WO2018154646A1 - 回転体荷重測定装置 - Google Patents

回転体荷重測定装置 Download PDF

Info

Publication number
WO2018154646A1
WO2018154646A1 PCT/JP2017/006544 JP2017006544W WO2018154646A1 WO 2018154646 A1 WO2018154646 A1 WO 2018154646A1 JP 2017006544 W JP2017006544 W JP 2017006544W WO 2018154646 A1 WO2018154646 A1 WO 2018154646A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
tire
rotating body
load cell
force
Prior art date
Application number
PCT/JP2017/006544
Other languages
English (en)
French (fr)
Inventor
拓実 津村
吾川 二郎
達也 上田
誠 橘
Original Assignee
三菱重工機械システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工機械システム株式会社 filed Critical 三菱重工機械システム株式会社
Priority to PCT/JP2017/006544 priority Critical patent/WO2018154646A1/ja
Priority to US16/486,362 priority patent/US11175200B2/en
Priority to CN201780086800.1A priority patent/CN110476048B/zh
Priority to JP2019501797A priority patent/JP6722815B2/ja
Priority to EP17897630.4A priority patent/EP3572779B1/en
Publication of WO2018154646A1 publication Critical patent/WO2018154646A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks

Definitions

  • the present invention relates to a rotating body load measuring device that detects a force acting on a rotating body in a state where a main load is applied to a cylindrical rotating body in the radial direction.
  • a tire uniformity machine is a road wheel in which a tire is mounted on a tire rotation shaft to which a tire is attached, a frame, and a wheel that is supported by the frame so as to be rotatable around the wheel rotation shaft, and a circumferential surface is pressed against a tread of the tire attached to the tire rotation shaft.
  • a motor that rotates the tire and a load cell that measures a load acting on the road wheel (see, for example, Patent Documents 1 and 2).
  • the load cell is fixed between the wheel rotation shaft and the frame, whereby the load acting on the tire from the wheel and the fluctuation of the load reaction force from the tire to the wheel can be measured.
  • the tire is rotated by a motor, and the load non-uniformity can be evaluated by measuring the load with a load cell.
  • RFV radial force variation
  • LFV Lateral force variation
  • the nonuniformity of a tire can be evaluated by measuring such RFV, LFV, etc.
  • the load cell in the tire uniformity machine which is a rotating body load measuring device as described above, is not only subjected to the force generated by the load acting on the load wheel that is the rotating body, but also the load cell and wheel rotation caused by temperature changes. Force is also applied by the deformation of the shaft. Specifically, when the temperature changes, the road wheel and the wheel rotation shaft expand and contract in the radial direction of the wheel and the direction along the wheel rotation shaft. Among these, in the direction along the wheel rotation axis, since the load cell is fixed to the wheel rotation axis and the frame, the wheel rotation axis to be displaced by expansion and contraction is restrained.
  • the load cell measures a measurement value as if the load was applied in a direction along the wheel rotation axis due to deformation due to a temperature change. For this reason, if a temperature change occurs, there is a problem that the load acting on the road wheel that is a rotating body cannot be accurately measured, and the tire non-uniformity cannot be accurately evaluated.
  • the present invention provides a rotating body load measuring apparatus capable of accurately measuring a load acting on a rotating body without being affected by temperature changes.
  • the rotating body load measuring apparatus is a first rotating body that is formed in a columnar shape and that rotates around the central axis of a shaft that protrudes from the center of both end faces.
  • a rotating body load measuring device for detecting a force acting on the rotating body in a state where a main load is applied in the direction of the first end of the shaft body projecting from one end surface of the rotating body.
  • a first support portion that is immovably supported in one direction and a second direction along the central axis, and the other end portion of the shaft body that protrudes from the other end surface of the rotating body are moved in the first direction.
  • a second support portion that is movably supported in the second direction, and a force acting in the first direction from the shaft body on at least one of the first support portion and the second support portion. And capable of measuring in the second direction from the shaft body to the first support portion.
  • the force includes a measuring unit capable of measuring.
  • the force acting on the rotating body in a state where the main load is applied to the rotating body in the first direction which is one direction in the radial direction is measured by the measuring unit.
  • the measurement part can measure the first direction component of the first support part and also the first support part for the second direction component. It can be measured based on the force acting on the part. Further, even if the rotating body and the shaft body expand and contract in the second direction along the central axis due to the temperature change, the shaft body is supported by the first support portion so as not to move in the first direction and the second direction.
  • the measurement unit accurately measures the force acting in the second direction by measuring the force acting in the second direction on the side of the first support unit that is immovably supported in the second direction. be able to.
  • the measuring unit applies a force acting in at least two directions of the first direction and the second direction.
  • a first load cell that is measurable and is connected to the first support and the one end of the shaft so as not to move in the first direction and the second direction; and at least one direction of the first direction
  • a second load cell connected to the other end portion of the shaft body, and the second support portion has the second load cell in the first direction and the second load cell.
  • a main body portion that is immovably connected in a direction, and one of the shaft body and the second load cell that is immovably connected in the first direction and the second direction, and is arranged along the second direction. And the other of the shaft body and the second load cell.
  • Serial with non-movably coupled to the first direction and the second direction may be as comprising a slider supported movably in the second direction in the guide.
  • a force acting in the first direction by the first load cell and the second load cell supported so as not to move in the first direction is applied to the corresponding first support portion and second support portion. Can be measured. Further, the force acting in the second direction by the first load cell that is supported on the first support portion so as not to move in the second direction can be measured.
  • the load wheel and the shaft body expand and contract in the second direction due to the temperature change, the deformation of the load wheel and the shaft body is restrained by the guide moving in the second direction with respect to the slider. Can be prevented.
  • the rotating body load measuring apparatus is the above-described second aspect, wherein the guides have different directions in the direction perpendicular to the second direction, respectively, in the second direction.
  • a pair of guide surfaces arranged along the slider, and the sliders are provided in pairs so as to be supported movably in the second direction on each of the pair of guide surfaces.
  • the pair of sliders are supported so as to be movable in the second direction on each of a pair of guide surfaces in different directions in a direction orthogonal to the second direction. , Can be reliably guided in the second direction.
  • a rotating body load measuring device is the load acting on the rotating body based on the measurement results of the first load cell and the second load cell in the second or third aspect.
  • the control unit calculates a load acting on the rotating body in the first direction based on the force in the first direction measured by the first load cell and the second load cell. While calculating, it is good also as what calculates the load which acts on the said rotary body to said 2nd direction based on the force of said 2nd direction measured by said 1st load cell.
  • the load acting on the rotating body can be calculated by the control unit based on the measurement results of the first load cell and the second load cell.
  • the rotating body load measuring device is the tire as a subject supported rotatably around the tire central axis in any one of the first to fourth aspects, and the tire A cylindrical road wheel supported so as to be rotatable about an axis parallel to the tire central axis, and a rotational drive unit that rotationally drives either the tire or the road wheel.
  • One of the tire or the road wheel is used as the rotating body, a load acting from the other of the tire or the road wheel is used as the main load, and a main load in a first direction which is one direction in the radial direction is used as the measurement unit. It is good also as a tire uniformity machine which measures the nonuniformity of the said tire based on the force measured by.
  • the load transmitted from the road wheel to the tire is the main load, and the load acting on the contact point between the road wheel and the tire is accurately affected without being affected by temperature changes. Measure and accurately evaluate tire non-uniformity.
  • FIG. 1 is a schematic configuration diagram in a side view showing a tire uniformity machine according to a first embodiment of the present invention. It is a side view which shows the detail of the 1st load cell part of the tire uniformity machine which concerns on the 1st Embodiment of this invention. It is a side view which shows the detail of the 2nd load cell part of the tire uniformity machine which concerns on the 1st Embodiment of this invention. It is sectional drawing which looked at the detail which shows the detail of the 2nd load cell part of the tire uniformity machine which concerns on the 1st Embodiment of this invention.
  • FIG. 8 is a cross-sectional view along AA ′ in FIG. 7.
  • FIG. 8 is a sectional view taken along line BB ′ in FIG. It is a disassembled perspective view of the shaft body and guide in the tire uniformity machine which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 shows a tire uniformity machine 100 according to the first embodiment.
  • a rotating body load measuring device one is rotationally driven in a state in which a tire T and a road wheel 30 are pressed with a desired load.
  • This is an apparatus for measuring the generated force and rotating the tire T to evaluate the uniformity of the tire T.
  • the tire uniformity machine 100 of the present embodiment includes a tire support unit 20 that supports a tire T, a road wheel 30 that is a rotating body pressed against the tire T supported by the tire support unit 20, A load wheel support unit 40 that supports the load wheel 30 and a control unit 90 are provided.
  • the tire support portion 20 is disposed on the tire-side frame 21, the first support portion 22 disposed on one side M ⁇ b> 1 in the width direction M of the tire T and supported on the tire-side frame 21, and the other side M ⁇ b> 2 of the tire T. And a second support portion 23 supported by the tire-side frame 21 and a rotation drive portion 24.
  • the tire support portion 20 supports the width direction M of the tire T in the up-down direction, that is, the center axis T1 of the tire T in the up-down direction, and the first support portion 22 is below the tire T.
  • the second support portion 23 supports the upper side of the tire T.
  • the tire T width direction M may be referred to as a vertical direction
  • one side M1 of the tire T width direction M may be referred to as a lower side
  • the other side M2 may be referred to as an upper side.
  • the first support portion 22 is disposed along the width direction M of the tire T and is rotatably supported by the tire-side frame 21.
  • the first support portion 22 is attached to the first rotation shaft 22 a and is mounted below the tire T.
  • a first rim 22b for supporting the side bead.
  • the second support portion 23 is disposed along the width direction M of the tire T and is rotatably supported by the tire-side frame 21.
  • the second support portion 23 is attached to the second rotation shaft 23 a and is attached to the upper side of the tire T.
  • a second rim 23b for supporting the bead.
  • the rotation drive part 24 can rotate the 1st rotating shaft 22a with the motor which is not shown in figure.
  • the tire T is sandwiched and supported by the first rim 22b and the second rim 23b of the tire support portion 20 from both sides in the vertical direction.
  • the first rotation shaft 22a is rotated by the rotation driving portion 24.
  • the tire T can be rotated around the central axis T1 of the tire T.
  • the second rotating shaft 23a of the tire support portion 20 can be moved from a support position where the second rim 23b supports the tire T to a retracted position separated from the tire T by a moving mechanism (not shown), and moves to the retracted position.
  • the measured tire T can be taken out and an unmeasured tire T can be attached.
  • the load wheel 30 includes a wheel main body 31 formed in a cylindrical shape and a bearing portion 32 attached to the wheel main body 31.
  • a through-hole 30 a is formed in the wheel body 31 and the bearing portion 32 coaxially with the central axis L30 of the wheel body 31.
  • the columnar shape is not limited to a flat shape having a small height dimension with respect to the diameter of the road wheel 30 or the tire T, etc. It is also a concept that includes a cylindrical shape having a hollow inside.
  • the wheel body 31 is arranged so that the central axis L30 is along the vertical direction, both end surfaces 31a and 31b are directed to both sides in the vertical direction, and the circumferential surface 31c is directed to the tire T.
  • a direction in which the road wheel 30 and the tire T are opposed to each other is referred to as a first direction P, and is along the center axis of the road wheel 30 and the tire T that are in the vertical direction.
  • the direction is referred to as a second direction Q, and the direction orthogonal to the first direction P and the second direction Q is referred to as a third direction R.
  • the load wheel support portion 40 includes a wheel side frame 50, a shaft body 60 that rotatably supports the load wheel 30, a first load cell 71 and a second load cell 72, and a load acting on the tire T from the load wheel 30 and A measurement unit 70 capable of measuring a change in load reaction force from the tire T to the wheel, and a fixing jig 80 that connects the shaft body 60 to each of the first load cell 71 side and the second load cell 72 side are provided.
  • the wheel-side frame 50 includes a rail 51 arranged along the first direction P on the floor surface F, a frame main body 52 movably supported on the rail 51, and a base 53 fixed to the floor surface F.
  • an advancing / retreating drive unit 54 that is provided on the base 53 and moves the frame main body 52 in the first direction P.
  • the advancing / retreating drive unit 54 can advance and retract the wheel side frame 50 with respect to the tire T along the first direction P by advancing and retracting a cylinder, a screw, and the like by a drive source such as a hydraulic pressure or an electromagnetic actuator. is there.
  • the shaft body 60 is disposed in the through hole 30a of the road wheel 30 so that the central axis L60 is coaxial with the central axis L30 of the wheel body 31, and is supported by the bearing portion 32 of the road wheel 30 so as to be relatively rotatable. Yes.
  • the shaft body 60 has both ends projecting from the center of both end faces 31a and 31b of the wheel body 31 to both sides in the vertical direction.
  • the shaft body 60 includes a first attachment portion 61 for attaching the fixing jig 80 to both upper and lower ends.
  • the first mounting portions 61 are paired and arranged with a gap in the third direction R across the central axis L30 of the road wheel 30. Further, the pair of first mounting portions 61 are formed with communication holes 61a communicating with each other so as to be coaxial.
  • the first load cell 71 is disposed on the lower side which is one side of the load wheel 30. Further, the second load cell 72 is disposed on the upper side which is the other side of the load wheel 30.
  • the first load cell 71 and the second load cell 72 of the present embodiment can measure a total of two component forces, ie, a force in the X direction and a force in the Y direction orthogonal to the X direction.
  • the first load cell 71 and the second load cell 72 are arranged so that the X direction is the first direction P and the Y direction is the second direction Q, respectively.
  • the frame main body 52 is movably supported by the rail 51 and is connected to the first load cell 71, the second support portion 56 is connected to the second load cell 72, the first support portion 55 and the first support portion 55. And a third support portion 57 to which the two support portions 56 are fixed.
  • the frame main body 52 extends in the first direction P with the first support portion 55 fixed to the lower end of the third support portion 57 disposed along the vertical direction that is the second direction Q.
  • the second support portion 56 is fixed to the upper end of the third support portion 57 and extends in the first direction P, and is formed in a lateral U shape as a whole.
  • the first support part 55 is fixed to the third support part 57 and is connected to the main body part 55a to which the first load cell 71 is connected.
  • the first support part 55 is fixed to the main part 55a and is movable on the rail 51 in the first direction P.
  • a block 55b As shown in FIG. 2, the main body portion 55a and the first load cell 71 are connected to the first direction P and the second direction Q so as to be immovable by bolts 55c.
  • the first load cell 71 and the fixing jig 80 connected to the shaft body 60 are connected so as to be immovable in the first direction P and the second direction Q by bolts 55d.
  • the first support portion 55 supports the one end portion of the shaft body 60 so as not to move in the first direction P and the second direction Q via the first load cell 71 and the fixing jig 80.
  • the second support portion 56 is fixed to the third support portion 57 and the main body portion 56 a to which the second load cell 72 is connected, and the second load cell 72 is connected to the second support portion 56.
  • a guide 56b extending in the second direction Q and a slider 56c supported by the guide 56b so as to be movable in the second direction Q are provided.
  • a moving portion 56d that supports the shaft body 60 so as to be movable in the second direction Q is configured by the guide 56b and the slider 56c.
  • the main body portion 56a and the second load cell 72 are connected so as to be immovable in the first direction P and the second direction Q by bolts 56e.
  • the second load cell 72 and the guide 56b are movably connected in the first direction P and the second direction Q by bolts 56f.
  • the slider 56c and the fixing jig 80 connected to the shaft body 60 are connected so as to be immovable in the first direction P and the second direction Q by a bolt 56g.
  • the second support portion 56 arranges the second load cell 72 between the main body portion 56a and the moving portion 56d that can move in the second direction Q, and the first load cell 72 via the fixing jig 80.
  • the other end portion of the shaft body 60 is supported so as to be movable in the second direction Q while being immovable in the direction P.
  • the means for non-movable connection in the first direction P and the second direction Q is not limited to bolts, but includes a clamp mechanism, welding, and the like. A known means is selected.
  • (fixing jig) 4 and 5 show a state in which the fixing jig 80 is connected to the second load cell 72 via the moving portion 56d on the second load cell 72 side.
  • the structure of the fixing jig 80 is the same except that the first load cell 71 is directly fixed to the fixing jig 80, and thus the description thereof is omitted.
  • the fixing jig 80 is formed in a second mounting portion 81 attached to the first mounting portion 61 of the shaft body 60 and a flange shape fixed to the second mounting portion 81.
  • the second load cell 72 includes a cell attachment portion 82 to which the second load cell 72 is attached via the moving portion 56d.
  • the second mounting portion 81 is formed in a plate shape and is inserted between the pair of first mounting portions 61 of the shaft body 60.
  • the second mounting portion 81 has a communication hole 81 a corresponding to the communication hole 61 a of the first mounting portion 61.
  • the communication holes 61a of the pair of first mounting portions 61 and the communication holes 81a of the second mounting portion 81 are orthogonal to the center axes L30 and L60 of the road wheel 30 and the shaft body 60 and orthogonal to the first direction P.
  • the first mounting portion 61 and the second mounting portion 81 are connected to each other so as to be rotatable relative to each other by passing through the mounting shaft 83 arranged in the direction.
  • the fixing jig 80 and the second load cell 72 connected to the fixing jig 80 via the moving portion 56d are connected to the shaft body 60 in a third direction orthogonal to the first direction P and the second direction Q. It is connected so as to be rotatable around an axis along the direction R.
  • control unit 90 drives the advance / retreat drive unit 54 based on the load setting value and the actual load detection result by the measurement unit 70. Specifically, as shown in FIG. 6, the control unit 90 acquires the output value of the first load cell 71 and calculates the X-direction force and the Y-direction force acting on the first load cell 71.
  • the first calculation unit 91 acquires the output of the X direction component and the output of the Y direction component from the first load cell 71.
  • the 1st calculating part 91 calculates the force of a X direction from the output of a X direction component, and calculates the force of a Y direction from the output of a Y direction component.
  • the second calculation unit 92 acquires the output of the X direction component and the output of the Y direction component from the second load cell 72.
  • the 2nd calculating part 92 calculates the force of a X direction from the output of a X direction component.
  • the load calculation unit 93 calculates a load in the first direction P acting on the load wheel 30 based on the X-direction force calculated by the first calculation unit 91 and the X-direction force calculated by the second calculation unit 92. Calculate. Specifically, the load in the first direction P is calculated based on the resultant force in the X direction calculated by the first calculation unit 91 and the second calculation unit 92. In addition, the load calculation unit 93 calculates a load in the second direction Q that acts on the road wheel 30 based on the force in the Y direction calculated by the first calculation unit 91.
  • the evaluation unit 94 is based on the load in the first direction P and the load in the second direction Q calculated by the load calculation unit 93 and the phase information of the tire T acquired from the rotation drive unit 24 correspondingly. Evaluate non-uniformity. In the evaluation of the non-uniformity of the tire T, RFV based on the load in the first direction P and LFV based on the load in the second direction Q can be evaluated.
  • the drive control unit 95 drives the advancing / retreating driving unit 54 to monitor the load in the first direction P calculated by the load calculating unit 93 to rotate the load wheel 30. The pushing amount to the tire T is adjusted.
  • the drive control unit 95 stops the advancement of the road wheel 30 by the advance / retreat drive unit 54. By detecting each load while rotating the tire T in this state, the non-uniformity of the tire T can be evaluated.
  • the tire uniformity machine 100 causes the main load to act on the tire T from the road wheel 30 in the first direction P, which is one direction in the radial direction, and the reaction force causes the main load from the tire T to the road wheel 30 as well.
  • the variation of the load acting on the road wheel 30 is measured by the measuring unit 70.
  • the measuring unit 70 can measure the first direction P component.
  • the measurement unit 70 can also measure the second direction Q component based on the force acting on the first load cell 71.
  • the slider 56c moves relative to the guide 56b.
  • One end supported by the first support part 55 immovably in the first direction P and the second direction Q is used as the base end, and the other end supported so as to be movable in the second direction Q is used as the second end.
  • the measurement unit 70 measures the force acting in the second direction Q with the first load cell 71 on the first support unit 55 side that is immovably supported in the second direction Q.
  • the force acting in the direction Q can also be measured accurately.
  • the first load cell 71 and the second load cell 72 are coupled to the shaft body 60 so as to be rotatable around the attachment shaft 83 via the fixing jig 80.
  • the center axis L30, L60 is applied to the load wheel 30 and the shaft body 60 due to the inclination of the surface for fixing the first load cell 71 and the second load cell 72 and the dimensional change of the load wheel 30 and the shaft body 60 in the central axis direction Q. It is possible to suppress the generation of a moment around an axis orthogonal to the direction of the force, which affects the force in the main load direction P and the force in the tangential direction R.
  • the 2nd attachment part 81 distribute
  • the shaft body 60 is provided with the pair of first mounting portions 61, and the fixing jig 80 is provided with the second mounting portion 81. Similar effects can be obtained even when the mounting portion 81 is provided and the fixing jig 80 is provided with the pair of first mounting portions 61.
  • the moving portion 56 d when the moving portion 56 d is provided between the second load cell 72 and the fixing jig 80, the guide 56 b is connected to the second load cell 72, and the slider 56 c is connected to the fixing jig 80.
  • the slider 56c may be connected to the second load cell 72, and the guide 56b may be connected to the fixing jig 80.
  • the moving part 56d shall be provided between the 2nd load cell 72 and the fixing jig 80, it is not restricted to this.
  • it may be provided between the second load cell 72 and the main body portion 56a.
  • FIG. 7 shows a tire uniformity machine 200 according to the second embodiment.
  • the tire uniformity machine 200 of the present embodiment is different from the tire uniformity machine 100 of the first embodiment in the arrangement of the load cells.
  • symbol is attached
  • the second load cell 72 is provided between the third support portion 57 and the advance / retreat drive portion 54. For this reason, a force in the first direction P from the shaft body 60 via the first support portion 55 and the second support portion 56 acts on the second load cell 72.
  • the load in the first direction P is calculated from the force in the X direction detected from the second load cell 72, and the load in the second direction Q is detected by the first load cell 71.
  • the non-uniformity of the tire T can be similarly evaluated by calculating from the force in the Y direction.
  • ⁇ Third Embodiment> 8 to 12 show a tire uniformity machine 300 of the third embodiment.
  • the tire uniformity machine 300 of this embodiment differs in the structure of a moving part compared with the tire uniformity machine 100 of 1st Embodiment.
  • symbol is attached
  • the road wheel support portion 300 ⁇ / b> A includes a guide 301 rotatably connected to the shaft body 60, and the guide 301 in the second direction Q.
  • a pair of sliders 302, 302 supported movably, and a support 303 on which the pair of sliders 302 are fixed and the second load cell 72 is fixed.
  • the guide 301 and the pair of sliders 302 and 302 constitute a moving unit 304 that supports the shaft body 60 so as to be movable in the second direction Q.
  • the guide 301 is a plate-like member along a plane parallel to the first direction P and the second direction Q.
  • the guide 301 is disposed between the pair of first mounting portions 61 of the shaft body 60.
  • the guide 301 is formed with a communication hole 81 a, and the first mounting portion 61 and the guide 301 are rotated relative to each other by passing the mounting shaft 83 through the communication hole 61 a and the communication hole 81 a.
  • both edge portions arranged along the second direction Q on both sides of the first direction P of the guide 301 constitute a pair of guide surfaces 301a and 301a that are different from each other in the first direction P. ing.
  • the pair of guide surfaces 301a and 301a are formed in a convex cross-sectional shape that is convex toward the opposite side of the first direction P in the second direction Q cross section.
  • the pair of sliders 302 and 302 are provided corresponding to the pair of guide surfaces 301a and 301a, and each have a concave curved slide surface 302a corresponding to the guide surface 301a.
  • Each slider 302 is slidable in the second direction Q by contacting the slide surface 302a with the corresponding guide surface 301a.
  • the pair of sliders 302 and the guide 301 having the pair of guide surfaces 301a are in the first direction P. Relative movement is constrained.
  • the pair of guide surfaces 301a and 301a are formed in a convex curved surface shape as described above, and the slide surface 302a of the slider 302 that contacts the guide surface 301a is also formed in a corresponding concave curved surface shape.
  • the slider 302 and the guide 301 having a pair of guide surfaces 301a are also restrained from relative movement in the third direction R.
  • the support 303 is disposed between the first support member 310 to which one slider 302 is fixed, the second support member 311 to which the other slider 302 is fixed, and the first support member 310 and the second support member 311.
  • the side plate member 312 and the connecting member 313 that connects the first support member 310 and the second support member 311 are provided.
  • the first support member 310 and the second support member 311 and the corresponding slider 302 are connected so as to be immovable in the first direction P and the second direction Q when the connection pins 302b are fitted to each other.
  • the second support member 311 and the second load cell 72 are connected so as to be immovable in the first direction P and the second direction Q by bolts 311a.
  • the connecting member 313 is a bolt that is inserted into the first support member 310 and the side plate member 312 and screwed into the second support member 311. By tightening the connecting member 313, the first support member 310, The two support members 311, the side plate members 312, and the pair of sliders 302 are integrated so as not to move in the first direction P and the second direction Q.
  • the pair of sliders 302 is provided in the second direction Q on each of the pair of guide surfaces 301a having different directions in the first direction P orthogonal to the second direction Q.
  • the guide 301 is connected to the pair of first mounting portions 61 of the shaft body 60 so as to be rotatable around the mounting shaft 83, thereby suppressing the generation of moment and the shaft body. The force can be transmitted from 60 to the first load cell 71 and the second load cell 72.
  • the first load cell 71 and the second load cell 72 can measure the two component forces in the X direction and the Y direction orthogonal to each other, but the present invention is not limited to this.
  • the load cell can measure three component forces including the Z direction perpendicular to the X direction and the Y direction, and can measure six component forces including the moment about the axis along each direction. good.
  • the load cell capable of measuring one component force may be arranged so that the first direction P can be measured and the second direction Q can be measured.
  • the load cell is connected to the shaft body attached to the road wheel as a rotating body, but the present invention is not limited to this. It is good also as a structure which arrange
  • shaft of a tire and a road wheel shall be distribute
  • the rotating body load measuring device is not limited to the tire uniformity machine, and the force in at least two directions of the first direction P and the second direction Q while applying the main load to the cylindrical rotating body. It is applicable if it is a target to measure.
  • the first load cell is arranged on the lower side of the road wheel, and the second load cell is arranged on the upper side that is the other side of the road wheel.
  • the first load cell is arranged on the upper side of the load wheel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Balance (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Tires In General (AREA)

Abstract

本発明に係る回転体荷重測定装置(100)は、回転体(30)の一端面から突出する軸体(60)の一端部を、第一の方向(P)及び中心軸(L60)に沿う第二の方向(Q)に移動不能に支持する第一支持部(55)と、回転体(30)の他端面から突出する軸体(60)の他端部を、第一の方向(P)に移動不能かつ第二の方向(Q)に移動可能に支持する第二支持部(56)と、軸体(60)から第一支持部(55)及び第二支持部(56)の少なくとも一方に対して第一の方向Pに作用する力を測定可能であるとともに、軸体(60)から第一支持部(55)に対して第二の方向(Q)に作用する力を測定可能な測定部(70)を備える。

Description

回転体荷重測定装置
 本発明は、円柱状の回転体に、径方向に主荷重を作用させた状態で、回転体に作用する力を検出する回転体荷重測定装置に関する。
 加硫工程などを経て製造されたタイヤは、不均一性などの品質基準を満たしているか否か検査された上で品質基準を満たしたものが製品として出荷される。タイヤの不均一性を評価する装置としては、タイヤユニフォミティマシンがある。タイヤユニフォミティマシンは、タイヤが取り付けられるタイヤ回転軸と、フレームと、ホイール回転軸回りに回転可能にフレームに支持され、タイヤ回転軸に取り付けられたタイヤのトレッドに対して周面が押し付けられるロードホイールと、タイヤを回転するモータと、ロードホイールに作用する荷重を測定するロードセルとを備えている(例えば、特許文献1、2参照)。ここでロードセルは、ホイール回転軸とフレームとの間に固定されており、これによりホイールからタイヤに作用する荷重ならびにタイヤからホイールへの荷重反力の変動を測定することが可能となっている。
そして、ロードホイールをタイヤに押し付けた状態で、モータによってタイヤを回転させ、ロードセルで荷重を測定することでタイヤの不均一性を評価することができる。従来、タイヤユニフォミティマシンでは、主に不均一性を評価する測定項目として、タイヤの径方向の荷重の変動であるラジアル・フォース・バリエーション(以下、RFVという)と、タイヤの幅方向の荷重の変動であるラテラル・フォース・バリエーション(以下、LFVという)とを測定している。そして、このようなRFVやLFV等を測定することにより、タイヤの不均一さを評価することができる。
特開2015-232545号公報 特開昭61-231431号公報
ところで、上記のような回転体荷重測定装置であるタイヤユニフォミティマシンにおけるロードセルには、回転体であるロードホイールに作用する荷重によって生じる力が作用するだけでなく、温度変化に起因するロードセル及びホイール回転軸の変形によっても力が作用する。具体的には、温度が変化すると、ロードホイール及びホイール回転軸は、ホイールの径方向およびホイール回転軸に沿う方向に伸縮する。このうち、ホイール回転軸に沿う方向については、ロードセルがホイール回転軸及びフレームに固定されていることから、伸縮により変位しようとするホイール回転軸を拘束する。このため、ロードセルにはロードホイールに荷重が作用しなくても、温度変化による変形によってあたかもホイール回転軸に沿う方向に荷重が作用したかのような測定値が測定されてしまう。このため、温度変化が生じてしまうと、回転体であるロードホイールに作用する荷重を正確に測定できず、正確にタイヤの不均一性を評価することができないという問題があった。
そこで本発明は、温度変化の影響を受けることなく正確に回転体に作用する荷重を測定することが可能な回転体荷重測定装置を提供する。
本発明の第一の態様に係る回転体荷重測定装置は、円柱状に形成され両端面の中心から突出する軸体の中心軸回りに回転する回転体に、径方向の一方向となる第一の方向に主荷重を作用させた状態で、前記回転体に作用する力を検出する回転体荷重測定装置であって、前記回転体の一端面から突出する前記軸体の一端部を、前記第一の方向及び前記中心軸に沿う第二の方向に移動不能に支持する第一支持部と、前記回転体の他端面から突出する前記軸体の他端部を、前記第一の方向に移動不能かつ前記第二の方向に移動可能に支持する第二支持部と、前記軸体から前記第一支持部及び前記第二支持部の少なくとも一方に対して前記第一の方向に作用する力を測定可能であるとともに、前記軸体から前記第一支持部に対して前記第二の方向に作用する力を測定可能な測定部を備える。
上記の回転体荷重測定装置では、回転体に径方向の一方向となる第一の方向に主荷重を作用させた状態で回転体に作用する力を測定部よって測定する。ここで、測定部は、軸体から第一支持部及び第二支持部に力が作用すると、そのうちの第一の方向成分について測定することができるとともに、第二の方向成分についても第一支持部に作用した力に基づいて測定することができる。また、回転体及び軸体が温度変化により中心軸に沿う第二の方向に伸縮したとしても、軸体は、第一の方向及び第二の方向に移動不能に第一支持部によって支持された一端部を基端として、第二の方向に移動可能に支持された他端部を第二の方向に移動させることができる。このため、温度変化によって第一支持部及び第二支持部に軸体が拘束されて測定部で第二の方向の力が検出されてしまうことを防止することができる。その一方で、測定部は、第二の方向に作用する力を第二の方向に移動不能に支持する第一支持部側で測定することで、第二の方向に作用する力も正確に測定することができる。
 また、本発明の第二の態様に係る回転体荷重測定装置は、上記第一の態様において、前記測定部は、前記第一の方向及び前記第二の方向の少なくとも2方向に作用する力を測定可能で、前記第一支持部及び前記軸体の前記一端部に前記第一の方向及び前記第二の方向に移動不能に連結された第一ロードセルと、前記第一の方向の少なくとも1方向に作用する力を測定可能で、前記軸体の前記他端部に連結された第二ロードセルとを備え、前記第二支持部は、前記第二ロードセルが前記第一の方向及び前記第二の方向に移動不能に連結された本体部と、前記軸体及び前記第二ロードセルの一方に前記第一の方向及び前記第二の方向に移動不能に連結され、前記第二の方向に沿って配されたガイドと、前記軸体及び前記第二ロードセルの他方に前記第一の方向及び前記第二の方向に移動不能に連結されるとともに、前記ガイドに前記第二の方向に移動可能に支持されたスライダとを備えるものとしてもよい。
 上記の回転体荷重測定装置では、対応する第一支持部及び第二支持部に、第一の方向に移動不能に支持された第一ロードセル及び第二ロードセルによって第一の方向に作用する力を測定することができる。また、第一支持部に、第二の方向に移動不能に支持された第一ロードセルによって第二の方向に作用する力を測定することができる。ここで、ロードホイール及び軸体に温度変化によって第二の方向に伸縮が生じたとしても、スライダに対してガイドが第二の方向に移動することで、ロードホイール及び軸体の変形が拘束されてしまうことを防止することができる。
 また、本発明の第三の態様に係る回転体荷重測定装置は、上記第二の態様において、前記ガイドは、前記第二の方向と直交する方向に互いに異なる向きとしてそれぞれ前記第二の方向に沿って配された一対のガイド面を備え、前記スライダは、一対の前記ガイド面のそれぞれに前記第二の方向に移動可能に支持されるように対をなして設けられている
上記の回転体荷重測定装置では、対をなすスライダが、第二の方向と直交する方向に互いに異なる向きとした一対のガイド面のそれぞれに第二の方向に移動可能に支持されていることで、第二の方向に確実に案内することができる。
 また、本発明の第四の態様に係る回転体荷重測定装置は、上記第二または第三の態様において、前記第一ロードセル及び前記第二ロードセルの測定結果に基づいて前記回転体に作用する荷重を演算する制御部を備え、前記制御部は、前記第一ロードセル及び前記第二ロードセルによって測定された前記第一の方向の力に基づいて前記回転体に前記第一の方向に作用する荷重を演算するとともに、前記第一ロードセルによって測定された前記第二の方向の力に基づいて前記回転体に前記第二の方向に作用する荷重を演算するものとしてもよい。
上記の回転体荷重測定装置では、第一ロードセル及び第二ロードセルによる測定結果に基づいて制御部によって回転体に作用する荷重を演算することができる。
また、本発明の第五の態様に係る回転体荷重測定装置は、上記第一から第四のいずれかの態様において、タイヤ中心軸回りに回転可能に支持された被検体であるタイヤと、タイヤの周面と当接可能に、前記タイヤ中心軸と平行な軸回りに回転可能に支持された円柱状のロードホイールと、タイヤまたはロードホイールのいずれかを回転駆動する回転駆動部とを備え、前記タイヤまたは前記ロードホイールの一方を前記回転体として、前記タイヤまたは前記ロードホイールの他方から作用する荷重を前記主荷重として、径方向の一方向となる第一の方向の主荷重を前記測定部で測定される力に基づいて前記タイヤの不均一さを測定するタイヤユニフォミティマシンであるものとしてもよい。
上記の回転体荷重測定装置では、タイヤユニフォミティマシンとして、ロードホイールからタイヤに伝達される荷重を主荷重として、温度変化の影響を受けることなくロードホイールとタイヤとの接点に作用する荷重を正確に測定し、タイヤの不均一性を正確に評価することができる。
上記の回転体荷重測定装置によれば、温度変化の影響を受けることなく正確に回転体に作用する荷重を測定することができる。
本発明の第1の実施形態に係るタイヤユニフォミティマシンを示す側方視した概略構成図である。 本発明の第1の実施形態に係るタイヤユニフォミティマシンの第一ロードセル部分の詳細を示す側面図である。 本発明の第1の実施形態に係るタイヤユニフォミティマシンの第二ロードセル部分の詳細を示す側面図である。 本発明の第1の実施形態に係るタイヤユニフォミティマシンの第二ロードセル部分の詳細を示す上方視した断面図である。 本発明の第1の実施形態に係るタイヤユニフォミティマシンの第二ロードセル部分の詳細を示す第一の方向視した正面図である。 本発明の第1の実施形態に係るタイヤユニフォミティマシンの制御部の詳細を示すブロック図である。 本発明の第2の実施形態に係るタイヤユニフォミティマシンを示す側方視した概略構成図である。 本発明の第3の実施形態に係るタイヤユニフォミティマシンを示す斜視図である。 本発明の第3の実施形態に係るタイヤユニフォミティマシンの第二ロードセル部分の詳細を示す側面図である。 図7におけるA-A´断面図である。 図7におけるB-B´断面図である。 本発明の第3の実施形態に係るタイヤユニフォミティマシンにおける軸体とガイドとの分解斜視図である。
<第1の実施形態>
[タイヤユニフォミティマシンの構成]
 以下、図1から図6を参照し、本発明の実施の形態について説明する。
 まず、本発明の実施形態に係る回転体荷重測定装置の構成について説明する。本実施形態では、本発明に係る回転体荷重測定装置の一例としてタイヤユニフォミティマシンを例に説明する。
(全体構成)
図1は、第1の実施形態のタイヤユニフォミティマシン100を示しており、回転体荷重測定装置として、タイヤTとロードホイール30とを所望の荷重で押し付けあった状態で一方を回転駆動させ、他方を従動回転させながら、発生する力を測定しタイヤTの均一性を評価する装置である。図1に示すように、本実施形態のタイヤユニフォミティマシン100は、タイヤTを支持するタイヤ支持部20と、タイヤ支持部20に支持されたタイヤTに押し付けられる回転体であるロードホイール30と、ロードホイール30を支持するロードホイール支持部40と、制御部90とを備える。
(タイヤ支持部)
タイヤ支持部20は、タイヤ側フレーム21と、タイヤTの幅方向Mの一方側M1に配されてタイヤ側フレーム21に支持された第一支持部22と、タイヤTの他方側M2に配されてタイヤ側フレーム21に支持された第二支持部23と、回転駆動部24とを備える。本実施形態では、タイヤ支持部20は、タイヤTの幅方向Mを上下方向、すなわちタイヤTの中心軸T1を上下方向に向くようにして支持し、第一支持部22がタイヤTの下側、第二支持部23がタイヤTの上側を支持している。以下では、タイヤT幅方向Mを上下方向とし、タイヤT幅方向Mの一方側M1を下側、他方側M2を上側として説明する場合がある。
第一支持部22は、タイヤTの幅方向Mに沿って配されてタイヤ側フレーム21に回転可能に支持された第一回転軸22aと、第一回転軸22aに取り付けられてタイヤTの下側のビードを支持する第一リム22bとを備える。第二支持部23は、タイヤTの幅方向Mに沿って配されてタイヤ側フレーム21に回転可能に支持された第二回転軸23aと、第二回転軸23aに取り付けられてタイヤTの上側のビードを支持する第二リム23bとを備える。また、回転駆動部24は、図示しないモータにより第一回転軸22aを回転させることが可能となっている。
すなわち、タイヤTは、タイヤ支持部20の第一リム22b及び第二リム23bにより上下方向両側から挟み込まれて支持されており、この状態で回転駆動部24により第一回転軸22aを回転させてタイヤTの中心軸T1回りにタイヤTを回転することが可能となっている。なお、タイヤ支持部20の第二回転軸23aは図示しない移動機構により第二リム23bがタイヤTを支持する支持位置から、タイヤTから離間した退避位置まで移動可能であり、退避位置まで移動することで、測定済みのタイヤTを取り出し、また、未測定のタイヤTを取り付けることが可能である。
(ロードホイール)
ロードホイール30は、円柱状に形成されたホイール本体31と、ホイール本体31に取り付けられた軸受部32とを備える。ホイール本体31と軸受部32とには、ホイール本体31の中心軸L30と同軸で貫通孔30aが形成されている。ここで、円柱状とは、ロードホイール30やタイヤTなどの直径に対して高さ寸法が小さい扁平状のものに限られるものではなく、直径と高さ寸法が同一のものや、直径に対して高さ寸法が大きいものも含み、内部が空洞である円筒状も含む概念である。そして、ホイール本体31は、中心軸L30を上下方向に沿うようにして、両端面31a、31bを上下方向両側に向け、周面31cをタイヤTに向けるようにして配されている。ここで、ロードホイール30及びタイヤTの径方向のうち、ロードホイール30とタイヤTとが相対する方向を第一の方向Pといい、上下方向となるロードホイール30及びタイヤTの中心軸に沿う方向を第二の方向Qといい、第一の方向P及び第二の方向Qに直交する方向を第三の方向Rという。
(ロードホイール支持部)
ロードホイール支持部40は、ホイール側フレーム50と、ロードホイール30を回転可能に支持する軸体60と、第一ロードセル71及び第二ロードセル72を有しロードホイール30からタイヤTに作用する荷重ならびにタイヤTからホイールへの荷重反力の変動を測定可能な測定部70と、第一ロードセル71側及び第二ロードセル72側のそれぞれと軸体60とを連結する固定治具80とを備える。ホイール側フレーム50は、床面F上に、第一の方向Pに沿って配されたレール51と、レール51に移動可能に支持されたフレーム本体52と、床面Fに固定された基部53と、基部53に設けられフレーム本体52を第一の方向Pに移動させる進退駆動部54とを備える。進退駆動部54は、例えば油圧や電磁アクチュエータなどの駆動源によりシリンダやスクリュなどを進退させることにより、ホイール側フレーム50を第一の方向Pに沿ってタイヤTに対して進退させることが可能である。
(軸体)
軸体60は、ロードホイール30の貫通孔30a内に、中心軸L60がホイール本体31の中心軸L30と同軸となるように配され、ロードホイール30の軸受部32に相対回転可能に支持されている。そして、軸体60は、両端を、ホイール本体31の両端面31a、31bの中心から上下方向両側に突出させている。図2から図4に示すように、軸体60は、上下両端部に固定治具80を取り付けるための第一取付部61を備えている。第一取付部61は、対をなして、ロードホイール30の中心軸L30を挟んで第三の方向Rに間隔を有して配されている。また、これら一対の第一取付部61には、同軸となるように互い連通する連通孔61aが形成されている。
図1に示すように、第一ロードセル71は、ロードホイール30の一方側となる下側に配置されている。また、第二ロードセル72は、ロードホイール30の他方側となる上側に配置されている。本実施形態の第一ロードセル71及び第二ロードセル72は、X方向の力及びX方向と直交するY方向の力の計2分力が測定可能なものである。第一ロードセル71及び第二ロードセル72は、それぞれX方向を第一の方向Pとし、Y方向を第二の方向Qとするように配置されている。
フレーム本体52は、レール51に移動可能に支持され第一ロードセル71が連結された第一支持部55と、第二ロードセル72が連結された第二支持部56と、第一支持部55及び第二支持部56が固定された第三支持部57とを備える。本実施形態では、フレーム本体52は、第二の方向Qとなる上下方向に沿って配された第三支持部57の下端に第一支持部55が固定されて第一の方向Pに延びるとともに、第三支持部57の上端に第二支持部56が固定されて第一の方向Pに延びて、全体として横向きU字状に形成されている。
第一支持部55は、第三支持部57に固定されるとともに第一ロードセル71が連結された本体部55aと、本体部55aに固定されレール51上を第一の方向Pに移動可能な移動ブロック55bとを備える。図2に示すように、本体部55aと第一ロードセル71は、ボルト55cにより第一の方向P及び第二の方向Qに移動不能に連結されている。また、第一ロードセル71と軸体60に連結された固定治具80とはボルト55dにより第一の方向P及び第二の方向Qに移動不能に連結されている。以上により、第一支持部55は、第一ロードセル71及び固定治具80を介して第一の方向P及び第二の方向Qに移動不能に軸体60の一端部を支持している。
また、図1及び図3に示すように、第二支持部56は、第三支持部57に固定されるとともに第二ロードセル72が連結された本体部56aと、第二ロードセル72が連結され第二の方向Qの延びるガイド56bと、ガイド56bに第二の方向Qに移動可能に支持されたスライダ56cとを備える。本実施形態では、ガイド56b及びスライダ56cにより軸体60を第二の方向Qに移動可能に支持する移動部56dが構成されている。本体部56aと第二ロードセル72は、ボルト56eにより第一の方向P及び第二の方向Qに移動不能に連結されている。また、第二ロードセル72とガイド56bとはボルト56fにより第一の方向P及び第二の方向Qに移動不能に連結されている。さらに、スライダ56cと軸体60に連結された固定治具80とはボルト56gにより第一の方向P及び第二の方向Qに移動不能に連結されている。以上により、第二支持部56は、本体部56aと第二の方向Qへ移動可能とする移動部56dとの間に第二ロードセル72を配するとともに、固定治具80を介して、第一の方向Pに移動不能としつつ第二の方向Qに移動可能に軸体60の他端部を支持している。なお、上記の第一支持部55及び第二支持部56などの説明において、第一の方向P及び第二の方向Qに移動不能に連結する手段としてはボルトに限られず、クランプ機構や溶接など公知の手段が選択される。
(固定治具)
図4及び図5は、第二ロードセル72側において、固定治具80が移動部56dを介して第二ロードセル72と連結されている様子を示している。なお、第一ロードセル71側では、固定治具80に直接第一ロードセル71が固定されていることを除いて固定治具80の構造は同様であるので説明を省略する。図4及び図5に示すように、固定治具80は、軸体60の第一取付部61に取り付けられた第二取付部81と、第二取付部81と固定されたフランジ状に形成され第二ロードセル72が移動部56dを介して取り付けられるセル取付部82とを備える。また、第二取付部81は、板状に形成されていて、軸体60の一対の第一取付部61の間に挿入されている。また、第二取付部81には第一取付部61の連通孔61aと対応して連通孔81aが形成されている。そして、一対の第一取付部61の連通孔61aと、第二取付部81の連通孔81aに、ロードホイール30及び軸体60の中心軸L30、L60と直交し、第一の方向Pと直交する方向に配された取付軸83が貫通することにより、第一取付部61と第二取付部81とは相対回転可能に連結されている。これにより固定治具80及び固定治具80に移動部56dを介して連結された第二ロードセル72は、軸体60に対して第一の方向P及び第二の方向Qに直交する第三の方向Rに沿う軸回りに回転可能に連結されている。
(制御部)
図1及び図6に示すように、制御部90は、荷重設定値および測定部70による実荷重検出結果に基づいて進退駆動部54を駆動させる。具体的には、図6に示すように、制御部90は、第一ロードセル71の出力値を取得し第一ロードセル71に作用するX方向の力及びY方向の力を演算する第一演算部91と、第二ロードセル72の出力値を取得し第二ロードセル72に作用するX方向の力を演算する第二演算部92と、第一演算部91及び第二演算部92の演算結果に基づいてロードホイール30に作用する第一の方向Pの荷重及び第二の方向Qの荷重を演算する荷重演算部93と、荷重演算部93による演算結果に基づいてタイヤTの不均一性を評価する評価部94と、進退駆動部54を駆動させる駆動制御部95とを備える。第一演算部91は、第一ロードセル71からX方向成分の出力とY方向成分の出力を取得する。そして、第一演算部91は、X方向成分の出力からX方向の力を演算し、Y方向成分の出力からY方向の力を演算する。第二演算部92は、第二ロードセル72からX方向成分の出力とY方向成分の出力を取得する。そして、第二演算部92は、X方向成分の出力からX方向の力を演算する。なお、X方向の力及びY方向の力の測定値にX方向及びY方向の成分が相互に影響する場合には、X方向の力を演算する場合にはY方向成分の出力値により、また、Y方向の力を演算する場合にはX方向成分の出力値により補正を行うものとしてもよい。
荷重演算部93は、第一演算部91で演算されたX方向の力と第二演算部92で演算されたX方向の力に基づいてロードホイール30に作用する第一の方向Pの荷重を演算する。具体的には、第一演算部91及び第二演算部92で演算されたX方向の力の合力により第一の方向Pの荷重を演算する。また、荷重演算部93は、第一演算部91で演算されたY方向の力に基づいてロードホイール30に作用する第二の方向Qの荷重を演算する。
評価部94は、荷重演算部93で演算された第一の方向Pの荷重及び第二の方向Qの荷重と、対応して回転駆動部24から取得されるタイヤTの位相情報とに基づいて不均一性を評価する。タイヤTの不均一性の評価においては、第一の方向Pの荷重に基づくRFV、第二の方向Qの荷重に基づくLFVを評価することができる。駆動制御部95は、試験開始に関する情報を受け付けると、荷重演算部93で演算された第一の方向Pの荷重を監視しながら、進退駆動部54を駆動させてロードホイール30をの、回転駆動しているタイヤTへの押し込み量を調整する。そして、駆動制御部95は、あらかじめ設定された設定値に第一の方向Pの荷重が達すると、進退駆動部54によるロードホイール30の進出を停止させる。この状態で、タイヤTを回転させながら各荷重を検出することで、タイヤTの不均一性を評価することができる。
[作用効果]
本実施形態のタイヤユニフォミティマシン100は、ロードホイール30からタイヤTに径方向の一方向となる第一の方向Pに主荷重を作用させ、当該反力によりタイヤTからロードホイール30にも主荷重が作用した状態で、ロードホイール30に作用する荷重の変動を測定部70によって測定する。ここで、測定部70は、軸体60から第一ロードセル71及び第二ロードセル72に力が作用すると、そのうちの第一の方向P成分について測定することができる。さらに、測定部70は、第二の方向Q成分についても、第一ロードセル71に作用した力に基づいて測定することができる。また、ロードホイール30及び軸体60が温度変化により中心軸L30、L60に沿う第二の方向Qに伸縮したとしても、ガイドに56bに対してスライダ56cが移動することで、軸体60は、第一の方向P及び第二の方向Qに移動不能に第一支持部55によって支持された一端部を基端として、第二の方向Qに移動可能に支持された他端部を第二の方向Qに移動することができる。このため、温度変化によって第一支持部55及び第二支持部56に軸体60が拘束されて測定部70で第二の方向Qの力が検出されてしまうことを防止することができる。その一方で、測定部70は、第二の方向Qに作用する力を第二の方向Qに移動不能に支持する第一支持部55側の第一ロードセル71で測定することで、第二の方向Qに作用する力も正確に測定することができる。
また、本実施形態のタイヤユニフォミティマシン100では、第一ロードセル71及び第二ロードセル72が固定治具80を介して取付軸83回りに回転可能に軸体60に連結されている。このため、第一ロードセル71及び第二ロードセル72を固定する面の傾きや、中心軸方向Qにロードホイール30及び軸体60の寸法変化により、ロードホイール30及び軸体60に中心軸L30、L60と直交する軸回りのモーメントが発生し、主荷重方向Pの力及び接線方向Rの力に影響を与えてしまうことを抑制することができる。そして、このような取付軸83による構造としては、一対の第一取付部61に対して、一対の第一取付部61の間に配された第二取付部81が中心軸L30、L60を含む面内に配されるように一対の第一の取付部に対して取付軸83回りに回転可能に取り付けられている。このため、中心軸L30、L60に対して対称となる構造として偏心することなくモーメントの発生を抑制して軸体60から第一ロードセル71及び第二ロードセル72に力を伝達させることができる。なお、上記では、軸体60に一対の第一取付部61が設けられ、固定治具80に第二取付部81が設けられるものとしたがこれに限るものではなく、軸体60に第二取付部81が設けられ、固定治具80に一対の第一取付部61が設けられる構成としても同様の作用効果を得ることができる。
 なお、上記実施形態では、第二ロードセル72と固定治具80との間に移動部56dが設けられるのに際して、第二ロードセル72にガイド56bが連結され、固定治具80にスライダ56cが連結されるものとしたが、第二ロードセル72にスライダ56cが連結され、固定治具80にガイド56bが連結される構成としても良い。さらに、移動部56dは第二ロードセル72と固定治具80の間に設けられるものとしたがこれに限るものではない。例えば、第二ロードセル72と本体部56aとの間に設けるものとしても良い。また、本体部56aの中間部分や、固定治具80の中間部分に設けられるものとしても良い。少なくともフレーム本体52のいずれかの箇所において第二の方向Qに移動可能とし、軸体60よりもフレーム本体52側に移動部56dが設けられていることで、第二ロードセル72に対して軸体60の第二の方向Qへの変位に起因する力が作用せず同様の作用効果を奏する。
<第2の実施形態>
 図7は、第2の実施形態のタイヤユニフォミティマシン200を示している。本実施形態のタイヤユニフォミティマシン200は、第1の実施形態のタイヤユニフォミティマシン100と比較して、ロードセルの配置が異なっている。また、この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
図7に示すように、本実施形態のタイヤユニフォミティマシン200において、第二ロードセル72は、第三支持部57と進退駆動部54との間に設けられている。このため、第二ロードセル72には、軸体60から第一支持部55及び第二支持部56を経由した第一の方向Pの力が作用する。
 本実施形態のタイヤユニフォミティマシン200では、第一の方向Pの荷重を第二ロードセル72から検出されるX方向の力から演算し、また、第二の方向Qの荷重を第一ロードセル71で検出されるY方向の力から演算することで同様にタイヤTの不均一性を評価することができる。
<第3の実施形態>
 図8から図12は、第3の実施形態のタイヤユニフォミティマシン300を示している。本実施形態のタイヤユニフォミティマシン300は、第1の実施形態のタイヤユニフォミティマシン100と比較して、移動部の構造が異なっている。また、この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
図8から図11に示すように、本実施形態のタイヤユニフォミティマシン300において、ロードホイール支持部300Aは、軸体60に回転可能に連結されたガイド301と、ガイド301に第二の方向Qに移動可能に支持された一対のスライダ302、302と、一対のスライダ302が固定されるととともに第二ロードセル72が固定された支持体303とを備える。本実施形態では、ガイド301と一対のスライダ302、302とにより軸体60を第二の方向Qに移動可能に支持する移動部304が構成されている。
図12に示すように、ガイド301は、第一の方向P及び第二の方向Qに平行な面に沿った板状の部材である。ガイド301は、軸体60の一対の第一取付部61の間に配されている。図9から図11に示すように、ガイド301には連通孔81aが形成され、連通孔61a及び連通孔81aに取付軸83が貫通することにより、第一取付部61とガイド301とは相対回転可能に連結されている。また、ガイド301の第一の方向P両側において第二の方向Qに沿って配された両縁部は、第一の方向Pに互いに異なる向きとされた一対のガイド面301a、301aを構成している。一対のガイド面301a、301aは、第二の方向Q断面視して、それぞれ第一の方向P反対側に向かって凸となる断面凸曲面状に形成されている。
一対のスライダ302、302は、一対のガイド面301a、301aと対応して設けられ、それぞれガイド面301aと対応する凹曲面状のスライド面302aを有している。そして、各スライダ302は、対応するガイド面301aにスライド面302aを当接して第二の方向Qへ摺動可能とされている。ここで、一対のガイド面301a、301aは互いに第一の方向Pに向きを異なるものとしていることから、一対のスライダ302と一対のガイド面301aを有するガイド301とは第一の方向Pへの相対移動が拘束されている。また、一対のガイド面301a、301aが上記のように断面凸曲面状に形成され、ガイド面301aに当接するスライダ302のスライド面302aも対応する凹曲面状に形成されていることから、一対のスライダ302と一対のガイド面301aを有するガイド301とは第三の方向Rへの相対移動も拘束されている。
支持体303は、一方のスライダ302が固定された第一支持部材310と、他方のスライダ302が固定された第二支持部材311と、第一支持部材310と第二支持部材311の間に配される側板部材312と、第一支持部材310及び第二支持部材311を連結する連結部材313とを備える。第一支持部材310及び第二支持部材311と、それぞれに対応するスライダ302とは、連結ピン302bが互いに嵌合されることにより、第一の方向P及び第二の方向Qに移動不能に連結されている。第二支持部材311と第二ロードセル72とはボルト311aにより第一の方向P及び第二の方向Qに移動不能に連結されている。また、連結部材313は第一支持部材310及び側板部材312に挿通されて第二支持部材311に螺合されているボルトであり、当該連結部材313を締め付けることで、第一支持部材310、第二支持部材311、側板部材312及び一対のスライダ302が第一の方向P及び第二の方向Qに移動不能に一体となっている。
上記のようなタイヤユニフォミティマシン300では、対をなすスライダ302が、第二の方向Qと直交する第一の方向Pに互いに異なる向きとした一対のガイド面301aのそれぞれに、第二の方向Qに移動可能に支持されていることで、第二の方向Qに確実に案内することができる。また、本実施形態においても、軸体60の一対の第一取付部61に対して、ガイド301が取付軸83回りに回転可能に連結されていることで、モーメントの発生を抑制して軸体60から第一ロードセル71及び第二ロードセル72に力を伝達させることができる。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこれら実施形態に限られるものではなく、また、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、上記実施形態では第一ロードセル71及び第二ロードセル72は互いに直交するX方向及びY方向の2分力を測定可能なものとしたが、これに限るものではない。ロードセルとしては、さらにX方向及びY方向と直交するZ方向を含めた3分力を測定可能なものや、さらに各方向に沿う軸回りのモーメントを含めた6分力を測定可能なものとしても良い。また、1分力を測定可能なロードセルを、第一の方向Pを測定可能に配置するとともに、第二の方向Qを測定可能に配置しても良い。
また、本実施形態のタイヤユニフォミティマシンでは、回転体としてロードホイールに取り付けられた軸体にロードセルを連結させる構成としたが、これに限られるものではない。タイヤに取り付けられた軸体にロードセルを配置し、回転駆動部がロードホイールを回転させる構成としても良い。また、タイヤ及びロードホイールの中心軸は上下方向に配されるものとしたが、これに限られるものではない。例えば水平方向に配されるものとしても良い。また、回転体荷重測定装置としては、タイヤユニフォミティマシンに限られるものではなく、円柱状の回転体に対して主荷重を与えながら第一の方向P及び第二の方向Qの少なくとも2方向の力を測定する対象であれば適用可能である。
また、本実施形態では第一のロードセルをロードホイールの下側に配置し、第二ロのードセルをロードホイールの他方側となる上側に配置したが、第一のロードセルをロードホイールの上側に配置し、第二のロードセルをロードホイールの他方側となる下側に配置しても良い。
 上記の回転体荷重測定装置によれば、温度変化の影響を受けることなく正確に回転体に作用する荷重を測定することができる。
30 ロードホイール(回転体)
55 第一支持部
56 第二支持部
56a 本体部
56b、301 ガイド
56c、302 スライダ
60 軸体
70 測定部
71 第一ロードセル
72 第二ロードセル
90 制御部
100,200、300 タイヤユニフォミティマシン(回転体荷重測定装置)
301a ガイド面
L60 中心軸
P 第一の方向
Q 第二の方向

Claims (5)

  1. 円柱状に形成され両端面の中心から突出する軸体の中心軸回りに回転する回転体に、径方向の一方向となる第一の方向に主荷重を作用させた状態で、前記回転体に作用する力を検出する回転体荷重測定装置であって、
    前記回転体の一端面から突出する前記軸体の一端部を、前記第一の方向及び前記中心軸に沿う第二の方向に移動不能に支持する第一支持部と、
    前記回転体の他端面から突出する前記軸体の他端部を、前記第一の方向に移動不能かつ前記第二の方向に移動可能に支持する第二支持部と、
    前記軸体から前記第一支持部及び前記第二支持部の少なくとも一方に対して前記第一の方向に作用する力を測定可能であるとともに、前記軸体から前記第一支持部に対して前記第二の方向に作用する力を測定可能な測定部を備える回転体荷重測定装置。
  2.  請求項1の回転体荷重測定装置において、
     前記測定部は、前記第一の方向及び前記第二の方向の少なくとも2方向に作用する力を測定可能で、前記第一支持部及び前記軸体の前記一端部に前記第一の方向及び前記第二の方向に移動不能に連結された第一ロードセルと、
     前記第一の方向の少なくとも1方向に作用する力を測定可能で、前記軸体の前記他端部に連結された第二ロードセルとを備え、
     前記第二支持部は、
    前記第二ロードセルが前記第一の方向及び前記第二の方向に移動不能に連結された本体部と、
     前記軸体及び前記第二ロードセルの一方に前記第一の方向及び前記第二の方向に移動不能に連結され、前記第二の方向に沿って配されたガイドと、
     前記軸体及び前記第二ロードセルの他方に前記第一の方向及び前記第二の方向に移動不能に連結されるとともに、前記ガイドに前記第二の方向に移動可能に支持されたスライダとを備える回転体荷重測定装置。
  3.  請求項2の回転体荷重測定装置において、
     前記ガイドは、前記第二の方向と直交する方向に互いに異なる向きとしてそれぞれ前記第二の方向に沿って配された一対のガイド面を備え、
     前記スライダは、一対の前記ガイド面のそれぞれに前記第二の方向に移動可能に支持されるように対をなして設けられている回転体荷重測定装置。
  4.  請求項2または請求項3の回転体荷重測定装置において、
     前記第一ロードセル及び前記第二ロードセルの測定結果に基づいて前記回転体に作用する荷重を演算する制御部を備え、
     前記制御部は、前記第一ロードセル及び前記第二ロードセルによって測定された前記第一の方向の力に基づいて前記回転体に前記第一の方向に作用する荷重を演算するとともに、前記第一ロードセルによって測定された前記第二の方向の力に基づいて前記回転体に前記第二の方向に作用する荷重を演算する回転体荷重測定装置。
  5.  タイヤ中心軸回りに回転可能に支持された被検体であるタイヤと、
    タイヤの周面と当接可能に、前記タイヤ中心軸と平行な軸回りに回転可能に支持された円柱状のロードホイールと、
    タイヤまたはロードホイールのいずれかを回転駆動する回転駆動部とを備え、
     前記タイヤまたは前記ロードホイールの一方を前記回転体として、前記タイヤまたは前記ロードホイールの他方から作用する荷重を前記主荷重として、前記測定部で測定される力に基づいて前記タイヤの不均一さを測定するタイヤユニフォミティマシンである請求項1から請求項4のいずれか一項に記載の回転体荷重測定装置。
PCT/JP2017/006544 2017-02-22 2017-02-22 回転体荷重測定装置 WO2018154646A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/006544 WO2018154646A1 (ja) 2017-02-22 2017-02-22 回転体荷重測定装置
US16/486,362 US11175200B2 (en) 2017-02-22 2017-02-22 Rotating body load measuring device
CN201780086800.1A CN110476048B (zh) 2017-02-22 2017-02-22 旋转体载荷测量装置
JP2019501797A JP6722815B2 (ja) 2017-02-22 2017-02-22 回転体荷重測定装置
EP17897630.4A EP3572779B1 (en) 2017-02-22 2017-02-22 Rotating body load measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006544 WO2018154646A1 (ja) 2017-02-22 2017-02-22 回転体荷重測定装置

Publications (1)

Publication Number Publication Date
WO2018154646A1 true WO2018154646A1 (ja) 2018-08-30

Family

ID=63253610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006544 WO2018154646A1 (ja) 2017-02-22 2017-02-22 回転体荷重測定装置

Country Status (5)

Country Link
US (1) US11175200B2 (ja)
EP (1) EP3572779B1 (ja)
JP (1) JP6722815B2 (ja)
CN (1) CN110476048B (ja)
WO (1) WO2018154646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549863B2 (en) * 2014-12-02 2023-01-10 Micro-Poise Measurement Systems Llc Tire uniformity testing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830263B2 (ja) * 2016-08-10 2021-02-17 国際計測器株式会社 動釣合い試験機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231431A (ja) 1985-04-05 1986-10-15 Yokohama Rubber Co Ltd:The タイヤユニフオミテイの測定方法
JPS6355434A (ja) * 1986-08-27 1988-03-09 Kobe Steel Ltd タイヤ検査装置用代用路面ドラムの機械精度調整機構
WO2015118657A1 (ja) * 2014-02-07 2015-08-13 三菱重工マシナリーテクノロジー株式会社 タイヤ反力計測装置、および、タイヤ試験装置
JP2015232545A (ja) 2014-05-12 2015-12-24 株式会社神戸製鋼所 タイヤの転がり抵抗予測手法およびタイヤの転がり抵抗予測装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248336B (de) 1964-10-01 1967-08-24 Continental Gummi Werke Ag Verfahren und Vorrichtung zum Pruefen von Fahrzeugluftreifen
JPS58120148A (ja) 1982-01-12 1983-07-16 Kobe Steel Ltd タイヤ走行試験機
JP2890311B2 (ja) 1989-02-23 1999-05-10 横浜ゴム株式会社 タイヤユニフオミテイーの測定方法
DE3919450A1 (de) 1989-06-14 1990-12-20 Hofmann Gmbh & Co Kg Maschinen Messvorrichtung zum messen von periodisch sich aendernden kraeften und/oder momenten an sich drehenden rotoren
US4956995A (en) * 1990-01-16 1990-09-18 Navistar International Transportation Corp. Compact radial force measuring apparatus for determining variations in radial force around a tire and rim assembly
US6772626B1 (en) * 2003-03-31 2004-08-10 The Goodyear Tire & Rubber Company Apparatus and method for measuring tire balance on a force variation machine
US7140242B1 (en) * 2004-07-22 2006-11-28 Akron Special Machinery Lateral load tire testing system
US9261434B2 (en) * 2010-11-23 2016-02-16 Micro-Poise Measurement Systems, Llc Tire uniformity testing system having a testing station for changing rim sets
JP5450475B2 (ja) 2011-02-10 2014-03-26 三菱重工マシナリーテクノロジー株式会社 校正装置
US8701479B2 (en) 2012-02-10 2014-04-22 Commercial Time Sharing Inc. System for characterizing tire uniformity machines and methods of using the characterizations
JP5843706B2 (ja) * 2012-06-20 2016-01-13 株式会社神戸製鋼所 転がり抵抗試験機に備えられた多分力検出器の校正方法
JP6006067B2 (ja) 2012-09-26 2016-10-12 住友ゴム工業株式会社 タイヤ性能測定装置
JP5871778B2 (ja) 2012-11-12 2016-03-01 株式会社神戸製鋼所 タイヤのユニフォミティ波形の補正方法
JP6131431B2 (ja) * 2013-02-28 2017-05-24 市光工業株式会社 車両用映像表示システム
JP6087172B2 (ja) 2013-03-05 2017-03-01 株式会社神戸製鋼所 タイヤ試験機
CN203561510U (zh) * 2013-11-06 2014-04-23 软控股份有限公司 轮胎均匀性试验机
JP6355434B2 (ja) * 2014-05-29 2018-07-11 積水フーラー株式会社 硬化性組成物
WO2017199467A1 (ja) * 2016-05-20 2017-11-23 株式会社Ihi タイヤ試験装置
CN106289813B (zh) * 2016-09-20 2019-05-03 北京工业大学 一种轮胎均匀性检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231431A (ja) 1985-04-05 1986-10-15 Yokohama Rubber Co Ltd:The タイヤユニフオミテイの測定方法
JPS6355434A (ja) * 1986-08-27 1988-03-09 Kobe Steel Ltd タイヤ検査装置用代用路面ドラムの機械精度調整機構
WO2015118657A1 (ja) * 2014-02-07 2015-08-13 三菱重工マシナリーテクノロジー株式会社 タイヤ反力計測装置、および、タイヤ試験装置
JP2015232545A (ja) 2014-05-12 2015-12-24 株式会社神戸製鋼所 タイヤの転がり抵抗予測手法およびタイヤの転がり抵抗予測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572779A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549863B2 (en) * 2014-12-02 2023-01-10 Micro-Poise Measurement Systems Llc Tire uniformity testing machine

Also Published As

Publication number Publication date
JP6722815B2 (ja) 2020-07-15
CN110476048A (zh) 2019-11-19
JPWO2018154646A1 (ja) 2020-01-09
EP3572779A4 (en) 2020-09-16
CN110476048B (zh) 2022-06-14
EP3572779A1 (en) 2019-11-27
US11175200B2 (en) 2021-11-16
EP3572779B1 (en) 2024-04-10
US20200025651A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US9834047B2 (en) Tire changer and method of measuring force variations
EP2249138B1 (en) Tire testing machine and method for testing tire
US9415644B2 (en) Tyre mounting and demounting apparatus with load belt apparatus
WO2010010798A1 (ja) マスタータイヤ及びそのマスタータイヤを用いたタイヤユニフォミティ試験機の検査方法
EP2543980B1 (en) Wheel balancer with means for determining tyre uniformity
US8739624B2 (en) Wheel balancer with means for determining tyre uniformity
JP2010203908A (ja) タイヤの転がり抵抗測定装置
CN109991021B (zh) 一种多角度轮胎动态刚度试验装置
WO2018154646A1 (ja) 回転体荷重測定装置
JP6602734B2 (ja) タイヤの転がり抵抗評価装置
CN110612438B (zh) 旋转体载荷测量装置
JP3602805B2 (ja) タイヤ組立体の馴染み加工装置
TWI654413B (zh) 旋轉體荷重測定裝置
EP2781377A1 (en) Tyre mounting and demounting apparatus with load belt apparatus
JP2006329831A (ja) 自動車用タイヤ付ホイールの試験装置
TWI654414B (zh) 旋轉體荷重測定裝置
JPS647300Y2 (ja)
JPH1019556A (ja) 接触式アライメント測定装置のローラ検出部、及びラテラルフォース測定装置とその測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501797

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897630

Country of ref document: EP

Effective date: 20190819