WO2018152983A1 - 一种特高频传感器和局部放电在线监测*** - Google Patents

一种特高频传感器和局部放电在线监测*** Download PDF

Info

Publication number
WO2018152983A1
WO2018152983A1 PCT/CN2017/087681 CN2017087681W WO2018152983A1 WO 2018152983 A1 WO2018152983 A1 WO 2018152983A1 CN 2017087681 W CN2017087681 W CN 2017087681W WO 2018152983 A1 WO2018152983 A1 WO 2018152983A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
partial discharge
information
signal processing
uhf sensor
Prior art date
Application number
PCT/CN2017/087681
Other languages
English (en)
French (fr)
Inventor
李春龙
黄辉
梁云
叶云
黄凤
郭云飞
黄莉
王瑶
曾鹏飞
Original Assignee
全球能源互联网研究院有限公司
国网山东省电力公司
国网山东省电力公司潍坊供电公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 国网山东省电力公司, 国网山东省电力公司潍坊供电公司, 国家电网公司 filed Critical 全球能源互联网研究院有限公司
Priority to US15/735,407 priority Critical patent/US10882077B2/en
Publication of WO2018152983A1 publication Critical patent/WO2018152983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention relates to the technical field of monitoring, in particular to an ultra high frequency sensor and a partial discharge online monitoring system.
  • Partial discharge refers to the field strength generated when an applied voltage is generated in an electrical device, which is sufficient to cause discharge in the insulating portion, but such a discharge phenomenon in which a fixed discharge channel is not formed in the discharge region. This discharge is limited to the fact that the insulation between the conductors is locally short (road bridge) without forming a conductive path. Each partial discharge will have some influence on the insulating medium. The slight partial discharge has less influence on the insulation of the power equipment, and the insulation strength decreases slowly. The strong partial discharge will cause the insulation strength to drop rapidly. This is an important factor in the insulation damage of high voltage power equipment. Therefore, when designing high-voltage power equipment insulation, it should be considered that under the action of long-term working voltage, a strong partial discharge in the insulation structure is not allowed. It is necessary to strengthen the monitoring of the equipment in operation. When the partial discharge exceeds a certain level, the equipment should be taken out of operation and repaired or replaced.
  • the monitoring methods for partial discharge of substation equipment mainly include two types: live monitoring and online monitoring. Among them, charging monitoring is the main one. The monitoring and coverage area of the PD radio monitoring equipment is limited, and the monitoring workload is large and the efficiency is low. At present, the on-line monitoring of substation equipment is mainly for single equipment such as GIS and transformers. The construction cost is high, the usage rate of the monitoring system is low, and the maintenance workload is low. Large, large-scale use of economical. In the substation full station partial discharge monitoring, the current implementation is mainly through the arrangement of sensor arrays. There are two types of fixed device monitoring and mobile monitoring. The fixed device monitoring mainly uses coaxial cable and optical fiber transmission methods for data transmission.
  • the network layout is complex, it is difficult to flexibly change the layout of the monitoring device, the scalability is poor, and the positioning accuracy is poor; the mobile monitoring mode is planned monitoring, and the real-time performance is poor, and online monitoring cannot be realized. Overall, the partial discharge online monitoring technology for substation monitoring has not yet had a suitable solution.
  • the technical problem to be solved by the present invention is that the PD monitoring scheme of the substation equipment in the prior art is less flexible and is not conducive to expansion.
  • the first aspect of the embodiments of the present invention provides an ultra high frequency sensor, including: a signal processing circuit configured to perform signal processing on the collected partial discharge signal; and a feature extraction circuit configured to be subjected to signal processing Extracting, by the partial discharge signal, a PD component of the device to be tested as the PD information; the transceiver circuit, including the antenna subsystem, the RF front-end subsystem, and the baseband subsystem, configured to be external to the UHF sensor Data exchange; a processor, respectively connected to the signal processing circuit, the feature extraction circuit, and the transceiver circuit, configured to process the PD information, and control the signal processing circuit, the feature extraction circuit, and the The transceiver circuit is in an asynchronous working state.
  • the signal processing circuit includes a filter circuit, an amplifying circuit, and a detecting circuit.
  • the above solution further includes: a power source configured to supply power to the UHF sensor.
  • the power source includes: an energy receiving circuit, an energy storage circuit, and an energy management circuit.
  • the UHF sensor is provided with a global positioning system (Global Positioning System, GPS) interface.
  • GPS Global Positioning System
  • a second aspect of the embodiments of the present invention provides a substation partial discharge online monitoring system, including: the UHF sensor according to the first aspect of the present invention, disposed in a monitoring area of the substation, configured to collect the Monitoring the PD information of the device to be tested in the area; the diagnostic server is configured to receive the PD information wirelessly transmitted by the UHF sensor, and diagnose the device to be tested in the monitoring area according to the PD information Partial discharge situation.
  • the above solution further includes: a data relay center configured to receive the partial release information wirelessly transmitted by the UHF sensor and transmit the information to the diagnostic server.
  • the data relay center includes: a wireless communication circuit, a data exchange circuit, and a wired communication circuit.
  • the UHF sensor is built in the device to be tested in the monitoring area, or is disposed on the outer surface of the device to be tested, or is set independently of the device to be tested.
  • the number of the UHF sensors is at least four, and is disposed in the monitoring area in a distributed manner.
  • the UHF sensor provided by the embodiment of the present invention collects a partial discharge signal wirelessly, and performs feature parameter extraction on the partial discharge signal, and uses the extracted feature parameter as the PD information to perform data interaction with the outside world through wireless means.
  • the amount of data to be transmitted is greatly reduced, and the acquisition of the UHF sensor signal and the wireless communication are asynchronously processed, thereby avoiding the interference of the wireless communication signal to the collected signal, and improving the accuracy of collecting the partial discharge signal.
  • the substation partial discharge online monitoring system collects the PD information in the monitoring area through the UHF sensor and transmits the information to the diagnostic server in a wireless manner, and the diagnostic server diagnoses the received PD information, thereby The partial discharge of the device under test in the monitoring area is obtained.
  • the UHF sensor adopts the wireless communication networking mode, which increases the flexibility and scalability of the partial discharge monitoring system layout.
  • FIG. 1 is a schematic diagram of a UHF sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a partial discharge online monitoring system for a substation according to Embodiment 2 of the present invention.
  • connection and “connected” are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise explicitly defined and defined.
  • Ground connection it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, or it can be internal communication between two components, which can be a wireless connection or a wired connection.
  • the specific meanings of the above terms in the present invention can be understood by those skilled in the art in a specific case.
  • the embodiment provides an ultra-high frequency sensor, which can be used to monitor a partial discharge signal.
  • the UHF sensor includes: a signal processing circuit 1, a feature extraction circuit 2, a transceiver circuit 3, and a processor 4, wherein ,
  • the signal processing circuit 1 is configured to perform signal processing on the collected partial discharge signal.
  • the UHF sensor may further include a signal coupling circuit 5.
  • the microstrip antenna may be used to receive an omnidirectional electromagnetic signal of 50 MHz-800 MHz. To achieve wireless collection of partial discharge signals;
  • the feature extraction circuit 2 is configured to extract, as the PD information, the PD component of the device to be tested from the signalized partial discharge signal. Specifically, the envelope detection waveform of the partial discharge pulse is processed and input to the feature extraction circuit 2
  • the digital-to-analog converter 21, such as a high-speed ADC converter converts the acquired analog signal into a digital signal using a high-speed ADC converter, and the output of the continuous digital signal flows through the FPGA circuit 22 (Field-Programmable Gate Array, field programmable The gate array performs real-time feature parameter extraction to obtain the waveform characteristic parameters of the discharge pulse.
  • the characteristic parameter of the partial discharge signal can be used as the PD information to greatly reduce the data transmission amount.
  • the transceiver circuit 3 is a wireless transceiver circuit 3, and is responsible for wireless transmission and reception of data, and supports wireless ad hoc networks and wireless timing synchronization, and mainly includes an antenna subsystem 31, a radio frequency front end subsystem 32, and a baseband subsystem 33.
  • the processor 4 is connected to the signal processing circuit 1, the feature extraction circuit 2, and the transceiver circuit 3, and is configured to perform related processing on the PD information, such as applying MD5 (Message-Digest Algorithm 5) or DES (Data Encryption Standard). , that is, the data encryption standard, is a block algorithm using key encryption. The algorithm encrypts and decrypts the PD information, and controls the signal processing circuit 1, the feature extraction circuit 2, and the transceiver circuit 3 according to the periodic task or the burst task.
  • MD5 Message-Digest Algorithm 5
  • DES Data Encryption Standard
  • the asynchronous working state is to ensure that the transceiver circuit 3 is in the off state when the partial discharge signal is collected, that is, the asynchronous processing of signal acquisition and wireless communication can be realized, and the interference of the wireless communication on the signal acquisition is avoided, thereby improving the accuracy of the data.
  • the signal processing circuit 1 includes a filter circuit 11, an amplifying circuit 12, and a detecting circuit 13.
  • a multi-stage cascading amplifying circuit 12 can be used.
  • the maximum amplification factor can be designed to be 50 dB, and the signals are coupled in sequence.
  • the partial discharge signal collected by circuit 5 Line pass filtering, low noise amplification and envelope detection for later transmission and calculation of the signal.
  • the method further includes: a power source 6 configured to supply power to the UHF sensor.
  • the power source 6 includes an energy receiving circuit 61, an energy storage circuit 62, and an energy management circuit 63.
  • the energy receiving circuit 61 can receive the wireless energy transmitted remotely, and can realize wireless charging or power supply, and then store the received electrical energy through the energy storage circuit 62.
  • the energy management circuit 63 manages the electrical energy according to the actual situation. The output enhances the rationalization of the UHF sensor power supply system.
  • a UHF sensor is provided with a GPS interface (not shown) for achieving high-precision time synchronization.
  • the above-mentioned UHF sensor collects the partial discharge signal wirelessly, and extracts the characteristic parameters from the partial discharge signal, and uses the extracted characteristic parameters as the PD information to perform data interaction with the outside world through the wireless method, thereby greatly reducing the need for transmission.
  • the amount of data is asynchronously processed by the acquisition of the UHF sensor signal and the wireless communication, thereby avoiding the interference of the wireless communication signal to the collected signal, and improving the accuracy of collecting the partial discharge signal.
  • This embodiment provides a substation partial discharge online monitoring system, as shown in FIG. 2, including: the UHF sensor 201, the data transfer center 202 and the diagnostic server 203 in the embodiment 1, the UHF sensor 201 and the data transfer
  • the center 202 is connected in a wireless manner, and the data transfer center 202 and the diagnostic server 203 can be connected by wire, wherein
  • the UHF sensor 201 is disposed in the monitoring area of the substation and configured to collect the PD information of the device to be tested in the monitoring area.
  • the specific composition and function of the UHF sensor 201 refer to the detailed description in Embodiment 1.
  • the UHF sensor 201 is built in the device to be tested in the monitoring area, or is disposed on the outer surface of the device to be tested, or is independent of the device to be tested.
  • the UHF sensor 201 can be wirelessly networked, thereby avoiding the consideration of the connection line in the field layout.
  • the problem is flexible and can be changed arbitrarily according to the specific conditions of the substation.
  • the built-in signal coupler installed in the substation primary device can also be used for extended application to save Monitor costs.
  • the data relay center 202 is configured to receive the PD information wirelessly transmitted by the UHF sensor 201 and transmit the information to the diagnostic server 203. Specifically, the data relay center 202 can collect the PD information sent by the UHF sensor 201 by wireless communication, and transmit the received data to the diagnosis server 203 through wired communication, and the data relay center 202 can also place the diagnosis server 203.
  • the issued command is passed to the UHF sensor 201, that is, it is bidirectionally communicated with the diagnostic server 203 and the UHF sensor 201.
  • the data relay center 202 includes: a wireless communication circuit, a data exchange circuit (such as a switch), and a wired communication circuit (such as an Ethernet interface), and may further include a data processing module configured to perform the received data.
  • a data processing module configured to perform the received data.
  • power modules and clock modules configured to provide power and clock functionality.
  • the wireless communication circuit is configured to perform wireless communication with the UHF sensor 201, and the data processing module performs data processing and communication control on the wireless communication circuit to realize bidirectional transmission of the wireless data and synchronization with the UHF sensor 201.
  • Communication control; the data exchange circuit is controlled by the data processing module to implement data exchange between the wireless communication circuit and the wired communication circuit.
  • the diagnostic server 203 is configured to receive the partial transmission information wirelessly transmitted by the UHF sensor 201, and diagnose the partial discharge condition of the device to be tested in the monitoring area according to the PD information, that is, perform the substation according to the collected data of the UHF sensor 201. Diagnosis and localization of station partial discharge.
  • the number of UHF sensors 201 is at least four and is arranged in a distributed manner within the monitoring area.
  • the PD localization algorithm based on the distributed, multi-source UHF partial discharge signal intensity distribution may be used to implement the monitoring region to be tested.
  • the diagnosis of the partial discharge of the equipment is as follows:
  • the PD localization algorithm based on distributed, multi-source UHF partial discharge signal intensity distribution uses this correlation to derive the distance between the transmitting node and the receiving node. In wireless communication theory, this loss is called path loss, and the model established by this correlation is the path loss model.
  • the signal strength is inversely proportional to the transmission distance.
  • the distance between the PD and PD (the UHF sensor 201) is d n
  • the average energy received by the sensor is P n
  • P 1 /P 2 (d 2 /d 1 ) ⁇
  • is the attenuation coefficient.
  • U 1 is the signal amplitude (characteristic parameter) when the distance from the local discharge occurs one meter.
  • U 1 , U 2 ... U 9 are the amplitudes of the signals measured by the sensor.
  • Finding the optimal solution in the sense of least squares is to find a set of x, y, z and U 0 that minimize the value of e.
  • algorithms such as Newton iteration method and grid search method can be used for calculation.
  • An approximate range is implemented to accurately locate the PD discharge based on the Received Signal Strength Indicator (RSSI) positioning algorithm.
  • RSSI Received Signal Strength Indicator
  • the attenuation coefficient ⁇ varies with different wireless transmission environments, which can directly affect the calculated positioning accuracy.
  • an important step in RSSI positioning is the attenuation coefficient estimation.
  • the simplest and most straightforward estimation method is to use calibration techniques. In the above manner, when n is greater than or equal to 4 (that is, when the number of UHF sensors 201 is at least four), accurate positioning can be achieved, and the larger n is, the more accurate the monitoring result is.
  • the above-mentioned substation partial discharge online monitoring system collects the PD information in the monitoring area through the UHF sensor 201 and wirelessly transmits it to the diagnosis server 203, and the diagnosis server 203 diagnoses the received PD information, thereby obtaining the monitoring area.
  • the partial discharge condition of the device under test, the UHF sensor 201 adopts the networking mode of wireless communication, which increases the flexibility and scalability of the layout of the partial discharge monitoring system.
  • the UHF sensor of the embodiment of the invention comprises: a signal processing circuit configured to collect The partial discharge signal is subjected to signal processing; the feature extraction circuit is configured to extract, as the PD information, the PD component of the device to be tested from the partial discharge signal processed by the signal; and the transceiver circuit, including the antenna subsystem and the RF front a terminal system and a baseband subsystem configured to perform data interaction with an exterior of the UHF sensor; a processor coupled to the signal processing circuit, the feature extraction circuit, and the transceiver circuit, respectively, configured to process the The information is placed and controlled, and the signal processing circuit, the feature extraction circuit, and the transceiver circuit are in an asynchronous working state. In this way, the amount of data that needs to be transmitted is reduced, the interference of the signal of the wireless communication to the collected signal is avoided, and the accuracy of collecting the partial discharge signal is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Testing Relating To Insulation (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种特高频传感器(201)和局部放电在线监测***,特高频传感器(201)包括:信号处理电路(1)配置为对采集到的局部放电信号进行信号处理;特征提取电路(2)配置为从局部放电信号中提取待测设备的局放特征参数作为局放信息;收发电路(3)包括天线子***(31)、射频前端子***(32)和基带子***(33),配置为与外界进行数据交互;处理器(4)分别与信号处理电路(1)、特征提取电路(2)以及收发电路(3)连接,配置为处理局放信息,并控制信号处理电路(1)、特征提取电路(2)和收发电路(3)处于异步工作状态。该方案通过无线方式采集局部放电信号,并提取出特征参数作为局放信息,降低了需要传输的数据量,通过将信号的采集与无线通信进行异步处理,避免了无线通信的信号对于采集信号的干扰。

Description

一种特高频传感器和局部放电在线监测***
相关申请的交叉引用
本申请基于申请号为201710100474.7、申请日为2017年02月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及监测技术领域,具体涉及一种特高频传感器和局部放电在线监测***。
背景技术
局部放电是指当外加电压在电气设备中产生的场强,足以使绝缘部分区域发生放电,但在放电区域内未形成固定放电通道的这种放电现象。这种放电以仅造成导体间的绝缘局部短(路桥)接而不形成导电通道为限。每一次局部放电对绝缘介质都会有一些影响,轻微的局部放电对电力设备绝缘的影响较小,绝缘强度的下降较慢;而强烈的局部放电,则会使绝缘强度很快下降。这是使高压电力设备绝缘损坏的一个重要因素。因此,设计高压电力设备绝缘时,要考虑在长期工作电压的作用下,不允许绝缘结构内发生较强烈的局部放电。对运行中的设备要加强监测,当局部放电超过一定程度时,应将设备退出运行,进行检修或更换。
目前,对于变电站设备的局放监测手段主要包括带电监测和在线监测两种,其中,以带电监测为主。局放带电监测设备监测覆盖区域有限,监测工作量大、效率低。而目前对于变电站设备的局放在线监测主要针对GIS、变压器等单一设备进行,建设费用高,监测***的使用率低,维护工作量 大,大规模使用经济性差。在变电站全站局放监测方面,目前主要通过布置传感器阵列实现,方式有固定装置监测和移动监测两种,其中固定装置监测在数据的传输上主要采用同轴电缆和光纤等有线的传输方式,网络布置复杂,难以灵活更改监测装置布局,可扩展性差,定位精度差;移动监测方式属计划性监测,实时性差,无法实现在线监测。总体来看,变电站全站监测的局部放电在线监测技术目前还未有合适的解决方案。
因此,如何提高变电站局部放电在线监测装置的布局便利性和可扩展性,成为一个亟待解决的技术问题。
发明内容
因此,本发明要解决的技术问题在于现有技术中变电站设备的局放监测方案灵活性较差、不利于扩展。
有鉴于此,本发明实施例的第一方面提供了一种特高频传感器,包括:信号处理电路,配置为对采集到的局部放电信号进行信号处理;特征提取电路,配置为从经过信号处理的所述局部放电信号中提取待测设备的局放特征参数作为局放信息;收发电路,包括天线子***、射频前端子***和基带子***,配置为与所述特高频传感器的外部进行数据交互;处理器,分别与所述信号处理电路、所述特征提取电路以及所述收发电路连接,配置为处理所述局放信息,并控制所述信号处理电路、所述特征提取电路和所述收发电路处于异步工作状态。
上述方案中,所述信号处理电路包括滤波电路、放大电路以及检波电路。
上述方案中,还包括:电源,配置为为所述特高频传感器供电。
上述方案中,所述电源包括:能量接收电路、能量存储电路和能量管理电路。
上述方案中,所述特高频传感器上设置有全球定位***(Global  Positioning System,GPS)接口。
本发明实施例的第二方面提供了一种变电站局部放电在线监测***,包括:本发明实施例的第一方面所述的特高频传感器,设置在变电站的监测区域内,配置为采集所述监测区域内待测设备的局放信息;诊断服务器,配置为接收所述特高频传感器无线传输的所述局放信息,并根据所述局放信息诊断出所述监测区域中待测设备的局部放电情况。
上述方案中,还包括:数据中转中心,配置为接收所述特高频传感器无线传输的所述局放信息并传输给所述诊断服务器。
上述方案中,所述数据中转中心包括:无线通信电路、数据交换电路和有线通信电路。
上述方案中,所述特高频传感器内置在所述监测区域内的待测设备中、或者设置在所述待测设备外表面、或者独立于所述待测设备设置。
上述方案中,所述特高频传感器的数量至少为四个,以分布式的方式设置在所述监测区域内。
本发明的技术方案具有以下优点:
1、本发明实施例提供的特高频传感器,通过无线方式采集局部放电信号,并通过对局部放电信号进行特征参数提取,将提取出的特征参数作为局放信息通过无线方式与外界进行数据交互,大大降低了需要传输的数据量,通过将特高频传感器信号的采集与无线通信进行异步处理,避免了无线通信的信号对于采集信号的干扰,提高了采集局部放电信号的准确性。
2、本发明实施例提供的变电站局部放电在线监测***,通过特高频传感器在监测区域内采集局放信息并以无线方式传输至诊断服务器,诊断服务器对接收到的局放信息进行诊断,从而得出监测区域内待测设备的局部放电情况,特高频传感器采用无线通信的组网方式,增加了局部放电监测***布局的灵活性和可扩展性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1的特高频传感器的原理图;
图2为本发明实施例2的变电站局部放电在线监测***的原理图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供一种特高频传感器,可用于监测局部放电信号,如图1所示,该特高频传感器包括:信号处理电路1、特征提取电路2、收发电路3以及处理器4,其中,
信号处理电路1,配置为对采集到的局部放电信号进行信号处理,具体地,该特高频传感器还可以包括信号耦合电路5,比如可以利用微带天线接收50MHz-800MHz的全向电磁信号,以实现通过无线方式采集局部放电信号;
特征提取电路2,配置为从经过信号处理的局部放电信号中提取待测设备的局放特征参数作为局放信息,具体地,局部放电脉冲的包络检波波形经过处理后输入到特征提取电路2的数模转换器21,比如高速ADC转换器,采用高速ADC转换器将采集到的模拟信号转换为数字信号,其输出的连续数字信号流经FPGA电路22(Field-Programmable Gate Array,现场可编程门阵列)进行实时的特征参数提取,从而获得放电脉冲的波形特征参数,此处将局部放电信号的特征参数作为局放信息可以大大降低数据传输量。
收发电路3为无线收发电路3,负责数据的无线发送与接收,并支持无线自组网和无线授时同步,主要包括天线子***31、射频前端子***32和基带子***33。
处理器4分别与信号处理电路1、特征提取电路2以及收发电路3连接,配置为对局放信息进行相关处理,比如应用MD5(Message-Digest Algorithm5,信息-摘要算法)或DES(Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法)算法对局放信息进行加密和解密,并根据周期任务或突发任务控制信号处理电路1、特征提取电路2和收发电路3处于异步工作状态,以保证在采集局部放电信号时,收发电路3处于关闭状态,即可以实现信号采集与无线通信的异步处理,避免无线通信对信号采集的干扰,从而提高数据的精确度。
作为一种优选方案,信号处理电路1包括滤波电路11、放大电路12以及检波电路13,具体地,可以采用多级级联的放大电路12,比如最大放大倍数可以设计为50dB,依次对信号耦合电路5的采集到的局部放电信号进 行带通滤波、低噪声放大和包络检波,以便于信号的后期传输与计算。
作为一种优选方案,还包括:电源6,配置为为特高频传感器供电。电源6包括:能量接收电路61、能量存储电路62和能量管理电路63。其中,能量接收电路61可以接收远程传输的无线能量,既可以实现无线充电或供电,然后通过能量存储电路62将接收到的电能存储,在需要供电时,通过能量管理电路63根据实际情况管理电能的输出,加强了特高频传感器供电***的合理化。
作为一种优选方案,特高频传感器上设置有GPS接口(未示出),以供实现高精度的时间同步。
上述特高频传感器,通过无线方式采集局部放电信号,并通过对局部放电信号进行特征参数提取,将提取出的特征参数作为局放信息通过无线方式与外界进行数据交互,大大降低了需要传输的数据量,通过将特高频传感器信号的采集与无线通信进行异步处理,避免了无线通信的信号对于采集信号的干扰,提高了采集局部放电信号的准确性。
实施例2
本实施例供了一种变电站局部放电在线监测***,如图2所示,包括:实施例1中的特高频传感器201、数据中转中心202和诊断服务器203,特高频传感器201与数据中转中心202以无线的方式连接,数据中转中心202和诊断服务器203之间可以通过有线连接,其中,
特高频传感器201,设置在变电站的监测区域内,配置为采集监测区域内待测设备的局放信息,特高频传感器201的具体组成及功能参见实施例1中的详细描述。
作为一种优选方案,特高频传感器201内置在监测区域内的待测设备中、或者设置在待测设备外表面、或者独立于待测设备设置。此处特高频传感器201可以通过无线方式组网,避免了在现场布局时考虑连接线的问 题,布局方式灵活,可以根据变电站的具体情况任意改变,对于设置在待测设备中的特高频传感器201还可以利用变电站一次设备内部已安装的内置式信号耦合器,进行扩展应用,以节约监测成本。
数据中转中心202,配置为接收特高频传感器201无线传输的局放信息并传输给诊断服务器203。具体地,数据中转中心202可以通过无线通信收集特高频传感器201发出的局放信息,并通过有线通信将接收的数据传输至诊断服务器203,同时,数据中转中心202也可以将诊断服务器203下发的命令传递至特高频传感器201,即其与诊断服务器203和特高频传感器201之间均是双向通信。
作为一种优选方案,数据中转中心202包括:无线通信电路、数据交换电路(比如交换机)和有线通信电路(比如以太网接口),以及还可以包括数据处理模块,配置为对接收到的数据进行相关处理;电源模块和时钟模块,配置为提供电能和时钟功能。具体地,无线通信电路配置为与特高频传感器201进行无线通信,数据处理模块对无线通信电路进行数据处理和通信控制,实现无线数据的双向传输以及与特高频传感器201之间的同步无线通信控制;通过数据处理模块对数据交换电路进行控制,以实现将无线通信电路与有线通信电路之间的数据交换。
诊断服务器203,配置为接收特高频传感器201无线传输的局放信息,并根据局放信息诊断出监测区域中待测设备的局部放电情况,即根据特高频传感器201的采集数据进行变电站全站局部放电的诊断与定位。
作为一种优选方案,特高频传感器201的数量至少为四个,以分布式的方式设置在监测区域内。至少4个特高频传感器201采集到的局放信息在传输至诊断服务器203后,可以采用基于分布式、多源特高频局部放电信号强度分布的局放定位算法来实现监测区域中待测设备的局部放电情况的诊断,具体方式如下:
在空间传播中,无线电信号能量在传播过程中会有损耗,而这种损耗与传播路径相关。基于分布式、多源特高频局部放电信号强度分布的局放定位算法正是利用此相关性得出发射节点到接收节点之间的距离。在无线传播理论中称此种损耗为路径损耗,此种相关性建立的模型为路径损耗模型。
信号强度与传输距离成反比,假设局放信号(局放信息)产生端与传感器(特高频传感器201)端距离为dn,传感器接收到的平均能量为Pn,则P1/P2=(d2/d1)β,其中β为衰减系数。由于传感器接收到的平均能量与信号幅值Un的平方成正比,即U1 2/U2 2=P1/P2=(d2/d1)β,假设d1为1米,则U1为距离局放发生点一米时的信号幅值(特征参数),设为U0,则dn=(U0 2/Un 2)1/β.
由于U0是未知的,所以直接求解局放源到传感器的距离不现实,可以通过求解非线性方程组以求得最小二乘意义下的最优未知解。
比如目标区域(监测区域)放置n个传感器,假设第i个传感器的位置为(xi,yi,zi),局放源坐标为(x,y,z),根据上式,我们可以列出非线性方程组(n=9)如下:
Figure PCTCN2017087681-appb-000001
其中U1,U2…U9为传感器所测到的信号幅值。
这是一个关于未知数x,y,z和U0的非线性方程组,最理想的情况下,方程组会有一个解。然而由于测量误差与***误差的存在,这个方程组一般情况下是没有解的,令
Figure PCTCN2017087681-appb-000002
求最小二乘意义下的最优解,就是找到一组令e值最小的x,y,z和U0。此时可采用牛顿迭代法和网格搜索法等算法进行计算。由于传感器所测到的幅值越大,代表了传感器距离局放源越近,所以无论是牛顿迭代的初值选取,还是网格搜索的范围确定,都可根据所测幅值的定性关系确定一个大致范围,从而实现基于接收信号的强度指示(Received Signal Strength Indicator,RSSI)定位算法的局放放电精确定位。
衰减系数β随不同无线传输环境有变化,这可以直接影响到计算的定位精度。在变电站无线传输环境下,RSSI定位的重要一步是衰减系数估计。最简单直观的估计方法是采用标定技术。上述方式中n大于等于4时(即特高频传感器201的数量至少为四个时),才能实现精确定位,n越大监测结果越准确。
上述变电站局部放电在线监测***,通过特高频传感器201在监测区域内采集局放信息并以无线方式传输至诊断服务器203,诊断服务器203对接收到的局放信息进行诊断,从而得出监测区域内待测设备的局部放电情况,特高频传感器201采用无线通信的组网方式,增加了局部放电监测***布局的灵活性和可扩展性。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
工业实用性
本发明实施例的特高频传感器包括:信号处理电路,配置为对采集 到的局部放电信号进行信号处理;特征提取电路,配置为从经过信号处理的所述局部放电信号中提取待测设备的局放特征参数作为局放信息;收发电路,包括天线子***、射频前端子***和基带子***,配置为与所述特高频传感器的外部进行数据交互;处理器,分别与所述信号处理电路、所述特征提取电路以及所述收发电路连接,配置为处理所述局放信息,并控制所述信号处理电路、所述特征提取电路和所述收发电路处于异步工作状态。如此,降低了需要传输的数据量,避免了无线通信的信号对于采集信号的干扰,提高了采集局部放电信号的准确性。

Claims (10)

  1. 一种特高频传感器,包括:
    信号处理电路,配置为对采集到的局部放电信号进行信号处理;
    特征提取电路,配置为从经过信号处理的所述局部放电信号中提取待测设备的局放特征参数作为局放信息;
    收发电路,包括天线子***、射频前端子***和基带子***,配置为与所述特高频传感器的外部进行数据交互;
    处理器,分别与所述信号处理电路、所述特征提取电路以及所述收发电路连接,配置为处理所述局放信息,并控制所述信号处理电路、所述特征提取电路和所述收发电路处于异步工作状态。
  2. 根据权利要求1所述的特高频传感器,其中,所述信号处理电路包括滤波电路、放大电路以及检波电路。
  3. 根据权利要求1或2所述的特高频传感器,其中,还包括:
    电源,配置为为所述特高频传感器供电。
  4. 根据权利要求3所述的特高频传感器,其中,所述电源包括:能量接收电路、能量存储电路和能量管理电路。
  5. 根据权利要求1所述的特高频传感器,其中,所述特高频传感器上设置有全球定位***接口。
  6. 一种变电站局部放电在线监测***,包括:
    设置在变电站的监测区域内的如权利要求权1-5中任一项所述的特高频传感器,配置为采集所述监测区域内待测设备的局放信息;
    诊断服务器,配置为接收所述特高频传感器传输的所述局放信息,并根据所述局放信息诊断出所述监测区域中待测设备的局部放电情况。
  7. 根据权利要求6所述的变电站局部放电在线监测***,其中,还包括:数据中转中心,配置为接收所述特高频传感器无线传输的所述局 放信息并传输给所述诊断服务器。
  8. 根据权利要求7所述的变电站局部放电在线监测***,其中,所述数据中转中心包括:无线通信电路、数据交换电路和有线通信电路。
  9. 根据权利要求6所述的变电站局部放电在线监测***,其中,所述特高频传感器内置在所述监测区域内的待测设备中、或者设置在所述待测设备外表面、或者独立于所述待测设备设置。
  10. 根据权利要求6至9中任一项所述的变电站局部放电在线监测***,其中,所述特高频传感器的数量至少为四个,以分布式的方式设置在所述监测区域内。
PCT/CN2017/087681 2016-06-17 2017-06-09 一种特高频传感器和局部放电在线监测*** WO2018152983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/735,407 US10882077B2 (en) 2016-06-17 2017-06-09 Cleaning apparatus and cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710100474.7 2017-02-23
CN201710100474.7A CN106771935A (zh) 2017-02-23 2017-02-23 一种特高频传感器和局部放电在线监测***

Publications (1)

Publication Number Publication Date
WO2018152983A1 true WO2018152983A1 (zh) 2018-08-30

Family

ID=58960291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087681 WO2018152983A1 (zh) 2016-06-17 2017-06-09 一种特高频传感器和局部放电在线监测***

Country Status (2)

Country Link
CN (1) CN106771935A (zh)
WO (1) WO2018152983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924828A (zh) * 2021-02-09 2021-06-08 浙江浙能常山天然气发电有限公司 一种基于LoRa技术的低功耗局部放电信号监测方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771935A (zh) * 2017-02-23 2017-05-31 全球能源互联网研究院 一种特高频传感器和局部放电在线监测***
CN109254227A (zh) * 2017-07-13 2019-01-22 全球能源互联网欧洲研究院 面向电网状态的检测方法、装置及***
CN107402342B (zh) * 2017-08-03 2020-04-07 杭州柯林电气股份有限公司 一种局部放电特高频传感器的信号调节保护装置及方法
CN110888091B (zh) * 2018-09-06 2022-09-23 西门子(中国)有限公司 监测变压器放电的设备
CN109459673A (zh) * 2018-12-28 2019-03-12 广州供电局有限公司 局部放电检测电路
CN110187248A (zh) * 2019-06-20 2019-08-30 上海格鲁布科技有限公司 一种敞开式变电站广域局放监测物联网传感器及其监测方法
CN110888051A (zh) * 2019-11-16 2020-03-17 国网辽宁省电力有限公司电力科学研究院 一种新型检测断路器灭弧特性的双天线电磁波采集装置
CN110927538A (zh) * 2019-11-28 2020-03-27 国网江苏省电力有限公司电力科学研究院 一种变压器套管局部放电监测***及方法
CN111610418B (zh) * 2020-05-28 2022-11-22 华乘电气科技股份有限公司 一种基于智能特高频传感器的gis局部放电定位方法
CN117811220B (zh) * 2024-03-01 2024-05-03 雷玺智能科技(上海)有限公司 基于超负荷数据量的局部放电在线监控方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120300875A1 (en) * 2011-05-27 2012-11-29 Samsung Electronics, Co., Ltd., Apparatus for and method of transmitting high efficiency variable power
CN103513165A (zh) * 2012-04-11 2014-01-15 国网辽宁省电力有限公司鞍山供电公司 一种 gis 特高频局部放电在线监测***及方法
CN103698674A (zh) * 2014-01-02 2014-04-02 国家电网公司 一种流动式电缆局部放电在线监测***
CN105606971A (zh) * 2016-02-24 2016-05-25 国网江西省电力科学研究院 一种用于电气设备局部放电检测的智能特高频传感器
CN106771935A (zh) * 2017-02-23 2017-05-31 全球能源互联网研究院 一种特高频传感器和局部放电在线监测***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574613B1 (ko) * 2015-05-27 2015-12-11 지투파워(주) 원격 설정 기능이 있는 초고주파 전기신호 검출에 의한 부분방전 감시진단 시스템
CN105301464A (zh) * 2015-11-26 2016-02-03 国网安徽省电力公司检修公司 移动式特高频局部放电在线监测***
CN105606975B (zh) * 2016-03-09 2018-08-03 武汉华威众科电力有限公司 一种可定位的特高频电缆局部放电检测方法和装置
CN106054046A (zh) * 2016-08-17 2016-10-26 国家电网公司 Gis特高频局部放电在线监测***
CN206818830U (zh) * 2017-02-23 2017-12-29 全球能源互联网研究院有限公司 一种特高频传感器和局部放电在线监测***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120300875A1 (en) * 2011-05-27 2012-11-29 Samsung Electronics, Co., Ltd., Apparatus for and method of transmitting high efficiency variable power
CN103513165A (zh) * 2012-04-11 2014-01-15 国网辽宁省电力有限公司鞍山供电公司 一种 gis 特高频局部放电在线监测***及方法
CN103698674A (zh) * 2014-01-02 2014-04-02 国家电网公司 一种流动式电缆局部放电在线监测***
CN105606971A (zh) * 2016-02-24 2016-05-25 国网江西省电力科学研究院 一种用于电气设备局部放电检测的智能特高频传感器
CN106771935A (zh) * 2017-02-23 2017-05-31 全球能源互联网研究院 一种特高频传感器和局部放电在线监测***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924828A (zh) * 2021-02-09 2021-06-08 浙江浙能常山天然气发电有限公司 一种基于LoRa技术的低功耗局部放电信号监测方法和装置

Also Published As

Publication number Publication date
CN106771935A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018152983A1 (zh) 一种特高频传感器和局部放电在线监测***
CN106443353B (zh) 一种基于行波的gil放电故障定位方法和装置
CN110286302B (zh) 局部放电信号的检测方法及检测***
CN203672515U (zh) 无源无线式在线测温***
CN203838296U (zh) 一种基于局部放电空间定位***的多路信号峰值采集装置
CN102438255B (zh) 一种移动通信室内分布监控***及实现方法
CN102494787B (zh) 一种电力电缆接头温度动态监测方法和装置
CN103969559A (zh) 一种变电站电力设备局部放电空间定位方法及***
Hu et al. Design of a distributed UHF sensor array system for PD detection and location in substation
Upton et al. Wireless sensor network for radiometric detection and assessment of partial discharge in high-voltage equipment
CN105043584A (zh) 一种无线测温***
CN211452424U (zh) 一种基于多种无线传感器的带电检测***
CN204102307U (zh) 用于双频、多频微波链路测量降水量的采集装置
CN102914384B (zh) 一种基于无源无线声表面波温度传感器的温度检测方法
CN111024160A (zh) 一种适用于配电电缆连接头缆芯温湿度在线监测信号的采集方法及***
CN206818830U (zh) 一种特高频传感器和局部放电在线监测***
CN105403815A (zh) 一种基于无线自组网通信的绝缘子带电检测***及方法
KR101809353B1 (ko) 무선 및 전력선 통신을 이용한 원격검침 시스템 및 원격검침 서버의 동작 방법
CN105321313A (zh) 用于双频、多频微波链路测量降水量的采集装置以及基于这一采集装置的测量方法
CN207282000U (zh) 一种天线数据自动采集***
CN115134222B (zh) 一种无线电波测距技术电力设备故障搜索方法
CN110187248A (zh) 一种敞开式变电站广域局放监测物联网传感器及其监测方法
CN107621585A (zh) 一种基于无线通信的强电磁暂态信号测量***及方法
de Souza Neto et al. Development of a partial discharge emulator for calibration of a radiometric PD detection system
CN211578036U (zh) 基于无线传输模式的特高频和超声波联合在线监测***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897620

Country of ref document: EP

Kind code of ref document: A1