CN107621585A - 一种基于无线通信的强电磁暂态信号测量***及方法 - Google Patents

一种基于无线通信的强电磁暂态信号测量***及方法 Download PDF

Info

Publication number
CN107621585A
CN107621585A CN201710949063.5A CN201710949063A CN107621585A CN 107621585 A CN107621585 A CN 107621585A CN 201710949063 A CN201710949063 A CN 201710949063A CN 107621585 A CN107621585 A CN 107621585A
Authority
CN
China
Prior art keywords
battery
signal
communication
control
wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710949063.5A
Other languages
English (en)
Inventor
成林
卢江平
刘健
郭安祥
齐卫东
叶国雄
王森
吴经锋
刘翔
林亭君
蒲路
宋元峰
冯南战
刘子瑞
薛军
吴子豪
王辰曦
童悦
杨传凯
周艺环
***
李培娜
邓小聘
李晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Hohai University HHU
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Hohai University HHU
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, Hohai University HHU, Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710949063.5A priority Critical patent/CN107621585A/zh
Publication of CN107621585A publication Critical patent/CN107621585A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本发明公开一种基于无线通信的强电磁暂态信号测量***,包括采集工作部分、通信控制传输部分以及后台分析部分;采集工作部分和通信控制传输部分共同组成前段采集***,放置于电磁暂态发生源处;采集工作部分包括数据采集卡、嵌入式主板、网口通讯模块和电池;数据采集卡的输出端通过嵌入式主板连接网口通讯模块;供电电池连接数据采集卡的电源端;嵌入式主板连接有固态硬盘;通信控制传输部分包括无线WIFI收发模块、无线WIFI‑232模块和电池控制模块;无线WIFI收发模块连接网口通讯模块,电池控制模块连接采集工作部分的电池和无线WIFI‑232模块;后台分析部分为计算机;通信控制传输部分还包括连接计算机的无线AP。本发明有效保证信号的准确性。

Description

一种基于无线通信的强电磁暂态信号测量***及方法
技术领域
本发明属于高电压测量与电磁兼容技术领域,特别涉及一种强电磁暂态信号测量***及方法。可用于电力、军事、航空、航天和铁路等需要进行电、磁暂态信号测量的领域。
背景技术
随着智能电网和特高压技术的发展,电网中智能化设备越来越多、高压设备的耐压水平要求越来越高,而这些设备的电磁暂态过程影响机理及防护措施尚不十分明确,在智能电网的建设中,曾发生多起由于暂态电磁骚扰造成变电站无法投运、在运电子设备损坏导致保护装置误动或拒动的事故;在特高压电网的建设中,由于电压等级高,VFTO、VFTC影响较为严重,且特高压设备的电磁暂态作用过程影响没有深入研究,从而阻碍了智能电网和特高压电网的快速建设,因此电网设备的电磁暂态现象逐渐成为研究热点,越来越引起电力***的关注。
对于电网设备的电磁暂态现象及防护技术研究最关键的就是测量技术研究,包括暂态电压、电流、磁场和电场的测量,对于敞开式的设备暂态骚扰频率在10MHz以内,而对于GIS设备暂态骚扰频率在几十MHz,对测量设备自身的准确测量、抗干扰措施要求非常高。最原始的测量***使用电信号测量、电缆传输,暂态信号在导线中传输,导线自身电阻、电感使暂态信号畸变;同时由于电磁场耦合,使测量误差增大;测量***中电子设备容易损坏,逐渐被淘汰。目前最常用的就是光学和光纤测量***,光学测量***由于其精密性受振动、温度等因素制约,在现场应用并不顺利,且对于目前技术,测量几十MHz频率暂态信号非常困难,对于光学电流测量***主要局限在光信号调整和后端信号处理电路部分;对于光学电压测量除了手电子器件的局限,还受光晶体的自身相应问题,困难重重。
对于光纤测量***,在电力***内,陕西电科院卢江平高工所研发的光纤式电压电流测量***较为成功,该***稳定、精度高,但是每次试验安装复杂,且如果测量点分散、较多的时候,则要放较多根光纤;由于光纤容易损坏,在前期的试验中曾多次出现光纤放线过程中损坏,试验无法进行的情况;对于三维电磁场测量需要三个方向三路数据,数据量将大增,光纤数量也将增多,如果还使用原来的光纤测量***则***庞大、成本很高,而且很容易出现故障。
发明内容
本发明的目的在于提供一种基于无线通信的强电磁暂态信号测量***及方法,以解决上述技术问题。
为了实现上述目的,本发明采用如下技术方案:
一种基于无线通信的强电磁暂态信号测量***,包括采集工作部分、通信控制传输部分以及后台分析部分;
采集工作部分和通信控制传输部分共同组成前段采集***,放置于电磁暂态发生源处;
采集工作部分包括数据采集卡、嵌入式主板、网口通讯模块和电池;数据采集卡的输出端通过嵌入式主板连接网口通讯模块;供电电池连接数据采集卡的电源端;嵌入式主板连接有固态硬盘;
通信控制传输部分包括无线WIFI收发模块、无线WIFI-232模块和电池控制模块;无线WIFI收发模块连接网口通讯模块,电池控制模块连接采集工作部分的电池和无线WIFI-232模块;
后台分析部分为计算机;通信控制传输部分还包括连接计算机的无线AP。
进一步的,数据采集卡为板载32M或以上缓存,采样频率大于等于50M的多通道数据采集卡。
进一步的,数据采集卡的输入端通过BNC接头连接被测信号。
进一步的,无线AP通过RJ45网线连接计算机。
进一步的,无线WIFI-232模块通过带屏蔽双向隔离的RS232电缆连接电池控制模块,电池控制模块通过I/O接口连接电池。
一种基于无线通信的强电磁暂态信号测量方法,包括:电磁暂态试验之前前端采集***电池处于关闭状态,试验开始后由计算机发送指令至无线AP,由无线AP发出无线WIFI信号传送至通讯控制传输部分的无线WIFI-232模块;无线WIFI-232模块将接收的信号传输至电池控制模块,电池控制模块通过I/O指令,控制电池启动,电池启动后,电池开始给数据采集卡提供电源,开始信号采集;电磁暂态过程采集时,数据采集卡采集数据,将无线WIFI手法模块的电源关闭,采集工作部分只进行信号采集和存储;当电磁暂态过程结束后,嵌入式主板开始通过网口通信模块向通讯控制传输部分传输所采集到的电磁暂态信号;通讯控制传输部分接收到电磁暂态信号之后,通过带屏蔽网线,将信号发至使用电池供电的无线WIFI收发模块,
WIFI收发模块通过天线将电数据信号传无线WIFI信号传输至无线AP交换机;无线AP交换机将数据通过RJ45网线传输至后台计算机。
相对于现有技术,本发明具有以下有益效果:本发明一种基于无线通信的强电磁暂态信号测量***通过无线通信发送所采集的强电磁暂态信号,设备体积小,结构简单,可靠;本发明方法,信号采集和信号传输分时处理的方法,即在采集工作部分内部设置大存储容量的硬盘,电磁暂态测量过程将WIFI传输模块电源关闭,采集工作部分只进行信号采集和存储;当电磁暂态过程结束后,采集工作部分只进行信号的无线传输;能够有效的避免电磁暂态过程对信号的干扰,有效保证信号的准确性。
本发明能够在恶劣电磁工况环境下采用无线方式进行大数据量电压、电流、电磁场等暂态信号测量,可用于电力、军事、航空、航天和铁路等需要进行电、磁暂态信号测量的领域,可实现宽频带的无放线强电磁暂态信号测量,为在开关分合闸、雷击和短路接地等情况下,设备本身及周围所产生的强电磁暂态信号提供便携、可靠的测量方法。
附图说明
图1为本发明一种基于无线通信的强电磁暂态信号测量***的结构框图。
具体实施方式
现有技术的缺陷,必须探索基于“大数据量”的暂态信号测量方式。谈到暂态信号的“大数据”测量,除了常规的线缆、光纤传输以外,就是基于无线传输的测量方式,这必然要和电子通信技术跨专业融合。无线通信技术目前包括长距离无线通信和短距离无线通信,长距离就是GPRS、GSM等通过***基站的数据传输,存在实时性差、传输速率低、保密性差等缺陷。由于电力***中暂态信号现场测量是近距离测量,距离不太远,因此考虑短距离无线通信测量技术。
目前短距离无线通信技术主要应用在智能家居、手机通信等方面,常用主要有WIFI、蓝牙、Zigbee、红外、UWB(超宽频)等。
1)WIFI,传输距离可达100m,传输速度非常快,可以达到54Mbps,非常适合短距离无线传输,可选择;
2)蓝牙,传输距离10米左右,传输速度慢,不选择;
3)Zigbee,传输距离可达75m到几百米、几公里,但是速度慢,只有几十Kbps,不选择;
4)红外,传输距离近,速度慢,不选择;
5)UWB,速度快,支持高达110Mb/s的数据传输率,但是距离在10m范围内,不选择。
通过前期调研,最常用、最容易实现的是WIFI,可利用其传输距离远、传输数据快的特点进行强电磁暂态测量***的研制。
请参阅图1所示,本发明一种基于无线通信的强电磁暂态信号测量***,分为三部分,即采集工作部分、通信控制传输部分,以及后台分析部分,采集工作部分和通信控制传输部分共同组成前段采集***,放置于电磁暂态发生源处,测量电流时,可置于高压线上,连接至电流探头输出;测量电压时,可置于变电站内电磁暂态发生源处,通过屏蔽线连接至高压处;测量电磁场时,可根据实际测量要求,置于电磁暂态发生源附近。
采集工作部分包括数据采集卡(两通道50M同步采样,板载32M缓存)、嵌入式主板、磁盘、网口通讯模块和电池;数据采集卡的输入端连接检测设备的输出端,可以双通道同步采样。数据采集卡的输出端通过嵌入式主板连接网口通讯模块。供电电池连接数据采集卡的电源端。嵌入式主板连接有大容量磁盘。
通信控制传输部分包括无线WIFI收发模块、无线WIFI-232模块和电池控制模块。无线WIFI收发模块连接网口通讯模块,电池控制模块连接采集工作部分的电池和无线WIFI-232模块。
后台分析部分包括后台计算机。
由于所测信号为强电磁暂态信号,测量点附近电磁干扰非常严重,因此整个测量***采用信号采集和信号传输分时处理的方法,即在采集工作部分内部设置大存储容量的硬盘,电磁暂态测量过程将WIFI传输模块电源关闭,采集工作部分只进行信号采集和存储;当电磁暂态过程结束后,采集工作部分只进行信号的无线传输。采集工作部分的信号传输过程由后台计算机发送指令控制。另外,由于电力***中敞开式隔离开关分合试验过程较长,测量***耗电较快,因此在采集***中设置了供电电源控制部分。
电磁暂态试验之前前端采集***电池处于关闭状态,试验开始后由后台计算机发送指令至大功率无线AP,由大功率无线AP发出无线WIFI信号传送至通讯控制传输部分的无线WIFI-232模块;无线WIFI-232模块通过带屏蔽双向隔离的RS232电缆传输至电池控制模块,电池控制模块通过I/O指令,控制电池启动,电池启动后,电池开始给数据采集卡提供电源,开始信号采集。另外,后台计算机也可以通过电池供电控制回路实现电池电量读取的功能。
采集工作部分通过网口通信和具有屏蔽功能的短电缆,与通信控制传输部分连接;通信控制传输部分分为前端部分和后端通讯控制模块部分,两者之间通过无线WIFI进行信号传输;通信控制传输部分(大功率无线AP)与后台分析部分通过RJ45网线进行连接,从而实现整个测量***的数据传输路径。
本发明一种基于无线通信的强电磁暂态信号测量方法,包括:采集工作部分的输入通过BNC接头连接被测信号,即电磁暂态信号测量探头,由于电力***中敞开式设备的电磁暂态过程频率基本上在10MHz以内,GIS设备的电磁暂态过程频率在几十MHz,因此采用50MHz高速数据采集卡进行同步数据采集,该数据采集卡可采用多通道,且需配置至少32M缓存。嵌入式主板配置1G固态硬盘存储空间,采集模块采集到数据后通过嵌入式主板进行存储,当嵌入式主板得到电磁暂态过程结束的指令后,开始通过网口通信模块向通讯控制传输部分传输所采集到的电磁暂态信号。通讯控制传输部分接收到电磁暂态信号之后,通过带屏蔽网线,将信号发至使用电池供电的无线WIFI收发模块,该模块通过天线将电数据信号传无线WIFI信号传输至后端通信控制模块,即大功率无线AP交换机。无线交换机将数据通过RJ45网线传输至后台计算机,后台计算机通过波形分析软件,进行电磁暂态信号幅值、频率的分析,从而实现整个电磁暂态信号测量分析过程。

Claims (6)

1.一种基于无线通信的强电磁暂态信号测量***,其特征在于,包括采集工作部分、通信控制传输部分以及后台分析部分;
采集工作部分和通信控制传输部分共同组成前段采集***,放置于电磁暂态发生源处;
采集工作部分包括数据采集卡、嵌入式主板、网口通讯模块和电池;数据采集卡的输出端通过嵌入式主板连接网口通讯模块;供电电池连接数据采集卡的电源端;嵌入式主板连接有固态硬盘;
通信控制传输部分包括无线WIFI收发模块、无线WIFI-232模块和电池控制模块;无线WIFI收发模块连接网口通讯模块,电池控制模块连接采集工作部分的电池和无线WIFI-232模块;
后台分析部分为计算机;通信控制传输部分还包括连接计算机的无线AP。
2.根据权利要求1所述的一种基于无线通信的强电磁暂态信号测量***,其特征在于,数据采集卡为板载32M或以上缓存,采样频率大于等于50M的多通道数据采集卡。
3.根据权利要求1所述的一种基于无线通信的强电磁暂态信号测量***,其特征在于,数据采集卡的输入端通过BNC接头连接被测信号。
4.根据权利要求1所述的一种基于无线通信的强电磁暂态信号测量***,其特征在于,无线AP通过RJ45网线连接计算机。
5.根据权利要求1所述的一种基于无线通信的强电磁暂态信号测量***,其特征在于,无线WIFI-232模块通过带屏蔽双向隔离的RS232电缆连接电池控制模块,电池控制模块通过I/O接口连接电池。
6.一种基于无线通信的强电磁暂态信号测量方法,其特征在于,基于权利要求1至5中任一项所述的一种基于无线通信的强电磁暂态信号测量***,包括:
电磁暂态试验之前前端采集***电池处于关闭状态,试验开始后由计算机发送指令至无线AP,由无线AP发出无线WIFI信号传送至通讯控制传输部分的无线WIFI-232模块;无线WIFI-232模块将接收的信号传输至电池控制模块,电池控制模块通过I/O指令,控制电池启动,电池启动后,电池开始给数据采集卡提供电源,开始信号采集;
电磁暂态过程采集时,数据采集卡采集数据,将无线WIFI手法模块的电源关闭,采集工作部分只进行信号采集和存储;当电磁暂态过程结束后,嵌入式主板开始通过网口通信模块向通讯控制传输部分传输所采集到的电磁暂态信号;通讯控制传输部分接收到电磁暂态信号之后,通过带屏蔽网线,将信号发至使用电池供电的无线WIFI收发模块,WIFI收发模块通过天线将电数据信号传无线WIFI信号传输至无线AP交换机;无线AP交换机将数据通过RJ45网线传输至后台计算机。
CN201710949063.5A 2017-10-12 2017-10-12 一种基于无线通信的强电磁暂态信号测量***及方法 Pending CN107621585A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710949063.5A CN107621585A (zh) 2017-10-12 2017-10-12 一种基于无线通信的强电磁暂态信号测量***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710949063.5A CN107621585A (zh) 2017-10-12 2017-10-12 一种基于无线通信的强电磁暂态信号测量***及方法

Publications (1)

Publication Number Publication Date
CN107621585A true CN107621585A (zh) 2018-01-23

Family

ID=61091857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710949063.5A Pending CN107621585A (zh) 2017-10-12 2017-10-12 一种基于无线通信的强电磁暂态信号测量***及方法

Country Status (1)

Country Link
CN (1) CN107621585A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111079882A (zh) * 2019-12-09 2020-04-28 国网福建省电力有限公司厦门供电公司 一种基于WiFi信号检测的安全USB闪存驱动器
CN111521877A (zh) * 2020-04-16 2020-08-11 国家电网有限公司 一种暂态电磁环境分布式无线测量***及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598625B2 (en) * 2007-06-08 2009-10-06 Honeywell International Inc. Network-based aircraft secondary electric power distribution system
CN101509769B (zh) * 2009-03-24 2010-09-15 中国科学院南海海洋研究所 一种水下自容式测量仪的测量控制方法
CN102768075A (zh) * 2012-07-10 2012-11-07 鞍山市融庭科技开发有限公司 温度预警集中显示***
CN204536438U (zh) * 2014-12-31 2015-08-05 北京森馥科技股份有限公司 车载式电磁辐射在线监测装置和在线监测***
CN106501652A (zh) * 2016-12-24 2017-03-15 天津达元吉科技有限公司 一种汽车电磁兼容测试***
CN106680671A (zh) * 2015-11-05 2017-05-17 云南电网有限责任公司昆明供电局 一种适用于高压开关柜局部放电在线监测的信号变送器
CN207318606U (zh) * 2017-10-12 2018-05-04 国家电网公司 一种基于无线通信的强电磁暂态信号测量***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598625B2 (en) * 2007-06-08 2009-10-06 Honeywell International Inc. Network-based aircraft secondary electric power distribution system
CN101509769B (zh) * 2009-03-24 2010-09-15 中国科学院南海海洋研究所 一种水下自容式测量仪的测量控制方法
CN102768075A (zh) * 2012-07-10 2012-11-07 鞍山市融庭科技开发有限公司 温度预警集中显示***
CN204536438U (zh) * 2014-12-31 2015-08-05 北京森馥科技股份有限公司 车载式电磁辐射在线监测装置和在线监测***
CN106680671A (zh) * 2015-11-05 2017-05-17 云南电网有限责任公司昆明供电局 一种适用于高压开关柜局部放电在线监测的信号变送器
CN106501652A (zh) * 2016-12-24 2017-03-15 天津达元吉科技有限公司 一种汽车电磁兼容测试***
CN207318606U (zh) * 2017-10-12 2018-05-04 国家电网公司 一种基于无线通信的强电磁暂态信号测量***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111079882A (zh) * 2019-12-09 2020-04-28 国网福建省电力有限公司厦门供电公司 一种基于WiFi信号检测的安全USB闪存驱动器
CN111079882B (zh) * 2019-12-09 2022-07-15 国网福建省电力有限公司厦门供电公司 一种基于WiFi信号检测的安全USB闪存驱动器
CN111521877A (zh) * 2020-04-16 2020-08-11 国家电网有限公司 一种暂态电磁环境分布式无线测量***及方法
CN111521877B (zh) * 2020-04-16 2022-02-01 国家电网有限公司 一种暂态电磁环境分布式无线测量***及方法

Similar Documents

Publication Publication Date Title
WO2018152983A1 (zh) 一种特高频传感器和局部放电在线监测***
CN103389440B (zh) 一种电力故障分析***
CN101598605A (zh) 电缆头温度在线监测***
CN105203870A (zh) 一种基于电力线通信的智能变电站二次设备集成测试***
CN107621585A (zh) 一种基于无线通信的强电磁暂态信号测量***及方法
CN206472311U (zh) 一种基于无人机的具有故障检测功能的路测仪
CN207318606U (zh) 一种基于无线通信的强电磁暂态信号测量***
CN202600799U (zh) 飞机飞行参数实时下传装置
CN104090173A (zh) 一种基于蓝牙通信的多节点分布式场强测试***及方法
CN202177447U (zh) 路灯检测车及车载路灯检测***
CN201438645U (zh) 用于数字化变电站的备用电源自动投切装置
CN205179373U (zh) 一种用于poi的多频段跨制式的互调测试***
CN103149487B (zh) 一种用于列车辐射发射测试的快速采集数据方法
CN207910788U (zh) 一种无线射频自动化测试生产***
CN201071714Y (zh) 油气井地面测试数据无线采集监控装置
CN206818830U (zh) 一种特高频传感器和局部放电在线监测***
CN105515908A (zh) Afdx光电转换时延测试方法
CN211578036U (zh) 基于无线传输模式的特高频和超声波联合在线监测***
CN106989645A (zh) 一种无线式弹载存储测试装置
CN103901261A (zh) 一种电力***过电压无线测量***及测量方法
CN106527413A (zh) 一种现场故障诊断***
CN207826260U (zh) 基于图像识别的无缝钢轨温度位移检测装置
CN208158587U (zh) 一种光缆自动对纤测试***
CN202815209U (zh) 一种电能表远程误差测试***
CN205353283U (zh) 一种基于无线定位的超声波局放测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180123

RJ01 Rejection of invention patent application after publication