WO2018155293A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2018155293A1
WO2018155293A1 PCT/JP2018/005179 JP2018005179W WO2018155293A1 WO 2018155293 A1 WO2018155293 A1 WO 2018155293A1 JP 2018005179 W JP2018005179 W JP 2018005179W WO 2018155293 A1 WO2018155293 A1 WO 2018155293A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
extension
valve
chamber
passage
Prior art date
Application number
PCT/JP2018/005179
Other languages
French (fr)
Japanese (ja)
Inventor
瞭太 五味
萩平 慎一
敦 作田
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018155293A1 publication Critical patent/WO2018155293A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • F16F9/49Stops limiting fluid passage, e.g. hydraulic stops or elastomeric elements inside the cylinder which contribute to changes in fluid damping

Definitions

  • This invention relates to a shock absorber.
  • shock absorbers used in vehicle suspensions have a damping valve that can vary the damping force.
  • a shock absorber includes a cylinder, a piston that divides the cylinder into an extension side chamber and a pressure side chamber, a piston rod that is connected to the piston at one end and is movably inserted into the cylinder, and a damping valve. Composed.
  • the damping valve opens and closes an extension side passage and a pressure side passage, which communicate with the extension side chamber and the pressure side chamber provided in the piston, and opens and closes the extension side passage and the pressure side passage, respectively.
  • the expansion side leaf valve, the compression side leaf valve, the expansion side spool and the compression side spool that press the expansion side leaf valve and the compression side leaf valve, respectively, the expansion side back pressure chamber and the compression side back that press the expansion side spool and the compression side spool with internal pressure
  • an electromagnetic pressure control valve for adjusting the pressure in the pressure chamber.
  • the damping force at the time of expansion and contraction can be controlled by controlling the pressure in the expansion-side back pressure chamber and the pressure-side back pressure chamber by a single electromagnetic pressure control valve.
  • the extension side back pressure chamber and the pressure side back pressure chamber are connected by a communication path.
  • the communication passage communicates with the electromagnetic pressure control valve.
  • This communication path is formed by an annular gap formed on the outer periphery of the separator by providing a vertical hole in the holding shaft of the piston holder that holds the piston, and inserting a pipe-shaped separator into the vertical hole.
  • the strength of the piston holder is inevitably lowered due to the fact that a vertical hole is provided in the holding shaft and the separator is inserted.
  • an object of the present invention is to provide a shock absorber capable of reducing the number of parts and ensuring the strength of the piston holder.
  • the expansion-side back pressure chamber that urges the expansion-side spool toward the expansion-side leaf valve and the compression-side back pressure chamber that urges the compression-side spool toward the compression-side leaf valve communicate with each other. Since the communication path is formed on the outer periphery of the holding shaft, there is no need to provide a separator for providing the communication path in the holding shaft.
  • FIG. 1 is a cross-sectional view of a shock absorber according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the electromagnetic pressure control valve of the shock absorber in one embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the piston portion of the shock absorber according to the embodiment.
  • the shock absorber D in one embodiment opens and closes a cylinder 1, an annular piston 2 that is slidably inserted into the cylinder 1, and an extension-side passage 3 provided in the piston 2.
  • An extension side leaf valve Ve a pressure side leaf valve Vp that opens and closes a pressure side passage 4 provided in the piston 2, an extension side chamber member 12 and an extension side spool Se, a pressure side chamber member 11 and a pressure side spool Sp, and a piston holder 8
  • the groove 8h functioning as a communication path, the expansion pilot orifice Pe as the expansion resistance element, the compression pilot orifice Pp as the compression resistance element, the adjustment path Pc connected to the groove 8h, and the adjustment path Pc
  • a pressure side discharge passage Ep that allows only the flow of liquid toward the side chamber R1, and an extension side discharge that allows only the flow of liquid from the adjustment passage Pc to the pressure side chamber R2.
  • road Ee is constituted by an electromagnetic pressure control valve 6 provided in the regulation passage Pc to control the upstream pressure regulating passage Pc.
  • the cylinder 1 is filled with a liquid such as hydraulic oil, the lower end is closed, although not shown, and an annular rod guide is attached to the upper end.
  • a free piston that slides in the cylinder 1 is provided below the cylinder 1 in FIG. 1, and a gas chamber is formed in the cylinder 1 by the free piston.
  • the liquid with which the cylinder 1 is filled can be used if it is a liquid which can exhibit damping force besides hydraulic oil.
  • the piston 2 is slidably inserted into the cylinder 1, and defines an extension side chamber R1 and a pressure side chamber R2 filled with liquid in the cylinder 1, and is movably inserted into the cylinder 1. It is connected to one end of the piston rod 7.
  • the piston rod 7 is inserted through the inner periphery of the rod guide (not shown) provided at the upper end of the cylinder 1 and protrudes outside the cylinder 1.
  • a seal (not shown) is provided between the piston rod 7 and the cylinder 1, and the cylinder 1 is in a liquid-tight state.
  • the shock absorber D Since the shock absorber D is set to a so-called single rod type, the volume of the piston rod 7 that enters and exits the cylinder 1 as the shock absorber D expands and contracts is the volume of the gas in the gas chamber described above. By expanding or contracting, the free piston moves up and down in the cylinder 1 to be compensated. As described above, the shock absorber D is set to a single cylinder type, but instead of installing a free piston and a gas chamber, a reservoir is provided on the outer periphery or outside of the cylinder 1 and the volume compensation of the piston rod 7 is performed by the reservoir. May be performed.
  • the piston rod 7 has a piston holder 8 that holds the piston 2 and an electromagnetic valve housing that forms a hollow housing portion L that is connected to the piston holder 8 and that houses the electromagnetic pressure control valve 6 together with the piston holder 8.
  • a cylinder 9 and a rod member 10 having one end connected to the solenoid valve housing cylinder 9 and the other end protruding outward from the upper end of the cylinder 1 are formed.
  • the piston holder 8 includes a holding shaft 8a on which the annular piston 2 is mounted on the outer periphery, a flange 8b provided on the outer periphery of the upper end of the holding shaft 8a in FIG. 1, and a cylindrical shape provided on the outer periphery of the upper end of the flange 8b in FIG. And a socket 8c.
  • the piston holder 8 is opened from the tip of the holding shaft 8a, extends in the axial direction, communicates with the socket 8c, a port 8e that passes through the flange 8b and communicates with the socket 8c, and a diagram of the holding shaft 8a.
  • the solenoid valve housing cylinder 9 includes a top-cylindrical housing cylinder portion 9a and a cylindrical connecting portion that has an outer diameter smaller than that of the housing cylinder portion 9a and extends upward from the top of the housing cylinder portion 9a in FIG. 9b and a through-hole 9c that opens from the side of the accommodating tube portion 9a and communicates with the inside. Then, when the socket 8c of the piston holder 8 is screwed to the inner periphery of the accommodating cylinder portion 9a of the electromagnetic valve accommodating cylinder 9 and the piston holder 8 is integrated with the electromagnetic valve accommodating cylinder 9, the electromagnetic valve accommodating cylinder 9 and the piston holder are integrated.
  • the accommodating part L in which the electromagnetic pressure control valve 6 is accommodated is formed in the accommodating cylinder part 9a.
  • the accommodating portion L functions as a part of the adjustment passage Pc, communicates with the groove 8h provided on the outer periphery of the holding shaft 8a via the port 8e, and forms the extension-side discharge passage Ee.
  • the pressure side chamber R2 communicates with the vertical hole 8d.
  • the through hole 9c faces the recess 8i, and cooperates with the through hole 8j to allow the housing portion L to communicate with the extension side chamber R1. It is like that.
  • an annular valve body 22a is attached to the recess 8i provided on the outer periphery of the upper end in FIG. 1 of the socket 8c.
  • the annular valve body 22a is urged by a spring 22b from above in FIG. Open and close.
  • the annular valve body 22 a and the spring 22 b constitute a check valve 22.
  • the pressure-side discharge passage Ep is formed by a through-hole 9c, a recess 8i, and a through-hole 8j, and only the flow of liquid from the adjustment passage Pc to the extension-side chamber R1 is allowed by the check valve 22 described above. Block the flow of liquid in the opposite direction.
  • the above-described vertical hole 8d provided in the holding shaft 8a functions as the extension side discharge passage Ee, and the vertical hole 8d provided in the holding shaft 8a goes from the accommodating portion L to the compression side chamber R2 through the vertical hole 8d.
  • a check valve 25 that allows only the flow of liquid is provided.
  • the check valve 25 is seated on the pipe 25a mounted in the vertical hole 8d, a cup-shaped spring receiver 25b fitted to the pipe 25a, and an end of the pipe 25a and accommodated in the spring receiver 25b.
  • a disc-like valve body 25c, and a spring 25d interposed between the top of the spring receiver 25b and the valve body 25c.
  • the spring receiver 25b is provided with a notch, and when the valve body 25c is separated from the pipe 25a, the check valve 25 is opened to allow the flow of liquid from the vertical hole 8d side toward the pressure side chamber R2.
  • the valve body 25c contacts the lower end of the pipe 25a in FIG. 1 and the check valve 25 closes to block the liquid flow.
  • the check valve 25 is assembled and accommodated in the vertical hole 8d, and is fixed to the vertical hole 8d by a disc spring fitted near the outlet of the vertical hole 8d. Therefore, the extension side discharge passage Ee blocks the flow of liquid from the pressure side chamber R2 toward the adjustment passage Pc, and allows only the flow of liquid from the adjustment passage Pc toward the pressure side chamber R2.
  • the rod member 10 has a cylindrical shape, and the inner circumference at the lower end in FIG. 1 has an enlarged diameter, allows insertion of the connecting portion 9b of the solenoid valve housing cylinder 9, and enables the connecting portion 9b to be screwed. A screw portion (not shown) is provided. Thus, when the rod member 10, the solenoid valve housing cylinder 9, and the piston holder 8 are integrated, the piston rod 7 is formed by these.
  • a harness H for supplying power to a solenoid which will be described later, is inserted into the rod member 10 and the connecting portion 9b of the solenoid valve housing cylinder 9, and the upper end of the harness H is not shown, but the upper end of the rod member 10 is not shown. Is connected to the power supply.
  • the outer periphery of the holding shaft 8 a provided in the piston holder 8 slides on the outer periphery of the shim 61 and the shim 61 formed by laminating a plurality of annular plates together with the annular piston 2.
  • a pressure-side annular plate 62 that is freely mounted, a pressure-side stopper 63 that is annular and has an outer diameter larger than that of the shim 61, and the pressure-side chamber member 11 are assembled in an overlapping manner.
  • annular pressure side leaf valve Vp that is slidably mounted on the outer periphery of the shim 61 is provided on the piston 2, and the pressure side leaf valve Vp is connected to the holding shaft of the piston holder 8 via the shim 61. It is attached to the outer periphery of 8a.
  • the pressure side chamber member 11 is slidably mounted with a pressure side spool Sp that is in contact with the pressure side annular plate 62, and the pressure side spool Sp is movable in the axial direction so as to move together with the pressure side chamber member 11. Is forming.
  • a shim 65 as a shaft member configured by laminating a plurality of annular plates, and an extended-side annular plate 66 that is slidably mounted on the outer periphery of the shim 65,
  • An extension side stopper 67 and an extension side chamber member 12 which are annular and have an outer diameter larger than that of the shim 65 are assembled in an overlapping manner.
  • an annular extension side leaf valve Ve that is slidably mounted on the outer periphery of the shim 65 is provided on the piston 2, and the extension side leaf valve Ve is connected to the piston holder 8 via the shim 65. It is attached to the outer periphery of the holding shaft 8a.
  • An extension side spool Se that contacts the extension side annular plate 66 is slidably attached to the extension side chamber member 12, and the extension side spool Se can be moved in the axial direction.
  • an extension side back pressure chamber Ce is formed.
  • the outer diameter of the extension side leaf valve Ve is smaller than the outer diameter of the compression side leaf valve Vp.
  • each component mounted on the outer periphery of the holding shaft 8a described above is fixed by the extension-side chamber member 12 screwed into a screw portion 8f formed at the tip of the holding shaft 8a.
  • the piston 2 is annular and is mounted on the outer periphery of the holding shaft 8a of the piston holder 8, and an extension side passage 3 and a pressure side passage 4 that connect the extension side chamber R1 and the pressure side chamber R2 are formed.
  • 3 at the upper end of the piston 2, there is an annular window 2a communicating with the pressure side passage 4, an annular pressure side valve seat 2b provided on the outer peripheral side of the annular window 2a and surrounding the pressure side passage 4, and an annular window 2a.
  • seat part 2c provided in the inner periphery is provided.
  • annular window 2d communicated with the extension side passage 3
  • annular extension side valve seat 2e provided on the outer peripheral side of the annular window 2d and surrounding the extension side passage 3, and an annular window 2d.
  • seat part 2f provided in the inner periphery is provided.
  • the extension-side leaf valve Ve is annular in order to allow insertion of the holding shaft 8 a of the piston holder 8.
  • the extension-side leaf valve Ve is composed of a single annular plate. It may be configured by laminating a single annular plate.
  • the extension side leaf valve Ve configured as described above is overlapped below the piston 2 in FIG. 3 and can be attached to and detached from the extension side valve seat 2e and the inner peripheral seat portion 2f.
  • the extension side leaf valve Ve is provided with a notch Oe that functions as an orifice when seated on the extension side valve seat 2e on the outer periphery thereof, and is slidably mounted on the outer periphery of the shim 65.
  • an expansion side annular plate 66 that is superimposed on the expansion side leaf valve Ve is slidably mounted.
  • an annular auxiliary valve 71 having an outer diameter smaller than that of the expansion side annular plate 66 is stacked on the side of the expansion side annular plate 66 opposite to the leaf valve side.
  • the outer periphery of the shim 65 is slidably mounted.
  • the axial length when the extension-side leaf valve Ve, the extension-side annular plate 66 and the auxiliary valve 71 are stacked is made shorter than the axial length of the shim 65.
  • an extension side stopper 67 is provided below the shim 65 in FIG. 3 and has an annular shape whose outer diameter is set larger than the inner diameters of the auxiliary valve 71 and the extension side annular plate 66.
  • the extension side chamber member 12 is stacked below the side stopper 67. Accordingly, the extension side leaf valve Ve, the extension side annular plate 66 and the auxiliary valve 71 are guided by the shim 65 so as to be movable in the vertical direction in FIG. 3 which is the axial direction between the piston 2 and the extension side stopper 67. It has become.
  • the extension-side leaf valve Ve When the extension-side leaf valve Ve is pressed by pressure from the extension-side passage 3 side, the outer periphery bends together with the extension-side annular plate 66, and the extension-side leaf plate Ve and the auxiliary valve 71 as a whole are separated from the piston 2. Can retreat.
  • the retraction amounts of the extension side leaf valve Ve, the extension side annular plate 66 and the auxiliary valve 71 from the piston 2 are set by the axial length of the shim 65.
  • the shim 65 is constituted by a plurality of annular plates, the shim 65 can be adjusted by the number of laminated annular plates, but the shim 65 may be constituted by a single annular plate.
  • the expansion side annular plate 66 is bent and has higher rigidity than the expansion side leaf valve Ve. For this reason, the axial length (thickness) of the expansion side annular plate 66 is longer than the axial length (thickness) of the expansion side leaf valve Ve.
  • the expansion-side annular plate 66 may be formed of a material having higher rigidity than the side leaf valve Ve.
  • the inner diameter of the expansion side annular plate 66 is set to be smaller than the outer diameter of the inner peripheral sheet portion 2f provided in the piston 2.
  • the outer diameter of the expansion side annular plate 66 is set to be larger than the inner diameter of the expansion side valve seat 2e.
  • the extension-side back pressure chamber Ce urges the extension-side spool Se toward the extension-side annular plate 66 with the pressure introduced inside. Therefore, the extension side leaf valve Ve stacked on the extension side annular plate 66 is urged toward the piston 2 by the urging force received from the extension side spool Se and the pressure of the extension side back pressure chamber Ce.
  • the extension side annular plate 66 When the expansion side annular plate 66 is pressed from the back side by the pressure in the expansion side back pressure chamber Ce and the expansion side spool Se, and the expansion side leaf valve Ve is seated on the expansion side valve seat 2e and the inner peripheral seat portion 2f, The extension side annular plate 66 is supported by the inner peripheral seat portion 2f and the extension side valve seat 2e. Therefore, the pressure in the extension side back pressure chamber Ce and the urging force of the extension side spool Se are received by the extension side annular plate 66, and deformation of the extension side leaf valve Ve is suppressed, and the extension side leaf valve Ve is overloaded. It is not to take.
  • the auxiliary valve 71 has an outer diameter smaller than that of the extension side leaf valve Ve and the extension side annular plate 66.
  • auxiliary valve 71 when the extension side leaf valve Ve and the extension side annular plate 66 are bent by the pressure of the extension side passage 3, the outer peripheral side is more easily bent than the auxiliary valve 71.
  • the damping characteristic of damping force can be tuned. If the auxiliary valve 71 is unnecessary due to the damping characteristic generated in the shock absorber D, it can be omitted. Conversely, a plurality of auxiliary valves 71 may be stacked.
  • the extension-side chamber member 12 is disposed on the opposite side of the extension-side leaf valve Ve from the piston, and has a cylindrical spacer 121 that is screwed to the outer periphery of the holding shaft 8a of the piston holder 8, and an outer periphery of the spacer 121. And a sliding contact cylinder 122 that is fitted and in sliding contact with the expansion side spool Se.
  • the spacer 121 includes a cylindrical portion 121a that is screwed to the screw portion 8f of the holding shaft 8a, a flange 121b that is provided on the outer periphery of the lower end in FIG.
  • the sliding contact cylinder 122 includes a cylindrical portion 122a in which the extension side spool Se is in sliding contact with the inner periphery, and a flange 122b that protrudes to the inner periphery at the lower end in FIG. 3 of the cylindrical portion 122a.
  • the cylindrical portion 121a of the spacer 121 is fitted to the inner periphery of the flange 122b of the sliding contact tube 122.
  • the spacer 121 and the sliding contact tube 122 are integrated to form an annular recess.
  • the extension-side back pressure chamber Ce is formed by the annular recess.
  • the extension side chamber member 12 is constituted by the spacer 121 and the sliding contact cylinder 122 in order to facilitate processing, but may be constituted by one part.
  • the annular groove 121c on the inner periphery of the spacer 121 faces the groove 8h provided on the holding shaft 8a, and the extension side back pressure chamber Ce passes through the pressure side pilot orifice Pp. It communicates with the groove 8h.
  • An extension side stopper 67 is interposed between the spacer 121 and the shim 65 in the extension side chamber member 12, but the extension side stopper 67 is abolished so that the spacer 121 functions as a stopper.
  • the lower limit of movement of the plate 66 may be restricted.
  • the extension side spool Se is accommodated in the sliding tube 122.
  • the extension-side spool Se is in sliding contact with the inner periphery of the cylindrical portion 122 a of the sliding contact cylinder 122, and can move in the axial direction within the sliding contact cylinder 122.
  • the extension-side spool Se includes an annular spool body 13 and an annular protrusion 14 that rises from the inner periphery of the upper end of the spool body 13 in FIG.
  • the inner diameter of the annular protrusion 14 is set to be smaller than the outer diameter of the extended-side annular plate 66 so that the annular protrusion 14 can come into contact with the lower surface in FIG. Yes.
  • the inner diameter of the spool body 13 is larger than the outer diameter of the cylindrical portion 121a of the spacer 121, but the inner diameter is set to a diameter that is in sliding contact with the outer periphery of the cylindrical portion 121a to extend the extension-side back pressure chamber Ce. You may seal with the side spool Se.
  • the sliding contact cylinder 122 of the extension side chamber member 12 is provided with a pressure side pressure introduction passage Ip that passes through the flange 122b and communicates the extension side back pressure chamber Ce and the pressure side chamber R2.
  • An annular valve body 15 is superimposed on the upper end of the flange 122b of the sliding contact cylinder 122 in FIG. 3, and is annularly formed by a spring 16 interposed between the annular valve body 15 and the spool body 13 of the extension side spool Se. The valve body 15 is pressed against the flange 122b.
  • the pressure side pressure introduction passage Ip is considered so as not to cause resistance to the flow of the passing liquid.
  • the annular valve body 15 When the pressure side chamber R2 is compressed and the pressure is increased during the contraction operation of the shock absorber D, the annular valve body 15 is pressed by this pressure and is separated from the flange 122b to open the pressure side pressure introduction passage Ip. Further, when the shock absorber D is extended so that the pressure in the extension side back pressure chamber Ce becomes higher than the pressure side chamber R2, it is pressed against the flange 122b to close the pressure side pressure introduction passage Ip, and only the liquid flow from the pressure side chamber R2 is allowed to flow. Allow. As described above, the annular valve body 15 and the spring 16 constitute the pressure-side check valve Tp, and only allow the flow of liquid from the pressure-side chamber R2 toward the extension-side back pressure chamber Ce through the pressure-side pressure introduction passage Ip. It is set as a passage for traffic.
  • the spring 16 plays a role of pressing the annular valve body 15 against the flange 122b, constitutes a compression-side check valve Tp together with the annular valve body 15, and serves to urge the extension-side spool Se toward the extension-side leaf valve Ve. Is also responsible. Therefore, when the extension side leaf valve Ve is bent and the extension side spool Se is pushed down in the direction away from the piston 2 and then the extension side leaf valve Ve is flexed, the extension side spool Se is quickly moved by the spring force of the spring 16. Return to the original position (position shown in FIG. 3).
  • extension side spool Se can be energized by a separate spring, there is an advantage that the compression side check valve Tp and the spring 16 can be shared, the number of parts can be reduced, and the structure can be simplified.
  • the outer diameter of the extension side spool Se is set to be larger than the inner diameter of the annular protrusion 14, and the annular protrusion 14 comes into contact with the extension side annular plate 66.
  • the pressure in the extension side back pressure chamber Ce is always urged toward the extension side leaf valve Ve.
  • the pressure side leaf valve Vp overlaid on the piston 2 has an annular shape to allow the holding shaft 8a of the piston holder 8 to be inserted, as in the extension side leaf valve Ve.
  • it is constituted by one annular plate, it may be constituted by laminating a plurality of annular plates.
  • the pressure side leaf valve Vp comprised in this way is piled up the upper direction in FIG. 3 of the piston 2, and can be attached / detached to the pressure side valve seat 2b and the inner peripheral seat part 2c.
  • the pressure-side leaf valve Vp is provided with a notch Op that functions as an orifice when seated on the pressure-side valve seat 2b on the outer periphery thereof, and is slidably mounted on the outer periphery of the shim 61.
  • a pressure side annular plate 62 that is superimposed on the pressure side leaf valve Vp is slidably mounted.
  • an annular auxiliary valve 81 having an outer diameter smaller than that of the pressure side annular plate 62 is stacked on the pressure side leaf valve side of the pressure side annular plate 62, and this auxiliary valve 81 is also connected to the shim 61. It is slidably mounted on the outer periphery.
  • the axial length when the pressure side leaf valve Vp, the pressure side annular plate 62 and the auxiliary valve 81 are stacked is set to be shorter than the axial length of the shim 61.
  • a pressure side stopper 63 is provided above the shim 61 in FIG. 3 and has an annular shape whose outer diameter is set larger than the inner diameter of the auxiliary valve 81 and the pressure side annular plate 62.
  • the compression side chamber member 11 is overlaid on the upper side. Therefore, the pressure-side leaf valve Vp, the pressure-side annular plate 62, and the auxiliary valve 81 are guided by the shim 61 and can move up and down in FIG. 3, which is the axial direction between the piston 2 and the pressure-side stopper 63. .
  • the pressure-side leaf valve Vp When the pressure-side leaf valve Vp is pressed by pressure from the pressure-side passage 4 side, the outer periphery thereof bends together with the pressure-side annular plate 62, and the pressure-side leaf plate Vp and the auxiliary valve 81 can be moved away from the piston 2 as a whole.
  • the retraction amounts of the pressure side leaf valve Vp, the pressure side annular plate 62 and the auxiliary valve 81 from the piston 2 are set by the length of the shim 61 in the axial direction.
  • the shim 61 since the shim 61 is constituted by a plurality of annular plates, the shim 61 can be adjusted by the number of laminated annular plates, but the shim 61 may be constituted by a single annular plate.
  • the pressure side annular plate 62 is bent and has higher rigidity than the pressure side leaf valve Vp. For this reason, the axial length (thickness) of the compression-side annular plate 62 is longer than the axial length (thickness) of the compression-side leaf valve Vp, but not only the rigidity is increased by the axial length but also the compression-side leaf valve.
  • the compression side annular plate 62 may be formed of a material having higher rigidity than Vp.
  • the inner diameter of the compression side annular plate 62 is set to be smaller than the outer diameter of the inner peripheral sheet portion 2c provided in the piston 2.
  • the outer diameter of the pressure side annular plate 62 is set to be larger than the inner diameter of the pressure side valve seat 2b.
  • the pressure-side back pressure chamber Cp urges the pressure-side spool Sp toward the pressure-side annular plate 62 with the pressure introduced inside. Therefore, the pressure side leaf valve Vp overlapping the pressure side annular plate 62 is urged toward the piston 2 by the urging force received from the pressure side spool Sp and the pressure in the pressure side back pressure chamber Cp.
  • the pressure side annular plate 62 When the pressure side annular plate 62 is pressed from the back side by the pressure in the pressure side back pressure chamber Cp and the pressure side spool Sp, and the pressure side leaf valve Vp is seated on the pressure side valve seat 2b and the inner peripheral seat portion 2c, the pressure side annular plate 62 is The inner circumferential seat portion 2c and the pressure side valve seat 2b are supported. Therefore, the pressure in the pressure side back pressure chamber Cp and the urging force by the pressure side spool Sp are received by the pressure side annular plate 62, the deformation of the pressure side leaf valve Vp is suppressed, and the pressure side leaf valve Vp is not overloaded. ing.
  • the auxiliary valve 81 has an outer diameter smaller than that of the pressure side leaf valve Vp and the pressure side annular plate 62. Therefore, when the pressure side leaf valve Vp and the pressure side annular plate 62 are bent by the pressure of the pressure side passage 4, the outer peripheral side is more easily bent than the auxiliary valve 81, and the auxiliary side valve 81 is used to attenuate the pressure side damping force. You can tune the characteristics. If the auxiliary valve 81 is unnecessary due to the damping characteristic generated in the shock absorber D, it can be omitted. Conversely, a plurality of auxiliary valves 81 may be stacked.
  • the pressure side chamber member 11 is disposed on the side opposite to the piston of the pressure side leaf valve Vp, and is fitted to the outer periphery of the spacer 111 and the cylindrical spacer 111 fitted to the outer periphery of the holding shaft 8 a in the piston holder 8. And a sliding cylinder 112 with which the compression side spool Sp slides.
  • the spacer 111 is mounted on the outer periphery of the holding shaft 8a, and opens from the recess 111a provided on the entire outer periphery of the upper end in FIG. 3, the annular groove 111b provided on the inner periphery, and the annular groove 111b.
  • the slidable contact cylinder 112 includes a cylinder portion 112a in which the compression side spool Sp is slidably contacted on the inner periphery, and a flange 112b protruding from the upper end inner periphery in FIG. 3 of the cylinder portion 112a.
  • the spacer 111 and the sliding contact cylinder 112 are integrated to form an annular recess, and the pressure side back pressure chamber Cp is formed in the annular recess. It is formed.
  • the pressure side chamber member 11 is composed of the spacer 111 and the sliding contact cylinder 112 in order to facilitate processing, but it may be composed of one part.
  • the annular groove 111b on the inner periphery of the spacer 111 faces the groove 8h provided on the holding shaft 8a, and the pressure-side back pressure chamber Cp is grooved through the expansion-side pilot orifice Pe. 8h.
  • the pressure side chamber member 11 is in close contact with the upper end in FIG. 3 in contact with the flange 8 b of the piston holder 8.
  • the groove 8h is formed by the piston 2, shims 61 and 65, the extension side stopper 67 and the compression side stopper 63, the extension side chamber member 12 and the compression side chamber member 11 mounted on the holding shaft 8a, and the extension side chamber R1 and the pressure side chamber R2. Communication has been cut off.
  • the groove 8h communicates with the accommodating portion L through the port 8e, is connected to the adjustment passage Pc, and extends through the compression side pilot orifice Pp and through the expansion side pilot orifice Pe and the compression side back pressure chamber through the extension side pilot orifice Pe. Connected to Cp. As described above, the groove 8h forms a communication path that communicates with the expansion-side back pressure chamber Ce via the compression-side resistance element and also communicates with the compression-side back pressure chamber Cp via the expansion-side resistance element.
  • the pressure side stopper 63 is interposed between the spacer 111 and the shim 61 in the pressure side chamber member 11, but the pressure side stopper 63 is abolished so that the spacer 111 functions as a stopper. You may make it regulate a movement minimum.
  • a compression side spool Sp is accommodated in the sliding contact cylinder 112 in the sliding contact cylinder 112, a compression side spool Sp is accommodated.
  • the pressure side spool Sp is in sliding contact with the inner periphery of the cylindrical portion 112 a of the sliding contact cylinder 112, and can move in the axial direction within the sliding contact cylinder 112.
  • the pressure-side spool Sp includes an annular spool body 17 and an annular protrusion 18 that rises from the outer periphery of the lower end of the spool body 17 in FIG.
  • the inner diameter of the annular protrusion 18 is set to be smaller than the outer diameter of the pressure-side annular plate 62 so that the annular protrusion 18 can come into contact with the upper surface in FIG.
  • the inner diameter of the spool body 17 is larger than the outer diameter of the spacer 111, the inner diameter may be set to a diameter that is in sliding contact with the outer periphery of the spacer 111, and the compression-side back pressure chamber Cp may be sealed with the compression-side spool Sp. Good.
  • the sliding contact cylinder 112 of the compression side chamber member 11 is provided with an expansion side pressure introduction passage Ie that passes through the flange 112b and communicates the compression side back pressure chamber Cp and the expansion side chamber R1.
  • An annular valve body 19 is superimposed on the lower end of the flange 112b of the sliding contact cylinder 112 in FIG. 3, and an annular valve body is provided by a spring 20 interposed between the annular valve body 19 and the spool body 17 of the compression side spool Sp. 19 is pressed against the flange 112b.
  • the extension side pressure introduction passage Ie is considered so as not to cause resistance to the flow of the passing liquid.
  • the annular valve body 19 and the spring 20 constitute the extension-side check valve Te, and only allow the flow of liquid from the extension-side chamber R1 toward the compression-side back pressure chamber Cp through the extension-side pressure introduction passage Ie. It is set as a one-way passage.
  • the spring 20 plays a role of pressing the annular valve body 19 against the flange 112b, constitutes an extension check valve Te together with the annular valve body 19, and plays a role of urging the pressure side spool Sp toward the pressure side leaf valve Vp. Also bears. Therefore, when the pressure-side leaf valve Vp is bent and the pressure-side spool Sp is pushed up in the direction away from the piston 2 and the bending of the pressure-side leaf valve Vp is eliminated, the pressure-side spool Sp is quickly returned to the original position (by the spring force of the spring 20). Return to the position shown in FIG.
  • the pressure side spool Sp can be biased by a separate spring, there is an advantage that the extension side check valve Te and the spring 20 can be shared, the number of parts can be reduced, and the structure can be simplified.
  • the outer diameter of the pressure side spool Sp is set to be larger than the inner diameter of the annular protrusion 18 so that the annular protrusion 18 comes into contact with the pressure side annular plate 62.
  • the pressure in the chamber Cp is always urged toward the compression side leaf valve Vp.
  • the pressure receiving area which receives the pressure of the extension side back pressure chamber Ce of the extension side spool Se is a difference between the area of a circle whose diameter is the outer diameter of the extension side spool Se and the area of the circle whose diameter is the inner diameter of the annular protrusion 14. It becomes.
  • the pressure receiving area that receives the pressure of the pressure side back pressure chamber Cp of the pressure side spool Sp is a difference between the area of the circle having the outer diameter of the pressure side spool Sp as the diameter and the area of the circle having the inner diameter of the annular protrusion 18 as the diameter.
  • the pressure receiving area where the pressure of the expansion side back pressure chamber Ce directly acts on the expansion side annular plate 66 is from the area of a circle whose diameter is the inner diameter of the annular protrusion 14 to the circle whose diameter is the outer diameter of the shim 65. It is the area excluding the area. Therefore, the force obtained by multiplying the area obtained by subtracting the area of the circle having the outer diameter of the shim 65 from the area of the circle having the outer diameter of the extension side spool Se as the diameter of the extension side back pressure chamber Ce is the extension side load. Acting on the extension side leaf valve Ve. The extension side leaf valve Ve is biased toward the piston 2 by the extension side load.
  • extension-side annular plate 66 may be eliminated and the annular protrusion 14 may be brought into direct contact with the back surface of the extension-side leaf valve Ve. Also in this case, since the extension side leaf valve Ve is mounted on the outer periphery of the shim 65, the same extension side load as that when the extension side annular plate 66 is provided acts on the extension side leaf valve Ve.
  • the pressure receiving area where the pressure of the pressure side back pressure chamber Cp directly acts on the pressure side annular plate 62 is the area of the circle whose diameter is the outer diameter of the shim 61 from the area of the circle whose diameter is the inner diameter of the annular protrusion 18. Excluded area. Therefore, the force obtained by multiplying the area obtained by subtracting the area of the circle having the outer diameter of the shim 61 from the area of the circle having the outer diameter of the compression side spool Sp by the pressure of the compression side back pressure chamber Cp as the compression side load is the compression side leaf. Acts on the valve Vp. The pressure side leaf valve Vp is urged toward the piston 2 by the pressure side load.
  • the pressure side annular plate 62 may be eliminated and the annular protrusion 18 may be brought into direct contact with the back surface of the pressure side leaf valve Vp. Also in this case, since the pressure side leaf valve Vp is mounted on the outer periphery of the shim 61, the same pressure side load as when the pressure side annular plate 62 is provided acts on the pressure side leaf valve Vp.
  • the extension side load is increased by the extension side spool Se. It is determined only by the pressure receiving area that receives the pressure of the side back pressure chamber Ce.
  • the pressure side load is the pressure side back pressure chamber of the pressure side spool Sp. It depends only on the pressure receiving area that receives the pressure of Cp.
  • the expansion side load acting on the expansion side leaf valve Ve can be set by the pressure receiving area that receives the pressure in the expansion side back pressure chamber Ce of the expansion side spool Se.
  • the pressure side load acting on the pressure side leaf valve Vp can be set by the pressure receiving area that receives the pressure in the pressure side back pressure chamber Cp of the pressure side spool Sp.
  • the pressure receiving areas of the compression side spool Sp and the expansion side spool Se are made equal, but the difference between the expansion side load and the compression side load can be given by setting the pressure receiving area.
  • an adjustment passage Pc is provided to connect the downstream side of the communication passage formed by the groove 8h that connects the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp, and the upstream side of the extension side discharge passage Ee and the pressure side discharge passage Ep. It has been.
  • An electromagnetic pressure control valve 6 is provided in the middle of the adjustment passage Pc so that the pressures in the upstream extension-side back pressure chamber Ce and the pressure-side back pressure chamber Cp can be controlled.
  • the electromagnetic pressure control valve 6 closes the adjustment passage Pc when not energized and performs pressure control when energized.
  • a fail valve FV that bypasses the electromagnetic pressure control valve 6 is provided in the middle of the adjustment passage Pc.
  • the electromagnetic pressure control valve 6 includes a valve seat member 30 including a valve housing cylinder 30a and a control valve valve seat 30d, and an electromagnetic valve valve body that is attached to and detached from the control valve valve seat 30d. 31 and a solenoid Sol that applies thrust to the solenoid valve body 31 and drives it in the axial direction.
  • valve seat member 30 is fitted into the socket 8c of the piston holder 8, and the diameter of the valve seat member 30 is inserted by inserting the valve housing cylinder 30a into the inner periphery of the annular valve housing 32 that is superimposed on the upper end of the flange 8b in FIG. It is accommodated in the accommodating part L, being positioned in the direction.
  • the valve housing 32 has an annular shape, an annular window 32a provided at the upper end in FIG. 2, a port 32b that opens from the annular window 32a and communicates with the lower end in FIG. 2, and an upper end in FIG.
  • a notch groove 32c that opens from the inner periphery and communicates with the port 32b, a vertical groove 32d that is provided on the outer periphery and extends along the axial direction, and an annular fail valve seat 32e that surrounds the outer periphery of the annular window 32a. Configured.
  • the port 32b faces the opening facing the upper end of the flange 8b of the port 8e, and the port 32b and the cutout groove 32c have the port 8e. Further, the vertical groove 32d is communicated with the notch 8g provided in the flange 8b.
  • the port 32b and the notch groove 32c are communicated with the groove 8h forming the communication path through the port 8e, and further, the expansion side back pressure chamber Ce and the pressure side back pressure are connected via the expansion side pilot orifice Pe and the pressure side pilot orifice Pp. It communicates with the chamber Cp. Further, the vertical groove 32d communicates with the pressure side chamber R2 through the expansion side discharge passage Ee formed by the notch 8g, the vertical hole 8d, and the check valve 25, and the through hole 9c, the recess 8i, the through hole 8j, and the check.
  • the pressure side discharge passage Ep formed by the valve 22 communicates with the extension side chamber R1.
  • valve accommodating cylinder 30a in the cylindrical valve seat member 30 is accommodated.
  • the valve seat member 30 has a bottomed cylindrical shape and has a valve accommodating cylinder 30a having a flange 30b on the outer periphery of the upper end in FIG. 2, a through hole 30c that opens from the side of the valve accommodating cylinder 30a and communicates with the inside,
  • An annular control valve seat 30d that protrudes in the axial direction is provided at the upper end in FIG. 2 of the valve housing cylinder 30a.
  • a fail valve body 33 which is an annular leaf valve is mounted on the outer periphery of the valve housing cylinder 30a of the valve seat member 30, a fail valve body 33 which is an annular leaf valve is mounted.
  • the fail valve body 33 has an inner periphery that is the flange 30b of the valve seat member 30 and the upper end of the valve housing 32 in FIG. It is clamped by the inner periphery and fixed. Therefore, the fail valve body 33 is seated in the state where the initial deflection is given to the annular fail valve seat 32e provided on the valve housing 32 on the outer peripheral side, and closes the annular window 32a.
  • the fail valve body 33 bends when the pressure acting in the annular window 32a through the port 32b reaches the valve opening pressure, opens the annular window 32a, and connects the port 32b to the extension side discharge passage Ee and the pressure side discharge passage Ep. Communicate.
  • a fail valve FV is formed by the fail valve body 33 and the fail valve seat 32e.
  • valve housing cylinder 30a When the valve housing cylinder 30a is inserted into the valve housing 32 and the valve seat member 30 is assembled to the valve housing 32, the notch groove 32c provided in the valve housing 32 faces the through hole 30c provided in the valve housing cylinder 30a.
  • the extension-side back pressure chamber Ce and the compression-side back pressure chamber Cp are communicated with each other in the valve housing cylinder 30a through the port 32b.
  • valve fixing member 35 that is annular and contacts the upper end of the flange 30b in FIG. 1 is stacked above the valve seat member 30 in FIG.
  • a solenoid Sol accommodated in the valve accommodating cylinder 9 is disposed.
  • the valve fixing member 35 has a notch groove 35 a so that the inner circumferential space of the valve fixing member 35 can communicate with the outer circumferential space of the valve seat member 30 even when abutting against the flange 30 b of the valve seat member 30. Is provided. This communication may be performed not by the notch groove 35a but by a hole such as a port.
  • the solenoid Sol is a top-cylindrical molded stator 36 in which a winding 37 and a harness H that energizes the winding 37 are integrated with a mold resin, and a top-cylindrical cylindrical stator that is fitted to the inner periphery of the mold stator 36.
  • the first fixed iron core 38, the annular second fixed iron core 39 superimposed on the lower end in FIG. 1 of the molded stator 36, and the first fixed iron core 38 and the second fixed iron core 39 are magnetically interposed. Fixed to the inner periphery of the movable core 41, the filler ring 40 that forms a gap, the cylindrical movable core 41 that is axially movable on the inner peripheral side of the first fixed core 38 and the second fixed core 39.
  • the solenoid Sol attracts the movable iron core 41 by energizing the winding 37 and applies a downward thrust to the shaft 42 in FIG.
  • the shaft 42 is in contact with the electromagnetic valve body 31, and the solenoid Sol applies a downward thrust in FIG. 2 to the electromagnetic valve body 31 when energized.
  • a solenoid valve body 31 is slidably inserted into the valve seat member 30.
  • the solenoid valve body 31 is provided on the side of the valve seat member 30 that is slidably inserted into the valve housing cylinder 30a of the valve seat member 30 and the counter valve seat member side that is the upper side of the small diameter portion 31a in FIG.
  • the solenoid valve body 31 is formed with the large-diameter portion 31b with the outer diameter on the side opposite to the valve seat member larger than the small-diameter portion 31a with the recess 31c as a boundary.
  • the electromagnetic valve body 31 includes a seating portion 31g facing the control valve valve seat 30d at the lower end in FIG. 2 of the large-diameter portion 31b, and the seating portion 31g is controlled when moved in the axial direction with respect to the valve seat member 30.
  • the valve seat 30d is detached and seated. That is, the electromagnetic pressure control valve 6 includes the electromagnetic valve body 31 and the valve seat member 30. When the seating portion 31g is seated on the control valve valve seat 30d, the electromagnetic pressure control valve 6 is closed.
  • a coil spring 34 is interposed between the flange 30b of the valve seat member 30 and the spring receiving portion 31d to urge the electromagnetic valve valve body 31 in a direction away from the valve seat member 30. Therefore, the electromagnetic valve body 31 is always urged in the direction away from the valve seat member 30 by the coil spring 34, and if a thrust force against the coil spring 34 from the solenoid Sol does not act, It is positioned at the most distant position.
  • the coil spring 34 is used to urge the solenoid valve valve body 31 in the direction away from the valve seat member 30, but the urging force can be exerted in addition to the coil spring 34.
  • An elastic body that can be used can be used.
  • the solenoid valve body 31 When the solenoid valve body 31 is farthest from the valve seat member 30, the small diameter portion 31a is opposed to the through hole 30c to close the through hole 30c.
  • the solenoid Sol When the solenoid Sol is energized to move the solenoid valve valve 31 by a predetermined amount from the position farthest away from the valve seat member 30 to the valve seat member 30 side, the solenoid valve valve 31 always places the recess 31c into the through hole 30c.
  • the through holes 30c are opened so as to face each other.
  • the solenoid valve body 31 opens the through hole 30c and the seating portion 31g is separated from the control valve valve seat 30d, the through hole 30c passes through the recess 31c of the solenoid valve valve body 31 and the notch groove 35a provided in the valve fixing member 35.
  • the expansion side discharge passage Ee and the pressure side discharge passage Ep are communicated.
  • the pressure on the upstream side of the electromagnetic pressure control valve 6 can be controlled according to the thrust of the solenoid Sol. Since the upstream side of the electromagnetic pressure control valve 6 communicates with the expansion side back pressure chamber Ce and the pressure side back pressure chamber Cp via the adjustment passage Pc, the electromagnetic pressure control valve 6 causes the expansion side back pressure chamber Ce and the pressure side to communicate with each other. The pressure in the back pressure chamber Cp can be controlled. Therefore, the expansion side load and the compression side load can be controlled by adjusting the pressures of the expansion side back pressure chamber Ce and the compression side back pressure chamber Cp according to the energization amount to the solenoid Sol.
  • the downstream side of the electromagnetic pressure control valve 6 communicates with the expansion side discharge passage Ee and the pressure side discharge passage Ep, and the liquid that has passed through the electromagnetic pressure control valve 6 causes the pressure side chamber R2 on the low pressure side during the expansion operation of the shock absorber D.
  • the shock absorber D When the shock absorber D is contracted, it is discharged into the low-pressure side expansion chamber R1. Therefore, the adjustment passage Pc is formed by the port 8e, the port 32b, the notch groove 32c, a part of the accommodating portion L, and the vertical groove 32d.
  • the electromagnetic pressure control valve 6 has a blocking position in which the through hole 30c in the valve seat member 30 is closed by the small diameter portion 31a in the electromagnetic valve body 31 during a failure in which the solenoid Sol cannot be energized. Therefore, the electromagnetic pressure control valve 6 functions not only as a pressure control valve but also as an on-off valve.
  • the fail valve FV opens and closes an annular window 32a that communicates with the port 32b, and the valve opening pressure is set to a pressure that exceeds the upper limit pressure that can be controlled by the electromagnetic pressure control valve 6.
  • the electromagnetic pressure control valve 6, the port 32b is communicated with the expansion side discharge passage Ee and the pressure side discharge passage Ep.
  • the fail valve FV is opened, and the pressures in the extension-side back pressure chamber Ce and the pressure-side back pressure chamber Cp are opened.
  • the valve pressure can be controlled. Therefore, for example, when the electromagnetic pressure control valve 6 is in the shut-off position at the time of failure, the pressures in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp are controlled to the valve opening pressure of the fail valve FV.
  • a space K is formed in the valve housing cylinder 30a and on the tip side from the through hole 30c.
  • the space K communicates with the outside of the solenoid valve valve body through a communication path 31e provided in the solenoid valve valve body 31 and an orifice 31f.
  • the liquid in the extension side chamber R1 pushes open the extension side check valve Te, passes through the extension side pressure introduction passage Ie, and flows into the adjustment passage Pc.
  • the liquid that has passed through the adjustment passage Pc pushes the check valve 25 open and is discharged to the low pressure side pressure side chamber R2 through the extension side discharge passage Ee.
  • the expansion side pilot orifice Pe gives a resistance when the liquid passes and causes a pressure loss. Since the liquid is flowing, the expansion side pilot orifice Pe has a lower pressure than the expansion side chamber R1 downstream of the adjustment passage Pc.
  • the check valve 22 provided on Ep remains closed without opening.
  • the expansion-side pressure introduction passage Ie not only communicates with the compression-side back pressure chamber Cp but also communicates with the expansion-side back pressure chamber Ce through the groove 8h, but the compression-side pressure introduction passage Ip is closed by the compression-side check valve Tp. Therefore, when the shock absorber D is extended, the pressure in the extension side back pressure chamber Ce is higher than that of the compression side chamber R2.
  • the pressure in the pressure side back pressure chamber Cp is higher than that in the pressure side chamber R2 on the low pressure side, but there is no inconvenience because it only energizes the pressure side leaf valve Vp that closes the pressure side passage 4 where no liquid flows. .
  • the electromagnetic pressure control valve 6 is provided in the adjustment passage Pc, and if the solenoid Sol of the electromagnetic pressure control valve 6 is energized to control the pressure on the upstream side of the adjustment passage Pc, the extension side back pressure is increased.
  • the extension side load can be controlled to a desired load by adjusting the pressure in the chamber Ce.
  • the extension side load controlled by the electromagnetic pressure control valve 6 acts in the valve closing direction, and the pressure in the extension side chamber R1 acts in the valve opening direction through the extension side passage 3.
  • the extension-side leaf valve Ve opens when the extension-side load exceeds the force due to the action of the pressure in the extension-side chamber R1, and slides on the outer periphery of the shim 65 to a position where the two balance each other and retracts from the piston 2.
  • the retraction amount by which the extension-side leaf valve Ve is separated from the piston 2 is determined according to the extension-side load. Therefore, the retraction amount can be controlled according to the energization amount to the solenoid Sol.
  • the opening degree of the extension side leaf valve Ve can be controlled by the electromagnetic pressure control valve 6, and thereby the extension side damping force when the buffer D is extended can be adjusted in magnitude.
  • the liquid in the pressure side chamber R2 pushes and opens the pressure side check valve Tp, passes through the pressure side pressure introduction passage Ip, and flows to the adjustment passage Pc.
  • the liquid that has passed through the adjustment passage Pc pushes the check valve 22 open and is discharged to the low-pressure-side extension side chamber R1 through the pressure-side discharge passage Ep.
  • the pressure side pilot orifice Pp provides resistance when the liquid passes and causes a pressure loss. In the state where the liquid flows, the pressure side pilot orifice Pp has a pressure lower than the pressure side chamber R2 downstream of the adjustment passage Pc.
  • the check valve 25 provided at Ee is not opened and remains closed.
  • the compression-side pressure introduction passage Ip not only communicates with the expansion-side back pressure chamber Ce but also communicates with the compression-side back pressure chamber Cp through the groove 8h, but the expansion-side pressure introduction passage Ie is blocked by the expansion-side check valve Te. Therefore, the pressure in the compression side back pressure chamber Cp becomes higher than that of the expansion side chamber R1 when the shock absorber D is contracted.
  • the pressure in the extension side back pressure chamber Ce is higher than that in the extension side chamber R1 on the low pressure side, but it only energizes the extension side leaf valve Ve that closes the extension side passage 3 where no liquid flows. There is no inconvenience.
  • the pressure side load valve controlled by the electromagnetic pressure control valve 6 acts on the pressure side leaf valve Vp in the valve closing direction, and the pressure in the pressure side chamber R2 acts on the pressure side passage 4 in the valve opening direction.
  • the pressure-side leaf valve Vp opens when the force due to the action of the pressure in the pressure-side chamber R2 exceeds the pressure-side load, slides on the outer periphery of the shim 61 to a position where both balance, and moves backward from the piston 2.
  • the retraction amount by which the pressure-side leaf valve Vp is separated from the piston 2 is determined according to the pressure-side load. Therefore, the retraction amount can be controlled according to the energization amount to the solenoid Sol.
  • the opening degree of the pressure side leaf valve Vp can be controlled by the electromagnetic pressure control valve 6, whereby the pressure side damping force when the shock absorber D is contracted can be adjusted in magnitude.
  • the outer diameter of the extension side leaf valve Ve is smaller than the outer diameter of the compression side leaf valve Vp, and receives the pressure of the extension side chamber R1 of the extension side leaf valve Ve.
  • the pressure receiving area is smaller than the pressure receiving area that receives the pressure of the pressure side chamber R2 of the pressure side leaf valve Vp. Therefore, even if the extension side load and the compression side load are the same in the electromagnetic pressure control valve 6, the valve opening pressure of the extension side leaf valve Ve becomes larger than the valve opening pressure of the compression side leaf valve Vp, and the extension side damping force is reduced to the compression side. Can be greater than force.
  • the communication path that communicates the extension-side back pressure chamber Ce and the pressure-side back pressure chamber Cp is provided on the outer periphery of the holding shaft 8a of the piston holder 8, and therefore communicates with the holding shaft 8a.
  • a separator is not required for forming the communication path, the number of parts can be reduced, the cost can be reduced, and the separator 8 is not provided in the holding shaft 8a, so the diameter of the vertical hole 8d can be reduced. Since the diameter can be reduced, the strength of the piston holder 8 can be secured.
  • the groove 8h is not connected to the expansion side pressure introduction passage Ie and the pressure side pressure introduction passage Ip by the above-described components including the piston 2 assembled to the holding shaft 8a. Closed to prevent communication.
  • Each of the components assembled to the holding shaft 8a is fixed to the holding shaft 8a in close contact with the load in the axial direction by the spacer 121 functioning as a piston nut, so that the groove 8h can be closed tightly. Therefore, in the shock absorber D of the present invention, since the liquid does not leak from the groove 8h functioning as the communication path to the extension side chamber R1 or the pressure side chamber R2, the problem that the damping force characteristic varies for each product is solved.
  • the cross-sectional shape of the groove 8h forming the communication path can be designed arbitrarily.
  • the communication path is formed by a groove 8h provided on the outer periphery of the holding shaft 8a.
  • a gap that forms the communication path is formed between the holding shaft 8a and the parts assembled to the holding shaft 8a. Therefore, for example, a chamfer along the axial direction is formed on the outer periphery of the holding shaft 8a, and a gap is provided between each part assembled to the holding shaft 8a at this chamfered portion to provide a communication path. It may be formed. Even if it does in this way, the effect similar to the case where a communicating path is formed in the groove
  • channel 8h is acquired.
  • the expansion side pilot orifice (extension side resistance element) Pe is provided in the compression side chamber member 11
  • the compression side pilot orifice (pressure side resistance element) Pp is provided in the expansion side chamber member 12.
  • the expansion resistance element and the compression resistance element are provided on the piston holder side, for example, when there are four types of expansion resistance elements and compression resistance elements, respectively, in order to realize all these combinations, the total 16 different piston holders had to be prepared.
  • the extension side resistance element and the compression side resistance element are separately provided in the corresponding extension side chamber member 12 and compression side chamber member 11, four types of extension side chamber member 12 and compression side chamber member 11 are prepared. All you need to do is Therefore, when the shock absorber D is configured in this manner, tuning of the extension side resistance element and the compression side resistance element is facilitated, the number of parts to be managed is reduced, and the cost can be further reduced.
  • the holding shaft 8a of the piston holder 8 is provided with a vertical hole 8d communicating with the compression side chamber R2, and an expansion side discharge passage Ee is formed, and the adjustment passage Pc is formed in the vertical hole 8d.
  • a pipe 25a that functions as a valve seat for the check valve 25 that allows only the flow of liquid from the pressure side chamber R2 is provided.
  • the extension side leaf valve Ve and the pressure side leaf valve Vp are slidably fitted to the outer circumferences of the shims 65 and 61, respectively, so that they can be separated from the piston 2.
  • a structure in which the inner peripheral side is fixed to the holding shaft 8a may be employed.
  • the electromagnetic pressure control valve 6 is not limited to the above-described specific structure because it only needs to be able to adjust the pressure in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

In the shock absorber (D) of the present invention, a communication channel (8h), which allows communication between an extension-side back-pressure chamber (Ce) that urges an extension-side spool (Se) toward an extension-side leaf valve (Ve) and a pressure-side back-pressure chamber (Cp) that urges a pressure-side spool (Sp) toward a pressure-side leaf valve (Vp), is formed in the outer periphery of a holding shaft (8a).

Description

緩衝器Shock absorber
 この発明は、緩衝器に関する。 This invention relates to a shock absorber.
 車両のサスペンションに用いられる緩衝器には、減衰力を可変にできる減衰バルブを備えているものがある。このような緩衝器は、シリンダと、シリンダ内を伸側室と圧側室とに区画するピストンと、一端がピストンに連結されてシリンダ内に移動自在に挿入されるピストンロッドと、減衰バルブを備えて構成される。 Some shock absorbers used in vehicle suspensions have a damping valve that can vary the damping force. Such a shock absorber includes a cylinder, a piston that divides the cylinder into an extension side chamber and a pressure side chamber, a piston rod that is connected to the piston at one end and is movably inserted into the cylinder, and a damping valve. Composed.
 減衰バルブは、たとえば、JP2015-072047Aに開示されているように、ピストンに設けられた伸側室と圧側室とを連通する伸側通路と圧側通路を、伸側通路と圧側通路とをそれぞれ開閉する伸側リーフバルブと圧側リーフバルブと、伸側リーフバルブと圧側リーフバルブをそれぞれ押圧する伸側スプールと圧側スプールと、内部圧力で伸側スプールと圧側スプールを押圧する伸側背圧室と圧側背圧室の圧力を調節する電磁圧力制御弁とを備えている。 For example, as disclosed in JP2015-072047A, the damping valve opens and closes an extension side passage and a pressure side passage, which communicate with the extension side chamber and the pressure side chamber provided in the piston, and opens and closes the extension side passage and the pressure side passage, respectively. The expansion side leaf valve, the compression side leaf valve, the expansion side spool and the compression side spool that press the expansion side leaf valve and the compression side leaf valve, respectively, the expansion side back pressure chamber and the compression side back that press the expansion side spool and the compression side spool with internal pressure And an electromagnetic pressure control valve for adjusting the pressure in the pressure chamber.
 このように構成された緩衝器にあっては、単一の電磁圧力制御弁によって伸側背圧室および圧側背圧室内の圧力を制御して、伸長時と収縮時の減衰力を制御できる。 In the shock absorber configured as described above, the damping force at the time of expansion and contraction can be controlled by controlling the pressure in the expansion-side back pressure chamber and the pressure-side back pressure chamber by a single electromagnetic pressure control valve.
 従来の緩衝器にあっては、単一の電磁圧力制御弁によって伸側背圧室と圧側背圧室の圧力を制御するために、伸側背圧室と圧側背圧室とを連通路で連通し、連通路を電磁圧力制御弁へ連通するようにしている。 In the conventional shock absorber, in order to control the pressure in the extension side back pressure chamber and the pressure side back pressure chamber by a single electromagnetic pressure control valve, the extension side back pressure chamber and the pressure side back pressure chamber are connected by a communication path. The communication passage communicates with the electromagnetic pressure control valve.
 この連通路は、ピストンを保持するピストンホルダにおける保持軸に縦孔を設けて、この縦孔にパイプ状のセパレータを挿入して、セパレータの外周に形成される環状隙間によって形成されている。 This communication path is formed by an annular gap formed on the outer periphery of the separator by providing a vertical hole in the holding shaft of the piston holder that holds the piston, and inserting a pipe-shaped separator into the vertical hole.
 このように、従来の緩衝器では、連通路を形成するのに加工が必要なセパレータが必須であって、部品点数が多く、コストが嵩んでしまう。 Thus, in the conventional shock absorber, a separator that needs to be processed is necessary to form the communication path, and the number of parts is large, resulting in an increase in cost.
 また、保持軸に縦孔を設けてセパレータを挿入する関係上、どうしてもピストンホルダの強度が低下してしまう。 Also, the strength of the piston holder is inevitably lowered due to the fact that a vertical hole is provided in the holding shaft and the separator is inserted.
 そこで、本発明は、部品点数を削減でき、かつ、ピストンホルダの強度も確保できる緩衝器の提供を目的とする。 Therefore, an object of the present invention is to provide a shock absorber capable of reducing the number of parts and ensuring the strength of the piston holder.
 本発明における緩衝器にあっては、伸側スプールを伸側リーフバルブへ向けて附勢する伸側背圧室と圧側スプールを圧側リーフバルブへ向けて附勢する圧側背圧室とを連通する連通路が保持軸の外周に形成されているので、保持軸内に連通路を設けるためのセパレータを設ける必要がない。 In the shock absorber according to the present invention, the expansion-side back pressure chamber that urges the expansion-side spool toward the expansion-side leaf valve and the compression-side back pressure chamber that urges the compression-side spool toward the compression-side leaf valve communicate with each other. Since the communication path is formed on the outer periphery of the holding shaft, there is no need to provide a separator for providing the communication path in the holding shaft.
図1は、一実施の形態における緩衝器の断面図である。FIG. 1 is a cross-sectional view of a shock absorber according to an embodiment. 図2は、一実施の形態における緩衝器の電磁圧力制御弁の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the electromagnetic pressure control valve of the shock absorber in one embodiment. 図3は、一実施の形態における緩衝器のピストン部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the piston portion of the shock absorber according to the embodiment.
 以下に、図示した実施の形態に基づいて、この発明を説明する。一実施の形態における緩衝器Dは、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入される環状のピストン2と、ピストン2に設けた伸側通路3を開閉する伸側リーフバルブVeと、ピストン2に設けた圧側通路4を開閉する圧側リーフバルブVpと、伸側チャンバ部材12および伸側スプールSeと、圧側チャンバ部材11および圧側スプールSpと、ピストンホルダ8と、連通路として機能する溝8hと、伸側抵抗要素としての伸側パイロットオリフィスPeと、圧側抵抗要素としての圧側パイロットオリフィスPpと、溝8hに接続される調節通路Pcと、調節通路Pcから伸側室R1へ向かう液体の流れのみを許容する圧側排出通路Epと、調節通路Pcから圧側室R2へ向かう液体の流れのみを許容する伸側排出通路Eeと、調節通路Pcに設けられて調節通路Pcの上流圧力を制御する電磁圧力制御弁6とを備えて構成されている。 Hereinafter, the present invention will be described based on the illustrated embodiment. As shown in FIG. 1, the shock absorber D in one embodiment opens and closes a cylinder 1, an annular piston 2 that is slidably inserted into the cylinder 1, and an extension-side passage 3 provided in the piston 2. An extension side leaf valve Ve, a pressure side leaf valve Vp that opens and closes a pressure side passage 4 provided in the piston 2, an extension side chamber member 12 and an extension side spool Se, a pressure side chamber member 11 and a pressure side spool Sp, and a piston holder 8 The groove 8h functioning as a communication path, the expansion pilot orifice Pe as the expansion resistance element, the compression pilot orifice Pp as the compression resistance element, the adjustment path Pc connected to the groove 8h, and the adjustment path Pc A pressure side discharge passage Ep that allows only the flow of liquid toward the side chamber R1, and an extension side discharge that allows only the flow of liquid from the adjustment passage Pc to the pressure side chamber R2. And road Ee, is constituted by an electromagnetic pressure control valve 6 provided in the regulation passage Pc to control the upstream pressure regulating passage Pc.
 以下、緩衝器Dの各部について詳細に説明する。シリンダ1は、内部が作動油などの液体で満たされており、図示はしないが下端が閉塞されており、上端には、環状のロッドガイドが装着されている。また、シリンダ1の図1中の下方には、図示はしないが、シリンダ1内を摺動するフリーピストンが設けられており、このフリーピストンによってシリンダ1内に気体室が形成される。なお、シリンダ1内に満たされる液体は、作動油の他、減衰力の発揮が可能な液体であれば使用可能である。 Hereinafter, each part of the shock absorber D will be described in detail. The cylinder 1 is filled with a liquid such as hydraulic oil, the lower end is closed, although not shown, and an annular rod guide is attached to the upper end. A free piston that slides in the cylinder 1 is provided below the cylinder 1 in FIG. 1, and a gas chamber is formed in the cylinder 1 by the free piston. In addition, the liquid with which the cylinder 1 is filled can be used if it is a liquid which can exhibit damping force besides hydraulic oil.
 ピストン2は、シリンダ1内に摺動自在に挿入されていて、シリンダ1内を液体が充填される伸側室R1と圧側室R2とを区画しており、シリンダ1内に移動自在に挿通されたピストンロッド7の一端に連結されている。ピストンロッド7は、シリンダ1の上端部に設けた図外の前記ロッドガイドの内周に挿通されてシリンダ1外へ突出している。なお、ピストンロッド7とシリンダ1との間は図示しないシールが設けられていて、シリンダ1内は液密状態とされている。図示したところでは、緩衝器Dがいわゆる片ロッド型に設定されているため、緩衝器Dの伸縮に伴ってシリンダ1内に出入りするピストンロッド7の体積は、前記した気体室内の気体の体積が膨張あるいは収縮して、前記フリーピストンがシリンダ1内を上下方向に移動して補償されるようになっている。このように緩衝器Dは、単筒型に設定されているが、フリーピストン及び気体室の設置に変えて、シリンダ1の外周や外部にリザーバを設けて当該リザーバによって前記ピストンロッド7の体積補償を行ってもよい。 The piston 2 is slidably inserted into the cylinder 1, and defines an extension side chamber R1 and a pressure side chamber R2 filled with liquid in the cylinder 1, and is movably inserted into the cylinder 1. It is connected to one end of the piston rod 7. The piston rod 7 is inserted through the inner periphery of the rod guide (not shown) provided at the upper end of the cylinder 1 and protrudes outside the cylinder 1. A seal (not shown) is provided between the piston rod 7 and the cylinder 1, and the cylinder 1 is in a liquid-tight state. Since the shock absorber D is set to a so-called single rod type, the volume of the piston rod 7 that enters and exits the cylinder 1 as the shock absorber D expands and contracts is the volume of the gas in the gas chamber described above. By expanding or contracting, the free piston moves up and down in the cylinder 1 to be compensated. As described above, the shock absorber D is set to a single cylinder type, but instead of installing a free piston and a gas chamber, a reservoir is provided on the outer periphery or outside of the cylinder 1 and the volume compensation of the piston rod 7 is performed by the reservoir. May be performed.
 ピストンロッド7は、この場合、ピストン2を保持するピストンホルダ8と、一端がピストンホルダ8に連結されてピストンホルダ8とともに電磁圧力制御弁6を収容する中空な収容部Lを形成する電磁弁収容筒9と、一端が電磁弁収容筒9に連結されるとともに他端がシリンダ1の上端から外方へ突出するロッド部材10とで形成されている。 In this case, the piston rod 7 has a piston holder 8 that holds the piston 2 and an electromagnetic valve housing that forms a hollow housing portion L that is connected to the piston holder 8 and that houses the electromagnetic pressure control valve 6 together with the piston holder 8. A cylinder 9 and a rod member 10 having one end connected to the solenoid valve housing cylinder 9 and the other end protruding outward from the upper end of the cylinder 1 are formed.
 ピストンホルダ8は、外周に環状のピストン2が装着される保持軸8aと、保持軸8aの図1中上端外周に設けたフランジ8bと、フランジ8bの図1中上端外周に設けた筒状のソケット8cとを備えている。また、ピストンホルダ8は、保持軸8aの先端から開口して軸方向に伸び前記ソケット8c内に通じる縦孔8dと、フランジ8bを貫いてソケット8c内に通じるポート8eと、保持軸8aの図1中下端外周に設けた螺子部8fと、フランジ8bの上端に形成されて縦孔8dに通じる切欠8gと、保持軸8aの外周であって螺子部8fの図1中上端である終端から根元まで軸方向に沿って形成した溝8hと、ソケット8cの図1中上端外周に設けた環状の凹部8iと、ソケット8cに設けられて凹部8iからソケット8c内に通じる貫通孔8jとを備えて構成されている。 The piston holder 8 includes a holding shaft 8a on which the annular piston 2 is mounted on the outer periphery, a flange 8b provided on the outer periphery of the upper end of the holding shaft 8a in FIG. 1, and a cylindrical shape provided on the outer periphery of the upper end of the flange 8b in FIG. And a socket 8c. The piston holder 8 is opened from the tip of the holding shaft 8a, extends in the axial direction, communicates with the socket 8c, a port 8e that passes through the flange 8b and communicates with the socket 8c, and a diagram of the holding shaft 8a. 1 screw portion 8f provided at the outer periphery of the lower end of the middle 1, a notch 8g formed at the upper end of the flange 8b and leading to the vertical hole 8d, and the outer periphery of the holding shaft 8a and the end of the screw portion 8f at the upper end in FIG. A groove 8h formed along the axial direction, an annular recess 8i provided on the outer periphery of the upper end in FIG. 1 of the socket 8c, and a through hole 8j provided in the socket 8c and leading from the recess 8i into the socket 8c. It is configured.
 電磁弁収容筒9は、有頂筒状の収容筒部9aと、収容筒部9aよりも外径が小径であって当該収容筒部9aの頂部から図1中上方へ伸びる筒状の連結部9bと、収容筒部9aの側方から開口して内部へ通じる透孔9cとを備えて構成されている。そして、電磁弁収容筒9の収容筒部9aの内周にピストンホルダ8のソケット8cを螺着して、電磁弁収容筒9にピストンホルダ8を一体化すると、電磁弁収容筒9とピストンホルダ8とで収容筒部9a内に電磁圧力制御弁6が収容される収容部Lが形成される。また、収容部Lは、調節通路Pcの一部として機能しており、前記したポート8eを介して保持軸8aの外周に設けた溝8hに連通されるとともに、伸側排出通路Eeを形成する縦孔8dを通じて圧側室R2に連通される。 The solenoid valve housing cylinder 9 includes a top-cylindrical housing cylinder portion 9a and a cylindrical connecting portion that has an outer diameter smaller than that of the housing cylinder portion 9a and extends upward from the top of the housing cylinder portion 9a in FIG. 9b and a through-hole 9c that opens from the side of the accommodating tube portion 9a and communicates with the inside. Then, when the socket 8c of the piston holder 8 is screwed to the inner periphery of the accommodating cylinder portion 9a of the electromagnetic valve accommodating cylinder 9 and the piston holder 8 is integrated with the electromagnetic valve accommodating cylinder 9, the electromagnetic valve accommodating cylinder 9 and the piston holder are integrated. 8, the accommodating part L in which the electromagnetic pressure control valve 6 is accommodated is formed in the accommodating cylinder part 9a. The accommodating portion L functions as a part of the adjustment passage Pc, communicates with the groove 8h provided on the outer periphery of the holding shaft 8a via the port 8e, and forms the extension-side discharge passage Ee. The pressure side chamber R2 communicates with the vertical hole 8d.
 前記したように電磁弁収容筒9にピストンホルダ8が一体化されると、透孔9cが凹部8iに対向して、貫通孔8jと協働して、収容部Lを伸側室R1に連通させるようになっている。また、ソケット8cの図1中上端外周に設けた凹部8iには、環状弁体22aが装着されており、この環状弁体22aが図1中上方からばね22bによって附勢されて、貫通孔8jを開閉するようになっている。この環状弁体22aとばね22bは、逆止弁22を構成している。圧側排出通路Epは、本例では、透孔9c、凹部8i、貫通孔8jによって形成されており、前記した逆止弁22によって、調節通路Pcから伸側室R1へ向かう液体の流れのみを許容し、逆向きの液体の流れを阻止する。 As described above, when the piston holder 8 is integrated with the solenoid valve housing cylinder 9, the through hole 9c faces the recess 8i, and cooperates with the through hole 8j to allow the housing portion L to communicate with the extension side chamber R1. It is like that. Further, an annular valve body 22a is attached to the recess 8i provided on the outer periphery of the upper end in FIG. 1 of the socket 8c. The annular valve body 22a is urged by a spring 22b from above in FIG. Open and close. The annular valve body 22 a and the spring 22 b constitute a check valve 22. In this example, the pressure-side discharge passage Ep is formed by a through-hole 9c, a recess 8i, and a through-hole 8j, and only the flow of liquid from the adjustment passage Pc to the extension-side chamber R1 is allowed by the check valve 22 described above. Block the flow of liquid in the opposite direction.
 前述の保持軸8aに設けた縦孔8dは、伸側排出通路Eeとして機能しており、保持軸8aに設けた縦孔8d内には、収容部Lから縦孔8dを通じて圧側室R2へ向かう液体の流れのみを許容する逆止弁25が設けられている。この逆止弁25は、縦孔8d内に装着されるパイプ25aと、パイプ25aに嵌合されるカップ状のばね受25bと、パイプ25aの端部に着座するとともにばね受25b内に収容される円盤状の弁体25cと、ばね受25bの頂部と弁体25cとの間に介装されるばね25dとを備えて構成されている。ばね受25bには切欠が設けてあって、パイプ25aから弁体25cが離座すると、逆止弁25が開弁して、縦孔8d側から圧側室R2へ向かう液体の流れを許容する。これに対して、反対の液体の流れに対しては、弁体25cがパイプ25aの図1中下端に当接して逆止弁25が閉弁して液体の流れを阻止する。このように逆止弁25は、アッセンブリ化されて縦孔8d内に収容されており、縦孔8dの出口近傍に嵌合される皿ばねによって、縦孔8dに固定される。よって、伸側排出通路Eeは、圧側室R2から調節通路Pcへ向かう液体の流れを阻止するとともに、調節通路Pcから圧側室R2へ向かう液体の流れのみを許容するようになっている。 The above-described vertical hole 8d provided in the holding shaft 8a functions as the extension side discharge passage Ee, and the vertical hole 8d provided in the holding shaft 8a goes from the accommodating portion L to the compression side chamber R2 through the vertical hole 8d. A check valve 25 that allows only the flow of liquid is provided. The check valve 25 is seated on the pipe 25a mounted in the vertical hole 8d, a cup-shaped spring receiver 25b fitted to the pipe 25a, and an end of the pipe 25a and accommodated in the spring receiver 25b. A disc-like valve body 25c, and a spring 25d interposed between the top of the spring receiver 25b and the valve body 25c. The spring receiver 25b is provided with a notch, and when the valve body 25c is separated from the pipe 25a, the check valve 25 is opened to allow the flow of liquid from the vertical hole 8d side toward the pressure side chamber R2. On the other hand, for the opposite liquid flow, the valve body 25c contacts the lower end of the pipe 25a in FIG. 1 and the check valve 25 closes to block the liquid flow. Thus, the check valve 25 is assembled and accommodated in the vertical hole 8d, and is fixed to the vertical hole 8d by a disc spring fitted near the outlet of the vertical hole 8d. Therefore, the extension side discharge passage Ee blocks the flow of liquid from the pressure side chamber R2 toward the adjustment passage Pc, and allows only the flow of liquid from the adjustment passage Pc toward the pressure side chamber R2.
 ロッド部材10は、筒状であって、図1中下端の内周が拡径されていて電磁弁収容筒9の連結部9bの挿入を許容し、この連結部9bの螺着を可能とする螺子部(符示せず)を備えている。このように、ロッド部材10、電磁弁収容筒9及びピストンホルダ8を一体化すると、これらでピストンロッド7が形成される。 The rod member 10 has a cylindrical shape, and the inner circumference at the lower end in FIG. 1 has an enlarged diameter, allows insertion of the connecting portion 9b of the solenoid valve housing cylinder 9, and enables the connecting portion 9b to be screwed. A screw portion (not shown) is provided. Thus, when the rod member 10, the solenoid valve housing cylinder 9, and the piston holder 8 are integrated, the piston rod 7 is formed by these.
 なお、ロッド部材10内及び電磁弁収容筒9における連結部9b内には、後述するソレノイドへ電力供給するハーネスHが挿通されており、ハーネスHの上端は、図示はしないがロッド部材10の上端から外方へ伸びていて電源に接続される。 A harness H for supplying power to a solenoid, which will be described later, is inserted into the rod member 10 and the connecting portion 9b of the solenoid valve housing cylinder 9, and the upper end of the harness H is not shown, but the upper end of the rod member 10 is not shown. Is connected to the power supply.
 ピストンホルダ8に設けた保持軸8aの外周には、図3に示すように、環状のピストン2とともに、複数の環状板を積層して構成されたシム61と、同じくシム61の外周に摺動自在に装着される圧側環状プレート62、環状であって外径がシム61より大径な圧側ストッパ63と、圧側チャンバ部材11とが重ねられて組付けられる。また、ピストン2に重ねられて、シム61の外周に摺動自在に装着される環状の圧側リーフバルブVpが設けられており、圧側リーフバルブVpは、シム61を介してピストンホルダ8の保持軸8aの外周に取付けられている。圧側チャンバ部材11には、前記圧側環状プレート62に当接する圧側スプールSpが摺動自在に装着されており、圧側スプールSpは、軸方向移動可能とされて圧側チャンバ部材11と共に圧側背圧室Cpを形成している。 As shown in FIG. 3, the outer periphery of the holding shaft 8 a provided in the piston holder 8 slides on the outer periphery of the shim 61 and the shim 61 formed by laminating a plurality of annular plates together with the annular piston 2. A pressure-side annular plate 62 that is freely mounted, a pressure-side stopper 63 that is annular and has an outer diameter larger than that of the shim 61, and the pressure-side chamber member 11 are assembled in an overlapping manner. Further, an annular pressure side leaf valve Vp that is slidably mounted on the outer periphery of the shim 61 is provided on the piston 2, and the pressure side leaf valve Vp is connected to the holding shaft of the piston holder 8 via the shim 61. It is attached to the outer periphery of 8a. The pressure side chamber member 11 is slidably mounted with a pressure side spool Sp that is in contact with the pressure side annular plate 62, and the pressure side spool Sp is movable in the axial direction so as to move together with the pressure side chamber member 11. Is forming.
 また、ピストン2の図3中下方には、複数の環状板を積層して構成された軸部材としてのシム65と、同じくシム65の外周に摺動自在に装着される伸側環状プレート66、環状であって外径がシム65より大径な伸側ストッパ67、伸側チャンバ部材12とが重ねて組付けられる。また、ピストン2に重ねられて、シム65の外周に摺動自在に装着される環状の伸側リーフバルブVeが設けられており、伸側リーフバルブVeは、シム65を介してピストンホルダ8の保持軸8aの外周に取付けられている。伸側チャンバ部材12には、前記伸側環状プレート66に当接する伸側スプールSeが摺動自在に装着されており、伸側スプールSeは、軸方向移動が可能とされ、伸側チャンバ部材12と共に伸側背圧室Ceを形成している。なお、伸側リーフバルブVeの外径は、圧側リーフバルブVpの外径より小径となっている。 Further, below the piston 2 in FIG. 3, a shim 65 as a shaft member configured by laminating a plurality of annular plates, and an extended-side annular plate 66 that is slidably mounted on the outer periphery of the shim 65, An extension side stopper 67 and an extension side chamber member 12 which are annular and have an outer diameter larger than that of the shim 65 are assembled in an overlapping manner. Further, an annular extension side leaf valve Ve that is slidably mounted on the outer periphery of the shim 65 is provided on the piston 2, and the extension side leaf valve Ve is connected to the piston holder 8 via the shim 65. It is attached to the outer periphery of the holding shaft 8a. An extension side spool Se that contacts the extension side annular plate 66 is slidably attached to the extension side chamber member 12, and the extension side spool Se can be moved in the axial direction. In addition, an extension side back pressure chamber Ce is formed. The outer diameter of the extension side leaf valve Ve is smaller than the outer diameter of the compression side leaf valve Vp.
 そして、前述した保持軸8aの外周に装着される各部品は、保持軸8aの先端に形成された螺子部8fに螺着される伸側チャンバ部材12によって固定される。 Then, each component mounted on the outer periphery of the holding shaft 8a described above is fixed by the extension-side chamber member 12 screwed into a screw portion 8f formed at the tip of the holding shaft 8a.
 ピストン2は、環状であってピストンホルダ8の保持軸8aの外周に装着されており、伸側室R1と圧側室R2とを連通する伸側通路3と圧側通路4とが形成されている。また、図3においてピストン2の上端には、圧側通路4に連通される環状窓2aと、環状窓2aの外周側に設けられて圧側通路4を囲む環状の圧側弁座2bと、環状窓2aの内周に設けた内周シート部2cとが設けられている。他方、ピストン2の下端には、伸側通路3に連通される環状窓2dと、環状窓2dの外周側に設けられて伸側通路3を囲む環状の伸側弁座2eと、環状窓2dの内周に設けた内周シート部2fとが設けられている。 The piston 2 is annular and is mounted on the outer periphery of the holding shaft 8a of the piston holder 8, and an extension side passage 3 and a pressure side passage 4 that connect the extension side chamber R1 and the pressure side chamber R2 are formed. 3, at the upper end of the piston 2, there is an annular window 2a communicating with the pressure side passage 4, an annular pressure side valve seat 2b provided on the outer peripheral side of the annular window 2a and surrounding the pressure side passage 4, and an annular window 2a. The inner periphery sheet | seat part 2c provided in the inner periphery is provided. On the other hand, at the lower end of the piston 2, an annular window 2d communicated with the extension side passage 3, an annular extension side valve seat 2e provided on the outer peripheral side of the annular window 2d and surrounding the extension side passage 3, and an annular window 2d. The inner periphery sheet | seat part 2f provided in the inner periphery is provided.
 伸側リーフバルブVeは、図3に示すように、ピストンホルダ8の保持軸8aの挿通を許容するため環状とされており、この例では、一枚の環状板で構成されているが、複数枚の環状板を積層して構成されてもよい。そして、このように構成された伸側リーフバルブVeは、ピストン2の図3中下方に重ねられていて、伸側弁座2eおよび内周シート部2fに離着座可能とされている。 As shown in FIG. 3, the extension-side leaf valve Ve is annular in order to allow insertion of the holding shaft 8 a of the piston holder 8. In this example, the extension-side leaf valve Ve is composed of a single annular plate. It may be configured by laminating a single annular plate. The extension side leaf valve Ve configured as described above is overlapped below the piston 2 in FIG. 3 and can be attached to and detached from the extension side valve seat 2e and the inner peripheral seat portion 2f.
 また、伸側リーフバルブVeは、その外周に伸側弁座2eへ着座した際にオリフィスとして機能する切欠Oeを備えており、シム65の外周に摺動自在に装着されている。シム65の外周には、伸側リーフバルブVeに重ねられる伸側環状プレート66が摺動自在に装着されている。なお、本実施の形態では、伸側環状プレート66の反伸側リーフバルブ側に伸側環状プレート66よりも外径が小径な環状の補助バルブ71が重ねられており、この補助バルブ71もまたシム65の外周に摺動自在に装着されている。伸側リーフバルブVe、伸側環状プレート66および補助バルブ71を積層した際の軸方向長さは、シム65の軸方向長さよりも短くなるようにしてある。さらに、シム65の図3中下方には、環状であって外径が補助バルブ71および伸側環状プレート66の内径よりも大径に設定される伸側ストッパ67が設けられており、この伸側ストッパ67の下方に伸側チャンバ部材12が重ねられる。よって、伸側リーフバルブVe、伸側環状プレート66および補助バルブ71は、シム65によってガイドされてピストン2と伸側ストッパ67との間で軸方向となる図3中上下方向へ移動できるようになっている。 The extension side leaf valve Ve is provided with a notch Oe that functions as an orifice when seated on the extension side valve seat 2e on the outer periphery thereof, and is slidably mounted on the outer periphery of the shim 65. On the outer periphery of the shim 65, an expansion side annular plate 66 that is superimposed on the expansion side leaf valve Ve is slidably mounted. In this embodiment, an annular auxiliary valve 71 having an outer diameter smaller than that of the expansion side annular plate 66 is stacked on the side of the expansion side annular plate 66 opposite to the leaf valve side. The outer periphery of the shim 65 is slidably mounted. The axial length when the extension-side leaf valve Ve, the extension-side annular plate 66 and the auxiliary valve 71 are stacked is made shorter than the axial length of the shim 65. Further, an extension side stopper 67 is provided below the shim 65 in FIG. 3 and has an annular shape whose outer diameter is set larger than the inner diameters of the auxiliary valve 71 and the extension side annular plate 66. The extension side chamber member 12 is stacked below the side stopper 67. Accordingly, the extension side leaf valve Ve, the extension side annular plate 66 and the auxiliary valve 71 are guided by the shim 65 so as to be movable in the vertical direction in FIG. 3 which is the axial direction between the piston 2 and the extension side stopper 67. It has become.
 そして、伸側リーフバルブVeは、伸側通路3側から圧力によって押圧されると、外周が伸側環状プレート66とともに撓むとともに、伸側環状プレート66および補助バルブ71とともに全体がピストン2から離間して後退できる。伸側リーフバルブVe、伸側環状プレート66および補助バルブ71のピストン2からの後退量は、シム65の軸方向長さによって設定される。この場合、シム65が複数枚の環状板で構成されるので、環状板の積層枚数で調節可能であるが、シム65を単一の環状板で構成してもよい。 When the extension-side leaf valve Ve is pressed by pressure from the extension-side passage 3 side, the outer periphery bends together with the extension-side annular plate 66, and the extension-side leaf plate Ve and the auxiliary valve 71 as a whole are separated from the piston 2. Can retreat. The retraction amounts of the extension side leaf valve Ve, the extension side annular plate 66 and the auxiliary valve 71 from the piston 2 are set by the axial length of the shim 65. In this case, since the shim 65 is constituted by a plurality of annular plates, the shim 65 can be adjusted by the number of laminated annular plates, but the shim 65 may be constituted by a single annular plate.
 伸側環状プレート66は、伸側リーフバルブVeよりも撓み剛性が高くなっている。そのため、伸側環状プレート66の軸方向長さ(厚み)を伸側リーフバルブVeの軸方向長さ(厚み)より長くしてあるが、軸方向長さによって剛性を強くするだけでなく、伸側リーフバルブVeよりも高剛性の材料で伸側環状プレート66を形成するようにしてもよい。 The expansion side annular plate 66 is bent and has higher rigidity than the expansion side leaf valve Ve. For this reason, the axial length (thickness) of the expansion side annular plate 66 is longer than the axial length (thickness) of the expansion side leaf valve Ve. The expansion-side annular plate 66 may be formed of a material having higher rigidity than the side leaf valve Ve.
 ここで、伸側環状プレート66の内径は、ピストン2に設けた内周シート部2fの外径よりも小径に設定されている。伸側環状プレート66の外径は、伸側弁座2eの内径よりも大径に設定されている。ここで、伸側背圧室Ceは、内部に導入される圧力で伸側スプールSeを伸側環状プレート66へ向けて附勢している。よって、伸側環状プレート66に重ねる伸側リーフバルブVeには、伸側スプールSeから受ける附勢力と伸側背圧室Ceの圧力によってピストン2側へ向けて附勢される。伸側環状プレート66が背面側から伸側背圧室Ce内の圧力と伸側スプールSeによって押圧されて、伸側リーフバルブVeが伸側弁座2eと内周シート部2fとに着座すると、伸側環状プレート66が内周シート部2fと伸側弁座2eとで支持される格好になる。そのため、伸側背圧室Ce内の圧力と伸側スプールSeによる附勢力を伸側環状プレート66で受け止めるようになり、伸側リーフバルブVeの変形が抑制され、伸側リーフバルブVeに過負荷がかからないようになっている。また、補助バルブ71は、伸側リーフバルブVeおよび伸側環状プレート66よりも外径が小径に設定されている。そのため、伸側リーフバルブVeおよび伸側環状プレート66が伸側通路3の圧力で撓む場合に、補助バルブ71よりも外周側の方が撓みやすくなっていて、補助バルブ71を用いて伸側減衰力の減衰特性をチューニングできる。緩衝器Dに発生させる減衰特性により補助バルブ71が不要であれば省略できる。反対に、補助バルブ71を複数枚積層してもよい。 Here, the inner diameter of the expansion side annular plate 66 is set to be smaller than the outer diameter of the inner peripheral sheet portion 2f provided in the piston 2. The outer diameter of the expansion side annular plate 66 is set to be larger than the inner diameter of the expansion side valve seat 2e. Here, the extension-side back pressure chamber Ce urges the extension-side spool Se toward the extension-side annular plate 66 with the pressure introduced inside. Therefore, the extension side leaf valve Ve stacked on the extension side annular plate 66 is urged toward the piston 2 by the urging force received from the extension side spool Se and the pressure of the extension side back pressure chamber Ce. When the expansion side annular plate 66 is pressed from the back side by the pressure in the expansion side back pressure chamber Ce and the expansion side spool Se, and the expansion side leaf valve Ve is seated on the expansion side valve seat 2e and the inner peripheral seat portion 2f, The extension side annular plate 66 is supported by the inner peripheral seat portion 2f and the extension side valve seat 2e. Therefore, the pressure in the extension side back pressure chamber Ce and the urging force of the extension side spool Se are received by the extension side annular plate 66, and deformation of the extension side leaf valve Ve is suppressed, and the extension side leaf valve Ve is overloaded. It is not to take. The auxiliary valve 71 has an outer diameter smaller than that of the extension side leaf valve Ve and the extension side annular plate 66. Therefore, when the extension side leaf valve Ve and the extension side annular plate 66 are bent by the pressure of the extension side passage 3, the outer peripheral side is more easily bent than the auxiliary valve 71. The damping characteristic of damping force can be tuned. If the auxiliary valve 71 is unnecessary due to the damping characteristic generated in the shock absorber D, it can be omitted. Conversely, a plurality of auxiliary valves 71 may be stacked.
 続いて、伸側チャンバ部材12は、伸側リーフバルブVeの反ピストン側に配置され、ピストンホルダ8における保持軸8aの先端外周に螺着される筒状のスペーサ121と、スペーサ121の外周に嵌合されて伸側スプールSeが摺接する摺接筒122とを備えている。スペーサ121は、保持軸8aの螺子部8fに螺着される筒部121aと、筒部121aの図3中下端外周に設けたフランジ121bと、筒部121aの内周に設けられた環状溝121cと、環状溝121cから開口して筒部121aを貫通する圧側抵抗要素としての圧側パイロットオリフィスPpとを備えている。また、摺接筒122は、内周に伸側スプールSeが摺接する筒部122aと、筒部122aの図3中下端内周に突出するフランジ122bとを備えている。 Subsequently, the extension-side chamber member 12 is disposed on the opposite side of the extension-side leaf valve Ve from the piston, and has a cylindrical spacer 121 that is screwed to the outer periphery of the holding shaft 8a of the piston holder 8, and an outer periphery of the spacer 121. And a sliding contact cylinder 122 that is fitted and in sliding contact with the expansion side spool Se. The spacer 121 includes a cylindrical portion 121a that is screwed to the screw portion 8f of the holding shaft 8a, a flange 121b that is provided on the outer periphery of the lower end in FIG. 3 of the cylindrical portion 121a, and an annular groove 121c that is provided on the inner periphery of the cylindrical portion 121a. And a pressure side pilot orifice Pp as a pressure side resistance element that opens from the annular groove 121c and penetrates the cylindrical portion 121a. Further, the sliding contact cylinder 122 includes a cylindrical portion 122a in which the extension side spool Se is in sliding contact with the inner periphery, and a flange 122b that protrudes to the inner periphery at the lower end in FIG. 3 of the cylindrical portion 122a.
 摺接筒122のフランジ122bの内周には、スペーサ121の筒部121aが嵌合されて、フランジ121b,122b同士を当接させるとスペーサ121と摺接筒122が一体となって環状凹部が形成されて、この環状凹部で伸側背圧室Ceが形成される。なお、本例では、加工を容易とするために伸側チャンバ部材12をスペーサ121と摺接筒122とで構成しているが、一部品で構成してもよい。 The cylindrical portion 121a of the spacer 121 is fitted to the inner periphery of the flange 122b of the sliding contact tube 122. When the flanges 121b and 122b are brought into contact with each other, the spacer 121 and the sliding contact tube 122 are integrated to form an annular recess. Thus, the extension-side back pressure chamber Ce is formed by the annular recess. In this example, the extension side chamber member 12 is constituted by the spacer 121 and the sliding contact cylinder 122 in order to facilitate processing, but may be constituted by one part.
 そして、伸側チャンバ部材12を保持軸8aに組み付けると、スペーサ121の内周の環状溝121cが保持軸8aに設けた溝8hに対向して、伸側背圧室Ceが圧側パイロットオリフィスPpを通じて溝8hに連通される。 When the extension side chamber member 12 is assembled to the holding shaft 8a, the annular groove 121c on the inner periphery of the spacer 121 faces the groove 8h provided on the holding shaft 8a, and the extension side back pressure chamber Ce passes through the pressure side pilot orifice Pp. It communicates with the groove 8h.
 なお、伸側チャンバ部材12におけるスペーサ121とシム65との間には、伸側ストッパ67を介装してあるが、伸側ストッパ67を廃止してスペーサ121をストッパとして機能させて伸側環状プレート66の移動下限を規制するようにしてもよい。 An extension side stopper 67 is interposed between the spacer 121 and the shim 65 in the extension side chamber member 12, but the extension side stopper 67 is abolished so that the spacer 121 functions as a stopper. The lower limit of movement of the plate 66 may be restricted.
 摺接筒122内には、伸側スプールSeが収容される。伸側スプールSeは、外周を摺接筒122における筒部122aの内周に摺接させており、当該摺接筒122内で軸方向へ移動できるようになっている。伸側スプールSeは、環状のスプール本体13と、スプール本体13の図3中上端内周から立ち上がる環状突起14とを備えている。この環状突起14の内径は、伸側環状プレート66の外径よりも小径に設定されており、環状突起14が伸側環状プレート66の背面となる図3中下面に当接できるようになっている。 The extension side spool Se is accommodated in the sliding tube 122. The extension-side spool Se is in sliding contact with the inner periphery of the cylindrical portion 122 a of the sliding contact cylinder 122, and can move in the axial direction within the sliding contact cylinder 122. The extension-side spool Se includes an annular spool body 13 and an annular protrusion 14 that rises from the inner periphery of the upper end of the spool body 13 in FIG. The inner diameter of the annular protrusion 14 is set to be smaller than the outer diameter of the extended-side annular plate 66 so that the annular protrusion 14 can come into contact with the lower surface in FIG. Yes.
 なお、スプール本体13の内径は、スペーサ121の筒部121aの外径より大きくしているが、前記内径を筒部121aの外周に摺接する径に設定して、伸側背圧室Ceを伸側スプールSeで封じてもよい。 The inner diameter of the spool body 13 is larger than the outer diameter of the cylindrical portion 121a of the spacer 121, but the inner diameter is set to a diameter that is in sliding contact with the outer periphery of the cylindrical portion 121a to extend the extension-side back pressure chamber Ce. You may seal with the side spool Se.
 さらに、伸側チャンバ部材12の摺接筒122には、フランジ122bを貫通して伸側背圧室Ceと圧側室R2とを連通する圧側圧力導入通路Ipが設けられている。摺接筒122のフランジ122bの図3中上端には、環状弁体15が重ねられており、この環状弁体15と伸側スプールSeにおけるスプール本体13との間に介装されたばね16によって環状弁体15がフランジ122bへ押しつけられている。また、圧側圧力導入通路Ipは、通過液体の流れに対して抵抗を生じさせないように配慮されている。 Further, the sliding contact cylinder 122 of the extension side chamber member 12 is provided with a pressure side pressure introduction passage Ip that passes through the flange 122b and communicates the extension side back pressure chamber Ce and the pressure side chamber R2. An annular valve body 15 is superimposed on the upper end of the flange 122b of the sliding contact cylinder 122 in FIG. 3, and is annularly formed by a spring 16 interposed between the annular valve body 15 and the spool body 13 of the extension side spool Se. The valve body 15 is pressed against the flange 122b. Further, the pressure side pressure introduction passage Ip is considered so as not to cause resistance to the flow of the passing liquid.
 この環状弁体15は、緩衝器Dの収縮作動時において、圧側室R2が圧縮されて圧力が高まると、この圧力によって押圧されてフランジ122bから離座して圧側圧力導入通路Ipを開放する。また、伸側背圧室Ce内の圧力が圧側室R2より高くなる緩衝器Dの伸長作動時にはフランジ122bに押しつけられて圧側圧力導入通路Ipを閉塞し、圧側室R2からの液体の流れのみを許容する。このように、環状弁体15とばね16は、圧側逆止弁Tpを構成しており、圧側圧力導入通路Ipを圧側室R2から伸側背圧室Ceへ向かう液体の流れのみを許容する一方通行の通路に設定している。 When the pressure side chamber R2 is compressed and the pressure is increased during the contraction operation of the shock absorber D, the annular valve body 15 is pressed by this pressure and is separated from the flange 122b to open the pressure side pressure introduction passage Ip. Further, when the shock absorber D is extended so that the pressure in the extension side back pressure chamber Ce becomes higher than the pressure side chamber R2, it is pressed against the flange 122b to close the pressure side pressure introduction passage Ip, and only the liquid flow from the pressure side chamber R2 is allowed to flow. Allow. As described above, the annular valve body 15 and the spring 16 constitute the pressure-side check valve Tp, and only allow the flow of liquid from the pressure-side chamber R2 toward the extension-side back pressure chamber Ce through the pressure-side pressure introduction passage Ip. It is set as a passage for traffic.
 ばね16は、環状弁体15をフランジ122bに押し付ける役割を担って、環状弁体15とともに圧側逆止弁Tpを構成するとともに、伸側スプールSeを伸側リーフバルブVeへ向けて附勢する役割をも担っている。よって、伸側リーフバルブVeが撓んで伸側スプールSeがピストン2から離間する方向へ押し下げられてから伸側リーフバルブVeの撓みが解消すると、ばね16のばね力で伸側スプールSeが速やかに元の位置(図3に示す位置)へ戻る。伸側スプールSeの附勢を別途のばねで附勢できるが、圧側逆止弁Tpとばね16を共用でき部品点数を削減できるとともに構造が簡単となる利点がある。なお、伸側スプールSeの外径は、環状突起14の内径よりも大径に設定されていて、環状突起14が伸側環状プレート66に当接するようになっているので、伸側スプールSeは伸側背圧室Ceの圧力によって常に伸側リーフバルブVeへ向けて附勢される。 The spring 16 plays a role of pressing the annular valve body 15 against the flange 122b, constitutes a compression-side check valve Tp together with the annular valve body 15, and serves to urge the extension-side spool Se toward the extension-side leaf valve Ve. Is also responsible. Therefore, when the extension side leaf valve Ve is bent and the extension side spool Se is pushed down in the direction away from the piston 2 and then the extension side leaf valve Ve is flexed, the extension side spool Se is quickly moved by the spring force of the spring 16. Return to the original position (position shown in FIG. 3). Although the energization of the extension side spool Se can be energized by a separate spring, there is an advantage that the compression side check valve Tp and the spring 16 can be shared, the number of parts can be reduced, and the structure can be simplified. The outer diameter of the extension side spool Se is set to be larger than the inner diameter of the annular protrusion 14, and the annular protrusion 14 comes into contact with the extension side annular plate 66. The pressure in the extension side back pressure chamber Ce is always urged toward the extension side leaf valve Ve.
 ピストン2の上方に重ねられる圧側リーフバルブVpは、図3に示すように、伸側リーフバルブVe同様に、ピストンホルダ8の保持軸8aの挿通を許容するため環状とされており、この例では、一枚の環状板で構成されているが、複数枚の環状板を積層して構成されてもよい。そして、このように構成された圧側リーフバルブVpは、ピストン2の図3中上方に重ねられていて、圧側弁座2bおよび内周シート部2cに離着座可能とされている。 As shown in FIG. 3, the pressure side leaf valve Vp overlaid on the piston 2 has an annular shape to allow the holding shaft 8a of the piston holder 8 to be inserted, as in the extension side leaf valve Ve. Although it is constituted by one annular plate, it may be constituted by laminating a plurality of annular plates. And the pressure side leaf valve Vp comprised in this way is piled up the upper direction in FIG. 3 of the piston 2, and can be attached / detached to the pressure side valve seat 2b and the inner peripheral seat part 2c.
 また、圧側リーフバルブVpは、その外周に圧側弁座2bへ着座した際にオリフィスとして機能する切欠Opを備えており、シム61の外周に摺動自在に装着されている。シム61の外周には、圧側リーフバルブVpに重ねられる圧側環状プレート62が摺動自在に装着されている。なお、本実施の形態では、圧側環状プレート62の反圧側リーフバルブ側に圧側環状プレート62よりも外径が小径な環状の補助バルブ81が重ねられており、この補助バルブ81もまたシム61の外周に摺動自在に装着されている。圧側リーフバルブVp、圧側環状プレート62および補助バルブ81を積層した際の軸方向長さは、シム61の軸方向長さよりも短くなるようにしてある。さらに、シム61の図3中上方には、環状であって外径が補助バルブ81および圧側環状プレート62の内径よりも大径に設定される圧側ストッパ63が設けられており、この圧側ストッパ63の上方に圧側チャンバ部材11が重ねられる。よって、圧側リーフバルブVp、圧側環状プレート62および補助バルブ81は、シム61によってガイドされてピストン2と圧側ストッパ63との間で軸方向となる図3中上下方向へ移動できるようになっている。 The pressure-side leaf valve Vp is provided with a notch Op that functions as an orifice when seated on the pressure-side valve seat 2b on the outer periphery thereof, and is slidably mounted on the outer periphery of the shim 61. On the outer periphery of the shim 61, a pressure side annular plate 62 that is superimposed on the pressure side leaf valve Vp is slidably mounted. In the present embodiment, an annular auxiliary valve 81 having an outer diameter smaller than that of the pressure side annular plate 62 is stacked on the pressure side leaf valve side of the pressure side annular plate 62, and this auxiliary valve 81 is also connected to the shim 61. It is slidably mounted on the outer periphery. The axial length when the pressure side leaf valve Vp, the pressure side annular plate 62 and the auxiliary valve 81 are stacked is set to be shorter than the axial length of the shim 61. Further, a pressure side stopper 63 is provided above the shim 61 in FIG. 3 and has an annular shape whose outer diameter is set larger than the inner diameter of the auxiliary valve 81 and the pressure side annular plate 62. The compression side chamber member 11 is overlaid on the upper side. Therefore, the pressure-side leaf valve Vp, the pressure-side annular plate 62, and the auxiliary valve 81 are guided by the shim 61 and can move up and down in FIG. 3, which is the axial direction between the piston 2 and the pressure-side stopper 63. .
 そして、圧側リーフバルブVpは、圧側通路4側から圧力によって押圧されると、外周が圧側環状プレート62とともに撓むとともに、圧側環状プレート62および補助バルブ81とともに全体がピストン2から離間して後退できる。圧側リーフバルブVp、圧側環状プレート62および補助バルブ81のピストン2からの後退量は、シム61の軸方向長さによって設定される。この場合、シム61が複数枚の環状板で構成されるので、環状板の積層枚数で調節可能であるが、シム61を単一の環状板で構成してもよい。 When the pressure-side leaf valve Vp is pressed by pressure from the pressure-side passage 4 side, the outer periphery thereof bends together with the pressure-side annular plate 62, and the pressure-side leaf plate Vp and the auxiliary valve 81 can be moved away from the piston 2 as a whole. The retraction amounts of the pressure side leaf valve Vp, the pressure side annular plate 62 and the auxiliary valve 81 from the piston 2 are set by the length of the shim 61 in the axial direction. In this case, since the shim 61 is constituted by a plurality of annular plates, the shim 61 can be adjusted by the number of laminated annular plates, but the shim 61 may be constituted by a single annular plate.
 圧側環状プレート62は、圧側リーフバルブVpよりも撓み剛性が高くなっている。そのため、圧側環状プレート62の軸方向長さ(厚み)を圧側リーフバルブVpの軸方向長さ(厚み)より長くしてあるが、軸方向長さによって剛性を強くするだけでなく、圧側リーフバルブVpよりも高剛性の材料で圧側環状プレート62を形成するようにしてもよい。 The pressure side annular plate 62 is bent and has higher rigidity than the pressure side leaf valve Vp. For this reason, the axial length (thickness) of the compression-side annular plate 62 is longer than the axial length (thickness) of the compression-side leaf valve Vp, but not only the rigidity is increased by the axial length but also the compression-side leaf valve. The compression side annular plate 62 may be formed of a material having higher rigidity than Vp.
 ここで、圧側環状プレート62の内径は、ピストン2に設けた内周シート部2cの外径よりも小径に設定されている。圧側環状プレート62の外径は、圧側弁座2bの内径よりも大径に設定されている。ここで、圧側背圧室Cpは、内部に導入される圧力で圧側スプールSpを圧側環状プレート62へ向けて附勢している。よって、圧側環状プレート62に重なる圧側リーフバルブVpには、圧側スプールSpから受ける附勢力と圧側背圧室Cpの圧力によってピストン2側へ向けて附勢される。圧側環状プレート62が背面側から圧側背圧室Cp内の圧力と圧側スプールSpによって押圧されて、圧側リーフバルブVpが圧側弁座2bと内周シート部2cとに着座すると、圧側環状プレート62が内周シート部2cと圧側弁座2bとで支持される格好になる。そのため、圧側背圧室Cp内の圧力と圧側スプールSpによる附勢力を圧側環状プレート62で受け止めるようになり、圧側リーフバルブVpの変形が抑制され、圧側リーフバルブVpに過負荷がかからないようになっている。また、補助バルブ81は、圧側リーフバルブVpおよび圧側環状プレート62よりも外径が小径に設定されている。そのため、圧側リーフバルブVpおよび圧側環状プレート62が圧側通路4の圧力で撓む場合に、補助バルブ81よりも外周側の方が撓みやすくなっていて、補助バルブ81を用いて圧側減衰力の減衰特性をチューニングできる。緩衝器Dに発生させる減衰特性により補助バルブ81が不要であれば省略できる。反対に、補助バルブ81を複数枚積層してもよい。 Here, the inner diameter of the compression side annular plate 62 is set to be smaller than the outer diameter of the inner peripheral sheet portion 2c provided in the piston 2. The outer diameter of the pressure side annular plate 62 is set to be larger than the inner diameter of the pressure side valve seat 2b. Here, the pressure-side back pressure chamber Cp urges the pressure-side spool Sp toward the pressure-side annular plate 62 with the pressure introduced inside. Therefore, the pressure side leaf valve Vp overlapping the pressure side annular plate 62 is urged toward the piston 2 by the urging force received from the pressure side spool Sp and the pressure in the pressure side back pressure chamber Cp. When the pressure side annular plate 62 is pressed from the back side by the pressure in the pressure side back pressure chamber Cp and the pressure side spool Sp, and the pressure side leaf valve Vp is seated on the pressure side valve seat 2b and the inner peripheral seat portion 2c, the pressure side annular plate 62 is The inner circumferential seat portion 2c and the pressure side valve seat 2b are supported. Therefore, the pressure in the pressure side back pressure chamber Cp and the urging force by the pressure side spool Sp are received by the pressure side annular plate 62, the deformation of the pressure side leaf valve Vp is suppressed, and the pressure side leaf valve Vp is not overloaded. ing. The auxiliary valve 81 has an outer diameter smaller than that of the pressure side leaf valve Vp and the pressure side annular plate 62. Therefore, when the pressure side leaf valve Vp and the pressure side annular plate 62 are bent by the pressure of the pressure side passage 4, the outer peripheral side is more easily bent than the auxiliary valve 81, and the auxiliary side valve 81 is used to attenuate the pressure side damping force. You can tune the characteristics. If the auxiliary valve 81 is unnecessary due to the damping characteristic generated in the shock absorber D, it can be omitted. Conversely, a plurality of auxiliary valves 81 may be stacked.
 続いて、圧側チャンバ部材11は、圧側リーフバルブVpの反ピストン側に配置され、ピストンホルダ8における保持軸8aの外周に嵌合される筒状のスペーサ111と、スペーサ111の外周に嵌合されて圧側スプールSpが摺接する摺接筒112とを備えている。スペーサ111は、保持軸8aの外周に装着されており、図3中上端外周全周に亘って設けられた凹部111aと、内周に設けられた環状溝111bと、環状溝111bから開口して外周側へ貫通する伸側抵抗要素としての伸側パイロットオリフィスPeとを備えている。また、摺接筒112は、内周に圧側スプールSpが摺接する筒部112aと、筒部112aの図3中上端内周に突出するフランジ112bとを備えている。 Subsequently, the pressure side chamber member 11 is disposed on the side opposite to the piston of the pressure side leaf valve Vp, and is fitted to the outer periphery of the spacer 111 and the cylindrical spacer 111 fitted to the outer periphery of the holding shaft 8 a in the piston holder 8. And a sliding cylinder 112 with which the compression side spool Sp slides. The spacer 111 is mounted on the outer periphery of the holding shaft 8a, and opens from the recess 111a provided on the entire outer periphery of the upper end in FIG. 3, the annular groove 111b provided on the inner periphery, and the annular groove 111b. An extension side pilot orifice Pe as an extension side resistance element penetrating to the outer peripheral side is provided. Further, the slidable contact cylinder 112 includes a cylinder portion 112a in which the compression side spool Sp is slidably contacted on the inner periphery, and a flange 112b protruding from the upper end inner periphery in FIG. 3 of the cylinder portion 112a.
 摺接筒112のフランジ112bの内周をスペーサ111の凹部111aに嵌合すると、スペーサ111と摺接筒112が一体となって環状凹部が形成されて、この環状凹部で圧側背圧室Cpが形成される。なお、本例では、加工を容易とするために圧側チャンバ部材11をスペーサ111と摺接筒112とで構成しているが、一部品で構成してもよい。 When the inner periphery of the flange 112b of the sliding contact cylinder 112 is fitted into the recess 111a of the spacer 111, the spacer 111 and the sliding contact cylinder 112 are integrated to form an annular recess, and the pressure side back pressure chamber Cp is formed in the annular recess. It is formed. In this example, the pressure side chamber member 11 is composed of the spacer 111 and the sliding contact cylinder 112 in order to facilitate processing, but it may be composed of one part.
 そして、圧側チャンバ部材11を保持軸8aに組み付けると、スペーサ111の内周の環状溝111bが保持軸8aに設けた溝8hに対向して、圧側背圧室Cpが伸側パイロットオリフィスPeを通じて溝8hに連通される。圧側チャンバ部材11は、図3中上端がピストンホルダ8のフランジ8bに当接して密着している。そして、溝8hは、保持軸8aに装着されるピストン2、シム61,65、伸側ストッパ67および圧側ストッパ63、伸側チャンバ部材12および圧側チャンバ部材11によって、伸側室R1および圧側室R2との連通が絶たれている。また、スペーサ111の図3中上端内周の径は、拡径されていて、保持軸8aとの間に環状の空隙が形成されており、溝8hは、空隙を介してピストンホルダ8に設けたポート8eに通じている。よって、溝8hは、ポート8eを介して収容部Lに通じていて、調節通路Pcに接続されるとともに、圧側パイロットオリフィスPpを通じて伸側背圧室Ceと伸側パイロットオリフィスPeを通じて圧側背圧室Cpに接続されている。このように、溝8hは、圧側抵抗要素を介して伸側背圧室Ceに連通されるともに伸側抵抗要素を介して圧側背圧室Cpに連通される連通路を形成している。 When the pressure-side chamber member 11 is assembled to the holding shaft 8a, the annular groove 111b on the inner periphery of the spacer 111 faces the groove 8h provided on the holding shaft 8a, and the pressure-side back pressure chamber Cp is grooved through the expansion-side pilot orifice Pe. 8h. The pressure side chamber member 11 is in close contact with the upper end in FIG. 3 in contact with the flange 8 b of the piston holder 8. The groove 8h is formed by the piston 2, shims 61 and 65, the extension side stopper 67 and the compression side stopper 63, the extension side chamber member 12 and the compression side chamber member 11 mounted on the holding shaft 8a, and the extension side chamber R1 and the pressure side chamber R2. Communication has been cut off. Further, the diameter of the inner periphery of the upper end in FIG. 3 of the spacer 111 is increased, an annular gap is formed between the spacer 111 and the holding shaft 8a, and the groove 8h is provided in the piston holder 8 through the gap. Port 8e. Therefore, the groove 8h communicates with the accommodating portion L through the port 8e, is connected to the adjustment passage Pc, and extends through the compression side pilot orifice Pp and through the expansion side pilot orifice Pe and the compression side back pressure chamber through the extension side pilot orifice Pe. Connected to Cp. As described above, the groove 8h forms a communication path that communicates with the expansion-side back pressure chamber Ce via the compression-side resistance element and also communicates with the compression-side back pressure chamber Cp via the expansion-side resistance element.
 戻って、圧側チャンバ部材11におけるスペーサ111とシム61との間には、圧側ストッパ63を介装してあるが、圧側ストッパ63を廃止してスペーサ111をストッパとして機能させて圧側環状プレート62の移動下限を規制するようにしてもよい。 Returning, the pressure side stopper 63 is interposed between the spacer 111 and the shim 61 in the pressure side chamber member 11, but the pressure side stopper 63 is abolished so that the spacer 111 functions as a stopper. You may make it regulate a movement minimum.
 摺接筒112内には、圧側スプールSpが収容される。圧側スプールSpは、外周を摺接筒112における筒部112aの内周に摺接させており、当該摺接筒112内で軸方向へ移動できるようになっている。圧側スプールSpは、環状のスプール本体17と、スプール本体17の図3中下端外周から立ち上がる環状突起18とを備えている。この環状突起18の内径は、圧側環状プレート62の外径よりも小径に設定されており、環状突起18が圧側環状プレート62の背面となる図3中上面に当接できるようになっている。 In the sliding contact cylinder 112, a compression side spool Sp is accommodated. The pressure side spool Sp is in sliding contact with the inner periphery of the cylindrical portion 112 a of the sliding contact cylinder 112, and can move in the axial direction within the sliding contact cylinder 112. The pressure-side spool Sp includes an annular spool body 17 and an annular protrusion 18 that rises from the outer periphery of the lower end of the spool body 17 in FIG. The inner diameter of the annular protrusion 18 is set to be smaller than the outer diameter of the pressure-side annular plate 62 so that the annular protrusion 18 can come into contact with the upper surface in FIG.
 なお、スプール本体17の内径は、スペーサ111の外径より大きくしているが、前記内径をスペーサ111の外周に摺接する径に設定して、圧側背圧室Cpを圧側スプールSpで封じてもよい。 Although the inner diameter of the spool body 17 is larger than the outer diameter of the spacer 111, the inner diameter may be set to a diameter that is in sliding contact with the outer periphery of the spacer 111, and the compression-side back pressure chamber Cp may be sealed with the compression-side spool Sp. Good.
 さらに、圧側チャンバ部材11の摺接筒112には、フランジ112bを貫通して圧側背圧室Cpと伸側室R1とを連通する伸側圧力導入通路Ieが設けられている。摺接筒112のフランジ112bの図3中下端には、環状弁体19が重ねてあり、この環状弁体19と圧側スプールSpにおけるスプール本体17との間に介装されたばね20によって環状弁体19がフランジ112bへ押しつけられている。また、伸側圧力導入通路Ieは、通過液体の流れに対して抵抗を生じさせないように配慮されている。 Further, the sliding contact cylinder 112 of the compression side chamber member 11 is provided with an expansion side pressure introduction passage Ie that passes through the flange 112b and communicates the compression side back pressure chamber Cp and the expansion side chamber R1. An annular valve body 19 is superimposed on the lower end of the flange 112b of the sliding contact cylinder 112 in FIG. 3, and an annular valve body is provided by a spring 20 interposed between the annular valve body 19 and the spool body 17 of the compression side spool Sp. 19 is pressed against the flange 112b. Further, the extension side pressure introduction passage Ie is considered so as not to cause resistance to the flow of the passing liquid.
 この環状弁体19は、緩衝器Dの伸長作動時において、伸側室R1が圧縮されて圧力が高まると、この圧力によって押圧されてフランジ112bから離座して伸側圧力導入通路Ieを開放する。また、圧側背圧室Cp内の圧力が伸側室R1より高くなる緩衝器Dの収縮作動時にはフランジ112bに押しつけられて伸側圧力導入通路Ieを閉塞し、伸側室R1からの液体の流れのみを許容する。このように、環状弁体19とばね20は、伸側逆止弁Teを構成しており、伸側圧力導入通路Ieを伸側室R1から圧側背圧室Cpへ向かう液体の流れのみを許容する一方通行の通路に設定している。 When the expansion side chamber R1 is compressed and the pressure increases during the expansion operation of the shock absorber D, the annular valve body 19 is pressed by this pressure and is separated from the flange 112b to open the expansion side pressure introduction passage Ie. . Further, during the contraction operation of the shock absorber D in which the pressure in the compression side back pressure chamber Cp becomes higher than that of the expansion side chamber R1, it is pressed against the flange 112b to close the expansion side pressure introduction passage Ie, and only the flow of liquid from the expansion side chamber R1 is performed. Allow. As described above, the annular valve body 19 and the spring 20 constitute the extension-side check valve Te, and only allow the flow of liquid from the extension-side chamber R1 toward the compression-side back pressure chamber Cp through the extension-side pressure introduction passage Ie. It is set as a one-way passage.
 ばね20は、環状弁体19をフランジ112bに押し付ける役割を担って、環状弁体19とともに伸側逆止弁Teを構成するとともに、圧側スプールSpを圧側リーフバルブVpへ向けて附勢する役割をも担っている。よって、圧側リーフバルブVpが撓んで圧側スプールSpがピストン2から離間する方向へ押し上げられてから圧側リーフバルブVpの撓みが解消すると、ばね20のばね力で圧側スプールSpが速やかに元の位置(図3に示す位置)へ戻る。圧側スプールSpの附勢を別途のばねで附勢できるが、伸側逆止弁Teとばね20を共用でき部品点数を削減できるとともに構造が簡単となる利点がある。なお、圧側スプールSpの外径は、環状突起18の内径よりも大径に設定されていて、環状突起18が圧側環状プレート62に当接するようになっているので、圧側スプールSpは圧側背圧室Cpの圧力によって常に圧側リーフバルブVpへ向けて附勢される。 The spring 20 plays a role of pressing the annular valve body 19 against the flange 112b, constitutes an extension check valve Te together with the annular valve body 19, and plays a role of urging the pressure side spool Sp toward the pressure side leaf valve Vp. Also bears. Therefore, when the pressure-side leaf valve Vp is bent and the pressure-side spool Sp is pushed up in the direction away from the piston 2 and the bending of the pressure-side leaf valve Vp is eliminated, the pressure-side spool Sp is quickly returned to the original position (by the spring force of the spring 20). Return to the position shown in FIG. Although the pressure side spool Sp can be biased by a separate spring, there is an advantage that the extension side check valve Te and the spring 20 can be shared, the number of parts can be reduced, and the structure can be simplified. The outer diameter of the pressure side spool Sp is set to be larger than the inner diameter of the annular protrusion 18 so that the annular protrusion 18 comes into contact with the pressure side annular plate 62. The pressure in the chamber Cp is always urged toward the compression side leaf valve Vp.
 なお、伸側スプールSeの伸側背圧室Ceの圧力を受ける受圧面積は、伸側スプールSeの外径を直径とする円の面積から環状突起14の内径を直径とする円の面積の差分となる。同様に圧側スプールSpの圧側背圧室Cpの圧力を受ける受圧面積は、圧側スプールSpの外径を直径とする円の面積から環状突起18の内径を直径とする円の面積の差分となる。 In addition, the pressure receiving area which receives the pressure of the extension side back pressure chamber Ce of the extension side spool Se is a difference between the area of a circle whose diameter is the outer diameter of the extension side spool Se and the area of the circle whose diameter is the inner diameter of the annular protrusion 14. It becomes. Similarly, the pressure receiving area that receives the pressure of the pressure side back pressure chamber Cp of the pressure side spool Sp is a difference between the area of the circle having the outer diameter of the pressure side spool Sp as the diameter and the area of the circle having the inner diameter of the annular protrusion 18 as the diameter.
 また、伸側環状プレート66に伸側背圧室Ceの圧力が直接的に作用する受圧面積は、環状突起14の内径を直径とする円の面積からシム65の外径を直径とする円の面積を除いた面積となる。よって、伸側スプールSeの外径を直径とする円の面積からシム65の外径を直径とする円の面積を除いた面積に伸側背圧室Ceの圧力を乗じた力が伸側荷重として伸側リーフバルブVeに作用する。そして、伸側リーフバルブVeは、伸側荷重によってピストン2へ向けて附勢される。なお、伸側環状プレート66を廃止して伸側リーフバルブVeの背面に環状突起14を直接当接させてもよい。この場合も、伸側リーフバルブVeがシム65の外周に装着されているので、伸側環状プレート66を設ける場合と同じ伸側荷重が伸側リーフバルブVeに作用する。 Further, the pressure receiving area where the pressure of the expansion side back pressure chamber Ce directly acts on the expansion side annular plate 66 is from the area of a circle whose diameter is the inner diameter of the annular protrusion 14 to the circle whose diameter is the outer diameter of the shim 65. It is the area excluding the area. Therefore, the force obtained by multiplying the area obtained by subtracting the area of the circle having the outer diameter of the shim 65 from the area of the circle having the outer diameter of the extension side spool Se as the diameter of the extension side back pressure chamber Ce is the extension side load. Acting on the extension side leaf valve Ve. The extension side leaf valve Ve is biased toward the piston 2 by the extension side load. Note that the extension-side annular plate 66 may be eliminated and the annular protrusion 14 may be brought into direct contact with the back surface of the extension-side leaf valve Ve. Also in this case, since the extension side leaf valve Ve is mounted on the outer periphery of the shim 65, the same extension side load as that when the extension side annular plate 66 is provided acts on the extension side leaf valve Ve.
 他方、圧側環状プレート62に圧側背圧室Cpの圧力が直接的に作用する受圧面積は、環状突起18の内径を直径とする円の面積からシム61の外径を直径とする円の面積を除いた面積となる。よって、圧側スプールSpの外径を直径とする円の面積からシム61の外径を直径とする円の面積を除いた面積に圧側背圧室Cpの圧力を乗じた力が圧側荷重として圧側リーフバルブVpに作用する。そして、圧側リーフバルブVpは、圧側荷重によってピストン2へ向けて附勢される。なお、圧側環状プレート62を廃止して圧側リーフバルブVpの背面に環状突起18を直接当接させてもよい。この場合も、圧側リーフバルブVpがシム61の外周に装着されているので、圧側環状プレート62を設ける場合と同じ圧側荷重が圧側リーフバルブVpに作用する。 On the other hand, the pressure receiving area where the pressure of the pressure side back pressure chamber Cp directly acts on the pressure side annular plate 62 is the area of the circle whose diameter is the outer diameter of the shim 61 from the area of the circle whose diameter is the inner diameter of the annular protrusion 18. Excluded area. Therefore, the force obtained by multiplying the area obtained by subtracting the area of the circle having the outer diameter of the shim 61 from the area of the circle having the outer diameter of the compression side spool Sp by the pressure of the compression side back pressure chamber Cp as the compression side load is the compression side leaf. Acts on the valve Vp. The pressure side leaf valve Vp is urged toward the piston 2 by the pressure side load. Note that the pressure side annular plate 62 may be eliminated and the annular protrusion 18 may be brought into direct contact with the back surface of the pressure side leaf valve Vp. Also in this case, since the pressure side leaf valve Vp is mounted on the outer periphery of the shim 61, the same pressure side load as when the pressure side annular plate 62 is provided acts on the pressure side leaf valve Vp.
 なお、伸側背圧室Ceを伸側スプールSeで閉鎖して伸側背圧室Ceの圧力を伸側環状プレート66に直接に作用させない場合には、伸側荷重は伸側スプールSeの伸側背圧室Ceの圧力を受ける受圧面積のみによって決まる。圧側も同様に、圧側背圧室Cpを圧側スプールSpで閉鎖して圧側背圧室Cpの圧力を圧側環状プレート62に直接に作用させない場合には、圧側荷重は圧側スプールSpの圧側背圧室Cpの圧力を受ける受圧面積のみによって決まる。 When the extension side back pressure chamber Ce is closed by the extension side spool Se and the pressure of the extension side back pressure chamber Ce is not directly applied to the extension side annular plate 66, the extension side load is increased by the extension side spool Se. It is determined only by the pressure receiving area that receives the pressure of the side back pressure chamber Ce. Similarly, when the pressure side back pressure chamber Cp is closed by the pressure side spool Sp and the pressure of the pressure side back pressure chamber Cp is not directly applied to the pressure side annular plate 62, the pressure side load is the pressure side back pressure chamber of the pressure side spool Sp. It depends only on the pressure receiving area that receives the pressure of Cp.
 本例では、伸側スプールSeを用いているので、伸側リーフバルブVeに作用させる伸側荷重を伸側スプールSeの伸側背圧室Ce内の圧力を受ける受圧面積で設定できる。また、圧側も同様に、圧側スプールSpを用いているので、圧側リーフバルブVpに作用させる圧側荷重を圧側スプールSpの圧側背圧室Cp内の圧力を受ける受圧面積で設定できる。本例では、圧側スプールSpと伸側スプールSeの受圧面積を等しくしてあるが、前記受圧面積の設定により伸側荷重と圧側荷重に差を持たせられる。 In this example, since the expansion side spool Se is used, the expansion side load acting on the expansion side leaf valve Ve can be set by the pressure receiving area that receives the pressure in the expansion side back pressure chamber Ce of the expansion side spool Se. Similarly, since the pressure side spool Sp is used on the pressure side, the pressure side load acting on the pressure side leaf valve Vp can be set by the pressure receiving area that receives the pressure in the pressure side back pressure chamber Cp of the pressure side spool Sp. In this example, the pressure receiving areas of the compression side spool Sp and the expansion side spool Se are made equal, but the difference between the expansion side load and the compression side load can be given by setting the pressure receiving area.
 続いて、伸側背圧室Ceと圧側背圧室Cpを連通する溝8hで形成される連通路の下流と、伸側排出通路Ee及び圧側排出通路Epの上流を接続する調節通路Pcが設けられている。調節通路Pcの途中には、電磁圧力制御弁6が設けられていて、上流の伸側背圧室Ce及び圧側背圧室Cpの圧力を制御できるようになっている。 Subsequently, an adjustment passage Pc is provided to connect the downstream side of the communication passage formed by the groove 8h that connects the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp, and the upstream side of the extension side discharge passage Ee and the pressure side discharge passage Ep. It has been. An electromagnetic pressure control valve 6 is provided in the middle of the adjustment passage Pc so that the pressures in the upstream extension-side back pressure chamber Ce and the pressure-side back pressure chamber Cp can be controlled.
 電磁圧力制御弁6は、この実施の形態では、非通電時に調節通路Pcを閉じるとともに通電時に圧力制御を行う。また、調節通路Pcの途中には、電磁圧力制御弁6を迂回するフェール弁FVが設けられている。 In this embodiment, the electromagnetic pressure control valve 6 closes the adjustment passage Pc when not energized and performs pressure control when energized. A fail valve FV that bypasses the electromagnetic pressure control valve 6 is provided in the middle of the adjustment passage Pc.
 電磁圧力制御弁6は、図1及び図2に示すように、弁収容筒30aと制御弁弁座30dとを備えた弁座部材30と、制御弁弁座30dに離着座する電磁弁弁体31と、電磁弁弁体31に推力を与えこれを軸方向に駆動するソレノイドSolとを備えて構成されている。 As shown in FIGS. 1 and 2, the electromagnetic pressure control valve 6 includes a valve seat member 30 including a valve housing cylinder 30a and a control valve valve seat 30d, and an electromagnetic valve valve body that is attached to and detached from the control valve valve seat 30d. 31 and a solenoid Sol that applies thrust to the solenoid valve body 31 and drives it in the axial direction.
 そして、弁座部材30は、ピストンホルダ8のソケット8c内に嵌合されて、フランジ8bの図2中上端に重ねられる環状のバルブハウジング32の内周に弁収容筒30aを挿入することで径方向へ位置決められつつ、収容部L内に収容されている。 The valve seat member 30 is fitted into the socket 8c of the piston holder 8, and the diameter of the valve seat member 30 is inserted by inserting the valve housing cylinder 30a into the inner periphery of the annular valve housing 32 that is superimposed on the upper end of the flange 8b in FIG. It is accommodated in the accommodating part L, being positioned in the direction.
 バルブハウジング32は、図2に示すように、環状であって、図2中上端に設けた環状窓32aと、環状窓32aから開口して図2中下端に通じるポート32bと、図2中上端内周から開口してポート32bに通じる切欠溝32cと、外周に設けられて軸方向に沿って設けた縦溝32dと、前記環状窓32aの外周を囲む環状のフェール弁弁座32eとを備えて構成されている。 As shown in FIG. 2, the valve housing 32 has an annular shape, an annular window 32a provided at the upper end in FIG. 2, a port 32b that opens from the annular window 32a and communicates with the lower end in FIG. 2, and an upper end in FIG. A notch groove 32c that opens from the inner periphery and communicates with the port 32b, a vertical groove 32d that is provided on the outer periphery and extends along the axial direction, and an annular fail valve seat 32e that surrounds the outer periphery of the annular window 32a. Configured.
 このバルブハウジング32をソケット8c内に挿入してフランジ8bの図2中上端に重ねると、ポート32bがポート8eのフランジ8bの上端に面する開口に対向してポート32b及び切欠溝32cがポート8eに連通され、さらに、縦溝32dがフランジ8bに設けた切欠8gに対向してこれらが連通されるようになっている。 When the valve housing 32 is inserted into the socket 8c and overlapped with the upper end of the flange 8b in FIG. 2, the port 32b faces the opening facing the upper end of the flange 8b of the port 8e, and the port 32b and the cutout groove 32c have the port 8e. Further, the vertical groove 32d is communicated with the notch 8g provided in the flange 8b.
 よって、ポート32b及び切欠溝32cは、ポート8eを通じて連通路を形成する溝8hに連通され、さらには、伸側パイロットオリフィスPe及び圧側パイロットオリフィスPpを介して伸側背圧室Ce及び圧側背圧室Cpに連通される。また、縦溝32dは、切欠8g、縦孔8dおよび逆止弁25で形成される伸側排出通路Eeを通じて圧側室R2に連通されるとともに、透孔9c、凹部8i、貫通孔8j及び逆止弁22によって形成される圧側排出通路Epを通じて伸側室R1に連通される。 Therefore, the port 32b and the notch groove 32c are communicated with the groove 8h forming the communication path through the port 8e, and further, the expansion side back pressure chamber Ce and the pressure side back pressure are connected via the expansion side pilot orifice Pe and the pressure side pilot orifice Pp. It communicates with the chamber Cp. Further, the vertical groove 32d communicates with the pressure side chamber R2 through the expansion side discharge passage Ee formed by the notch 8g, the vertical hole 8d, and the check valve 25, and the through hole 9c, the recess 8i, the through hole 8j, and the check. The pressure side discharge passage Ep formed by the valve 22 communicates with the extension side chamber R1.
 バルブハウジング32内には、筒状の弁座部材30における弁収容筒30aが収容されている。この弁座部材30は、有底筒状であって図2中上端外周にフランジ30bを備えた弁収容筒30aと、弁収容筒30aの側方から開口して内部へ通じる透孔30cと、弁収容筒30aの図2中上端に軸方向へ向けて突出する環状の制御弁弁座30dとを備えて構成されている。 In the valve housing 32, the valve accommodating cylinder 30a in the cylindrical valve seat member 30 is accommodated. The valve seat member 30 has a bottomed cylindrical shape and has a valve accommodating cylinder 30a having a flange 30b on the outer periphery of the upper end in FIG. 2, a through hole 30c that opens from the side of the valve accommodating cylinder 30a and communicates with the inside, An annular control valve seat 30d that protrudes in the axial direction is provided at the upper end in FIG. 2 of the valve housing cylinder 30a.
 また、弁座部材30の弁収容筒30aの外周には、環状のリーフバルブであるフェール弁弁体33が装着されている。弁収容筒30aをバルブハウジング32に挿入して弁座部材30をバルブハウジング32に組み付けると、フェール弁弁体33は、内周が弁座部材30におけるフランジ30bとバルブハウジング32の図2中上端内周とで挟持されて固定される。よって、フェール弁弁体33は、外周側がバルブハウジング32に設けた環状のフェール弁弁座32eに初期撓みが与えられた状態で着座し、環状窓32aを閉塞する。このフェール弁弁体33は、ポート32bを通じて環状窓32a内に作用する圧力が開弁圧に達すると撓んで、環状窓32aを開放してポート32bを伸側排出通路Ee及び圧側排出通路Epへ連通させる。そして、フェール弁弁体33とフェール弁弁座32eとでフェール弁FVを形成している。 Further, on the outer periphery of the valve housing cylinder 30a of the valve seat member 30, a fail valve body 33 which is an annular leaf valve is mounted. When the valve housing cylinder 30a is inserted into the valve housing 32 and the valve seat member 30 is assembled to the valve housing 32, the fail valve body 33 has an inner periphery that is the flange 30b of the valve seat member 30 and the upper end of the valve housing 32 in FIG. It is clamped by the inner periphery and fixed. Therefore, the fail valve body 33 is seated in the state where the initial deflection is given to the annular fail valve seat 32e provided on the valve housing 32 on the outer peripheral side, and closes the annular window 32a. The fail valve body 33 bends when the pressure acting in the annular window 32a through the port 32b reaches the valve opening pressure, opens the annular window 32a, and connects the port 32b to the extension side discharge passage Ee and the pressure side discharge passage Ep. Communicate. A fail valve FV is formed by the fail valve body 33 and the fail valve seat 32e.
 また、弁収容筒30aをバルブハウジング32に挿入して弁座部材30をバルブハウジング32に組み付けると、バルブハウジング32に設けた切欠溝32cが弁収容筒30aに設けた透孔30cに対向して、伸側背圧室Ce及び圧側背圧室Cpがポート32bを通じて弁収容筒30a内に連通される。 When the valve housing cylinder 30a is inserted into the valve housing 32 and the valve seat member 30 is assembled to the valve housing 32, the notch groove 32c provided in the valve housing 32 faces the through hole 30c provided in the valve housing cylinder 30a. The extension-side back pressure chamber Ce and the compression-side back pressure chamber Cp are communicated with each other in the valve housing cylinder 30a through the port 32b.
 弁座部材30の図1中上方には、環状であってフランジ30bの図1中上端に当接する弁固定部材35が重ねられており、さらに、弁固定部材35の図1中上方には電磁弁収容筒9内に収容されるソレノイドSolが配置されている。電磁弁収容筒9にピストンホルダ8を螺着して一体化すると、バルブハウジング32、フェール弁弁体33、弁座部材30、弁固定部材35及びソレノイドSolが電磁弁収容筒9とピストンホルダ8に挟持されて固定される。なお、弁固定部材35には、弁座部材30のフランジ30bに当接しても、弁固定部材35の内周側の空間が弁座部材30の外周側の空間に連通できるように切欠溝35aが設けられている。この連通は、切欠溝35aではなく、ポートなどの孔で行うようにしてもよい。 A valve fixing member 35 that is annular and contacts the upper end of the flange 30b in FIG. 1 is stacked above the valve seat member 30 in FIG. A solenoid Sol accommodated in the valve accommodating cylinder 9 is disposed. When the piston holder 8 is screwed and integrated with the electromagnetic valve housing cylinder 9, the valve housing 32, the fail valve valve body 33, the valve seat member 30, the valve fixing member 35 and the solenoid Sol are connected to the electromagnetic valve housing cylinder 9 and the piston holder 8. It is pinched and fixed. Note that the valve fixing member 35 has a notch groove 35 a so that the inner circumferential space of the valve fixing member 35 can communicate with the outer circumferential space of the valve seat member 30 even when abutting against the flange 30 b of the valve seat member 30. Is provided. This communication may be performed not by the notch groove 35a but by a hole such as a port.
 ソレノイドSolは、巻線37と巻線37に通電するハーネスHとをモールド樹脂で一体化した有頂筒状のモールドステータ36と、有頂筒状であってモールドステータ36の内周に嵌合される第一固定鉄心38と、モールドステータ36の図1中下端に重ねられる環状の第二固定鉄心39と、第一固定鉄心38と第二固定鉄心39との間に介装されて磁気的な空隙を形成するフィラーリング40と、第一固定鉄心38と第二固定鉄心39の内周側に軸方向移動可能に配置された筒状の可動鉄心41と、可動鉄心41の内周に固定されるシャフト42とを備えて構成されている。ソレノイドSolは、巻線37への通電により、可動鉄心41を吸引してシャフト42に図2中下方向きの推力を与える。シャフト42は、電磁弁弁体31に当接しており、ソレノイドSolは、通電時に電磁弁弁体31に図2中下向きの推力を与えるようになっている。 The solenoid Sol is a top-cylindrical molded stator 36 in which a winding 37 and a harness H that energizes the winding 37 are integrated with a mold resin, and a top-cylindrical cylindrical stator that is fitted to the inner periphery of the mold stator 36. The first fixed iron core 38, the annular second fixed iron core 39 superimposed on the lower end in FIG. 1 of the molded stator 36, and the first fixed iron core 38 and the second fixed iron core 39 are magnetically interposed. Fixed to the inner periphery of the movable core 41, the filler ring 40 that forms a gap, the cylindrical movable core 41 that is axially movable on the inner peripheral side of the first fixed core 38 and the second fixed core 39. And a shaft 42 to be configured. The solenoid Sol attracts the movable iron core 41 by energizing the winding 37 and applies a downward thrust to the shaft 42 in FIG. The shaft 42 is in contact with the electromagnetic valve body 31, and the solenoid Sol applies a downward thrust in FIG. 2 to the electromagnetic valve body 31 when energized.
 さらに、弁座部材30内には、電磁弁弁体31が摺動自在に挿入されている。電磁弁弁体31は、詳しくは、弁座部材30における弁収容筒30a内に摺動自在に挿入される小径部31aと、小径部31aの図2中上方側である反弁座部材側に設けられて弁収容筒30aには挿入されない大径部31bと、小径部31aと大径部31bとの間に設けた環状の凹部31cと、大径部31bの反弁座部材側端の外周に設けたフランジ状のばね受部31dと、電磁弁弁体31の先端から後端へ貫通する連絡路31e、連絡路31eの途中に設けたオリフィス31fとを備えて構成されている。 Furthermore, a solenoid valve body 31 is slidably inserted into the valve seat member 30. Specifically, the solenoid valve body 31 is provided on the side of the valve seat member 30 that is slidably inserted into the valve housing cylinder 30a of the valve seat member 30 and the counter valve seat member side that is the upper side of the small diameter portion 31a in FIG. A large-diameter portion 31b that is provided and is not inserted into the valve housing cylinder 30a, an annular recess 31c provided between the small-diameter portion 31a and the large-diameter portion 31b, and an outer periphery of the counter-valve seat member side end of the large- diameter portion 31b 31d, a connecting passage 31e penetrating from the front end to the rear end of the solenoid valve body 31, and an orifice 31f provided in the middle of the connecting passage 31e.
 また、電磁弁弁体31には、前述のように、凹部31cを境にして反弁座部材側の外径を小径部31aより大径として大径部31bが形成されている。電磁弁弁体31は、大径部31bの図2中下端に制御弁弁座30dに対向する着座部31gを備えており、弁座部材30に対して軸方向へ移動すると着座部31gが制御弁弁座30dに離着座する。つまり、電磁弁弁体31と弁座部材30とを備えて電磁圧力制御弁6が構成されており、着座部31gが制御弁弁座30dに着座すると電磁圧力制御弁6が閉弁する。 Further, as described above, the solenoid valve body 31 is formed with the large-diameter portion 31b with the outer diameter on the side opposite to the valve seat member larger than the small-diameter portion 31a with the recess 31c as a boundary. The electromagnetic valve body 31 includes a seating portion 31g facing the control valve valve seat 30d at the lower end in FIG. 2 of the large-diameter portion 31b, and the seating portion 31g is controlled when moved in the axial direction with respect to the valve seat member 30. The valve seat 30d is detached and seated. That is, the electromagnetic pressure control valve 6 includes the electromagnetic valve body 31 and the valve seat member 30. When the seating portion 31g is seated on the control valve valve seat 30d, the electromagnetic pressure control valve 6 is closed.
 さらに、弁座部材30のフランジ30bとばね受部31dとの間には、電磁弁弁体31を弁座部材30から離間する方向へ附勢するコイルばね34が介装されている。したがって、電磁弁弁体31は、コイルばね34によって常に弁座部材30から離間する方向へ附勢されており、ソレノイドSolからのコイルばね34に対抗する推力が作用しないと、弁座部材30から最も離間する位置に位置決められる。なお、この場合、コイルばね34を利用して、電磁弁弁体31を弁座部材30から離間させる方向へ附勢するようにしているが、コイルばね34以外にも附勢力を発揮することができる弾性体を使用できる。 Further, a coil spring 34 is interposed between the flange 30b of the valve seat member 30 and the spring receiving portion 31d to urge the electromagnetic valve valve body 31 in a direction away from the valve seat member 30. Therefore, the electromagnetic valve body 31 is always urged in the direction away from the valve seat member 30 by the coil spring 34, and if a thrust force against the coil spring 34 from the solenoid Sol does not act, It is positioned at the most distant position. In this case, the coil spring 34 is used to urge the solenoid valve valve body 31 in the direction away from the valve seat member 30, but the urging force can be exerted in addition to the coil spring 34. An elastic body that can be used can be used.
 そして、電磁弁弁体31は、弁座部材30に対して最も離間すると、透孔30cに小径部31aを対向させて透孔30cを閉塞する。ソレノイドSolに通電して電磁弁弁体31を弁座部材30から最も離間する位置から弁座部材30側へ所定量移動させると、常に、電磁弁弁体31は、凹部31cを透孔30cに対向させて透孔30cを開放するようになっている。 When the solenoid valve body 31 is farthest from the valve seat member 30, the small diameter portion 31a is opposed to the through hole 30c to close the through hole 30c. When the solenoid Sol is energized to move the solenoid valve valve 31 by a predetermined amount from the position farthest away from the valve seat member 30 to the valve seat member 30 side, the solenoid valve valve 31 always places the recess 31c into the through hole 30c. The through holes 30c are opened so as to face each other.
 電磁弁弁体31が透孔30cを開放し、着座部31gが制御弁弁座30dから離座すると透孔30cが電磁弁弁体31の凹部31c及び弁固定部材35に設けた切欠溝35aを通じて伸側排出通路Ee及び圧側排出通路Epに連通される。そして、ソレノイドSolの推力を調節すると、電磁弁弁体31を弁座部材30側へ附勢する力を制御でき、電磁圧力制御弁6の上流の圧力の作用とコイルばね34による電磁弁弁体31を押上げる力がソレノイドSolによる電磁弁弁体31を押下げる力を上回ると電磁圧力制御弁6は開弁する。このように、電磁圧力制御弁6の上流側の圧力をソレノイドSolの推力に応じて制御できる。そして、電磁圧力制御弁6の上流は、調節通路Pcを介して伸側背圧室Ce及び圧側背圧室Cpに通じているので、この電磁圧力制御弁6によって伸側背圧室Ce及び圧側背圧室Cpの圧力を制御できる。よって、ソレノイドSolへの通電量によって、伸側背圧室Ce及び圧側背圧室Cpの圧力を調節して、伸側荷重および圧側荷重を制御できる。また、電磁圧力制御弁6の下流は、伸側排出通路Ee及び圧側排出通路Epに通じており、電磁圧力制御弁6を通過した液体は、緩衝器Dの伸長作動時には低圧側の圧側室R2へ、緩衝器Dの収縮作動時には低圧側の伸側室R1へ排出される。よって、調節通路Pcは、前記したポート8e、ポート32b、切欠溝32c、収容部Lの一部、縦溝32dによって形成される。 When the solenoid valve body 31 opens the through hole 30c and the seating portion 31g is separated from the control valve valve seat 30d, the through hole 30c passes through the recess 31c of the solenoid valve valve body 31 and the notch groove 35a provided in the valve fixing member 35. The expansion side discharge passage Ee and the pressure side discharge passage Ep are communicated. When the thrust of the solenoid Sol is adjusted, it is possible to control the force that biases the solenoid valve valve body 31 toward the valve seat member 30, and the action of the pressure upstream of the solenoid pressure control valve 6 and the solenoid valve valve body by the coil spring 34. When the force for pushing up 31 exceeds the force for pushing down the solenoid valve valve 31 by the solenoid Sol, the solenoid pressure control valve 6 opens. Thus, the pressure on the upstream side of the electromagnetic pressure control valve 6 can be controlled according to the thrust of the solenoid Sol. Since the upstream side of the electromagnetic pressure control valve 6 communicates with the expansion side back pressure chamber Ce and the pressure side back pressure chamber Cp via the adjustment passage Pc, the electromagnetic pressure control valve 6 causes the expansion side back pressure chamber Ce and the pressure side to communicate with each other. The pressure in the back pressure chamber Cp can be controlled. Therefore, the expansion side load and the compression side load can be controlled by adjusting the pressures of the expansion side back pressure chamber Ce and the compression side back pressure chamber Cp according to the energization amount to the solenoid Sol. Further, the downstream side of the electromagnetic pressure control valve 6 communicates with the expansion side discharge passage Ee and the pressure side discharge passage Ep, and the liquid that has passed through the electromagnetic pressure control valve 6 causes the pressure side chamber R2 on the low pressure side during the expansion operation of the shock absorber D. When the shock absorber D is contracted, it is discharged into the low-pressure side expansion chamber R1. Therefore, the adjustment passage Pc is formed by the port 8e, the port 32b, the notch groove 32c, a part of the accommodating portion L, and the vertical groove 32d.
 また、電磁圧力制御弁6は、ソレノイドSolへ通電できないフェール時には、弁座部材30における透孔30cを電磁弁弁体31における小径部31aで閉塞する遮断ポジションを備えている。よって、電磁圧力制御弁6は、圧力制御弁としてだけではなく、開閉弁としても機能する。フェール弁FVは、ポート32bに通じる環状窓32aを開閉するようになっていて、その開弁圧が電磁圧力制御弁6の制御可能な上限圧を超える圧力に設定されており、電磁圧力制御弁6を迂回してポート32bを伸側排出通路Ee及び圧側排出通路Epに連通する。よって、電磁圧力制御弁6の上流側の圧力が制御上限圧を超えるような場合、フェール弁FVが開弁して伸側背圧室Ce及び圧側背圧室Cpの圧力をフェール弁FVの開弁圧に制御できる。したがって、たとえば、フェール時において電磁圧力制御弁6が遮断ポジションをとっている場合には、伸側背圧室Ce及び圧側背圧室Cpの圧力はフェール弁FVの開弁圧に制御される。 Further, the electromagnetic pressure control valve 6 has a blocking position in which the through hole 30c in the valve seat member 30 is closed by the small diameter portion 31a in the electromagnetic valve body 31 during a failure in which the solenoid Sol cannot be energized. Therefore, the electromagnetic pressure control valve 6 functions not only as a pressure control valve but also as an on-off valve. The fail valve FV opens and closes an annular window 32a that communicates with the port 32b, and the valve opening pressure is set to a pressure that exceeds the upper limit pressure that can be controlled by the electromagnetic pressure control valve 6. The electromagnetic pressure control valve 6, the port 32b is communicated with the expansion side discharge passage Ee and the pressure side discharge passage Ep. Therefore, when the pressure on the upstream side of the electromagnetic pressure control valve 6 exceeds the control upper limit pressure, the fail valve FV is opened, and the pressures in the extension-side back pressure chamber Ce and the pressure-side back pressure chamber Cp are opened. The valve pressure can be controlled. Therefore, for example, when the electromagnetic pressure control valve 6 is in the shut-off position at the time of failure, the pressures in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp are controlled to the valve opening pressure of the fail valve FV.
 さらに、電磁弁弁体31は、弁座部材30の弁収容筒30a内に挿入されると、弁収容筒30a内であって透孔30cより先端側に空間Kを形成する。この空間Kは、電磁弁弁体31に設けた連絡路31e及びオリフィス31fを介して電磁弁弁体外に連通されている。これにより、電磁弁弁体31が弁座部材30に対して図2中上下方向である軸方向に移動する際、前記空間Kがダッシュポットとして機能して、電磁弁弁体31の急峻な変位を抑制するとともに、電磁弁弁体31の振動的な動きを抑制できる。 Furthermore, when the solenoid valve body 31 is inserted into the valve housing cylinder 30a of the valve seat member 30, a space K is formed in the valve housing cylinder 30a and on the tip side from the through hole 30c. The space K communicates with the outside of the solenoid valve valve body through a communication path 31e provided in the solenoid valve valve body 31 and an orifice 31f. Thereby, when the solenoid valve valve body 31 moves in the axial direction which is the vertical direction in FIG. 2 with respect to the valve seat member 30, the space K functions as a dashpot, and the solenoid valve valve body 31 is rapidly displaced. And the vibrational movement of the solenoid valve body 31 can be suppressed.
 つづいて、緩衝器Dの作動について説明する。まず、緩衝器Dが伸長する場合について説明する。緩衝器Dが伸長してピストン2が図1中上方へ移動すると、圧縮される伸側室R1から拡大される圧側室R2へ液体が伸側リーフバルブVeを押して伸側通路3を通過して移動しようとする。 Next, the operation of the shock absorber D will be described. First, the case where the shock absorber D extends will be described. When the shock absorber D extends and the piston 2 moves upward in FIG. 1, the liquid moves from the compressed expansion side chamber R <b> 1 to the expanded pressure side chamber R <b> 2 through the expansion side passage 3 by pushing the expansion side leaf valve Ve. try to.
 また、伸側室R1内の液体は、伸側逆止弁Teを押し開いて伸側圧力導入通路Ieを通過し、調節通路Pcへ流れる。調節通路Pcを通過した液体は、逆止弁25を押し開いて伸側排出通路Eeを介して低圧側の圧側室R2へ排出される。なお、伸側パイロットオリフィスPeは、液体の通過の際に抵抗を与えて圧力損失をもたらし、液体が流れている状態において調節通路Pcの下流では伸側室R1よりも低圧となるため、圧側排出通路Epに設けた逆止弁22は開かず閉塞されたままとなる。 Also, the liquid in the extension side chamber R1 pushes open the extension side check valve Te, passes through the extension side pressure introduction passage Ie, and flows into the adjustment passage Pc. The liquid that has passed through the adjustment passage Pc pushes the check valve 25 open and is discharged to the low pressure side pressure side chamber R2 through the extension side discharge passage Ee. The expansion side pilot orifice Pe gives a resistance when the liquid passes and causes a pressure loss. Since the liquid is flowing, the expansion side pilot orifice Pe has a lower pressure than the expansion side chamber R1 downstream of the adjustment passage Pc. The check valve 22 provided on Ep remains closed without opening.
 伸側圧力導入通路Ieは、圧側背圧室Cpに通じるだけでなく、溝8hを介して伸側背圧室Ceにも通じるが、圧側圧力導入通路Ipが圧側逆止弁Tpによって閉塞されるため、緩衝器Dの伸長作動時において伸側背圧室Ce内の圧力は圧側室R2より高くなる。なお、圧側背圧室Cpの圧力は、低圧側の圧側室R2よりも高くなるが、液体の流れが生じない圧側通路4を閉塞する圧側リーフバルブVpを附勢するだけであるから不都合はない。 The expansion-side pressure introduction passage Ie not only communicates with the compression-side back pressure chamber Cp but also communicates with the expansion-side back pressure chamber Ce through the groove 8h, but the compression-side pressure introduction passage Ip is closed by the compression-side check valve Tp. Therefore, when the shock absorber D is extended, the pressure in the extension side back pressure chamber Ce is higher than that of the compression side chamber R2. The pressure in the pressure side back pressure chamber Cp is higher than that in the pressure side chamber R2 on the low pressure side, but there is no inconvenience because it only energizes the pressure side leaf valve Vp that closes the pressure side passage 4 where no liquid flows. .
 調節通路Pcには、前記したように電磁圧力制御弁6が設けてあり、電磁圧力制御弁6のソレノイドSolに通電して、調節通路Pcの上流側の圧力を制御してやれば、伸側背圧室Ce内の圧力を調整して伸側荷重を所望の荷重に制御できる。伸側リーフバルブVeには、電磁圧力制御弁6によって制御される伸側荷重が閉弁方向に、伸側通路3を通じて伸側室R1の圧力が開弁方向に作用する。 As described above, the electromagnetic pressure control valve 6 is provided in the adjustment passage Pc, and if the solenoid Sol of the electromagnetic pressure control valve 6 is energized to control the pressure on the upstream side of the adjustment passage Pc, the extension side back pressure is increased. The extension side load can be controlled to a desired load by adjusting the pressure in the chamber Ce. On the extension side leaf valve Ve, the extension side load controlled by the electromagnetic pressure control valve 6 acts in the valve closing direction, and the pressure in the extension side chamber R1 acts in the valve opening direction through the extension side passage 3.
 伸側リーフバルブVeは、伸側荷重を伸側室R1の圧力の作用による力が上回ると開弁して、両者がバランスする位置までシム65の外周をスライドしてピストン2から後退する。このように、伸側リーフバルブVeがピストン2から離間する後退量は、伸側荷重に応じて決まるので、ソレノイドSolへの通電量に応じて前記後退量を制御できる。以上により、電磁圧力制御弁6によって伸側リーフバルブVeの開度を制御でき、これによって、緩衝器Dの伸長作動を行う際の伸側減衰力を大小調節できる。 The extension-side leaf valve Ve opens when the extension-side load exceeds the force due to the action of the pressure in the extension-side chamber R1, and slides on the outer periphery of the shim 65 to a position where the two balance each other and retracts from the piston 2. As described above, the retraction amount by which the extension-side leaf valve Ve is separated from the piston 2 is determined according to the extension-side load. Therefore, the retraction amount can be controlled according to the energization amount to the solenoid Sol. As described above, the opening degree of the extension side leaf valve Ve can be controlled by the electromagnetic pressure control valve 6, and thereby the extension side damping force when the buffer D is extended can be adjusted in magnitude.
 逆に、緩衝器Dが収縮する場合について説明する。緩衝器Dが収縮してピストン2が図1中下方へ移動すると、圧縮される圧側室R2から拡大される伸側室R1へ液体が圧側リーフバルブVpを押して圧側通路4を通過して移動しようとする。 Conversely, the case where the shock absorber D contracts will be described. When the shock absorber D contracts and the piston 2 moves downward in FIG. 1, the liquid tries to move from the compressed pressure side chamber R2 to the expanded side chamber R1 through the pressure side passage 4 by pushing the pressure side leaf valve Vp. To do.
 また、圧側室R2内の液体は、圧側逆止弁Tpを押し開いて圧側圧力導入通路Ipを通過し、調節通路Pcへ流れる。調節通路Pcを通過した液体は、逆止弁22を押し開いて圧側排出通路Epを介して低圧側の伸側室R1へ排出される。なお、圧側パイロットオリフィスPpは、液体の通過の際に抵抗を与えて圧力損失をもたらし、液体が流れている状態において調節通路Pcの下流では圧側室R2よりも低圧となるため、伸側排出通路Eeに設けた逆止弁25は開かず閉塞されたままとなる。 Also, the liquid in the pressure side chamber R2 pushes and opens the pressure side check valve Tp, passes through the pressure side pressure introduction passage Ip, and flows to the adjustment passage Pc. The liquid that has passed through the adjustment passage Pc pushes the check valve 22 open and is discharged to the low-pressure-side extension side chamber R1 through the pressure-side discharge passage Ep. Note that the pressure side pilot orifice Pp provides resistance when the liquid passes and causes a pressure loss. In the state where the liquid flows, the pressure side pilot orifice Pp has a pressure lower than the pressure side chamber R2 downstream of the adjustment passage Pc. The check valve 25 provided at Ee is not opened and remains closed.
 圧側圧力導入通路Ipは、伸側背圧室Ceに通じるだけでなく、溝8hを介して圧側背圧室Cpにも通じるが、伸側圧力導入通路Ieが伸側逆止弁Teによって閉塞されるため、緩衝器Dの収縮作動時において圧側背圧室Cp内の圧力は伸側室R1より高くなる。なお、伸側背圧室Ceの圧力は、低圧側の伸側室R1よりも高くなるが、液体の流れが生じない伸側通路3を閉塞する伸側リーフバルブVeを附勢するだけであるから不都合はない。 The compression-side pressure introduction passage Ip not only communicates with the expansion-side back pressure chamber Ce but also communicates with the compression-side back pressure chamber Cp through the groove 8h, but the expansion-side pressure introduction passage Ie is blocked by the expansion-side check valve Te. Therefore, the pressure in the compression side back pressure chamber Cp becomes higher than that of the expansion side chamber R1 when the shock absorber D is contracted. The pressure in the extension side back pressure chamber Ce is higher than that in the extension side chamber R1 on the low pressure side, but it only energizes the extension side leaf valve Ve that closes the extension side passage 3 where no liquid flows. There is no inconvenience.
 そして、圧側リーフバルブVpには、電磁圧力制御弁6によって制御される圧側荷重が閉弁方向に、圧側通路4を通じて圧側室R2の圧力が開弁方向に作用する。 The pressure side load valve controlled by the electromagnetic pressure control valve 6 acts on the pressure side leaf valve Vp in the valve closing direction, and the pressure in the pressure side chamber R2 acts on the pressure side passage 4 in the valve opening direction.
 よって、圧側リーフバルブVpは、圧側荷重を圧側室R2の圧力の作用による力が上回ると開弁して、両者がバランスする位置までシム61の外周をスライドしてピストン2から後退する。このように、圧側リーフバルブVpがピストン2から離間する後退量は、圧側荷重に応じて決まるので、ソレノイドSolへの通電量に応じて前記後退量を制御できる。以上により、電磁圧力制御弁6によって圧側リーフバルブVpの開度を制御でき、これによって、緩衝器Dの収縮作動を行う際の圧側減衰力を大小調節できる。 Therefore, the pressure-side leaf valve Vp opens when the force due to the action of the pressure in the pressure-side chamber R2 exceeds the pressure-side load, slides on the outer periphery of the shim 61 to a position where both balance, and moves backward from the piston 2. As described above, the retraction amount by which the pressure-side leaf valve Vp is separated from the piston 2 is determined according to the pressure-side load. Therefore, the retraction amount can be controlled according to the energization amount to the solenoid Sol. As described above, the opening degree of the pressure side leaf valve Vp can be controlled by the electromagnetic pressure control valve 6, whereby the pressure side damping force when the shock absorber D is contracted can be adjusted in magnitude.
 前述したように、本例の緩衝器Dでは、伸側リーフバルブVeの外径が圧側リーフバルブVpの外径よりも小径とされており、伸側リーフバルブVeの伸側室R1の圧力を受ける受圧面積は、圧側リーフバルブVpの圧側室R2の圧力を受ける受圧面積よりも小さい。そのため、電磁圧力制御弁6で伸側荷重と圧側荷重を同じにしても、伸側リーフバルブVeの開弁圧は圧側リーフバルブVpの開弁圧よりも大きくなり、伸側減衰力を圧側減衰力より大きくできる。 As described above, in the shock absorber D of this example, the outer diameter of the extension side leaf valve Ve is smaller than the outer diameter of the compression side leaf valve Vp, and receives the pressure of the extension side chamber R1 of the extension side leaf valve Ve. The pressure receiving area is smaller than the pressure receiving area that receives the pressure of the pressure side chamber R2 of the pressure side leaf valve Vp. Therefore, even if the extension side load and the compression side load are the same in the electromagnetic pressure control valve 6, the valve opening pressure of the extension side leaf valve Ve becomes larger than the valve opening pressure of the compression side leaf valve Vp, and the extension side damping force is reduced to the compression side. Can be greater than force.
 そして、本発明の緩衝器Dでは、伸側背圧室Ceおよび圧側背圧室Cpを連通する連通路がピストンホルダ8の保持軸8aの外周に設けられているので、保持軸8a内に連通路を設けるためのセパレータを設ける必要がない。よって、本発明の緩衝器Dによれば、連通路の形成にセパレータが不要となり、部品点数が削減されコストを低減でき、保持軸8a内にセパレータを設けずに済むため縦孔8dの径を小径にできるので、ピストンホルダ8の強度を確保できる。 In the shock absorber D of the present invention, the communication path that communicates the extension-side back pressure chamber Ce and the pressure-side back pressure chamber Cp is provided on the outer periphery of the holding shaft 8a of the piston holder 8, and therefore communicates with the holding shaft 8a. There is no need to provide a separator for providing the passage. Therefore, according to the shock absorber D of the present invention, a separator is not required for forming the communication path, the number of parts can be reduced, the cost can be reduced, and the separator 8 is not provided in the holding shaft 8a, so the diameter of the vertical hole 8d can be reduced. Since the diameter can be reduced, the strength of the piston holder 8 can be secured.
 さらに、セパレータを設ける場合、保持軸8aとセパレータとの間に隙間が生じると連通路から伸側排出通路Eeへ液体が漏れてしまい、製品毎に減衰力特性にばらつきが生じる可能性があった。本緩衝器Dでは、保持軸8aに組付けられるピストン2をはじめとした前記各部品によって、溝8hが伸側圧力導入通路Ieおよび圧側圧力導入通路Ipを介さずに伸側室R1および圧側室R2に連通しないよう閉鎖される。前記保持軸8aに組付けられる前記各部品は、ピストンナットとして機能するスペーサ121によって軸方向の荷重を受けて密着状態で保持軸8aに固定されているので、溝8hを密に閉鎖できる。よって、本発明の緩衝器Dでは、連通路として機能する溝8hから伸側室R1或いは圧側室R2へ液体が漏れないので、製品ごとに減衰力特性にばらつきが生じるような問題も解消される。 Further, when a separator is provided, if a gap is generated between the holding shaft 8a and the separator, the liquid leaks from the communication path to the extension-side discharge path Ee, and there is a possibility that the damping force characteristic varies among products. . In the present shock absorber D, the groove 8h is not connected to the expansion side pressure introduction passage Ie and the pressure side pressure introduction passage Ip by the above-described components including the piston 2 assembled to the holding shaft 8a. Closed to prevent communication. Each of the components assembled to the holding shaft 8a is fixed to the holding shaft 8a in close contact with the load in the axial direction by the spacer 121 functioning as a piston nut, so that the groove 8h can be closed tightly. Therefore, in the shock absorber D of the present invention, since the liquid does not leak from the groove 8h functioning as the communication path to the extension side chamber R1 or the pressure side chamber R2, the problem that the damping force characteristic varies for each product is solved.
 なお、連通路を形成する溝8hの断面形状は任意に設計できる。また、連通路は、本例では、保持軸8aの外周に設けた溝8hで形成されているが、保持軸8aと保持軸8aに組付けられる部品との間に連通路を形成する空隙を設ければよいので、たとえば、保持軸8aの外周に軸方向に沿う面取を形成して、この面取部分で保持軸8aに組付けられる各部品との間に隙間を設けて連通路を形成してもよい。このようにしても、溝8hで連通路を形成する場合と同様の効果が得られる。 In addition, the cross-sectional shape of the groove 8h forming the communication path can be designed arbitrarily. Further, in this example, the communication path is formed by a groove 8h provided on the outer periphery of the holding shaft 8a. However, a gap that forms the communication path is formed between the holding shaft 8a and the parts assembled to the holding shaft 8a. Therefore, for example, a chamfer along the axial direction is formed on the outer periphery of the holding shaft 8a, and a gap is provided between each part assembled to the holding shaft 8a at this chamfered portion to provide a communication path. It may be formed. Even if it does in this way, the effect similar to the case where a communicating path is formed in the groove | channel 8h is acquired.
 また、本例の緩衝器Dでは、伸側パイロットオリフィス(伸側抵抗要素)Peが圧側チャンバ部材11に設けられ、圧側パイロットオリフィス(圧側抵抗要素)Ppが伸側チャンバ部材12に設けられている。従来では、ピストンホルダ側に伸側抵抗要素と圧側抵抗要素を設けていたので、たとえば、伸側抵抗要素と圧側抵抗要素がそれぞれ4種類ある場合、これらの全ての組合を実現するには、合計16種類の異なるピストンホルダを用意しなくてはならなかった。これに対して、伸側抵抗要素と圧側抵抗要素をそれぞれ対応する伸側チャンバ部材12と圧側チャンバ部材11に別々に設けると、伸側チャンバ部材12と圧側チャンバ部材11をそれぞれ4種類ずつ用意しておけば済む。よって、このように緩衝器Dを構成すると、伸側抵抗要素や圧側抵抗要素のチューニングが容易となり、管理すべき部品も少なくて済み、より一層コストを低減できる。 Further, in the shock absorber D of this example, the expansion side pilot orifice (extension side resistance element) Pe is provided in the compression side chamber member 11, and the compression side pilot orifice (pressure side resistance element) Pp is provided in the expansion side chamber member 12. . Conventionally, since the expansion resistance element and the compression resistance element are provided on the piston holder side, for example, when there are four types of expansion resistance elements and compression resistance elements, respectively, in order to realize all these combinations, the total 16 different piston holders had to be prepared. On the other hand, when the extension side resistance element and the compression side resistance element are separately provided in the corresponding extension side chamber member 12 and compression side chamber member 11, four types of extension side chamber member 12 and compression side chamber member 11 are prepared. All you need to do is Therefore, when the shock absorber D is configured in this manner, tuning of the extension side resistance element and the compression side resistance element is facilitated, the number of parts to be managed is reduced, and the cost can be further reduced.
 さらに、本例の緩衝器Dでは、ピストンホルダ8の保持軸8aに圧側室R2に連通される縦孔8dを設けて伸側排出通路Eeが形成されており、縦孔8d内に調節通路Pcから圧側室R2へ液体の流れのみを許容する逆止弁25の弁座として機能するパイプ25aを設けている。このように緩衝器Dを構成すると逆止弁25の設置に当たって、ピストンホルダ8の保持軸8aに直接逆止弁25の弁座を形成する難しい加工を施す必要が無くなる。 Further, in the shock absorber D of the present example, the holding shaft 8a of the piston holder 8 is provided with a vertical hole 8d communicating with the compression side chamber R2, and an expansion side discharge passage Ee is formed, and the adjustment passage Pc is formed in the vertical hole 8d. A pipe 25a that functions as a valve seat for the check valve 25 that allows only the flow of liquid from the pressure side chamber R2 is provided. When the shock absorber D is configured in this manner, it is not necessary to perform difficult processing for directly forming the valve seat of the check valve 25 on the holding shaft 8a of the piston holder 8 when the check valve 25 is installed.
 なお、本例の緩衝器Dにあっては、伸側リーフバルブVeと圧側リーフバルブVpがそれぞれシム65,61の外周に摺動自在に嵌合されて、ピストン2に対して離間できるようになっているが、内周側が保持軸8aに固定される構造を採用してもよい。また、電磁圧力制御弁6は、伸側背圧室Ceと圧側背圧室Cpの圧力を調節できればよいので、前述した具体的構造に限定されるものではない。 In the shock absorber D of this example, the extension side leaf valve Ve and the pressure side leaf valve Vp are slidably fitted to the outer circumferences of the shims 65 and 61, respectively, so that they can be separated from the piston 2. However, a structure in which the inner peripheral side is fixed to the holding shaft 8a may be employed. Further, the electromagnetic pressure control valve 6 is not limited to the above-described specific structure because it only needs to be able to adjust the pressure in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but modifications, changes, and changes can be made without departing from the scope of the claims.
 本願は、2017年2月24日に日本国特許庁に出願された特願2017-032824に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-032824 filed with the Japan Patent Office on February 24, 2017, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  緩衝器であって、
     シリンダと、
     シリンダ内に摺動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画する環状のピストンと、
     前記ピストンに設けられて前記伸側室と前記圧側室とを連通する伸側通路と圧側通路と、
     前記ピストンに重ねられて前記伸側通路を開閉する環状の伸側リーフバルブと、
     前記ピストンに重ねられて前記圧側通路を開閉する環状の圧側リーフバルブと、
     前記伸側リーフバルブの反ピストン側に配置される環状の伸側チャンバ部材と、
     前記圧側リーフバルブの反ピストン側に配置される環状の圧側チャンバ部材と、
     前記伸側リーフバルブの反ピストン側に配置されて前記伸側チャンバ部材に軸方向移動自在に装着され、前記伸側チャンバ部材とともに伸側背圧室を形成するとともに前記伸側背圧室の圧力で前記伸側リーフバルブへ向けて附勢される伸側スプールと、
     前記圧側リーフバルブの反ピストン側に配置されて前記圧側チャンバ部材に軸方向移動自在に装着され、前記圧側チャンバ部材とともに圧側背圧室を形成するとともに前記圧側背圧室の圧力で前記圧側リーフバルブへ向けて附勢される圧側スプールと、
     前記ピストン、前記伸側リーフバルブ、前記圧側リーフバルブ、前記伸側チャンバ部材および前記圧側チャンバ部材が外周に装着される保持軸を有するピストンホルダと、
     液体の流れに抵抗を与える圧側抵抗要素を介して前記伸側背圧室に連通されるとともに通過する液体の流れに抵抗を与える伸側抵抗要素を介して前記圧側背圧室に連通される連通路と、
     前記連通路を上流として前記連通路に連通される調節通路と、
     前記調節通路に設けられて上流側の圧力を制御する電磁圧力制御弁と、
     前記伸側室から前記圧側背圧室へ向かう液体の流れのみを許容する伸側圧力導入通路と、
     前記圧側室から前記伸側背圧室へ向かう液体の流れのみを許容する圧側圧力導入通路と、
     前記調節通路の下流を前記圧側室へ連通するとともに前記調節通路から前記圧側室へ向かう液体の流れのみを許容する伸側排出通路と、
     前記調節通路の下流を前記伸側室へ連通するとともに前記調節通路から前記伸側室へ向かう液体の流れのみを許容する圧側排出通路とを備え、
     前記連通路は、前記保持軸の外周に形成されている
     緩衝器。
    A shock absorber,
    A cylinder,
    An annular piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber;
    An extension side passage and a pressure side passage which are provided in the piston and communicate with the extension side chamber and the pressure side chamber;
    An annular extension leaf valve that is overlapped with the piston and opens and closes the extension passage;
    An annular pressure-side leaf valve that overlaps the piston and opens and closes the pressure-side passage;
    An annular extension chamber member disposed on the non-piston side of the extension leaf valve;
    An annular pressure side chamber member disposed on the anti-piston side of the pressure side leaf valve;
    The extension side leaf valve is disposed on the opposite side of the piston and is mounted on the extension side chamber member so as to be axially movable, and forms an extension side back pressure chamber together with the extension side chamber member, and the pressure of the extension side back pressure chamber An extension side spool biased toward the extension side leaf valve at
    The pressure-side leaf valve is disposed on the side opposite to the piston of the pressure-side leaf valve and is mounted on the pressure-side chamber member so as to be axially movable, and forms a pressure-side back pressure chamber together with the pressure-side chamber member. A pressure-side spool biased toward
    A piston holder having a holding shaft to which the piston, the extension side leaf valve, the pressure side leaf valve, the extension side chamber member and the pressure side chamber member are mounted on the outer periphery;
    A communication communicated with the extension-side back pressure chamber via a compression-side resistance element that provides resistance to the flow of liquid and communicated with the compression-side back pressure chamber via an extension-side resistance element that provides resistance to the flow of liquid passing therethrough. A passage,
    An adjustment passage communicating with the communication passage with the communication passage upstream;
    An electromagnetic pressure control valve provided in the adjustment passage for controlling the pressure on the upstream side;
    An extension side pressure introduction passage that allows only the flow of liquid from the extension side chamber to the compression side back pressure chamber;
    A pressure side pressure introduction passage that allows only a flow of liquid from the pressure side chamber to the extension side back pressure chamber;
    An extension side discharge passage communicating with the pressure side chamber downstream of the adjustment passage and allowing only a flow of liquid from the adjustment passage toward the pressure side chamber;
    A pressure side discharge passage communicating with the extension side chamber downstream of the adjustment passage and allowing only a flow of liquid from the adjustment passage toward the extension side chamber;
    The communication path is formed on an outer periphery of the holding shaft.
  2.  請求項1に記載の緩衝器であって、
     前記伸側抵抗要素は、前記圧側チャンバ部材に設けられて前記連通路に連通され、
     前記圧側抵抗要素は、前記伸側チャンバ部材に設けられて前記連通路に連通される
     緩衝器。
    The shock absorber according to claim 1,
    The extension side resistance element is provided in the compression side chamber member and communicated with the communication path.
    The pressure side resistance element is provided in the extension side chamber member and communicates with the communication path.
  3.  請求項1に記載の緩衝器であって、
     前記ピストンホルダの前記保持軸は、前記圧側室に連通される縦孔を有して、前記縦孔で前記伸側排出通路が形成されており、
     前記縦孔内に前記調節通路から前記圧側室への液体の流れのみを許容する逆止弁の弁座として機能するパイプが設けられる
     緩衝器。
    The shock absorber according to claim 1,
    The holding shaft of the piston holder has a vertical hole communicating with the pressure side chamber, and the extension side discharge passage is formed by the vertical hole,
    A pipe that functions as a valve seat of a check valve that allows only the flow of liquid from the adjustment passage to the pressure side chamber is provided in the vertical hole.
PCT/JP2018/005179 2017-02-24 2018-02-15 Shock absorber WO2018155293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017032824A JP2018136013A (en) 2017-02-24 2017-02-24 Buffer
JP2017-032824 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155293A1 true WO2018155293A1 (en) 2018-08-30

Family

ID=63253808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005179 WO2018155293A1 (en) 2017-02-24 2018-02-15 Shock absorber

Country Status (2)

Country Link
JP (1) JP2018136013A (en)
WO (1) WO2018155293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070642A1 (en) * 2020-09-29 2022-04-07 Kyb株式会社 Damping valve and shock absorber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165032B2 (en) * 2018-11-26 2022-11-02 Kyb株式会社 damping valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351419A (en) * 2004-06-11 2005-12-22 Kayaba Ind Co Ltd Hydraulic shock absorber
JP2008215433A (en) * 2007-03-01 2008-09-18 Kayaba Ind Co Ltd Valve structure of shock absorber
JP2014031853A (en) * 2012-08-06 2014-02-20 Kayaba Ind Co Ltd Shock absorber
JP2015072047A (en) * 2013-10-03 2015-04-16 カヤバ工業株式会社 Hydraulic shock absorber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351419A (en) * 2004-06-11 2005-12-22 Kayaba Ind Co Ltd Hydraulic shock absorber
JP2008215433A (en) * 2007-03-01 2008-09-18 Kayaba Ind Co Ltd Valve structure of shock absorber
JP2014031853A (en) * 2012-08-06 2014-02-20 Kayaba Ind Co Ltd Shock absorber
JP2015072047A (en) * 2013-10-03 2015-04-16 カヤバ工業株式会社 Hydraulic shock absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070642A1 (en) * 2020-09-29 2022-04-07 Kyb株式会社 Damping valve and shock absorber
JP7485579B2 (en) 2020-09-29 2024-05-16 カヤバ株式会社 Damping valves and shock absorbers

Also Published As

Publication number Publication date
JP2018136013A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
KR101914398B1 (en) Damping valve and damper
WO2015050241A1 (en) Hydraulic shock-absorbing device
JP5952760B2 (en) Damping valve
JP4491270B2 (en) Hydraulic shock absorber
US11614140B2 (en) Damping valve and shock absorber
KR20110098616A (en) Buffer
US20190107169A1 (en) Damping valve and shock absorber provided with damping valve
JP2018013208A (en) Attenuation force adjustable buffer
WO2018155293A1 (en) Shock absorber
JP2014005923A (en) Valve structure
JP2014005922A (en) Valve structure
JP6442247B2 (en) valve
JP6262977B2 (en) Hydraulic buffer
JP6059549B2 (en) Solenoid valve
JP6442248B2 (en) Damping valve and shock absorber
JP6514492B2 (en) Damping valve and shock absorber
CN114585827A (en) Buffer device
US20190128360A1 (en) Damping force-adjusting valve and shock absorber
JP2019138401A (en) Buffer
JP2019158000A (en) Valve device and shock absorber
US20230287955A1 (en) Damping force generation mechanism and pressure shock absorber
JP2018141477A (en) Buffer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757356

Country of ref document: EP

Kind code of ref document: A1