WO2018152870A1 - 一种生物质催化热解制备左旋葡萄糖酮的方法 - Google Patents

一种生物质催化热解制备左旋葡萄糖酮的方法 Download PDF

Info

Publication number
WO2018152870A1
WO2018152870A1 PCT/CN2017/075981 CN2017075981W WO2018152870A1 WO 2018152870 A1 WO2018152870 A1 WO 2018152870A1 CN 2017075981 W CN2017075981 W CN 2017075981W WO 2018152870 A1 WO2018152870 A1 WO 2018152870A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
pyrolysis
phosphoric acid
catalyst
preparing
Prior art date
Application number
PCT/CN2017/075981
Other languages
English (en)
French (fr)
Inventor
陆强
叶小宁
王昕�
郭浩强
彭立
董长青
杨勇平
Original Assignee
华北电力大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北电力大学 filed Critical 华北电力大学
Priority to EP17898032.2A priority Critical patent/EP3587431B1/en
Publication of WO2018152870A1 publication Critical patent/WO2018152870A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/10Anhydrosugars, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Definitions

  • the invention belongs to the field of utilization of biomass energy, and particularly relates to a method for preparing levoglucosone by catalytic pyrolysis of biomass.
  • L-Glucose (LGO, 1,6-anhydro-3,4-dideoxy- ⁇ -D-pyranose-2-one) is a dehydration reaction of cellulose and part of hemicellulose during biomass pyrolysis An important dehydrated sugar derivative formed; it has high reactivity and is an important raw material for organic synthesis, and has high application value.
  • L-Glucosamine has been discovered for more than 40 years since it was first discovered in 1973. However, due to its low yield in the conventional pyrolysis process of biomass, purification is difficult, resulting in high market price, which limits its application in organic synthesis. Previous studies have shown that the introduction of a suitable acid catalyst during the pyrolysis of cellulose or biomass has a significant effect on the formation of L-glucanone.
  • the effective catalysts that have been reported so far include liquid acids (phosphoric acid, sulfuric acid). , ionic liquid, solid acid (solid phosphoric acid, solid super acid).
  • a catalyst such as a liquid acid needs to be loaded onto a cellulose or biomass raw material through a cumbersome pretreatment process; and the ionic liquid is not only expensive but also poor in thermal stability.
  • the above acid catalysts are highly acidic. In the pyrolysis process, due to the presence of water vapor, acid sites are easily lost, entering the pyrolysis liquid product, and promoting L-glucose in the form of a catalyst. The secondary reaction in the pyrolysis liquid makes it difficult for L-Glucone to be stably present.
  • the catalyst and coke are mixed together, and the catalyst is difficult to recycle, and also affects the use of coke.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a method for catalytically pyrolyzing biomass to prepare levoglucosone.
  • the biomass-based phosphoric acid activated carbon is used as a catalyst, and the lignocellulosic biomass is used as a raw material, and the catalyst and the biomass are mechanically mixed according to a mass ratio (5:1) to (1:10).
  • the rapid pyrolysis reaction is carried out at 250-470 ° C, and the pyrolysis gas is collected.
  • the pyrolysis reaction time does not exceed 50 s, and the liquid product rich in L-glucose is obtained by condensation.
  • the preparation method of the biomass-based phosphoric acid activated activated carbon is as follows:
  • the biomass material is crushed to a particle size of 1 mm or less, immersed in a phosphoric acid solution having a concentration of 10 to 80% by weight at room temperature for 0.5 to 2 hours, and dried at 110 ° C for 12 to 24 hours to remove free water, and the amount of phosphoric acid supported in the raw material is controlled to be 5 ⁇ 70wt%; the pretreated biomass material is activated under an inert atmosphere; after cooling, it is washed with deionized water to neutrality, and after drying, the biomass-based phosphoric acid activated activated carbon is obtained.
  • the activation process has a heating rate of 5 to 20 ° C / min, an activation temperature of 350 to 750 ° C, and an activation time of 0.5 to 5 h.
  • the temperature of the deionized water washing is 40 to 80 °C.
  • the biomass feedstock is a mixture of lignocellulosic biomass and carbohydrates.
  • the lignocellulosic biomass includes wood, crop straw, bamboo or herbaceous biomass.
  • the inert anaerobic condition means that the carrier gas in the reaction is nitrogen or argon, and of course, an inert gas other than nitrogen or argon.
  • the rate of temperature rise of the pyrolysis reaction is higher than 100 ° C / s.
  • the invention uses the biomass-based phosphoric acid activated activated carbon as a catalyst, and by mechanically mixing with the biomass raw material and performing catalytic pyrolysis at a lower temperature, a liquid product rich in levoglucoside can be obtained.
  • Activated carbon is A common and widely used carbon-based material, the preparation method thereof mainly comprises physical activation method, chemical activation method and physical chemical combined activation method, and phosphoric acid activation is a common chemical activation method for preparing activated carbon, so the invention is selected for use.
  • the catalyst is commonly available and low in cost; in addition, the activated carbon selected by the present invention is prepared from biomass raw materials, and therefore has the characteristics of being green and environmentally friendly. The advantages of activated carbon are obvious compared to various strongly acidic catalysts.
  • the greatest beneficial effect of the present invention is also to avoid the use of a strongly acidic catalyst to prepare levoglucosone.
  • strongly acidic catalysts sulfuric acid, ionic liquid, solid super acid, etc.
  • the presence of a large amount of water vapor in the process causes the acid sites on the catalyst or catalyst to be lost. These lost acidic substances are finally condensed into the liquid product along with the pyrolysis gas.
  • the catalyst is highly catalytic due to its strong catalytic performance.
  • Phosphoric acid activated activated carbon is close to neutral compared to the above-mentioned strongly acidic catalyst (catalytic pyrolysis of L-glucose by a large number of acidic sites).
  • the activated carbon preparation process has a water washing step to wash away phosphoric acid and its derivatives. Therefore, the activated carbon no longer contains a phosphate species), which relies on a small amount of acidic sites (functional groups such as COP and CP) to achieve efficient and selective preparation of L-glucose.
  • Phosphoric acid activated activated carbon and the aforementioned strong acid catalyst have significant differences in chemical composition and catalytic mechanism; phosphoric acid activated activated carbon as a neutral catalyst can be realized by relying on a small amount of active sites such as COP and CP.
  • the selective preparation of L-glucoseone has obvious technical advantages. More importantly, the yield and selectivity of the phosphoric acid-activated activated carbon catalytic pyrolysis biomass for the selective pyrolysis of L-glucosone are higher than those of the strongly acidic catalysts reported.
  • activated carbon as a catalyst is extremely convenient to use, and it is only required to be mechanically mixed with the biomass raw material, thereby avoiding cumbersome and energy-consuming steps such as immersion and drying when using a liquid acid catalyst.
  • the activated carbon and the biomass carbon are mixed together. Since the activated carbon itself is a carbon material derived from biomass, and the biomass carbon is similar in nature, it does not affect the subsequent use of the biomass carbon, and the mixture can also be used as
  • the precursor of activated carbon is continuously activated to prepare activated carbon for catalytic pyrolysis of biomass to prepare levoglucosone.
  • the invention provides a method for preparing a levoglucosone by catalytic pyrolysis of biomass, and the invention is further described below in conjunction with specific embodiments.
  • Example 2 Using the biomass-based phosphoric acid activated activated carbon catalyst prepared in Example 1 and 7 g, grinding to an average particle diameter of about 0.2 mm, using corn stalk as a raw material (particle size of 0.1-0.3 mm), mechanically mixing the two, corn stalk The mass ratio of the catalyst to the catalyst is 3:1, and then the mixture is pyrolyzed at 310 ° C, the heating rate is greater than 500 ° C / s, and argon atmosphere for 20 s to obtain a liquid product yield of 41.9%, which is analyzed by gas chromatography. The content of glucose ketone was calculated to be 8.2% of the yield of L-glucosone.
  • Example 4 Using the biomass-based phosphoric acid activated activated carbon catalyst prepared in Example 4, 3 g, ground to an average particle diameter of about 0.2 mm, using pine as a raw material (particle size of 0.1-0.3 mm), mechanically mixing the two, pine and catalyst The mass ratio is 3:1, and then the mixture is pyrolyzed at 310 ° C, the heating rate is greater than 800 ° C / s, and the nitrogen solution is subjected to pyrolysis for 15 s to obtain a liquid product yield of 42.1%, and the levoglucosone is analyzed by gas chromatography. The content was calculated to find that the yield of L-glucosamine was 10.4%.
  • Example 4 Using the biomass-based phosphoric acid activated activated carbon catalyst prepared in Example 4, 4 g, ground to an average particle diameter of about 0.2 mm, using bamboo as a raw material (particle size of 0.1-0.3 mm), mechanically mixing the two, bamboo leaves and The mass ratio of the catalyst was 5:1, and then the mixture was pyrolyzed at 290 ° C for more than 600 ° C / s under an argon atmosphere for 20 s to obtain a liquid product yield of 38.5%, and the levoglucose was analyzed by gas chromatography. The content of the ketone was calculated to be 8.0% of the yield of L-glucosone.
  • Example 7 5 g of the biomass-based phosphoric acid activated activated carbon catalyst prepared in Example 7 was ground to an average particle diameter of about 0.2 mm, and pine was used as a raw material (particle size of 0.1-0.3 mm), and the two were mechanically mixed, pine and catalyst. The mass ratio is 5:1, and then the mixture is pyrolyzed at 300 ° C, the heating rate is greater than 700 ° C / s, and the carbon solution is subjected to a nitrogen gas atmosphere for 20 s to obtain a liquid product yield of 39.8%, and the levoglucosone is analyzed by gas chromatography. The content was calculated to be 9.5% of the yield of L-glucosone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于生物质能的利用领域,具体涉及一种生物质催化热解制备左旋葡萄糖酮的方法。本发明是以生物质基磷酸活化活性炭为催化剂,通过和生物质机械混合,在惰性无氧条件下于250~470℃进行快速热解,对热解气进行冷凝后即可得到富含左旋葡萄糖酮的液体产物。生物质基磷酸活化活性炭催化热解生物质的热解产物中,左旋葡萄糖酮的产率和纯度都较高;此外,热解生成的固体焦炭和催化剂的混合物可以作为炭源继续用于制备活性炭;通过使用价格低廉且可以二次利用的生物质基磷酸活化活性炭,可以有效降低生产成本和减少污染,是制备左旋葡萄糖酮经济而有效的方法。

Description

一种生物质催化热解制备左旋葡萄糖酮的方法 技术领域
本发明属于生物质能的利用领域,具体涉及一种生物质催化热解制备左旋葡萄糖酮的方法。
背景技术
左旋葡萄糖酮(LGO,1,6-脱水-3,4-二脱氧-β-D-吡喃糖烯-2-酮)是生物质热解过程中纤维素以及部分半纤维素发生脱水反应而形成的一种重要的脱水糖衍生物;其具有很高的反应活性,是有机合成的重要原料,具有很高的应用价值。
左旋葡萄糖酮自1973年首次发现至今已有40余年,但由于其在生物质常规热解过程中产率很低,纯化困难,导致市场价格高昂,限制了它在有机合成中的应用。前人的研究已经证明,在纤维素或生物质热解过程中,引入合适的酸催化剂,对于左旋葡萄糖酮的生成具有显著的促进作用,目前已报道的有效催化剂包括液体酸(磷酸、硫酸)、离子液体、固体酸(固体磷酸、固体超强酸)等。然而上述催化剂中,液体酸等催化剂需要通过繁琐的预处理过程负载至纤维素或生物质原料上;而离子液体不仅价格昂贵而且热稳定性很差。更重要的是,上述酸催化剂都具有很强的酸性,在热解过程中由于水蒸气的存在,都容易发生酸性位的流失,进入热解液体产物中,以催化剂的形式促进左旋葡萄糖酮在热解液体中的二次反应,致使左旋葡萄糖酮难以稳定存在。此外,经过催化热解反应后,催化剂和焦炭混合在一起,催化剂难以回收利用,同时也影响焦炭的使用。而且这些强酸性催化剂的大量使用,也容易造成环境污染等问题。因此,提供一种新型绿色无污染的左旋葡萄糖酮的制备方法,实现环保、低成本、高效率地制备左旋葡萄糖酮已成为当务之亟。
发明内容
本发明的目的在于克服现有技术的不足,提供一种生物质催化热解制备左旋葡萄糖酮的方法。
根据本发明提供的方法,是以生物质基磷酸活化活性炭为催化剂,木质纤维素类生物质为原料,将催化剂和生物质按照质量比(5:1)~(1:10)进行机械混合,在惰性无氧条件下,于250~470℃进行快速热解反应,收集热解气,热解反应的时间不超过50s,冷凝得到富含左旋葡萄糖酮的液体产物。
所述生物质基磷酸活化活性炭的制备方法如下:
生物质原料经破碎至粒径1mm以下,室温下在10~80wt%浓度的磷酸溶液中浸渍0.5~2h,并在110℃下干燥12~24h除去自由水分,控制原料中磷酸的负载量为5~70wt%;将预处理后的生物质材料在惰性氛围下活化;冷却后利用去离子水洗涤至中性,干燥后即得到生物质基磷酸活化活性炭。
优选的,所述活化过程的升温速率为5~20℃/min,活化温度为350~750℃,活化时间为0.5~5h。
优选的,所述去离子水洗涤的温度为40~80℃。
优选的,所述生物质原料为木质纤维素类生物质和碳水化合物的混合物。
所述木质纤维素类生物质包括木材、农作物秸秆、竹材或草本类生物质。
所述惰性无氧条件是指反应中的载气为氮气或氩气,当然,也包括除氮气或氩气之外的其它惰性气体。
所述热解反应的升温速率高于100℃/s。
本发明的有益效果为:
本发明以生物质基磷酸活化活性炭为催化剂,通过与生物质原料机械混合后在较低温度下进行催化热解,能够获得富含左旋葡萄糖酮的液体产物。活性炭是 一种常见且广泛使用的炭基材料,其制备方法主要包括物理活化法、化学活化法以及物理化学联合活化法,磷酸活化是一种常见的化学活化制备活性炭的方法,因此本发明所选用的催化剂常见易得,成本低廉;此外,本发明所选用活性炭由生物质原料制取,因此还具有绿色环保与环境友好的特点。与各种强酸性催化剂相比,活性炭的优势明显。
本发明最大的有益效果还在于避免了使用强酸性催化剂来制备左旋葡萄糖酮。采用前人报道的强酸性催化剂(硫酸、离子液体、固体超强酸等)制备左旋葡萄糖酮,不仅会带来环境污染等问题,更重要的是在催化热解生物质的过程中,由于热解过程中大量水蒸气的存在,致使催化剂或催化剂上的酸性位点发生流失,这些流失的酸性物质最终随同热解气一起冷凝进入液体产物中,由于酸性物质具有极强的催化性能,会以催化剂的形式促进液体产物中左旋葡萄糖酮的二次反应,导致左旋葡萄糖酮的损失,也给热解液体产物的保存带来了极大的困难。相比于上述强酸性催化剂(通过大量的酸性位点来实现催化热解制备左旋葡萄糖酮),磷酸活化活性炭接近于中性(活性炭制备过程中有着水洗步骤,可将磷酸及其衍生物洗除,因此活性炭上不再含有磷酸物种),其主要依靠少量的酸性位点(C-O-P和C-P等官能团)实现左旋葡萄糖酮的高效选择性制备。磷酸活化活性炭和前述强酸性催化剂,无论是在化学组成还是在催化机理方面,都有显著差异;磷酸活化活性炭作为一种中性催化剂,依靠少量的C-O-P和C-P等活性位点,即可实现高选择性制备左旋葡萄糖酮,技术优势明显。更重要的是,磷酸活化活性炭催化热解生物质选择性热解制备左旋葡萄糖酮的产率和选择性,都高于已有报道的强酸性催化剂。
此外,以活性炭为催化剂,使用还极为方便,只需要和生物质原料机械混合即可使用,避免了使用液体酸催化剂时的浸渍和干燥等繁琐且耗能的步骤。经过 催化热解反应后,活性炭和生物质炭混合在一起,由于活性炭本身就是源自于生物质的炭材料,和生物质炭性质相似,不影响生物质炭的后续使用,而且该混合物亦可以作为活性炭的前驱物,继续活化后制备活性炭,用于催化热解生物质制备左旋葡萄糖酮。
具体实施方式
本发明提供了一种生物质催化热解制备左旋葡萄糖酮的方法,下面结合具体实施方式对本发明做进一步说明。
下述实施例中的百分含量如无特殊说明均为质量百分含量。
实施例1
以100g干燥的杨木(粒径为0.1-0.3mm)为原料,在70%浓度的磷酸溶液中浸渍1h,并在110℃下干燥18h除去自由水分,磷酸的负载量为45.8%,然后在惰性氛围下以10℃/min的升温速率从室温升至500℃并恒温活化2h,冷却后利用60℃的去离子水洗涤至中性,干燥后即得到27g的生物质基磷酸活化活性炭。
取10g上述生物质基磷酸活化活性炭研磨至平均粒径约为0.2mm,以杨木为原料(粒径为0.1-0.3mm),将两者进行机械混合,杨木和催化剂的质量比为5:1,然后将混合物料在330℃、升温速率大于500℃/s、氮气氛围下热解15s,获得液体产物的产率为43.6%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为8.5%。
实施例2
采用实施例1中制备的生物质基磷酸活化活性炭催化剂5g,研磨至平均粒径约为0.2mm,以松木为原料(粒径为0.1-0.3mm),将两者进行机械混合,松木和催化剂的质量比为4:1,然后将混合物料在300℃、升温速率大于500℃/s、氮气氛围下热解20s,获得液体产物的产率为41.6%,通过气相色谱分析其中左旋葡 萄糖酮的含量,计算得知左旋葡萄糖酮的产率为9.9%。
实施例3
采用实施例1中制备的生物质基磷酸活化活性炭催化剂7g,研磨至平均粒径约为0.2mm,以玉米秆为原料(粒径为0.1-0.3mm),将两者进行机械混合,玉米秆和催化剂的质量比为3:1,然后将混合物料在310℃、升温速率大于500℃/s、氩气氛围下热解20s,获得液体产物的产率为41.9%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为8.2%。
实施例4
以50g干燥的甘蔗渣(粒径为0.1-0.3mm)为原料,在75%浓度的磷酸溶液中浸渍2h,并在110℃下干燥24h除去自由水分,磷酸的负载量为52.6%,然后在惰性氛围下以8℃/min的升温速率从室温升至450℃并恒温活化1.5h,冷却后利用65℃的去离子水洗涤至中性,干燥后即得到14g的生物质基磷酸活化活性炭。
取8g上述生物质基磷酸活化活性炭研磨至平均粒径约为0.2mm,以甘蔗渣为原料(粒径为0.1-0.3mm),将两者进行机械混合,甘蔗渣和催化剂的质量比为2:1,然后将混合物料在350℃、升温速率大于1000℃/s、氮气氛围下热解15s,获得液体产物的产率为46.7%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为7.4%。
实施例5
采用实施例4中制备的生物质基磷酸活化活性炭催化剂3g,研磨至平均粒径约为0.2mm,以松木为原料(粒径为0.1-0.3mm),将两者进行机械混合,松木和催化剂的质量比为3:1,然后将混合物料在310℃、升温速率大于800℃/s、氮气氛围下热解15s,获得液体产物的产率为42.1%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为10.4%。
实施例6
采用实施例4中制备的生物质基磷酸活化活性炭催化剂4g,研磨至平均粒径约为0.2mm,以竹子为原料(粒径为0.1-0.3mm),将两者进行机械混合,竹叶和催化剂的质量比为5:1,然后将混合物料在290℃、升温速率大于600℃/s、氩气氛围下热解20s,获得液体产物的产率为38.5%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为8.0%。
实施例7
以200g干燥的松木(粒径为0.1-0.3mm)为原料,在60%浓度的磷酸溶液中浸渍1h,并在110℃下干燥12h除去自由水分,磷酸的负载量为40.2%,然后在惰性氛围下以15℃/min的升温速率从室温升至550℃并恒温活化2h,冷却后利用55℃的去离子水洗涤至中性,干燥后即得到55g的生物质基磷酸活化活性炭。
取20g上述生物质基磷酸活化活性炭研磨至平均粒径约为0.2mm,以杨木为原料(粒径为0.1-0.3mm),将两者进行机械混合,杨木和催化剂的质量比为2:1,然后将混合物料在370℃、升温速率大于500℃/s、氮气氛围下热解10s,获得液体产物的产率为52.2%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为7.1%。
实施例8
采用实施例7中制备的生物质基磷酸活化活性炭催化剂5g,研磨至平均粒径约为0.2mm,以松木为原料(粒径为0.1-0.3mm),将两者进行机械混合,松木和催化剂的质量比为5:1,然后将混合物料在300℃、升温速率大于700℃/s、氮气氛围下热解20s,获得液体产物的产率为39.8%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产量为9.5%。
实施例9
采用实施例7中制备的生物质基磷酸活化活性炭催化剂10g,研磨至平均粒径约为0.2mm,以稻草为原料(粒径为0.1-0.3mm),将两者进行机械混合,稻草和催化剂的质量比为3:1,然后将混合物料在330℃、升温速率大于1000℃/s、氩气氛围下热解15s,获得液体产物的产率为44.3%,通过气相色谱分析其中左旋葡萄糖酮的含量,计算得知左旋葡萄糖酮的产率为8.1%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改,等同替换、改进等,均应包含在本发明的范围之内。

Claims (8)

  1. 一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,以生物质基磷酸活化活性炭为催化剂,木质纤维素类生物质为原料,将催化剂和生物质按照质量比(5:1)~(1:10)进行机械混合,在惰性无氧条件下,于250~470℃进行快速热解反应,热解反应的时间不超过50s,收集热解气,冷凝得到富含左旋葡萄糖酮的液体产物。
  2. 根据权利要求1所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述生物质基磷酸活化活性炭的制备方法如下:
    生物质原料经破碎至粒径1mm以下,室温下在10~80wt%浓度的磷酸溶液中浸渍0.5~2h,并在温度110℃下干燥12~24h除去自由水分,控制原料中磷酸的负载量为5~70wt%;将预处理后的生物质材料在惰性氛围下活化;冷却后利用去离子水洗涤至中性,干燥后即得到生物质基磷酸活化活性炭。
  3. 根据权利要求2所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述活化过程的升温速率为5~20℃/min,活化温度为350~750℃,活化时间为0.5~5h。
  4. 根据权利要求2所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述洗涤用去离子水的温度为40~80℃。
  5. 根据权利要求2所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述生物质原料为木质纤维素类生物质和 碳水化合物的混合物。
  6. 根据权利要求1所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述木质纤维素类生物质包括木材、农作物秸秆、竹材或草本类生物质。
  7. 根据权利要求1所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述惰性无氧条件是指反应中的载气为氮气或氩气。
  8. 根据权利要求1所述的一种生物质催化热解制备左旋葡萄糖酮的方法,其特征在于,所述热解反应的升温速率高于100℃/s。
PCT/CN2017/075981 2017-02-21 2017-03-08 一种生物质催化热解制备左旋葡萄糖酮的方法 WO2018152870A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17898032.2A EP3587431B1 (en) 2017-02-21 2017-03-08 Method for preparing levoglucosenone by catalytic pyrolysis of biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710092409.4 2017-02-21
CN201710092409.4A CN106928285B (zh) 2017-02-21 2017-02-21 一种生物质催化热解制备左旋葡萄糖酮的方法

Publications (1)

Publication Number Publication Date
WO2018152870A1 true WO2018152870A1 (zh) 2018-08-30

Family

ID=59423659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075981 WO2018152870A1 (zh) 2017-02-21 2017-03-08 一种生物质催化热解制备左旋葡萄糖酮的方法

Country Status (3)

Country Link
EP (1) EP3587431B1 (zh)
CN (1) CN106928285B (zh)
WO (1) WO2018152870A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372398A (zh) * 2021-05-31 2021-09-10 河南城建学院 一种左旋葡萄糖酮的制备方法
CN114394591A (zh) * 2021-12-29 2022-04-26 南平元力活性炭有限公司 一种磷酸法活性炭的清洁生产方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021003203B1 (pt) * 2018-08-24 2023-11-28 Circa Group Limited Tratamento termoquímico de materiais celulósicos
CN110643748B (zh) * 2019-09-24 2021-05-21 华北电力大学 一种微晶纤维素和草酸共热解制备脱水糖混合物的方法
CN111232977B (zh) * 2020-03-23 2021-04-20 南京卡佛科学仪器有限公司 一种磷酸活化秸秆活性炭的制备方法及应用
CN112342044B (zh) * 2020-11-04 2021-12-14 中国科学院广州能源研究所 一种实现生物质可控分级催化热解定向制取化学品和生物炭的方法
CN114853777B (zh) * 2022-06-14 2024-03-01 华北电力大学 一种制备lgo的催化热解方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416577A2 (en) * 1989-09-06 1991-03-13 Japan Tobacco Inc. Method of preparing levoglucosenone
WO2008098036A1 (en) * 2007-02-06 2008-08-14 North Carolina State University Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids
CN102532206A (zh) * 2011-12-20 2012-07-04 华北电力大学 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮的方法
CN102816187A (zh) * 2012-08-28 2012-12-12 华北电力大学 一种制备左旋葡萄糖酮的方法
WO2016039996A1 (en) * 2014-09-11 2016-03-17 E. I. Du Pont De Nemours And Company Production of levoglucosenone
US9376451B1 (en) * 2014-12-31 2016-06-28 Wisconsin Alumni Research Foundation Method for selectively preparing evoglucosenone (LGO) and other anhydrosugars from biomass in polar aprotic solvents
WO2016170329A1 (en) * 2015-04-20 2016-10-27 University Of York Method for producing levoglucosenone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101685229B1 (ko) * 2009-07-01 2016-12-09 서카 그룹 피티와이 엘티디 리그노셀룰로스 물질을 유용한 화학물질로 변환하는 방법
CN103524570B (zh) * 2013-10-16 2015-10-28 合肥学院 一种催化热解生物质制备左旋葡萄糖酮的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416577A2 (en) * 1989-09-06 1991-03-13 Japan Tobacco Inc. Method of preparing levoglucosenone
WO2008098036A1 (en) * 2007-02-06 2008-08-14 North Carolina State University Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids
CN102532206A (zh) * 2011-12-20 2012-07-04 华北电力大学 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮的方法
CN102816187A (zh) * 2012-08-28 2012-12-12 华北电力大学 一种制备左旋葡萄糖酮的方法
WO2016039996A1 (en) * 2014-09-11 2016-03-17 E. I. Du Pont De Nemours And Company Production of levoglucosenone
US9376451B1 (en) * 2014-12-31 2016-06-28 Wisconsin Alumni Research Foundation Method for selectively preparing evoglucosenone (LGO) and other anhydrosugars from biomass in polar aprotic solvents
WO2016170329A1 (en) * 2015-04-20 2016-10-27 University Of York Method for producing levoglucosenone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587431A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372398A (zh) * 2021-05-31 2021-09-10 河南城建学院 一种左旋葡萄糖酮的制备方法
CN113372398B (zh) * 2021-05-31 2023-11-21 河南城建学院 一种左旋葡萄糖酮的制备方法
CN114394591A (zh) * 2021-12-29 2022-04-26 南平元力活性炭有限公司 一种磷酸法活性炭的清洁生产方法

Also Published As

Publication number Publication date
EP3587431A1 (en) 2020-01-01
CN106928285B (zh) 2022-02-08
EP3587431A4 (en) 2020-01-22
EP3587431B1 (en) 2020-12-23
CN106928285A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2018152870A1 (zh) 一种生物质催化热解制备左旋葡萄糖酮的方法
Liu et al. Comparison of hydrochar-and pyrochar-based solid acid catalysts from cornstalk: Physiochemical properties, catalytic activity and deactivation behavior
CN107445925B (zh) 一种原生生物质全利用制备呋喃类化合物和液态环烷烃的方法
JP7149332B2 (ja) 繊維系バイオマスからセルロース、低分散のヘミセルロース及びリグニン解離ポリフェノールを製造する方法
CN102125874A (zh) 一种以废弃生物质为原料制备炭基固体酸催化剂的方法
WO2020000887A1 (zh) 一种生物炭制备方法
CN109529929B (zh) 磺化碳基固体酸微球、制备方法及纤维素或半纤维素的水解方法
CN101348430B (zh) 一种固体超强酸催化秸秆制备乙酰丙酸的方法
CN111500658B (zh) 生物质多途径增值利用的方法
CN110586131A (zh) 一种磺化椰壳活性炭固体酸催化剂的制备方法
WO2022134443A1 (zh) 一种碳基固体酸催化剂和制备方法及其应用于生物质水热转化的方法
CN102430414A (zh) 锆基磁性固体超强酸催化剂及其制备及其催化热解纤维素或生物质制备左旋葡萄糖酮的方法
US20140352688A1 (en) Process for pretreatment of lignocellulosic biomass with a hydrated inorganic salt comprising a preliminary acid hydrolysis stage
WO2020192053A1 (zh) 一种糠醛的制备方法
CN106423214A (zh) 玉米芯水解残渣制备高比表面积高酸量碳基固体酸方法
CN109628128B (zh) 一种co2气氛下农林废弃物水热液化糠醛制备方法
CN105622419A (zh) 一种碳水化合物制备乙醇酸酯的方法
CN109851689B (zh) 一种利用农林废弃物制备左旋葡聚糖的方法
CN109225321B (zh) 一种离子液体功能化的炭基固体酸催化剂、制备方法及其应用
CN111359628B (zh) 生物质固体酸催化剂的制备方法及其在α-松油醇合成的应用
CN109628652B (zh) 一种由玉米秸秆中的半纤维素一步催化制备木糖的方法
CN105503790A (zh) 以玉米芯玉米秸秆为原料制备糠醛的方法
CN112191257A (zh) 固体酸催化剂的制备方法及该催化剂的用途
CN110642814B (zh) 一种共热解制备糠醛的方法
CN112121818A (zh) 一种磁性炭基催化剂及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017898032

Country of ref document: EP

Effective date: 20190923