WO2018150598A1 - 太陽電池セルの製造方法および太陽電池セル - Google Patents

太陽電池セルの製造方法および太陽電池セル Download PDF

Info

Publication number
WO2018150598A1
WO2018150598A1 PCT/JP2017/017399 JP2017017399W WO2018150598A1 WO 2018150598 A1 WO2018150598 A1 WO 2018150598A1 JP 2017017399 W JP2017017399 W JP 2017017399W WO 2018150598 A1 WO2018150598 A1 WO 2018150598A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
receiving surface
paste
solar cell
bus
Prior art date
Application number
PCT/JP2017/017399
Other languages
English (en)
French (fr)
Inventor
土井 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780085042.1A priority Critical patent/CN110268532A/zh
Priority to JP2019500171A priority patent/JP6735894B2/ja
Priority to TW107104496A priority patent/TWI667806B/zh
Publication of WO2018150598A1 publication Critical patent/WO2018150598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a solar battery cell and a solar battery cell, and more particularly to formation of an electrode of the solar battery cell.
  • Patent Document 1 employs the following procedure. First, an uneven structure called a texture for changing the reflection angle of sunlight on the surface of a substrate material such as silicon and taking reflected light into the substrate is formed by a technique such as etching. Next, a pn junction is formed by a technique such as diffusion, and an antireflection film made of a high refractive index thin film such as a silicon nitride film is formed on at least one surface of the substrate material in order to reduce reflection of sunlight by the light interference effect. To do.
  • a conductive paste such as a metal paste as an electrode material is applied on the antireflection film so as to have a desired pattern, the paste is heated, and the antireflection film is melted by the glass contained in the paste to form a substrate.
  • the electrode is formed by carrying out firing for obtaining electrical connection with the electrode. Further, the substrate material is immersed in an etching solution for dissolving the glass component, and the glass component contained in the electrode is dissolved to reduce the electrical resistance of the electrode.
  • the electrode material is generally called a paste, and is mainly composed of a conductive material made of metal powder, an inorganic material that is a glass component, an organic material that is a resin component, and an organic solvent.
  • the paste is formed into a desired electrode shape by various printing methods such as a screen printing method, and the antireflection film is melted by a glass component contained in a heating process called baking to electrically connect the substrate material and the Bonding is performed to form an electrode.
  • the conductive material silver is usually used, but it is also a noble metal, is easily influenced by the market price, and is not cheap in price.
  • the performance of solar cells is largely dependent on the electrode made of this silver paste, and electrodes made of other materials are not the mainstream in the world. Therefore, manufacturers that develop, manufacture and sell this paste are competing day by day to determine how efficient solar cells can be manufactured with a small amount of paste and a small amount of silver. Is the current situation.
  • a thin grid electrode for collecting the generated current and a thick bus electrode for inter-substrate connection are arranged so as to be orthogonal to the grid electrode.
  • the method of molding is the mainstream.
  • the high performance of the paste is the molding of a thin and high grid electrode, which is different from the molding required to reduce the thickness of the bus electrode, that is, to suppress the coating amount. Techniques for molding are being studied.
  • a solar cell module is formed by joining a plurality of solar cells having current collecting electrodes formed on the light receiving surface side and the back surface side with tab wires.
  • the tab wire is electrically and mechanically joined to the bus electrode. Therefore, the shape of the bus electrode has been studied from the viewpoint of the mechanical strength of the solar cell module as disclosed in Patent Document 2.
  • This invention is made
  • a method for manufacturing a solar cell of the present invention includes a step of forming a pn junction on a semiconductor substrate to form a solar cell substrate, and a conductive material that is an electrode material.
  • An electrode forming step including a coating step of applying a paste containing a conductive material to the electrode forming surface of the substrate for a solar cell and a baking step of baking the applied paste.
  • the application process includes a substrate placement process for placing the solar cell substrate on a stage whose position can be controlled, a first direction control process for controlling the position of the stage in the first direction, and a stage orthogonal to the first direction. Apply the paste to the electrode forming surface while controlling the application amount with the discharge amount per time from the discharge nozzle using a liquid application device equipped with a discharge nozzle that discharges the paste while controlling the position in the second direction And a paste discharging step.
  • the present invention it is possible to realize low-cost electrode formation on a solar battery cell without reducing the mechanical strength of the solar battery module.
  • FIG. 1 is a diagram illustrating a surface that is a light receiving surface of a solar battery cell 10 that includes an electrode formed by the method for forming an electrode of a solar battery cell according to a first embodiment of the present invention.
  • the surface that is the light receiving surface is referred to as a first main surface.
  • FIG. 2 is a diagram illustrating a back surface opposite to the light receiving surface of the solar battery cell 10 illustrated in FIG. 1. The back surface is referred to as the second main surface.
  • 3 is a VV cross-sectional view of FIGS. 1 and 2
  • FIG. 4 is a WW cross-sectional view of FIGS.
  • the light receiving surface 31 which is the first main surface of the solar battery cell 10 is provided with a light receiving surface electrode 34 as a first current collecting electrode including a light receiving surface grid electrode 32 and a light receiving surface bus electrode 33.
  • the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33 are orthogonal to each other.
  • the back surface 41 as the second current collecting electrode including the back surface aluminum electrode 42 and the back surface bus electrode 43 is provided on the back surface 41 which is the second main surface of the solar battery cell 10.
  • the first direction which is the horizontal direction indicated by the arrow X in FIGS. 1 and 2
  • the second direction which is the vertical direction, indicated by the arrow Y in FIGS. This is the longitudinal direction of the surface grid electrode 32.
  • a direction perpendicular to the light receiving surface 31 is defined as a Z direction.
  • FIG. 3 is a cross-sectional view of a main part of the solar battery cell 10 according to the first embodiment of the present invention, and is a VV cross-sectional view in FIGS. 1 and 2.
  • FIG. 3 is a view showing a cross section where the light receiving surface bus electrode 33 exists.
  • the upper side is the light receiving surface 31.
  • FIG. 4 is a cross-sectional view of a main part of the solar battery cell 10 according to the first embodiment of the present invention, and is a WW cross-sectional view in FIGS. 1 and 2.
  • FIG. 4 is a view showing a cross section where the light receiving surface bus electrode 33 is not present.
  • the upper side is the light receiving surface 31.
  • FIG. 5 is an enlarged perspective view of a main part of the light-receiving surface electrode 34 according to the first embodiment of the present invention.
  • the solar battery cell 10 has an n-type impurity diffusion layer 2 formed by phosphorus diffusion on the upper surface of a p-type single crystal silicon substrate 1 having a texture structure, and a photoelectric conversion part is formed by a pn junction.
  • An antireflection film 3 is formed on the light receiving surface side of the n-type impurity diffusion layer 2.
  • a light receiving surface bus electrode 33 and a light receiving surface grid electrode 32 are provided on the antireflection film 3.
  • the antireflection film 3 under the light receiving surface bus electrode 33 and the light receiving surface grid electrode 32 is melted by baking, and the light receiving surface bus electrode 33 and the light receiving surface grid electrode 32 are electrically joined to the n-type impurity diffusion layer 2.
  • Solar cell 10 may form a pn junction by an n-type single crystal silicon substrate and a p-type impurity diffusion layer on the upper surface thereof.
  • the light-receiving surface electrode 34 provided on the light-receiving surface 31 (first main surface) side of the p-type single crystal silicon substrate 1 extends in the X direction, which is the first direction, and is formed in a plurality in parallel to the Y direction.
  • the electrode 33 includes a plurality of light-receiving surface grid electrodes 32 extending in the Y direction, which is a second direction intersecting the light-receiving surface bus electrode 33 at a right angle, and formed in parallel with the X direction.
  • the light receiving surface bus electrode 33 includes a low bus portion 35 whose height in the direction perpendicular to the light receiving surface 31 is lower than the height of the light receiving surface grid electrode 32 and a height in the direction perpendicular to the light receiving surface 31.
  • a high bus portion 36 that is higher than the height of the bus portion 35.
  • a plurality of high bus portions 36 are provided in the X direction.
  • the plurality of light-receiving surface bus electrodes 33 are provided with a high bus portion 36 at the same position in the X direction.
  • the back surface electrode 44 provided on the back surface 41 (second main surface) side of the p-type single crystal silicon substrate 1 includes a back surface aluminum electrode 42 and a back surface bus electrode 43.
  • the back surface bus electrodes 43 are provided in a scattered manner at positions corresponding to the light receiving surface bus electrodes 33.
  • the position of the back surface bus electrode 43 in the Y direction is provided at a position where the center of the back surface bus electrode 43 in the Y direction is seen through from the Z direction that is perpendicular to the light receiving surface 31 and overlaps the light receiving surface bus electrode 33.
  • the position of the back surface bus electrode 43 in the X direction is such that the center of the back surface bus electrode 43 in the X direction is seen through from the Z direction perpendicular to the light receiving surface 31 and overlaps the high bus portion 36 of the light receiving surface bus electrode 33. Provided.
  • the back surface aluminum electrode 42 is provided on the entire surface of the back surface 41 other than the back surface bus electrode 43 so as to contact the back surface bus electrode 43 with, for example, an overlap width of 0.1 mm to 0.9 mm.
  • FIG. 3 shows a cross section along the longitudinal direction of the light receiving surface bus electrode 33, and the light receiving surface grid electrode 32 is not shown.
  • FIG. 4 shows a cross section at a position in the Y direction where the light receiving surface bus electrode 33 is not provided, and the light receiving surface bus electrode 33 and the back surface bus electrode 43 are not shown.
  • the solar battery cell 10 has, for example, a thickness of 200 ⁇ m, an X direction width of 156 mm, and a Y direction width of 156 mm.
  • Four sets of light-receiving surface bus electrodes 33 and back surface bus electrodes 43 are provided on the front and back surfaces of the solar battery cell 10 at an equal pitch of 39 mm.
  • the light-receiving surface bus electrodes 33 are provided, for example, with a width of 1 mm ⁇ a length of 155 mm and at a regular interval of 39 mm pitch.
  • the light-receiving surface grid electrode 32 has, for example, a width of 30 ⁇ m to 100 ⁇ m, a length of 154 mm, and a height of 10 to 20 ⁇ m.
  • the Y direction orthogonal to the X direction which is the longitudinal direction of the light-receiving surface bus electrode 33, is the longitudinal direction at equal intervals. 155 to 78 lines are provided at a pitch of 1 to 2 mm. A plurality of high bus portions 36 of the light receiving surface grid electrode 32 are provided at equal intervals with a length of 6 mm in the X direction.
  • the back surface bus electrodes 43 are, for example, 3 mm wide in the Y direction and 6 mm long in the X direction. For example, 4 rows, 6 to 10 in the position corresponding to the light receiving surface bus electrodes 33, and 26 to 26 in the X direction. They are evenly provided at a pitch of 15 mm.
  • a plurality of solar cells 10 are arranged side by side, and the light receiving surface bus electrode 33 of the solar cell 10 and the back surface bus electrode 43 of the adjacent solar cell 10 are electrically connected by the tab wire 20, and the solar cell module Is formed.
  • the tab wire 20 is formed by coating solder around the copper wire.
  • FIG. 6 shows a cross-sectional view of the light-receiving surface bus electrode 33 formed in the first embodiment.
  • the light-receiving surface bus electrode 33 When the light-receiving surface bus electrode 33 is applied by this method, the light-receiving surface bus electrode 33 having a very thin electrode thickness can be formed by reducing the coating amount. However, the electrode is joined to the tab wire 20. At this time, even when soldering cannot be performed well, even when bonding is possible, the mechanical strength of the bonding is remarkably reduced.
  • the high bus portion 36 whose height in the direction perpendicular to the light receiving surface 31 is higher than the height of the low bus portion 35 in the X direction which is the longitudinal direction of the light receiving surface bus electrode 33.
  • L1 is the length in the X direction of the high bus portion 36
  • L2 is the length in the X direction at the center of the low bus portion 35
  • L3 is the length in the X direction at the end of the low bus portion 35. It is.
  • L1 is 6 mm, 8 locations, L2 is 12 mm, 7 locations, L3 is 11 mm, and 2 locations are provided at both ends.
  • the height of the high bus portion 36 of the light receiving surface bus electrode 33 is approximately the same as the height of the light receiving surface grid electrode 32.
  • the light-receiving surface bus electrode 33 is formed after the light-receiving surface grid electrode 32 is formed, even if an attempt is made to form the light-receiving surface bus electrode 33 higher than the light-receiving surface grid electrode 32, the light-receiving surface is spread in the Y direction when applying the paste. It is difficult to form the light-receiving surface bus electrode 33 having a height higher than that of the grid electrode 32. On the other hand, when the height is lowered, it becomes difficult to join the tab wire 20.
  • the height of the high bus portion 36 of the light-receiving surface bus electrode 33 is set to be approximately the same as the height of the light-receiving surface grid electrode 32, so that electrode formation can be facilitated and bonding to the tab wire 20 can be facilitated. it can.
  • the height of the low bus portion 35 of the light receiving surface bus electrode 33 is desirably higher than the texture height of the light receiving surface 31.
  • the current collected by the light receiving surface grid electrode 32 connected to the low bus portion 35 flows from the low bus portion 35 to the high bus portion 36, and is adjacent to the solar cell by the tab wire 20 joined by the high bus portion 36. Flow into the cell. Therefore, when the electric resistance of the low bus portion 35 increases, the resistance loss increases and the output characteristics of the solar battery cell deteriorate. In particular, when a texture is formed on the light receiving surface 31, the electrical resistance tends to increase due to the texture irregularities.
  • the light-receiving surface bus electrode with low electrical resistance 33 can be obtained.
  • the texture has a quadrangular pyramid shape, and the size is, for example, about 3 ⁇ m on one side of the regular square on the bottom surface and about 2 ⁇ m in height.
  • the height of the low bus portion 35 of the light receiving surface bus electrode 33 is increased, the amount of electrode paste used is increased and the cost is increased. Therefore, it is desirable to reduce the height within a range that does not significantly affect the electrical resistance. . Therefore, the height of the low bus portion 35 of the light receiving surface bus electrode 33 is preferably about 1/3 to 2/3 of the height of the light receiving surface grid electrode 32. It is most desirable to be about 1/2.
  • the heat capacity of the high bus portion 36 is increased, and the tab wire 20 in the high bus portion 36 is The bonding strength of can be increased. It is desirable that the height of the high bus portion 36 and the height of the low bus portion 35 of the light receiving surface bus electrode 33 be different from each other by 5 ⁇ m or more.
  • the length of the high-bus portion 36 of the light-receiving surface bus electrode 33 in the X direction increases as the length increases, while the peel strength decreases as the length decreases. It is desirable to select.
  • the length of the high bus portion 36 in the X direction is preferably shorter than the length of the low bus portion 35 in the X direction.
  • by making at least one portion between the grids the high bus portion 36 it is possible to suppress a decrease in peel strength.
  • it is desirable that the length of the high bus portion 36 in the X direction is at least twice the grid pitch. If the grid pitch is 1 mm, the length of the high bus portion 36 in the X direction is desirably 2 mm or more.
  • the number of the high-bus portions 36 of the light-receiving surface bus electrode 33 in the X direction increases as the number increases, but the peel strength decreases as the number decreases. Therefore, an appropriate number should be selected in consideration of both. Is desirable. Therefore, the number of high bus portions 36 in the X direction is preferably 6 to 10.
  • the back surface bus electrode 43 is provided in a scattered manner at a position corresponding to the high bus portion 36 of the light receiving surface bus electrode 33.
  • the back surface side tab wire 20, the solar battery cell 10, and the light receiving surface side tab wire 20 are sequentially laminated, and the light receiving surface side tab wire. Bonding is formed by heating with a lamp heater while pressing 20 from the top and in close contact with each other. Therefore, by providing the high bus portion 36 and the back surface bus electrode 43 at the corresponding positions, the tab joint positions are the same on the light receiving surface side and the back surface side, and the tab wire 20 on the light receiving surface side is pressed from above. Since the light-receiving surface side and the back surface side can be brought into close contact with each other at the same time, the solar battery cell 10 and the tab wire 20 can be easily joined.
  • the present embodiment is characterized in that when the light-receiving surface bus electrode is formed, a paste containing a conductive material as an electrode material is applied to the electrode forming surface of the substrate material without using a printing mask. In the application process, the paste is applied using a liquid ejection device while controlling the amount of application per hour.
  • the p-type single crystal silicon substrate 1 is immersed in an aqueous solution of sodium hydroxide heated to about 90 ° C. Thereby, the surface of the p-type single crystal silicon substrate 1 is etched, and a texture that is a minute uneven structure is formed on the surface layer of the p-type single crystal silicon substrate 1.
  • the texture has a quadrangular pyramid shape, and the size is, for example, about 3 ⁇ m on one side of the regular square on the bottom surface and about 2 ⁇ m in height.
  • the surface of the p-type single crystal silicon substrate 1 is the (100) plane, and each surface of the quadrangular pyramid is the (111) plane.
  • the p-type single crystal silicon substrate 1 is put into a thermal oxidation furnace and heated to about 800 ° C. to 900 ° C. in the presence of phosphorus oxychloride (POCl 3) vapor.
  • phosphorus glass is formed on the surface of the p-type single crystal silicon substrate 1
  • phosphorus is diffused into the p-type single crystal silicon substrate 1
  • an n-type impurity diffusion layer 2 is formed on the surface layer of the p-type single crystal silicon substrate 1. It is formed.
  • a silicon nitride film (SiN film) is formed on the n-type impurity diffusion layer 2 as an antireflection film 3 by, for example, plasma CVD. Form.
  • the film thickness and refractive index of the antireflection film 3 are set to values that most suppress light reflection. Note that two or more layers having different refractive indexes may be stacked.
  • the antireflection film 3 may be formed by a different film forming method such as a sputtering method.
  • a paste containing silver is printed on the back surface 41 of the p-type single crystal silicon substrate 1 by screen printing in a region where the back surface bus electrode 43 is to be formed, and the entire region other than the back surface bus electrode 43 is paste containing aluminum. Is printed on the entire surface by screen printing.
  • a paste containing silver is printed on the light-receiving surface 31 of the p-type single crystal silicon substrate 1 by screen printing to form the light-receiving surface grid electrode 32, and then using the coating apparatus shown in FIGS.
  • a light receiving surface bus electrode 33 is applied. After the light-receiving surface bus electrode 33 is applied, a baking process is performed to form the light-receiving surface electrode 34 and the back electrode 44.
  • the antireflection film 3 under the light receiving surface electrode 34 is melted by baking, and the light receiving surface electrode 34 is in electrical contact with the n-type impurity diffusion layer 2.
  • the solar battery cell 10 shown in FIGS. 1 to 4 is manufactured.
  • the paste applied to the solar cell substrate 1S becomes an electrode by a process generally called firing.
  • heat treatment is performed so that the peak temperature is 800 ° C. or lower, desirably 720 ° C. to 770 ° C.
  • the heat treatment time in the firing furnace is generally within 2 minutes.
  • FIG. 7 is a schematic diagram illustrating a printing machine used in the electrode forming method of the present embodiment, and is used in a printing process for forming electrodes without using a printing mask.
  • the paste 51 for the light-receiving surface bus electrode 33 is applied to the electrode forming surface of the substrate material without using a printing mask.
  • the material of the substrate on which the electrode is formed by the method of the present embodiment for example, a silicon wafer that is thin plate silicon is used.
  • a shape of the substrate for example, a square shape or a rounded square shape in which the four corners of the square are arc shapes are used.
  • the width corresponding to one side of the square shape and the rounded square shape is, for example, 156 mm.
  • the substrate material may be any material as long as the electrode can be formed by a usual screen printing process, and the substrate material used in the usual method. There is no difference between
  • the printing machine includes a print head 101 including a liquid ejection unit 102 that ejects a paste 51 constituting an electrode material, and a pn junction that is a substrate material, that is, a substrate for a solar cell. And a stage 104 on which the formed p-type single crystal silicon substrate 1 is placed.
  • a discharge nozzle 103 is provided at the tip of the liquid discharge unit 102, and the paste 51 adjusted to a desired viscosity is discharged from the discharge nozzle 103.
  • the discharge amount of the paste 51 per unit time can be changed by a signal from the control unit 105.
  • the stage 104 is an XY table that can move in the X direction and the Y direction, and can be moved continuously by designating coordinates by a signal from the control unit 105. Also, the moving speed of the XY table can be changed by a signal from the control unit 105.
  • the printing machine also includes a print head 101 for disposing the liquid discharge unit 102 above the stage 104. The print head 101 can also be moved in the Y direction and the Z direction by a signal from the control unit 105.
  • the printing machine has a stage on which the liquid ejection unit 102 and the solar cell substrate 1S are placed while applying pressure to the liquid ejection unit 102 filled with the paste 51 disposed in the print head 101 according to a pre-programmed print pattern.
  • the paste 51 is applied to the electrode forming surface of the solar cell substrate 1S.
  • the substrate 1S for solar cells refers to a substrate in which a pn junction is formed on the p-type single crystal silicon substrate 1 and an antireflection film 3 is formed.
  • FIG. 10 shows a flowchart of the coating process.
  • a substrate mounting step S1 is performed in which the solar cell substrate 1S is mounted on the stage 104 with the longitudinal direction of the light-receiving surface bus electrode 33 as the X direction.
  • an X-direction (first direction) control step S ⁇ b> 2 is performed in which the liquid ejection unit 102 is moved to the paste application start position that becomes the end of the light receiving surface bus electrode 33 by moving the stage 104 and the liquid ejection unit 102. Do.
  • a discharge nozzle lowering step S3 is performed in which the liquid discharge unit 102 is lowered in the Z direction so that the distance between the solar cell substrate 1S and the lower end of the discharge nozzle 103 is a suitable position for paste application.
  • the height of the lower end of the discharge nozzle 103 of the liquid discharge unit 102 is appropriately set to the same position as the height of the upper end of the light receiving surface grid electrode 32. If the height is lowered, the light receiving surface grid electrode 32 is scraped by the lower end of the discharge nozzle 103, which is inappropriate. On the other hand, if the distance between the solar cell substrate 1S and the lower end of the discharge nozzle 103 is increased, the position accuracy of paste application is lowered, which is inappropriate. Therefore, it is most appropriate that the height of the lower end of the discharge nozzle 103 is the same as the height of the upper end of the light receiving surface grid electrode 32.
  • the paste 51 is discharged onto the solar cell substrate 1S, and the paste discharge step S4 for forming the light receiving surface grid electrode 32 is performed.
  • the height of the low bus portion 35 is reduced by lowering the pressure applied to the liquid ejection portion 102 as compared with the position corresponding to the high bus portion 36. Can be made lower than the height of the high bus portion 36.
  • the discharge amount per time from the discharge nozzle 103 at the first position in the second direction, which is the low bus portion 35, is defined as the first discharge amount
  • the discharge at the second position in the second direction, which is the high bus portion 36 is defined as the first discharge amount
  • the discharge at the second position in the second direction, which is the high bus portion 36 is defined as the first discharge amount
  • the discharge at the second position in the second direction, which is the high bus portion 36 is the discharge amount per hour from the nozzle 103 to a second discharge amount that is larger than the first discharge amount
  • the moving speed of the stage 104 is increased compared with the position corresponding to the high bus portion 36, so that the height of the low bus portion 35 is increased.
  • the height may be lower than 36.
  • both the pressure applied to the liquid ejection unit 102 and the moving speed of the stage 104 may be controlled.
  • the moving speed of the stage 104 at the first position in the second direction which is the low bus portion 35 is defined as the first stage moving speed
  • the moving speed of the stage 104 at the second position in the second direction which is the high bus portion 36 is defined as the first stage moving speed
  • the height of the low bus portion 35 can be made lower than the height of the high bus portion 36.
  • the discharge nozzle raising step S5 is performed in which the liquid discharge unit 102 is raised in the Z direction so that the distance between the solar cell substrate 1S and the liquid discharge unit 102 does not interfere with each other.
  • Paste application is completed by repeating the paste discharge by the number of the light-receiving surface bus electrodes 33.
  • the stage 104 and the liquid discharge unit 102 are moved in the Y direction to become the end portions of the adjacent light receiving surface bus electrodes 33.
  • An X-direction (first direction) control step S2 for moving the liquid ejection unit 102 to the paste application start position is performed. Since the light receiving surface bus electrodes 33 have the end portions at the same position in the X direction, they can be moved to the end portions of the adjacent light receiving surface bus electrodes 33 only by movement in the Y direction.
  • the paste application to the light receiving surface bus electrodes 33 is completed.
  • a substrate take-out process S7 for taking out the solar cell substrate 1S to which the paste has been applied from the stage 104 is performed.
  • the coating process is completed by the substrate placement process, the first direction control process, the discharge nozzle lowering process, the paste discharging process, the discharge nozzle rising process, the application completion determining process, and the substrate taking-out process.
  • FIG. 8 is an enlarged schematic cross-sectional view of the stage portion of the printing press.
  • the light receiving surface bus electrode 33 is formed on the solar cell substrate 1S is taken as an example.
  • the present embodiment is applied to the formation of the light receiving surface bus electrode 33, the light receiving surface grid electrode 32 is formed in advance.
  • the light receiving surface grid electrode 32 it may be formed by a screen printing method which is a conventional method conventionally used, or the electrode forming method of the present embodiment may be used.
  • the light receiving surface grid electrode 32 may be formed after the light receiving surface bus electrode 33 is formed.
  • the solar cell substrate 1 ⁇ / b> S is placed on the stage 104.
  • the stage 104 is provided with a suction unit 108 that constitutes a suction mechanism 107 that performs air suction, and the solar cell substrate 1S is fixed to the stage 104 by exhausting the suction holes with a vacuum pump.
  • the stage 104 includes a plurality of pressure sensors 109 corresponding to positions along the light receiving surface bus electrodes 33 of the solar battery cells 10.
  • the liquid ejection unit 102 disposed in the print head 101 is filled with the paste 51, pressure is applied to the liquid ejection unit 102, and the paste 51 is pushed out from the ejection nozzle 103 provided at the tip of the liquid ejection unit 102.
  • a pattern of the light-receiving surface bus electrode 33 programmed in advance is drawn on the light-receiving surface 31 that is the electrode formation surface of the solar cell substrate 1S.
  • the liquid discharge unit 102 can control the coating amount per hour by the control unit 105 of the printing press. Further, the pressure sensed by the pressure sensor 109 provided in the stage 104 is fed back to the liquid ejection unit 102 through the control unit 105, and the coating amount can be controlled.
  • the material, size, and shape of the discharge nozzle 103 mounted on the liquid discharge unit 102 are properly selected depending on the line to be drawn.
  • Typical materials used for the discharge nozzle 103 include metals such as stainless steel and resins such as polyethylene.
  • the nozzle diameter is selected according to the line width to be drawn, and the nozzle shape is selected from a normal round shape, a square shape, a branch nozzle, a multiple nozzle, a flat nozzle, and the like.
  • the light-receiving surface grid electrode 32 is formed in advance by a screen printing method, the solar cell substrate 1S subjected to the drying process is placed on the stage 104, and fixed by the suction unit 108.
  • the light-receiving surface bus electrode 33 is drawn on the light-receiving surface 31 of the solar cell substrate 1S so as to be orthogonal to the light-receiving surface grid electrode 32 in accordance with a pre-programmed print pattern.
  • the width of the light-receiving surface bus electrode 33 is 1 mm and the light-receiving surface grid electrode 32 is formed in advance, so that the applied nozzle has a high-density polyethylene tapered nozzle 0.8 diameter.
  • the light-receiving surface bus electrode 33 can be formed by supplying the paste 51 directly from the ejection nozzle 103 without using a printing mask.
  • FIG. 9 is a schematic cross-sectional view of a portion where the light-receiving surface bus electrode 33 is drawn and its periphery in the printer of the first embodiment.
  • the paste 51 is discharged from the discharge nozzle 103 of the liquid discharge unit 102 while controlling the discharge amount per time, and the light-receiving surface bus electrode 33 is drawn. At that time, by controlling the pressure of the liquid discharge unit 102 corresponding to the drawing position, it is possible to draw while changing the discharge amount finely.
  • FIG. 11 is a schematic cross-sectional view of the stage portion of the screen printer used for forming the light receiving surface grid electrode 32 in the present embodiment.
  • the paste 52 for the light receiving surface grid electrode 32 is applied to the electrode forming surface of the solar cell substrate 1S through the printing mask 202.
  • FIG. 12 is an enlarged view of FIG. 11 and 12 includes a stage 104 on which the solar cell substrate 1S is placed, and the stage 104 includes a suction unit 108 for fixing the solar cell substrate 1S.
  • the suction unit 108 fixes the solar cell substrate 1 ⁇ / b> S to the stage 104 by sucking air at the stage 104.
  • the printing mask 202 includes a mask frame 203, warp yarns 200A, and weft yarns 200B, and includes a screen mesh 200 attached to the printing surface side of the mask frame 203 and a photosensitive emulsion 200S.
  • the stage 104 and the mask frame 203 are omitted.
  • the printing machine scans the squeegee 201 on the print mask 202 on which the paste 52 is placed, thereby applying the paste 52 to the electrode formation surface of the solar cell substrate 1S through the print mask 202.
  • the paste 52 is not allowed to pass through, but the portion of the printing mesh 202 where the screen mesh 200 is exposed is allowed to pass through the paste 52.
  • the light receiving surface grid electrode 32 is formed by transferring onto the electrode forming surface.
  • the pastes 51 and 52 include a conductive material that is an electrode material.
  • Typical conductive materials used for the pastes 51 and 52 include metal materials such as gold, silver, copper, platinum and palladium.
  • the pastes 51 and 52 include one or more of these conductive materials.
  • the electrode forming method of the first embodiment it is possible to select the optimum pastes 51 and 52 for the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33. In the present embodiment, it is possible to reduce the amount of coating required for the light-receiving surface bus electrode 33.
  • the weight of the paste applied through the print mask 202 to the light receiving surface bus electrode 33 is determined by the weight of the light receiving surface grid. It is determined by the mask specification for expressing the performance of the electrode 32.
  • optimization can be achieved by forming each independently.
  • the function can be expressed with a smaller amount of conductive material than the paste used in the light-receiving surface grid electrode 32 because of the required performance. is there. That is, this is nothing but reducing the total price of the pastes 52 and 51. Therefore, by separately forming the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33, the cost can be reduced from both sides in terms of coating amount and price.
  • the specifications of the print mask 202 and the paste are set uniformly.
  • the performance required for the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33 is not the same.
  • the former is to collect the current generated in the solar cell substrate 1S, and the latter is to flow the collected current through the tab wire.
  • using a paste that is adjusted to maximize the performance of the light-receiving surface grid electrode 32 for the light-receiving surface bus electrode 33 is of excessive quality and expensive.
  • FIG. 13 is a table comparing the performance of the solar battery cell produced by the method of the comparative example and the performance of the solar battery cell of the first embodiment.
  • the voltage (Voc) is improved by 2 mV
  • the current (Jsc) is improved by 0.4 mA / cm 2
  • the fill factor (FF) is reduced by 1/100, resulting in the same efficiency (Eff). .
  • the bonding strength when the light-receiving surface bus electrode 33 was formed without considering the thickness of the bonding portion, the strength of the conventional method could not be exceeded, but in the first embodiment, the thickness of the bonding portion was considered. As a result of changing to the structure, a value equal to or greater than that of the comparative example was secured.
  • FIG. 14 is a comparison diagram comparing the weight of the paste applied to the light-receiving surface bus electrode 33 of the solar battery cell manufactured by the method of the comparative example and the coating weight of the first embodiment.
  • the paste 51 for the light-receiving surface bus electrode 33 used in the present embodiment is 30% of the amount of the conductive material contained compared to the amount of the conductive material contained in the paste for the light-receiving surface bus electrode 33 of the comparative example. The degree is reduced.
  • the height of the electrode can be changed by changing the pressure applied to the liquid discharge unit 102 between the low bus portion 35 and the high bus portion 36 to change the flow rate of the paste to be discharged. .
  • the coating amount was 0.05 g, but in the method of the present embodiment, it was 0.034 g, and the coating amount can be reduced by about 30% compared to the method of the comparative example.
  • the performance of the solar cell produced by this method is equivalent to the method of the comparative example, which is 30% less than the amount of paste applied in the method of the comparative example, and this is a paste obtained by reducing the conductive material by 30%. It is achieved at 51.
  • FIG. 15 shows the relative value of the manufacturing cost by the method of the first embodiment when the manufacturing cost in the method of the comparative example is divided into three items of paste, printing mask, and printing machine and each is set to 1.
  • the electrode manufacturing method of the present embodiment is applied to the light-receiving surface bus electrode 33
  • the conventional method is applied to the light-receiving surface grid electrode 32
  • the cost of the paste is reduced
  • the printing mask is changed. None, printing presses are costly.
  • the introduction cost is recovered in about one year even when the printing press according to the present embodiment is additionally introduced by improving the output of the solar battery cell and reducing the cost and amount of use of the paste. After that, it will be profitable.
  • terms are omitted such that the light-receiving surface bus electrode paste is a light-receiving surface bus paste, and the light-receiving surface bus electrode printer is a light-receiving surface bus printer.
  • FIG. 16 and 17 are schematic cross-sectional views for explaining the procedure of the method for manufacturing the solar cell module according to the present embodiment.
  • a plurality of solar cells 10 having current collecting electrodes formed on the light receiving surface side and the back surface side are connected by tab wires 20.
  • the solar cell 10 with wiring is sandwiched between the translucent substrate 22 and the back sheet 23 via the translucent resin members 21A and 21B, and these members are pressure-bonded.
  • the translucent resin member 21 in which the solar cell 10 with wiring is sealed, the translucent substrate 22, and the back sheet 23 are integrated.
  • a solar cell module is produced.
  • a solar battery module having high power generation efficiency can be obtained by using the solar battery cell 10 including the electrode formed by the above electrode forming method.
  • This embodiment is very useful industrially because high-performance solar cells and solar cell modules can be obtained by a simple method without requiring expensive equipment.
  • the cost for the print mask is not required because the print mask is not used.
  • a desired electrode can be formed by a system cheaper than a screen printer.
  • the paste can be applied while controlling the amount of application per time, so that the necessary amount of paste can be discharged to the electrode formation position. This makes it possible to supply the necessary and sufficient paste to improve the characteristics and reduce the amount of paste to be supplied as a result. In other words, it is possible to form solar cell electrodes that combine cost reduction and efficiency improvement.
  • the electrode forming method of the first embodiment is a simple and inexpensive method, and the design change can be made to the arrangement of the electrode pattern or the line width and thickness by replacing the conventional method or adding to the conventional method. Even if there is, it can be carried out immediately and a reliable electrode can be easily formed.
  • the light receiving surface grid electrode 32 is formed by screen printing, and only the light receiving surface bus electrode 33 is formed while controlling the ejection amount using the liquid ejection unit 102 without using a screen. Also, the liquid discharge unit 102 may be used to control the discharge amount.
  • the height of the light-receiving surface bus electrode 33 can be easily controlled by controlling the ejection amount of the liquid ejection unit 102 and the moving speed of the stage 104.
  • the control unit 105 draws the bus electrode efficiently while maintaining the high-precision line width and position by controlling the supply amount of the paste from the discharge nozzle 103 from 0.1 ml / min to 1 ml / min. can do.
  • the supply amount of the paste from the discharge nozzle 103 is desirably controlled within a range of 0.1 to 0.3 ml per minute, and the bus electrode is drawn, so that high accuracy can be achieved without using the pressure sensor 109.
  • Bus electrode formation is realized.
  • it is possible to draw a high-accuracy bus electrode pattern by controlling the supply amount with high accuracy from 0.1 ml to 1 ml per minute. .
  • the supply amount can be reduced by 30% of the conventional application amount.
  • a bus electrode pattern can be drawn. Therefore, it is possible to provide an electrode with high accuracy and a small amount of paste.
  • the coating amount of 0.012 g corresponds to that applied at about 0.1 ml / min
  • the coating amount of 0.034 g corresponds to that applied at about 0.3 ml / min.
  • the discharge amount can be finely adjusted by adjusting the height of the discharge nozzle 103. Even when the pressure sensor 109 is used, more accurate control can be achieved by drawing the bus electrode pattern while controlling the discharge amount of the paste from the discharge nozzle 103 at 0.1 to 0.3 ml per minute. Is possible.
  • the method for forming a solar cell electrode of the present invention includes a step of applying a paste containing a conductive material as an electrode material to an electrode forming surface of a substrate material without using a printing mask, and the application step includes a liquid ejection device.
  • the liquid ejecting apparatus is moved by a drawing program for obtaining a desired electrode shape while controlling the coating amount for each time using the above, and the paste is applied.
  • the use of a printing mask eliminates the cost for that purpose.
  • a desired electrode can be formed by a system cheaper than a screen printer.
  • the paste can be applied while controlling the amount of application per time, so that the necessary amount of paste can be discharged to the electrode formation position.
  • a paste necessary and sufficient to improve the characteristics is supplied, and as a result, the amount of paste to be supplied can be reduced as compared with the conventional case, and a solar cell electrode having both cost reduction and efficiency improvement can be formed.
  • the electrode forming method of the present invention is a simple and inexpensive system, and can be implemented by replacing the conventional method or adding to the conventional method.
  • the specifications of the printing mask and paste 51 are set uniformly.
  • the performance required for the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33 is not the same.
  • the former is to collect a current generated in the p-type single crystal silicon substrate 1, and the latter is to flow the collected current through a tab wire. For this reason, it is excessive quality to use the paste 51, which has been adjusted to maximize the performance of the light receiving surface grid electrode 32, for the light receiving surface bus electrode 33, and is expensive.
  • the electrode forming method of the present embodiment it is possible to select the optimum pastes 51 and 52 for the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33. In the present embodiment, it is possible to reduce the amount of coating required for the light-receiving surface bus electrode 33.
  • the weight of the paste 51 applied through the printing mask to the light receiving surface bus electrode 33 portion is determined by the mask specification for expressing the performance of the light receiving surface grid electrode 32. In the embodiment, optimization can be achieved by forming the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33 independently of each other.
  • the function can be expressed with a smaller amount of conductive material than the paste 52 of the light-receiving surface grid electrode 32 because of the required performance. It is. That is, this is nothing but reducing the price of the paste 51. Therefore, by separately forming the light receiving surface grid electrode 32 and the light receiving surface bus electrode 33, the cost can be reduced from both sides in terms of coating amount and price.
  • FIG. 18 is a main-portion cross-sectional view of the solar battery cell 310 according to the second embodiment of the present invention, and corresponds to the VV cross-sectional view in FIGS.
  • FIG. 18 is a view showing a cross section where the light receiving surface bus electrode 333 exists. In the drawing, the upper side is the light receiving surface 331.
  • the solar cell 310 has an n-type impurity diffusion layer 302 formed by phosphorus diffusion on the upper surface of a p-type single crystal silicon substrate 301 having a texture structure, and a photoelectric conversion part is formed by a pn junction.
  • An antireflection film 303 is formed on the light receiving surface side of the n-type impurity diffusion layer 302. On the antireflection film 303, a light receiving surface electrode 334 as a first current collecting electrode including a light receiving surface bus electrode 333 and a light receiving surface grid electrode 32 is provided.
  • the antireflection film 303 under the light receiving surface bus electrode 333 and the light receiving surface grid electrode 32 is melted by baking, and the light receiving surface bus electrode 333 and the light receiving surface grid electrode 32 are electrically joined to the n-type impurity diffusion layer 302. .
  • FIG. 19 is a cross-sectional view of the light-receiving surface bus electrode 333 of the solar battery cell 310 according to the second embodiment of the present invention.
  • L6 is the length in the X direction of the high bus portion 336
  • L7 is the length in the X direction at the center portion of the low bus portion 335
  • L8 is the length in the X direction at the intermediate end portion of the low bus portion 335
  • L9 is the length in the X direction at the end of the low bus portion 335.
  • L6 is provided at 8 locations at 6 mm
  • L7 is provided at 17 locations at 5 locations
  • L8 is provided at 5 locations at 2 locations
  • L9 is provided at 2 locations at 5.5 mm.
  • the back surface electrode 44 provided on the back surface 41 (second main surface) side of the p-type single crystal silicon substrate 301 includes a back surface aluminum electrode 342 and a back surface bus electrode 343.
  • the back surface bus electrodes 343 are provided in a scattered manner at positions corresponding to the high bus portions 336 of the light receiving surface bus electrodes 333.
  • the tab joint positions are the same on the light receiving surface side and the back surface side, and the tab wire 20 on the light receiving surface side is pressed from above.
  • the light-receiving surface side and the back surface side can be brought into close contact with each other at the same time, so that the solar cells 310 and the tab wires 20 can be easily joined.
  • the high bus portion 336 is arranged closer to the substrate end than the substrate center, and closer to the substrate center than the substrate end. be able to.
  • the back surface aluminum electrode 342 most of the region on the back surface side is covered with the back surface aluminum electrode 342, and since aluminum has a larger thermal expansion coefficient than silicon constituting the substrate, the back surface side is pulled by contraction of aluminum after firing. Therefore, there is a tendency to be deformed to be convex on the light receiving surface side and concave on the back surface side.
  • the bonding strength can be increased.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池セルの製造方法において、電極材料である導電性材料を含むペーストを太陽電池セル用基板の電極形成面に塗布する塗布工程を含み、塗布工程は、太陽電池セル用基板を位置制御可能なステージ(104)に載置する基板載置工程と、ステージ(104)の第1方向の位置を制御する第1方向制御工程と、第1方向に直交するステージ(104)の第2方向の位置を制御するとともに、ペーストを吐出する吐出ノズル(103)を備えた液体塗布装置を使用して、吐出ノズル(103)からの時間当たりの吐出量で塗布量を制御しながらペーストを電極形成面に塗布するペースト吐出工程とを含むことを特徴とする。

Description

太陽電池セルの製造方法および太陽電池セル
 本発明は、太陽電池セルの製造方法および太陽電池セルに係り、特に太陽電池セルの電極形成に関する。
 従来の太陽電池セルの製造に関し、特許文献1では以下のような手順を採用している。先ず、シリコン等の基板材料の表面に、太陽光の基板表面での反射角を変化させ、反射光を基板内に取り込むためのテクスチャと呼ばれる凹凸構造を、エッチング等の手法により形成する。次に、拡散等の手法によってpn接合を形成し、太陽光の反射を光干渉効果によって低減するため、当該基板材料の少なくとも一面に窒化シリコン膜等の高屈折率薄膜からなる反射防止膜を形成する。次に、電極材料である金属ペースト等の導電性のペーストを反射防止膜上に所望のパターンになるよう塗布し、ペーストを加熱して当該ペーストに含まれるガラスにより反射防止膜を溶融させ、基板との電気的接合を取るための焼成を実施し、電極を形成する。更に、ガラス成分を溶解させるエッチング液に基板材料を浸漬し、電極に含まれるガラス成分を溶解させて電極の電気抵抗を低減する。
 電極材料は一般的にペーストと呼称され、主に金属粉からなる導電性材料、ガラス成分である無機材料、樹脂成分である有機材料および有機溶剤の組合せから成る。先に述べたように、ペーストはスクリーン印刷法等の各種印刷法によって所望の電極形状に成型され、焼成と呼ばれる加熱工程によって含有されるガラス成分で反射防止膜を溶融させ、基板材料と電気的接合を取って電極を形成する。
 導電性材料として、通常は銀が使用されるが、貴金属でもあり、相場にも左右されやすく、価格的にも安価ではない。しかしながら、太陽電池セルの性能はこの銀ペーストからなる電極に負うところが大きく、他材料での電極は世の中の主流ではない。そこでこのペーストを開発、製造、販売しているメーカー間では、如何に少ないペースト量で、如何に少ない銀量で、如何に効率の高い太陽電池セルを製造するかを、日々競争しているのが現状である。
 通常、太陽電池セルの表面には、発電された電流を集電するための細いグリッド電極と、それに直交するように基板間接続用の太いバス電極が配置され、これらをスクリーン印刷法により、一括して成型する手法が主流である。ペーストの高性能化は、すなわち細く高いグリッド電極の成型であり、バス電極に求められる厚みの薄い、つまり塗布量を抑える成型とは異なるため、近年、グリッド電極とバス電極とを各々独立して成型する手法が検討されつつある。
 また、従来の太陽電池モジュールの製造方法では、受光面側および裏面側に集電電極の形成された複数の太陽電池セルを、タブ線によって接合することで、太陽電池モジュールを形成する。受光面側では、タブ線がバス電極に電気的および機械的に接合される。従って、バス電極の形状は、特許文献2に示されるように、太陽電池モジュールの機械的強度の観点からも検討されている。
特許第4486622号公報 特許第4284368号公報
 太陽電池セルの製造コスト削減のためには、バス電極の電極ペースト使用量の削減が効果的であるが、バス電極の電極ペースト使用量を削減すると、タブ線の接合強度が低下するという課題があった。
 本発明は、上記に鑑みてなされたものであり、太陽電池モジュールの機械的強度を低下させることなく、太陽電池セルに低コストの電極形成を実現することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の太陽電池セルの製造方法は、半導体基板上にpn接合を形成し太陽電池セル用基板を形成する工程と、電極材料である導電性材料を含むペーストを太陽電池セル用基板の電極形成面に塗布する塗布工程と、塗布されたペーストを焼成する焼成工程とを含む電極形成工程とを備える。塗布工程は、太陽電池セル用基板を位置制御可能なステージに載置する基板載置工程と、ステージの第1方向の位置を制御する第1方向制御工程と、第1方向に直交するステージの第2方向の位置を制御するとともに、ペーストを吐出する吐出ノズルを備えた液体塗布装置を使用して、吐出ノズルからの時間当たりの吐出量で塗布量を制御しながらペーストを電極形成面に塗布するペースト吐出工程とを含むことを特徴とする。
 本発明によれば、太陽電池モジュールの機械的強度を低下させることなく、太陽電池セルに低コストの電極形成を実現することが可能となる。
実施の形態1にかかる太陽電池セルの電極形成方法によって形成された電極を備える太陽電池セルの受光面である表面を示す図 図1に示す太陽電池セルについて、受光面とは反対側の裏面を示す図 図1および図2のV-V断面図 図1および図2のW-W断面図 実施の形態1にかかる太陽電池セルの受光面電極の部分斜視図 実施の形態1にかかる太陽電池セルの受光面電極の断面図 実施の形態1の電極形成方法に使用する印刷機を説明する模式図 実施の形態1の電極形成方法に使用する印刷機のステージ部分の模式断面図 実施の形態1の印刷機のうち、受光面バス電極を描画している部分および周辺の模式断面図 実施の形態1の塗布工程のフローチャート図 実施の形態1における受光面グリッド電極の形成に用いられるスクリーン印刷機のステージ部分の模式断面図 図11の拡大図 比較例の方法で作製した太陽電池セルの性能と実施の形態1の太陽電池セルの性能を比較した表図 比較例の方法で作製した太陽電池セルの受光面バス電極に塗布されたペーストの重量と実施の形態1の塗布重量を比較した比較図 比較例の方法での製造コストを、ペースト、印刷マスク、印刷機の3項目に分けて、各々を1とした時の実施の形態1での相対値を表した比較図 実施の形態1による太陽電池モジュールの製造方法の手順を説明する模式断面図 実施の形態1による太陽電池モジュールの製造方法の手順を説明する模式断面図 実施の形態2にかかる太陽電池セルの断面図 実施の形態2にかかる太陽電池セルの受光面電極の断面図
 以下に、本発明にかかる太陽電池セルの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池セルの電極形成方法によって形成された電極を備える太陽電池セル10の受光面である表面を示す図である。受光面である表面を第1主面と呼ぶ。図2は、図1に示す太陽電池セル10について、受光面とは反対側の裏面を示す図である。裏面を第2主面と呼ぶ。図3は、図1および図2のV-V断面図、図4は、図1および図2のW-W断面図である。
 太陽電池セル10の第1主面である受光面31には、受光面グリッド電極32および受光面バス電極33からなる第1の集電電極としての受光面電極34が設けられている。受光面グリッド電極32および受光面バス電極33は互いに直交している。また、太陽電池セル10の第2主面である裏面41には、裏面アルミニウム電極42および裏面バス電極43からなる第2の集電電極としての裏面電極44が設けられている。図1、図2の矢印Xで示した水平方向である第1方向が受光面バス電極33の長手方向であり、図1、図2の矢印Yで示した垂直方向である第2方向が受光面グリッド電極32の長手方向である。受光面31に垂直な方向をZ方向とする。
 図3は、本発明の実施の形態1にかかる太陽電池セル10の要部断面図であり、図1および図2におけるV-V断面図である。図3は受光面バス電極33の存在する断面を示す図である。図中、上側が受光面31である。図4は、本発明の実施の形態1にかかる太陽電池セル10の要部断面図であり、図1および図2におけるW-W断面図である。図4は受光面バス電極33の存在しない断面を示す図である。図中、上側が受光面31である。図5は、本発明の実施の形態1にかかる受光面電極34の要部拡大斜視図である。
 太陽電池セル10は、テクスチャー構造を有するp型単結晶シリコン基板1の上面にリン拡散により形成されたn型不純物拡散層2を有し、pn接合により光電変換部が形成されている。n型不純物拡散層2の受光面側には、反射防止膜3が成膜されている。反射防止膜3上には受光面バス電極33と受光面グリッド電極32とが設けられている。受光面バス電極33と受光面グリッド電極32の下の反射防止膜3は焼成によって溶融され、受光面バス電極33と受光面グリッド電極32はn型不純物拡散層2と電気的に接合している。なお、太陽電池セル10は、n型単結晶シリコン基板とその上面のp型不純物拡散層によりpn接合を形成しても良い。
 p型単結晶シリコン基板1の受光面31(第1主面)側に設けられた受光面電極34は、第1方向であるX方向に延びてY方向に平行に複数形成された受光面バス電極33と、受光面バス電極33に直角に交差する第2方向であるY方向に延びてX方向に平行に複数形成された受光面グリッド電極32とを備える。受光面バス電極33は、受光面31に対して垂直な方向の高さが受光面グリッド電極32の高さよりも低い低バス部35と、受光面31に対して垂直な方向の高さが低バス部35の高さよりも高い高バス部36とを備える。高バス部36は、X方向に複数設けられる。複数の受光面バス電極33には、X方向の同じ位置に高バス部36が設けられる。
 p型単結晶シリコン基板1の裏面41(第2主面)側に設けられた裏面電極44は、裏面アルミニウム電極42と裏面バス電極43とを備える。裏面バス電極43は、受光面バス電極33に対応する位置に、点在して設けられる。裏面バス電極43のY方向の位置は、裏面バス電極43のY方向の中心が、受光面31に垂直な方向であるZ方向から透視して受光面バス電極33に重なる位置に設けられる。裏面バス電極43のX方向の位置は、裏面バス電極43のX方向の中心が、受光面31に垂直な方向であるZ方向から透視して受光面バス電極33の高バス部36に重なる位置に設けられる。
 裏面アルミニウム電極42は、裏面41の裏面バス電極43以外の領域全体に、裏面バス電極43に、例えば重なり幅0.1mm~0.9mmで接触するように設けられる。
 図3は、受光面バス電極33の長手方向に沿った断面を示しており、受光面グリッド電極32は示されていない。一方、図4は受光面バス電極33が設けられていないY方向位置での断面を示しており、受光面バス電極33と裏面バス電極43は示されていない。
 太陽電池セル10は例えば厚さ200μm、X方向幅156mm、Y方向幅156mmである。太陽電池セル10の表裏面には、39mmの均等なピッチで4組の受光面バス電極33と裏面バス電極43が設けられる。受光面バス電極33は、例えば幅1mm×長さ155mmで、等間隔に39mmピッチで4本設けられる。受光面グリッド電極32は、例えば幅30μm~100μm、長さ154mm、高さ10~20μmで、受光面バス電極33の長手方向であるX方向と直交するY方向を長手方向にして、等間隔に1~2mmピッチで155~78本設けられる。受光面グリッド電極32の高バス部36は、X方向の長さが6mmで等間隔に複数設けられる。
 裏面バス電極43は、例えばY方向の幅3mm、X方向の長さ6mmの大きさで、受光面バス電極33に対応する位置に、例えば4列、6~10個で、X方向に26~15mmのピッチで均等に設けられる。
 太陽電池セル10を複数並べて配列し、太陽電池セル10の受光面バス電極33と、隣接する太陽電池セル10の裏面バス電極43とを、タブ線20によって電気的に接続して、太陽電池モジュールが形成される。タブ線20は、銅線の周囲にハンダをコーティングして形成される。
 図6には、本実施の形態1で形成した受光面バス電極33の断面図を示す。本実施の方法で受光面バス電極33を塗布する際、塗布量を減じると、電極厚みの極めて薄い受光面バス電極33を形成することも可能であるが、当該電極をタブ線20と接合させる際、上手くハンダ接合が出来なかったり、接合できた場合でも接合の機械的強度が著しく低くなる。
 そこで、図6のように、受光面バス電極33の長手方向であるX方向において、受光面31に対して垂直な方向の高さが前記低バス部35の高さよりも高い高バス部36を設け、高バス部36でタブ線20とハンダにより接合することで、接合部の機械的強度の強いハンダ接合を得ることが出来る。図6で、L1が高バス部36のX方向の長さ、L2が低バス部35の中央部でのX方向の長さ、L3が低バス部35の端部でのX方向の長さである。例えば、L1が6mmで8か所、L2が12mmで7か所、L3が11mmで両端部に2か所設けられる。
 受光面バス電極33の高バス部36の高さは、受光面グリッド電極32の高さと同程度であることが望ましい。受光面グリッド電極32を形成した後で受光面バス電極33を形成する場合、受光面グリッド電極32よりも高く受光面バス電極33を形成しようとしても、ペースト塗布時にY方向に広がるため、受光面グリッド電極32よりも高さが高い受光面バス電極33の形成は困難である。一方、高さが低くなるとタブ線20との接合が困難になる。従って、受光面バス電極33の高バス部36の高さは、受光面グリッド電極32の高さと同程度とすることにより、電極形成が容易で、タブ線20との接合を容易にすることができる。
 受光面バス電極33の低バス部35の高さは、受光面31のテクスチャーの高さよりも高いことが望ましい。低バス部35に接続された受光面グリッド電極32に集電された電流は、低バス部35から高バス部36に流れ、高バス部36で接合されたタブ線20により、隣り合う太陽電池セルに流れる。従って、低バス部35の電気抵抗が大きくなると、抵抗損失が増加し、太陽電池セルの出力特性が悪化する。特に、受光面31にテクスチャーが形成されている場合、テクスチャーの凹凸により電気抵抗が大きくなりやすい。受光面バス電極33の低バス部35の高さを、受光面31のテクスチャーの高さよりも高くすることにより、表面にテクスチャーの凹凸を有する構造であっても、電気抵抗の小さい受光面バス電極33を得ることができる。テクスチャーは、四角錐状の形状を有し、大きさは、例えば底面の正四角形の1辺が3μm程度、高さが2μm程度である。
 受光面バス電極33の低バス部35の高さが高くなると、電極ペーストの使用量が増加してコストが増加する為、電気抵抗に大きな影響を与えない範囲で高さを低くすることが望ましい。従って、受光面バス電極33の低バス部35の高さは、受光面グリッド電極32の高さの1/3~2/3程度の高さであることが望ましい。1/2程度であることが最も望ましい。
 また、受光面バス電極33の高バス部36の高さと低バス部35の高さとに差を設けることにより、高バス部36の熱容量が大きくなって、高バス部36でのタブ線20との接合強度を強くすることができる。受光面バス電極33の高バス部36の高さと低バス部35の高さとは、5μm以上の高さの差を設けることが望ましい。
 受光面バス電極33の高バス部36のX方向の長さは、長さが長くなるとコストが増加する一方、長さが短くなるとピール強度が低下するので、両者を考慮して適切な長さを選択するのが望ましい。高バス部36のX方向の長さは、低バス部35のX方向の長さよりも短いことが望ましい。一方、グリッド間の内、少なくとも1か所を高バス部36とすることで、ピール強度の低下を抑制することができる。そのためには、高バス部36のX方向の長さは、グリッドピッチの2倍以上であることが望ましい。グリッドピッチが1mmであれば、高バス部36のX方向の長さは2mm以上であることが望ましい。
 受光面バス電極33の高バス部36のX方向の個数は、個数が多くなるとコストが増加する一方、個数が少なくなるとピール強度が低下するので、両者を考慮して適切な個数を選択するのが望ましい。従って、高バス部36のX方向の個数は6~10個であるのが望ましい。
 裏面バス電極43は、受光面バス電極33の高バス部36に対応する位置に、点在して設けられる。太陽電池セル10とタブ線20とのハンダ接合の際には、裏面側のタブ線20と、太陽電池セル10と、受光面側のタブ線20とを順に積層し、受光面側のタブ線20を上部から押さえて相互に密着させた状態でランプヒーターにより加熱することで、接合を形成する。従って、高バス部36と裏面バス電極43とを対応する位置に設けることにより、受光面側と裏面側とでタブ接合位置が同じ位置になり、受光面側のタブ線20を上部から押さえた時に受光面側と裏面側を同時に相互に密着させることができるので、太陽電池セル10とタブ線20との接合を容易に行うことができる。
 次に、図1から図4に示す太陽電池セル10を製造するための工程を説明する。本実施の形態では、受光面バス電極形成に際し、印刷マスクを介さずに、電極材料である導電性材料を含むペーストを基板材料の電極形成面に塗布する工程を含むことを特徴とする。塗布工程では液体吐出装置を使用して、時間当たりの塗布量を制御しながら、ペーストを塗布する。
 まず、p型単結晶シリコン基板1を、90℃程度に加温した水酸化ナトリウムの水溶液中に浸漬する。これにより、p型単結晶シリコン基板1の表面がエッチングされて、p型単結晶シリコン基板1の表層に微小な凹凸構造であるテクスチャーが形成される。テクスチャーは、四角錐状の形状を有し、大きさは、例えば底面の正四角形の1辺が3μm程度、高さが2μm程度である。p型単結晶シリコン基板1の表面が(100)面、四角錐の各面が(111)面である。
 次いで、p型単結晶シリコン基板1を熱酸化炉へ投入し、オキシ塩化リン(POCl3)蒸気の存在下で800℃から900℃程度に加熱する。これにより、p型単結晶シリコン基板1の表面にリンガラスが形成されてp型単結晶シリコン基板1中にリンが拡散され、p型単結晶シリコン基板1の表層にn型不純物拡散層2が形成される。
 次に、フッ酸水溶液中でp型単結晶シリコン基板1のリンガラス層を除去した後、反射防止膜3としてたとえばプラズマCVD法により窒化シリコン膜(SiN膜)をn型不純物拡散層2上に形成する。反射防止膜3の膜厚および屈折率は、光反射を最も抑制する値に設定する。なお、屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜3は、スパッタリング法など、異なる成膜方法により形成してもよい。
 次に、p型単結晶シリコン基板1の裏面41に、裏面バス電極43を形成する領域に銀を含むペーストをスクリーン印刷にて印刷し、裏面バス電極43以外の領域全体に、アルミニウムを含むペーストを全面にスクリーン印刷にて印刷する。
 そしてさらに、p型単結晶シリコン基板1の受光面31に銀を含むペーストをスクリーン印刷にて印刷し、受光面グリッド電極32を形成したのち、図7および図8に示す、塗布装置を用いて受光面バス電極33を塗布する。受光面バス電極33を塗布した後、焼成処理を実施して受光面電極34と裏面電極44とを形成する。p型単結晶シリコン基板1の受光面31では、受光面電極34の下の反射防止膜3は焼成によって溶融され、受光面電極34はn型不純物拡散層2と電気的に接触する。以上のようにして、図1から図4に示す太陽電池セル10が作製される。
 太陽電池用基板1Sに塗布されたペーストは、一般に焼成と称される処理によって電極となる。焼成工程では、ピーク温度を800℃以下、望ましくは720℃から770℃とする加熱処理を実施する。焼成炉での加熱処理の時間は、概ね2分以内とする。
 次に、本実施の形態にかかる太陽電池セルの電極形成方法のうち受光面バス電極の形成方法について説明する。図7は、本実施の形態の電極形成方法に使用する印刷機を説明する模式図であり、印刷マスクを介さずに電極を形成するための印刷工程にて使用する。本印刷工程では、印刷マスクを介さずに基板材料の電極形成面に受光面バス電極33用のペースト51を塗布する。
 本実施の形態の方法により電極を形成する基板の材料としては、例えば、薄板状のシリコンであるシリコンウェハを使用する。基板の形状としては、例えば、正方形形状のものや、正方形の四隅を円弧状とした角丸四角形形状のものを使用する。正方形形状の一辺、角丸四角形形状の一辺相当幅は、例えば156mmとする。なお、基板材料は、通例のスクリーン印刷工程によって電極を形成することが可能な材料であれば、いずれの材質のものであっても使用することが可能であり、通例の方法で用いられる基板材料との間に相違はない。
 本実施の形態の印刷機は、図7に示すように、電極材料を構成するペースト51を吐出する液体吐出部102を備えた印刷ヘッド101と、基板材料すなわち太陽電池用基板であるpn接合の形成されたp型単結晶シリコン基板1を載置するためのステージ104とを備える。液体吐出部102の先端には吐出ノズル103が設けられ、吐出ノズル103から所望の粘度に調整されたペースト51が吐出される。ペースト51の単位時間当たりの吐出量は、制御部105からの信号によって変化させることが可能である。ステージ104はX方向およびY方向に移動可能なX-Yテーブルであり、制御部105からの信号によって座標を指定し、連続的に移動させることが可能である。また、X-Yテーブルの移動速度も、制御部105からの信号によって変化させることが可能である。また、本印刷機は、ステージ104の上方部に液体吐出部102を配置するための印刷ヘッド101を備える。印刷ヘッド101も制御部105からの信号によってY方向およびZ方向に移動させることが可能である。
 印刷機は、予めプログラムされた印刷パターンに従い、印刷ヘッド101に配置されたペースト51を充てん済の液体吐出部102に圧力を印加しながら液体吐出部102および太陽電池用基板1Sを載置したステージ104を移動させることで、太陽電池用基板1Sの電極形成面にペースト51を塗布する。ここで太陽電池用基板1Sとは、p型単結晶シリコン基板1にpn接合を形成し、反射防止膜3を形成したものを示すものとする。
 ペーストを塗布する塗布工程を詳細に説明する。図10に、塗布工程のフローチャートを示す。
 まず、ステージ104に、太陽電池用基板1Sを、受光面バス電極33の長手方向をX方向として載置する基板載置工程S1を行う。
 次に、ステージ104と液体吐出部102とを移動させることにより、受光面バス電極33の端部となるペースト塗布開始位置に液体吐出部102を移動させるX方向(第1方向)制御工程S2を行う。
 次に、液体吐出部102をZ方向に下げて、太陽電池用基板1Sと吐出ノズル103の下端との間隔をペースト塗布に適切な位置にする吐出ノズル下降工程S3を行う。液体吐出部102の吐出ノズル103の下端の高さは、受光面グリッド電極32の上端の高さと同じ位置とすることが適切である。高さが低くなると、吐出ノズル103の下端により受光面グリッド電極32が削られることになるので不適切である。一方、太陽電池用基板1Sと吐出ノズル103の下端との間隔が大きくなると、ペースト塗布の位置精度が低下するので不適切である。従って、吐出ノズル103の下端の高さは受光面グリッド電極32の上端の高さと同じ位置とすることが最も適切である。
 次に、液体吐出部102に圧力を印加しながらステージ104をX方向に移動させることにより、太陽電池用基板1Sにペースト51を吐出し、受光面グリッド電極32を形成するペースト吐出工程S4を行う。ここで、X方向の低バス部35に対応する位置では、高バス部36に対応する位置と比較して、液体吐出部102に印加する圧力を低くすることにより、低バス部35の高さを高バス部36の高さよりも低くすることができる。
 即ち、低バス部35である第2方向の第1位置での吐出ノズル103からの時間当たりの吐出量を第1吐出量とし、高バス部36である第2方向の第2位置での吐出ノズル103からの時間当たりの吐出量を、第1吐出量よりも多い第2吐出量とすることにより、低バス部35の高さを高バス部36の高さよりも低くすることができる。
 また、X方向の低バス部35に対応する位置では、高バス部36に対応する位置と比較して、ステージ104の移動速度を早くすることにより、低バス部35の高さを高バス部36の高さよりも低くしても良い。また、液体吐出部102に印加する圧力とステージ104の移動速度とを両方制御しても良い。
 即ち、低バス部35である第2方向の第1位置でのステージ104の移動速度を第1ステージ移動速度とし、高バス部36である第2方向の第2位置でのステージ104の移動速度を、第1ステージ移動速度よりも遅い第2ステージ移動速度とすることにより、低バス部35の高さを高バス部36の高さよりも低くすることができる。
 次に、液体吐出部102をZ方向に上げて、太陽電池用基板1Sと液体吐出部102との間隔を両者が干渉しない高さ位置にする吐出ノズル上昇工程S5を行う。
 次に、ペースト塗布が完了したかどうかを判断する塗布完了判断工程S6を行う。受光面バス電極33の本数だけペースト吐出を繰り返すことで、ペースト塗布が完了する。
 ペースト塗布が完了していない場合、すなわち、塗布完了判断工程S6でNoの場合、ステージ104と液体吐出部102とをY方向に移動させることにより、隣り合う受光面バス電極33の端部となるペースト塗布開始位置に液体吐出部102を移動させるX方向(第1方向)制御工程S2を行う。複数の受光面バス電極33は、端部がX方向の同じ位置にあるので、Y方向の移動のみで隣り合う受光面バス電極33の端部に移動させることができる。
 このようにして受光面バス電極33の本数だけペースト吐出工程を繰り返すことにより、受光面バス電極33へのペースト塗布が完了する。ペースト塗布が完了後、ステージ104からペーストが塗布された太陽電池用基板1Sを取り出す基板取出し工程S7を行う。
 基板載置工程、第1方向制御工程、吐出ノズル下降工程、ペースト吐出工程、吐出ノズル上昇工程、塗布完了判断工程、基板取出し工程により、塗布工程が完了する。
 図8は、印刷機のステージ部分を拡大した模式断面図である。ここでは、太陽電池用基板1Sに受光面バス電極33を形成する場合を例とする。受光面バス電極33の形成に本実施の形態を適用する場合、予め受光面グリッド電極32を形成する。受光面グリッド電極32の形成に際しては、従来より用いられている通例の方法であるスクリーン印刷法で形成しても良いし、本実施の形態の電極形成方法を用いても良い。また、受光面バス電極33を形成した後に受光面グリッド電極32を形成しても良い。
 図8では、ステージ104に太陽電池用基板1Sが載置される。ステージ104にはエアー吸引を行う吸引機構107を構成する吸引部108が備えられ、吸引穴を真空ポンプで排気することで太陽電池用基板1Sはステージ104に固定される。また、ステージ104には太陽電池セル10の受光面バス電極33に沿った位置に対応して、複数の圧力センサ109を具備している。印刷ヘッド101に配置された液体吐出部102にはペースト51が充てんされ、液体吐出部102に圧力を印加して、液体吐出部102の先端に設けられた吐出ノズル103よりペースト51が押し出されることにより、太陽電池用基板1Sの電極形成面である受光面31に予めプログラムされた受光面バス電極33のパターンを描画する。
 液体吐出部102は、印刷機の制御部105によって、時間当たりの塗布量を制御することができる。また、ステージ104に備えられた圧力センサ109にて感知された圧力は、同制御部105を通して液体吐出部102にフィードバックされ、塗布量を制御することができる。
 液体吐出部102に装着される吐出ノズル103は、描画するラインによって材質や大きさ、形状を使い分ける。吐出ノズル103に用いられる代表的な材料としては、ステンレス等の金属、ポリエチレン等の樹脂が挙げられる。また、描くライン幅によってノズル径を選択し、ノズル形状も通常の丸形、方形、分岐ノズル、多連ノズル、平ノズル等から選択する。
 本実施の形態によれば、予めスクリーン印刷法によって受光面グリッド電極32を形成し、乾燥処理を施した太陽電池用基板1Sをステージ104に載置し、吸引部108によって固定する。次に、予めプログラムされた印刷パターンに従って、受光面バス電極33を受光面グリッド電極32と直交するように太陽電池用基板1Sの受光面31に描画する。なお、本実施の形態では、受光面バス電極33の幅が1mmで、予め受光面グリッド電極32を形成していることにより、適用したノズルは高密度ポリエチレン製テーパーノズル0.8φ径である。このようにして印刷マスクを使用することなく、吐出ノズル103から直接ペースト51を供給することで、受光面バス電極33を形成することが出来る。
 図9は、実施の形態1の印刷機のうち、受光面バス電極33を描画している部分およびその周辺の模式断面図である。液体吐出部102の吐出ノズル103より、ペースト51が時間当たりの吐出量を制御しながら吐出され、受光面バス電極33を描画する。その際、描画する位置に対応して液体吐出部102の圧力を制御することにより、吐出量を微細に変化させながら描画することが可能となる。
 図11は、本実施の形態における受光面グリッド電極32の形成に用いられるスクリーン印刷機のステージ部分の模式断面図である。スクリーン印刷工程では、印刷マスク202を介して太陽電池用基板1Sの電極形成面に受光面グリッド電極32用のペースト52を塗布する。図12は図11の拡大図である。図11および図12に示す印刷機は太陽電池用基板1Sを載置するステージ104を備え、ステージ104には太陽電池用基板1Sを固定するための吸引部108を備える。吸引部108はステージ104におけるエアーの吸引によって、太陽電池用基板1Sをステージ104に固定する。印刷マスク202は、マスクフレーム203と縦糸200Aと横糸200Bを有し、マスクフレーム203の印刷面側に貼り付けられたスクリーンメッシュ200と、感光性乳剤200Sとを備える。図12では、ステージ104およびマスクフレーム203を省略している。
 印刷機は、ペースト52が載せられた状態の印刷マスク202上にてスキージ201を走査させることで、印刷マスク202を介して、太陽電池用基板1Sの電極形成面にペースト52を塗布する。印刷マスク202のうち感光性乳剤200Sでカバーされた部分ではペースト52を通過させず、スクリーンメッシュ200を露出させた部分でペースト52を通過させることで、印刷機は、印刷マスク202の印刷パターンを電極形成面上に転写し、受光面グリッド電極32を形成する。
 ペースト51,52は、電極材料である導電性材料を含む。ペースト51,52に使用される代表的な導電性材料としては、金、銀、銅、白金およびパラジウム等の金属材料があげられる。ペースト51,52は、これらの導電性材料の一つあるいは複数を含む。
 実施の形態1の電極形成方法では、受光面グリッド電極32および受光面バス電極33に対して最適なペースト51,52を選択することが可能である。また、本実施の形態では受光面バス電極33に必要な塗布量の削減も併せて可能である。ちなみに、通例の方法では、受光面グリッド電極32および受光面バス電極33に対して一括形成が行われるため、受光面バス電極33部分に印刷マスク202を通して塗布されるペーストの重量が、受光面グリッド電極32の性能を発現させるためのマスク仕様によって決められている。これに対し、本実施の形態では、各々独立して形成することにより、最適化を図ることが可能である。
 また、受光面バス電極33に最適なペーストの仕様においては、求められる性能の為、受光面グリッド電極32で用いられるペーストに比べて少ない量の導電性材料でその機能を発現することが可能である。すなわちこれは、ペースト52,51の合計価格を下げることに他ならない。従って、受光面グリッド電極32および受光面バス電極33を各々独立して形成することにより、塗布量的にも価格的にも両面から併せてコストダウンが可能となる。
 これに対して、比較例では、通常一括で受光面グリッド電極32および受光面バス電極33を形成するため、印刷マスク202およびペーストの仕様は一様に設定される。しかしながら、受光面グリッド電極32と受光面バス電極33に求められる性能は同じではない。前者は太陽電池用基板1S内で発生した電流を集電することであり、後者はその集電した電流をタブ線を通して流すことである。そのため、受光面グリッド電極32の性能を最大限発現するよう調整されているペーストを、受光面バス電極33に用いることは過剰品質であり、価格的にも割高なものを使用している。
 図13は、比較例の方法で作製した太陽電池セルの性能と実施の形態1の太陽電池セルの性能を比較した表図である。比較例の方法に比べて、電圧(Voc)は2mV、電流(Jsc)は0.4mA/cm向上し、曲線因子(FF)は1/100低下した結果、効率(Eff)は同等となる。
 また、接合強度においては、接合部位の厚みを考慮せずに受光面バス電極33を形成した際、従来法の強度を上回ることが出来なかったが、実施の形態1では接合部位の厚みを考慮した構造に変更した結果、比較例と同等以上の値を確保した。
 図14は、比較例の方法で作製した太陽電池セルの受光面バス電極33に塗布されたペーストの重量と実施の形態1の塗布重量を比較した比較図である。本実施の形態で用いた受光面バス電極33用のペースト51は、含まれる導電性材料の量が比較例の受光面バス電極33用のペーストに含まれる導電性材料の量と比べて3割程度低減したものである。
 実施の形態1では、低バス部35と高バス部36とで、液体吐出部102にかける圧力を変化させることにより、吐出するペーストの流量を変化させて、電極の高さを変えることができる。
 比較例の方法では0.05gの塗布量であったものが、本実施の形態の方法では0.034gであり、比較例の方法よりも塗布量の3割程度の低減が可能である。これによって作製された太陽電池セルの性能は、比較例の方法と同等と言う結果となり、比較例の方法におけるペーストの塗布量より3割低減されており、これが導電性材料を3割減じたペースト51で達成されている。
 図15は、比較例の方法での製造コストを、ペースト、印刷マスク、印刷機の3項目に分けて、各々を1とした時の実施の形態1の方法で製造コストの相対値を表した表図である。本実施の形態では、受光面バス電極33に対して本実施の形態の電極製造方法を適用し、受光面グリッド電極32には従来法を適用しており、ペーストはコスト低減、印刷マスクは変化なし、印刷機はコスト増となる。しかしながら、一定の条件の下、太陽電池セルの出力向上とペーストのコストおよび使用量低減により、本実施の形態にかかる印刷機を追加で導入した場合でも、約1年で導入コストが回収され、その後は利益を生むこととなる。なお、図15では、受光面バス電極用ペーストは受光面バスペースト、受光面バス電極用印刷機は受光面バス印刷機とするなど、用語の省略をしている。
 図16および図17は、本実施の形態による太陽電池モジュールの製造方法の手順を説明する模式断面図である。まず、受光面側および裏面側に集電電極の形成された複数の太陽電池セル10を、タブ線20によって接続する。この配線付きの太陽電池セル10を、図16に示すように、透光性樹脂部材21Aおよび21Bを介して透光性基板22および裏面シート23との間に挟み込みこれらの部材を圧着させた状態で加熱処理を施すことにより、図17に示すように、配線付きの太陽電池セル10が封止された透光性樹脂部材21と、透光性基板22と、裏面シート23とが一体化された太陽電池モジュールが作製される。上記の電極形成方法により形成された電極を備える太陽電池セル10を用いることで、高い発電効率を持つ太陽電池モジュールを得ることができる。
 本実施の形態では、高額の装置設備を要することなく、簡便な手法により高性能な太陽電池セルおよび太陽電池モジュールを得ることができるため、工業上非常に有用である。
 実施の形態1によれば、受光面バス電極33の形成に際し、印刷マスクを使用しないことで、印刷マスクのためのコストが不要になる。また、スクリーン印刷機よりも安価なシステムによって所望の電極を形成することができる。電極形成においては、時間当たりの塗布量を制御しながらペーストを塗布することが可能なため、本来必要な量のペーストを電極形成位置に吐出させることが出来る。これにより、特性を向上させるに必要十分なペーストを供給し、その結果として供給するペースト量を従来に比較して削減する、つまり、コスト削減と効率向上を合わせ持つ太陽電池用電極の形成を可能とする。また、実施の形態1の電極形成方法は簡便で安価な方法であり、従来の手法と置き換える、若しくは従来の手法に追加することにより、電極パターンの配置あるいは線幅、厚さなどに設計変更があった場合にも、即時に実施可能であり、信頼性のある電極形成が容易に可能となる。
 なお、受光面グリッド電極32はスクリーン印刷によって形成し、受光面バス電極33のみを、スクリーンを用いることなく、液体吐出部102を用いて吐出量を制御しながら形成したが、受光面グリッド電極32についても、液体吐出部102を用いて吐出量を制御しながら形成するようにしてもよい。
 また、液体吐出部102の吐出量を制御するとともに、ステージ104の移動速度を制御することにより、受光面バス電極33の高さを制御することが容易となる。
 なお、制御部105は、吐出ノズル103からのペーストの供給量を、毎分0.1ミリリットルから1ミリリットルに制御することで、高精度の線幅および位置を維持しつつ効率よくバス電極を描画することができる。特に、吐出ノズル103からのペーストの供給量は、望ましくは毎分0.1ミリリットルから0.3ミリリットルの範囲で制御しながらバス電極を描画することで、圧力センサ109を用いることなく、高精度のバス電極形成が実現される。圧力センサ109を使用することなくペースト供給を行う場合において、供給量を毎分0.1ミリリットルから1ミリリットルで高精度に制御することによって高精度のバス電極のパターンを描画することが可能となる。中でも毎分0.1ミリリットルから0.3ミリリットルで吐出ノズル103からのペーストの供給量すなわち吐出量を制御しながらバス電極のパターンを描画することで、従来塗布量の3割減の供給量でバス電極のパターンを描画することが出来る。従って、高精度でペースト使用量の少ない電極を提供することが可能となる。因みに、ある一定条件下において、塗布量0.012gは約0.1ミリリットル/分で塗布したもの、塗布量0.034gは約0.3ミリリットル/分で塗布したものに相当する。さらにまた、前述したように、吐出ノズル103の高さを調整することによっても吐出量を微調整することができる。また、圧力センサ109を用いる場合にも、毎分0.1ミリリットルから0.3ミリリットルで吐出ノズル103からのペーストの吐出量を制御しながらバス電極のパターンを描画することでより高精度の制御が可能となる。
 本発明の太陽電池用電極の形成方法では、印刷マスクを介さずに、電極材料である導電性材料を含むペーストを基板材料の電極形成面に塗布する工程を含み、前記塗布工程では液体吐出装置を使用して、時間毎の塗布量を制御しながら、所望の電極形状を得る為の描画プログラムによって液体吐出装置を移動させ、前記ペーストを塗布することを特徴とする。
 本発明によれば、印刷マスクを使用しないことで、そのためのコストが不要になる。また、スクリーン印刷機よりも安価なシステムによって所望の電極を形成することができる。電極形成においては、時間当たりの塗布量を制御しながらペーストを塗布することが可能なため、本来必要な量のペーストを電極形成位置に吐出させることが出来る。これにより、特性を向上させるに必要十分なペーストを供給し、その結果として供給するペースト量を従来より削減し、コスト削減と効率向上を合わせ持つ太陽電池用電極の形成が可能となる。
 また、太陽電池モジュールの製造において、基板間接続用のタブ線と太陽電池セルとを接合するにあたり、接合ポイントで確実にハンダのタブ付を可能にするため、所望の電極形状を得る為の描画プログラムによって、液体吐出装置を三次元に移動させることが出来るので、接合ポイントにおいては十分な電極厚が確保され、電極厚みの凹凸やむら、かすれ等がなく、接合強度においても十分な値を得ることが可能となる。
 本発明の電極形成方法は簡便で安価なシステムであり、従来の手法と置き換える、若しくは従来の手法に追加することにより、実施が可能となる。
 比較例では、通常一括で受光面グリッド電極32および受光面バス電極33を形成するため、印刷マスクおよびペースト51の仕様は一様に設定される。しかしながら、受光面グリッド電極32および受光面バス電極33に求められる性能は同じではない。前者はp型単結晶シリコン基板1内で発生した電流を集電することであり、後者はその集電した電流をタブ線を通して流すことである。そのため、受光面グリッド電極32の性能を最大限発現するよう調整されているペースト51を、受光面バス電極33に用いることは過剰品質であり、価格的にも割高なものを使用している。
 これに対して、本実施の形態の電極形成方法では、受光面グリッド電極32および受光面バス電極33に対して最適なペースト51,52を選択することが可能である。また、本実施の形態では受光面バス電極33に必要な塗布量の削減も併せて可能である。これは、比較例では、受光面バス電極33部分に印刷マスクを通して塗布されるペースト51の重量が、受光面グリッド電極32の性能を発現させるためのマスク仕様によって決められているが、本実施の形態では受光面グリッド電極32と受光面バス電極33とを各々独立して形成することにより、最適化を図ることが可能となる。
 また、受光面バス電極33に最適なペースト51の仕様においては、その求められる性能の為、受光面グリッド電極32のペースト52に比べて少ない量の導電性材料でその機能を発現することが可能である。すなわちこれは、ペースト51の価格を下げることに他ならない。従って、受光面グリッド電極32および受光面バス電極33を各々独立して形成することにより、塗布量的にも価格的にも両面から併せてコストダウンが可能となる。
実施の形態2.
 次に、実施の形態2にかかる太陽電池セルについて説明する。実施の形態2の太陽電池セルは、実施の形態1の太陽電池セルに対して、受光面バス電極形状および裏面バス電極形状のみが異なる。それ以外の構成は実施の形態1の太陽電池セルと共通である。図18は、本発明の実施の形態2にかかる太陽電池セル310の要部断面図であり、図1および図2におけるV-V断面図に相当する。図18は受光面バス電極333の存在する断面を示す図である。図中、上側が受光面331である。
 太陽電池セル310は、テクスチャー構造を有するp型単結晶シリコン基板301の上面にリン拡散により形成されたn型不純物拡散層302を有し、pn接合により光電変換部が形成されている。n型不純物拡散層302の受光面側には、反射防止膜303が成膜されている。反射防止膜303上には受光面バス電極333と受光面グリッド電極32とからなる第1の集電電極としての受光面電極334が設けられている。受光面バス電極333と受光面グリッド電極32の下の反射防止膜303は焼成によって溶融され、受光面バス電極333と受光面グリッド電極32はn型不純物拡散層302と電気的に接合している。
 図19は、本発明の実施の形態2にかかる太陽電池セル310の受光面バス電極333の断面図である。図19で、L6が高バス部336のX方向の長さ、L7が低バス部335の中央部でのX方向の長さ、L8が低バス部335の中間端部でのX方向の長さ、L9が低バス部335の端部でのX方向の長さである。例えば、L6が6mmで8か所、L7が17mmで5か所、L8が5mmで2か所、L9が5.5mmで2か所設けられる。
 p型単結晶シリコン基板301の裏面41(第2主面)側に設けられた裏面電極44は、裏面アルミニウム電極342と裏面バス電極343とを備える。裏面バス電極343は、受光面バス電極333の高バス部336に対応する位置に、点在して設けられる。太陽電池セル310とタブ線20とのハンダ接合の際には、裏面側のタブ線20と、太陽電池セル310と、受光面側のタブ線20とを順に積層し、受光面側のタブ線20を上部から押さえて相互に密着させた状態でランプヒーターにより加熱することで、接合を形成する。従って、高バス部336と裏面バス電極343とを対応する位置に設けることにより、受光面側と裏面側とでタブ接合位置が同じ位置になり、受光面側のタブ線20を上部から押さえた時に受光面側と裏面側を同時に相互に密着させることができるので、太陽電池セル310とタブ線20との接合を容易に行うことができる。
 このように構成することで、実施の形態2の受光面バス電極333では、高バス部336を基板端部で基板中央部よりも密に、基板中央部で基板端部よりも疎に配置することができる。太陽電池セル310は、裏面側の大半の領域が裏面アルミニウム電極342で覆われており、基板を構成するシリコンよりもアルミニウムの方が熱膨張係数が大きいため、焼成後に裏面側がアルミニウムの収縮で引っ張られて、受光面側に凸、裏面側に凹に変形する傾向がある。ここで、実施の形態2では、高バス部336を基板端部で基板中央部よりも密に配列することにより、変形が大きな箇所での高バス部336とタブ線20との接合を増やすことで、接合強度を強くすることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 p型単結晶シリコン基板、1S 太陽電池用基板、2 n型不純物拡散層、3 反射防止膜、10 太陽電池セル、20 タブ線、21,21A,21B 透光性樹脂部材、22 透光性基板、23 裏面シート、31 受光面、32 受光面グリッド電極、33 受光面バス電極、34 受光面電極、41 裏面、42 裏面アルミニウム電極、43 裏面バス電極、44 裏面電極、51 ペースト、52 ペースト、101 印刷ヘッド、102 液体吐出部、103 吐出ノズル、104 ステージ、105 制御部、107 吸引機構、108 吸引部、109 圧力センサ、203 マスクフレーム、200 スクリーンメッシュ、200S 感光性乳剤、201 スキージ、200A 縦糸、200B 横糸、202 印刷マスク、301 p型単結晶シリコン基板、302 n型不純物拡散層、303 反射防止膜、310 太陽電池セル、331 受光面、333 受光面バス電極、334 受光面電極、342 裏面アルミニウム電極、343 裏面バス電極。

Claims (8)

  1.  半導体基板上にpn接合を形成し太陽電池セル用基板を形成する工程と、
     電極材料である導電性材料を含むペーストを前記太陽電池セル用基板の電極形成面に塗布する塗布工程と、前記塗布されたペーストを焼成する焼成工程とを含む電極形成工程とを備えた太陽電池セルの製造方法であって、
     前記塗布工程は、
     前記太陽電池セル用基板を位置制御可能なステージに載置する基板載置工程と、
     前記ステージの第1方向の位置を制御する第1方向制御工程と、
     前記第1方向に直交する前記ステージの第2方向の位置を制御するとともに、前記ペーストを吐出する吐出ノズルを備えた液体塗布装置を使用して、前記吐出ノズルからの時間当たりの吐出量で塗布量を制御しながら前記ペーストを前記電極形成面に塗布するペースト吐出工程とを含むことを特徴とする太陽電池セルの製造方法。
  2.  前記ペースト吐出工程において、
     前記第2方向の第1位置での前記吐出ノズルからの時間当たりの吐出量を第1吐出量とし、
     前記第2方向の第2位置での前記吐出ノズルからの時間当たりの吐出量を、前記第1吐出量よりも多い第2吐出量とすることを特徴とする請求項1に記載の太陽電池セルの製造方法。
  3.  前記ペースト吐出工程において、
     前記第2方向の第1位置での前記ステージの移動速度を第1ステージ移動速度とし、
     前記第2方向の第2位置での前記ステージの移動速度を、前記第1ステージ移動速度よりも遅い第2ステージ移動速度とすることを特徴とする請求項1または2に記載の太陽電池セルの製造方法。
  4.  前記第1方向制御工程において、
     前記吐出ノズルの第1方向の位置を制御することを特徴とする請求項1から3のいずれか1項に記載の太陽電池セルの製造方法。
  5.  前記ペースト吐出工程の前に、
     前記第2方向に平行に複数のグリッド電極用ペーストを塗布する工程を備えたことを特徴とする請求項1から4のいずれか1項に記載の太陽電池セルの製造方法。
  6.  pn接合を有する太陽電池セル用基板と、
     前記太陽電池セル用基板の第1主面に形成された第1電極と、
     前記太陽電池セル用基板の第2主面に形成された第2電極とを備えた太陽電池セルであって、
     前記第1電極が、
     前記第1主面の第1方向に延びて形成されるバス電極と、
     前記バス電極と交差する第2方向に平行に形成された複数のグリッド電極とを備え、
     前記バス電極が、
     前記第1主面に対して垂直な方向の高さが前記グリッド電極の高さよりも低い低バス部と、
     前記第1主面に対して垂直な方向の高さが前記低バス部の高さよりも高い高バス部とを備えたことを特徴とする太陽電池セル。
  7.  前記高バス部の高さが、前記グリッド電極の高さと等しいことを特徴とする請求項6に記載の太陽電池セル。
  8.  前記低バス部の高さが、前記高バス部の高さの1/2以下であることを特徴とする請求項6または7に記載の太陽電池セル。
PCT/JP2017/017399 2017-02-16 2017-05-08 太陽電池セルの製造方法および太陽電池セル WO2018150598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780085042.1A CN110268532A (zh) 2017-02-16 2017-05-08 太阳能电池单元的制造方法以及太阳能电池单元
JP2019500171A JP6735894B2 (ja) 2017-02-16 2017-05-08 太陽電池セルの製造方法および太陽電池セル
TW107104496A TWI667806B (zh) 2017-02-16 2018-02-08 Solar cell manufacturing method and solar cell unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-026803 2017-02-16
JP2017026803 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018150598A1 true WO2018150598A1 (ja) 2018-08-23

Family

ID=63170191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017399 WO2018150598A1 (ja) 2017-02-16 2017-05-08 太陽電池セルの製造方法および太陽電池セル

Country Status (4)

Country Link
JP (1) JP6735894B2 (ja)
CN (1) CN110268532A (ja)
TW (1) TWI667806B (ja)
WO (1) WO2018150598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194062A1 (ko) * 2020-03-25 2021-09-30 엘에스니꼬동제련 주식회사 태양전지 전극용 페이스트 및 이를 사용하여 제조된 태양전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353691A (ja) * 2004-06-08 2005-12-22 Sharp Corp 電極、太陽電池、これらの製造方法
JP2011071156A (ja) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd 電極形成方法および電極形成装置
JP2013098548A (ja) * 2011-10-27 2013-05-20 Motech Industries Inc 太陽電池及び太陽電池モジュール
JP2015005754A (ja) * 2013-06-21 2015-01-08 エルジー エレクトロニクス インコーポレイティド 太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073223A1 (ja) * 2012-11-12 2014-05-15 三菱電機株式会社 太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュール
JP2015082512A (ja) * 2013-10-21 2015-04-27 株式会社日立ハイテクノロジーズ 太陽電池の製造方法、太陽電池およびバスバー電極形成用導電性ペースト
WO2015104793A1 (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュール
KR101875742B1 (ko) * 2014-08-11 2018-08-02 엘지전자 주식회사 태양 전지 모듈
KR20160149067A (ko) * 2015-06-17 2016-12-27 엘지전자 주식회사 태양 전지 모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353691A (ja) * 2004-06-08 2005-12-22 Sharp Corp 電極、太陽電池、これらの製造方法
JP2011071156A (ja) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd 電極形成方法および電極形成装置
JP2013098548A (ja) * 2011-10-27 2013-05-20 Motech Industries Inc 太陽電池及び太陽電池モジュール
JP2015005754A (ja) * 2013-06-21 2015-01-08 エルジー エレクトロニクス インコーポレイティド 太陽電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194062A1 (ko) * 2020-03-25 2021-09-30 엘에스니꼬동제련 주식회사 태양전지 전극용 페이스트 및 이를 사용하여 제조된 태양전지
KR20210119734A (ko) * 2020-03-25 2021-10-06 엘에스니꼬동제련 주식회사 태양전지 전극용 페이스트 및 이를 사용하여 제조된 태양전지
KR102539382B1 (ko) * 2020-03-25 2023-06-05 엘에스엠앤엠 주식회사 태양전지 전극용 페이스트 및 이를 사용하여 제조된 태양전지

Also Published As

Publication number Publication date
TW201832374A (zh) 2018-09-01
JP6735894B2 (ja) 2020-08-05
CN110268532A (zh) 2019-09-20
JPWO2018150598A1 (ja) 2019-06-27
TWI667806B (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
JP2009521102A (ja) 物理的に分離分散した電気接点を有する太陽電池
JP5726303B2 (ja) 太陽電池およびその製造方法
KR102215506B1 (ko) 반도체들을 위한 적응가능 독립 금속 물품
US20150129024A1 (en) Free-Standing Metallic Article With Expansion Segment
JP6291003B2 (ja) 太陽電池及び太陽電池モジュール
JP6141456B2 (ja) 太陽電池の製造方法および印刷マスク
JP2015159276A (ja) 太陽電池素子および太陽電池モジュール
JP5516063B2 (ja) コンビネーションマスク及び太陽電池の製造方法
JP6559244B2 (ja) 太陽電池の製造方法および太陽電池
WO2018150598A1 (ja) 太陽電池セルの製造方法および太陽電池セル
JP4185332B2 (ja) 太陽電池セル及びそれを用いた太陽電池モジュール
WO2017134782A1 (ja) 太陽電池の製造方法、太陽電池および太陽電池製造装置
JP4467466B2 (ja) 太陽電池モジュールの製造方法
JP5329980B2 (ja) 太陽電池モジュール
JP5377101B2 (ja) 太陽電池素子、太陽電池モジュールおよび太陽光発電装置
JP5799252B2 (ja) 太陽電池モジュールの製造方法
IT201900009072A1 (it) Cella solare ottimizzata, modulo di celle solari e relativo metodo di produzione.
JP5866029B2 (ja) 太陽電池の製造方法および印刷マスク
KR102198277B1 (ko) 태양 전지 및 태양 전지 모듈
JP2016103525A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法
CN104425634A (zh) 钝化发射极背电极硅晶太阳能电池及其制造方法
TW201523910A (zh) 具有膨脹片段之自立金屬物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896594

Country of ref document: EP

Kind code of ref document: A1