test piece, and the average prior austenite grain size (average prior γ grain size) was measured by the intercept method at the position measured by EPMA. Specifically, taking 10 fields of view of a 500 times photograph with an optical microscope, drawing arbitrary 5 lines per field, and dividing the length of the line by the number of crystal grains intersected, It calculated | required from the average value. The volume fraction of retained austenite (residual γ) was measured by X-ray diffraction. Specifically, the volume ratio (old γ ratio) of residual γ was determined from the X-ray integrated intensity ratio of α and γ on the surface of the rolling fatigue test piece.

転動疲労寿命の評価は、スラスト型転動疲労試験によって行い、スラスト玉軸受の試験片は、浸炭窒化高周波焼入れ後に焼戻した素材から採取した。また、鋼球は、JIS SUJ2の焼入れ焼戻し材によるものを用いた。疲労寿命の尺度として、通常、「試験結果をワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数」がL10寿命として用いられる。表2の「転動疲労寿命」の欄には、市販されているJIS規格のSCM420に浸炭焼入れ焼戻しを施した試験片(基準材)で測定した寿命を1とした時の、各試験片のL10寿命の相対値を示した。 The rolling fatigue life was evaluated by a thrust type rolling fatigue test, and a test piece of a thrust ball bearing was collected from a material tempered after carbonitriding and induction hardening. In addition, a steel ball made of a tempered and tempered material of JIS SUJ2 was used. As a measure of fatigue life, “the number of stress repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting test results on Weibull probability paper” is usually used as the L 10 life. In the column of “Rolling fatigue life” in Table 2, the life of each test piece when the life measured with a test piece (reference material) obtained by carburizing, quenching and tempering commercially available SCM420 of JIS standard is set to 1. It shows the relative values of the L 10 life.

転動疲労寿命の評価が基準材以上であった場合は、アノード分極測定用の試験片を転動疲労試験片から採取し、耐食性を評価した。アノード分極測定は、0.01N(0.01規定)のNaSO水溶液中でSSE参照電極を用いて、30mV/分(min)の速度で電位を掃引し、行った。なお、アノード分極試験は、Arガスにて脱気処理を行ってから実施した。 When the evaluation of the rolling fatigue life was more than the reference material, a test piece for anodic polarization measurement was taken from the rolling fatigue test piece and the corrosion resistance was evaluated. The anodic polarization measurement was performed by sweeping the potential at a rate of 30 mV / min (min) using an SSE reference electrode in an aqueous solution of 0.01 N (0.01 N) Na 2 SO 4 . The anodic polarization test was performed after degassing with Ar gas.

図1に、耐食性が良好な本発明例のアノード分極曲線の測定結果の一例を、基準材のアノード分極曲線とともに示す。図1において、縦軸は電流密度であり、横軸は電位である。なお、縦軸における1E−xxという表記は、1×10−xxを意味している。図1に示すように、基準材のアノード分極曲線2は、線形軸では電位と電流が比例関係にある。一方、本発明の表面硬化処理部品のアノード分極曲線2は、電位を増加させても電流値が増加しない不動態領域が存在する。そこで、SSE参照電極で−400mVの電位の時に、浸炭焼入れ鋼の半分の腐食速度となる2.5×10−4A/cm以下の時を耐食性に優れると判断し、表2の「耐食性」の欄に○を記載した。電流値が2.5×10−4A/cmを超えた場合は、×を記載した。 FIG. 1 shows an example of the measurement result of the anodic polarization curve of the present invention with good corrosion resistance, together with the anodic polarization curve of the reference material. In FIG. 1, the vertical axis represents current density, and the horizontal axis represents potential. The notation 1E-xx on the vertical axis means 1 × 10 −xx . As shown in FIG. 1, in the anode polarization curve 2 of the reference material, the potential and the current are proportional to each other on the linear axis. On the other hand, the anodic polarization curve 2 of the surface-cured component of the present invention has a passive region where the current value does not increase even when the potential is increased. Accordingly, when the SSE reference electrode is at a potential of −400 mV, it is judged that the corrosion rate is less than 2.5 × 10 −4 A / cm 2 , which is half the corrosion rate of carburized and quenched steel. "" In the "" column. When the current value exceeded 2.5 × 10 −4 A / cm 2 , “x” was described.

結果を、以下の表2に示す。実施例No.1〜19は、工具寿命が7分以上で被削性が優れており、転動疲労寿命が基準材とほぼ同等か、同等以上であり、更に不動態領域が存在する耐食性に優れている。   The results are shown in Table 2 below. Example No. Nos. 1 to 19 have a tool life of 7 minutes or longer and excellent machinability, and have a rolling fatigue life that is substantially the same as or equal to or higher than that of the reference material, and further have excellent corrosion resistance in which a passive region exists.

実施例No.23、26及び28は、それぞれ、C、Mn及びCrが多いため、工具寿命が短く十分な被削性を得ることができなかった。そのため、実施例No.23、26及び28については、表面硬化処理を行わず、評価を中止した。   Example No. Since 23, 26 and 28 had a large amount of C, Mn and Cr, respectively, the tool life was short and sufficient machinability could not be obtained. Therefore, Example No. About 23, 26, and 28, the surface hardening process was not performed but evaluation was stopped.

一方、実施例No.25及び27は、それぞれMn、Crが少ないので、基準材と同等の転動疲労寿命が得られなかった。実施例No.25及び27については、耐食性の評価を行っていない。実施例No.24、29は、それぞれSi、Alが多いため、窒素濃度は高いものの、高周波焼入れ処理後も窒化物が残存し、優れた耐食性が得られなかった。   On the other hand, Example No. Since Nos. 25 and 27 had less Mn and Cr, respectively, a rolling fatigue life equivalent to that of the reference material could not be obtained. Example No. For 25 and 27, corrosion resistance was not evaluated. Example No. Nos. 24 and 29 had a high nitrogen concentration because of their large amounts of Si and Al, respectively, but nitride remained after induction hardening, and excellent corrosion resistance could not be obtained.

実施例No.30は浸炭処理の温度が低く、表面から0.3mm位置の炭素濃度が少ないため、基準材と同等の転動疲労寿命が得られなかった。実施例No.32は、高周波焼入れ処理の保持時間が長いため、表面の炭素濃度と窒素濃度の合計が不足し、基準材と同等の転動疲労寿命が得られなかった。実施例No.30及び32については、耐食性の評価を行っていない。実施例No.31は、窒化処理の温度が低く、表面の窒素濃度が少なくなり、優れた耐食性が得られなかった。   Example No. No. 30 has a low carburizing temperature and has a low carbon concentration at a position of 0.3 mm from the surface, so a rolling fatigue life equivalent to that of the reference material could not be obtained. Example No. No. 32 had a long holding time for induction hardening, so that the total of carbon concentration and nitrogen concentration on the surface was insufficient, and a rolling fatigue life equivalent to that of the reference material could not be obtained. Example No. 30 and 32 are not evaluated for corrosion resistance. Example No. No. 31 had a low nitriding temperature, the surface nitrogen concentration decreased, and excellent corrosion resistance was not obtained.

Figure 0006314648
Figure 0006314648

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 本発明例のアノード分極曲線
2 基準材のアノード分極曲線
1 Anode polarization curve of example of the present invention 2 Anode polarization curve of reference material

Claims (5)

質量%で、
C :0.05〜0.30%、
Si:0.01〜0.70%、
Mn:0.10〜1.50%、
Cr:0.50〜1.50%、
Al:0.01〜0.20%
を含有し、残部が、鉄及び不純物からなる母材部と、
前記母材部上に位置する表面硬化処理層と、
を有し、
前記表面硬化処理層は、
表面の窒素濃度が、0.4〜2.0%であり、
表面の炭素濃度と窒素濃度との合計が、1.0〜2.5%であり、
表面から深さ方向で0.3mmの位置の炭素濃度が、0.5〜1.1%であり、
表面の旧オーステナイト粒径が、平均14μm以上30μm以下である、表面硬化処理部品。
% By mass
C: 0.05 to 0.30%
Si: 0.01-0.70%,
Mn: 0.10 to 1.50%,
Cr: 0.50 to 1.50%,
Al: 0.01-0.20%
And the balance is a base material part made of iron and impurities,
A surface-hardened layer positioned on the base material part;
Have
The surface hardened layer is
The surface nitrogen concentration is 0.4-2.0%,
The total of the carbon concentration and nitrogen concentration on the surface is 1.0 to 2.5%,
Carbon concentration position of 0.3mm in depth from the surface, Ri 0.5 to 1.1% der,
Prior austenite grain size of the surface, Ru der least 30μm or less average 14 [mu] m, surface hardening component.
表面の残留オーステナイト量は、体積分率で10〜50%である、請求項1に記載の表面硬化処理部品。   The surface-hardened processed component according to claim 1, wherein the amount of retained austenite on the surface is 10 to 50% in terms of volume fraction. 前記母材部は、質量%で、
P:0.03%以下、
S:0.03%以下、
N:0.015%以下
に制限する、請求項1又は2に記載の表面硬化処理部品。
The base material part is in mass%,
P: 0.03% or less,
S: 0.03% or less,
N: The surface hardening process component of Claim 1 or 2 restrict | limited to 0.015% or less.
請求項1〜の何れか1項に記載の表面硬化処理部品の製造方法であって、
質量%で、
C :0.05〜0.30%、
Si:0.01〜0.70%、
Mn:0.10〜1.50%、
Cr:0.50〜1.50%、
Al:0.01〜0.20%
を含有し、残部が、鉄及び不純物からなる表面硬化処理部品用鋼を成形し、
900℃以上の温度で浸炭処理を施し、
400〜600℃の温度域で窒化処理を行い、
最高到達温度での保持時間を5秒以下とする高周波焼入れ処理を行う、表面硬化処理部品の製造方法。
It is a manufacturing method of the surface hardening processing part given in any 1 paragraph of Claims 1-3 ,
% By mass
C: 0.05 to 0.30%
Si: 0.01-0.70%,
Mn: 0.10 to 1.50%,
Cr: 0.50 to 1.50%,
Al: 0.01-0.20%
And forming the steel for surface-hardened parts made of iron and impurities ,
Carburized at a temperature of 900 ° C or higher,
Nitriding is performed in a temperature range of 400 to 600 ° C.,
A method for producing a surface-hardened component, which performs induction hardening with a holding time at a maximum temperature of 5 seconds or less.
前記表面硬化処理部品用鋼は、質量%で、The steel for surface-treated parts is mass%,
P:0.03%以下、    P: 0.03% or less,
S:0.03%以下、    S: 0.03% or less,
N:0.015%以下    N: 0.015% or less
に制限したものである、請求項4に記載の表面硬化処理部品の製造方法。The manufacturing method of the surface hardening process component of Claim 4 which is restrict | limited to.
JP2014102250A 2014-05-16 2014-05-16 Surface hardened component and method for manufacturing surface hardened component Active JP6314648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014102250A JP6314648B2 (en) 2014-05-16 2014-05-16 Surface hardened component and method for manufacturing surface hardened component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102250A JP6314648B2 (en) 2014-05-16 2014-05-16 Surface hardened component and method for manufacturing surface hardened component

Publications (2)

Publication Number Publication Date
JP2015218359A JP2015218359A (en) 2015-12-07
JP6314648B2 true JP6314648B2 (en) 2018-04-25

Family

ID=54778000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102250A Active JP6314648B2 (en) 2014-05-16 2014-05-16 Surface hardened component and method for manufacturing surface hardened component

Country Status (1)

Country Link
JP (1) JP6314648B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772499B2 (en) * 2016-03-18 2020-10-21 日本製鉄株式会社 Steel parts and their manufacturing methods
JP6493286B2 (en) * 2016-04-19 2019-04-03 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP7275665B2 (en) * 2019-03-05 2023-05-18 大同特殊鋼株式会社 Steel for carbo-nitriding
EP4151760A4 (en) * 2020-05-15 2023-10-11 JFE Steel Corporation Steel component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9701594L (en) * 1997-04-29 1998-10-05 Ovako Steel Ab Hardened steel
RU2437958C1 (en) * 2007-10-24 2011-12-27 Ниппон Стил Корпорейшн Nitro-carbonised steel part with induction quenching of raised fatigue strength of surface at high temperature and procedure for its manufacture
JP5206271B2 (en) * 2008-09-22 2013-06-12 新日鐵住金株式会社 Carbonitriding parts made of steel

Also Published As

Publication number Publication date
JP2015218359A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP5026625B2 (en) Steel for machine structural use for surface hardening, steel parts for machine structural use and manufacturing method thereof
KR101322534B1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JP5862802B2 (en) Carburizing steel
JP6610808B2 (en) Soft nitriding steel and parts
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
EP3378963A1 (en) Steel component, gear component, and method for manufacturing steel component
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP6314648B2 (en) Surface hardened component and method for manufacturing surface hardened component
JP5251633B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP5258458B2 (en) Gears with excellent surface pressure resistance
JPWO2017043594A1 (en) Nitrided steel parts and manufacturing method thereof
JP4050512B2 (en) Manufacturing method of carburizing and quenching member and carburizing and quenching member
JP7013833B2 (en) Carburized parts
JP2016188421A (en) Carburized component
JP7063070B2 (en) Carburized parts
JP5821512B2 (en) NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF
JP2016222982A (en) Case hardened steel for machine construction excellent in pitching resistance and component raw material for machine construction
JP5077814B2 (en) Shaft and manufacturing method thereof
JP2016098426A (en) Case hardened steel for mechanical structure excellent in pitching resistance used for carburization case
JP2016188422A (en) Carburized component
JP6146381B2 (en) Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP2015045036A (en) Skin hardening steel for gear excellent in pitching resistance under hydrogen environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350