WO2018150516A1 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
WO2018150516A1
WO2018150516A1 PCT/JP2017/005716 JP2017005716W WO2018150516A1 WO 2018150516 A1 WO2018150516 A1 WO 2018150516A1 JP 2017005716 W JP2017005716 W JP 2017005716W WO 2018150516 A1 WO2018150516 A1 WO 2018150516A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
absorber
regenerator
pressure regenerator
auxiliary
Prior art date
Application number
PCT/JP2017/005716
Other languages
French (fr)
Japanese (ja)
Inventor
浩伸 川村
藤居 達郎
博敏 石丸
武田 伸之
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to KR1020197019536A priority Critical patent/KR102206209B1/en
Priority to DE112017006707.3T priority patent/DE112017006707B4/en
Priority to CN201780083943.7A priority patent/CN110234941B/en
Priority to PCT/JP2017/005716 priority patent/WO2018150516A1/en
Publication of WO2018150516A1 publication Critical patent/WO2018150516A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an absorption refrigerator.
  • cold water can be supplied using hot water generated as exhaust heat as a driving heat source.
  • cold water of about 7 ° C. can be supplied using hot water of about 90 ° C. as a driving heat source.
  • Patent Document 1 describes that the regenerator has two two-stage absorption cycles, and cold water can be supplied using hot water having a temperature lower than that of the single effect cycle as a driving heat source.
  • Patent Document 2 describes an absorption refrigerator that combines a single effect cycle and a two-stage absorption cycle.
  • This series consists of a single-effect cycle and an auxiliary cycle.
  • a high-pressure regenerator and a low-pressure regenerator are provided on the single-effect cycle side, and the entire amount of the solution is circulated in the order of absorber, high-pressure regenerator, low-pressure regenerator, and absorber. It is a flow.
  • the auxiliary cycle side is composed of an auxiliary absorber and an auxiliary regenerator.
  • the gas phase part of the auxiliary absorber communicates with the low pressure regenerator, and the gas phase part of the auxiliary regenerator is the gas phase part of the high pressure regenerator and the condenser.
  • the hot water of the driving heat source can be used from the temperature required for the single effect cycle to the temperature required for the two-stage absorption cycle.
  • a single absorption refrigerator serves as a cycle corresponding to the above problem.
  • the total amount of the solution discharged from the absorber on the single effect cycle side flows into the high-pressure regenerator composed of a falling film heat exchanger, and the total amount of the solution discharged from the high-pressure regenerator is It is a series flow that flows into a low-pressure regenerator consisting of a falling film type heat exchanger. Therefore, the solution after being concentrated in the high pressure regenerator flows into the low pressure regenerator. For this reason, the solution concentrated in the low pressure regenerator has the highest concentration.
  • the solution temperature of the higher concentration will be higher, so the concentration difference in the low-pressure regenerator is higher than that of the solution concentrated in the high-pressure regenerator, and the temperature difference from the drive heat source is reduced. The required heat transfer area is increased.
  • the solution flow rate suitable for each cannot be adjusted.
  • the heat exchanger size is fixed when trying to make the heat exchanger size suitable for the spraying density of the solution, The degree of freedom of arrangement becomes small.
  • a solution pump is installed at each outlet in order to circulate the entire amount of the solution in the order of the absorber, high-pressure regenerator, and low-pressure regenerator.
  • the amount can be increased.
  • reduction of the power consumption required for driving the pump is one of effective means.
  • the object of the present invention is to recover heat from a single exhaust heat source at about 90 ° C. until it reaches a low temperature and supply cold heat in an absorption refrigerator that combines a single-effect cycle with a two-stage absorption cycle, and at low pressure regeneration
  • the purpose of this is to reduce the size of the chamber, give freedom to the arrangement of each heat exchanger, and optimize the number of solution pumps.
  • An absorption refrigerator includes an evaporator, an absorber, a low-pressure regenerator, a high-pressure regenerator, an auxiliary absorber, an auxiliary regenerator, a condenser, and a solution pump.
  • the absorber are in communication with the gas phase
  • the low pressure regenerator and auxiliary absorber are in communication with the gas phase
  • the high pressure regenerator, auxiliary regenerator and condenser are in communication with the gas phase
  • the solution pipe from the absorber to the high pressure regenerator has a branch part, and the solution pipe to the low pressure regenerator is connected to the branch part, and the solution pump is provided in the solution pipe from the absorber to the branch part.
  • the solution piping from the high-pressure regenerator to the absorber has a junction connected to the solution piping from the low-pressure regenerator.
  • one drive heat source of about 90 ° C. can be recovered to a lower temperature and cold can be supplied, and low pressure regeneration can be performed.
  • the vessel can be miniaturized.
  • the present invention relates to an absorption refrigerator that supplies a heat source medium to three regenerators and includes two independent solution cycles.
  • FIG. 1 is a cycle system diagram showing an absorption refrigerator according to an embodiment.
  • FIG. 2 is a graph showing the state of the cycle of the present invention in a Duhring diagram composed of isoconcentration lines of the solution.
  • the horizontal axis represents solution temperature and the vertical axis represents pressure.
  • the absorption refrigerator has a single effect cycle side and an auxiliary cycle side, and the solution circulates independently in each cycle.
  • the single-effect cycle side includes the evaporator 1, the absorber 9, the low pressure regenerator 22, the high pressure regenerator 33, the condenser 40, the heat exchanger elements of the low temperature solution heat exchanger 55 and the high temperature solution heat exchanger 56, and the refrigerant pump 6.
  • solution pumps 14 and 30 are provided.
  • the auxiliary cycle side includes the auxiliary absorber 16, the auxiliary regenerator 44, the heat exchanger elements of the intermediate temperature solution heat exchanger 57, the solution pumps 29 and 54, and the like.
  • the refrigerant stored in the lower part of the evaporator 1 by the refrigerant pump 6 is guided to the spraying device 2 through the refrigerant pipe 7 and sprayed outside the heat transfer tube of the heat exchanger 3.
  • the sprayed refrigerant is heated by the cold water flowing in the heat transfer tube of the heat exchanger 3, becomes a part of the refrigerant vapor, and is led to the absorber 9 through the eliminator 8.
  • the cold water flowing in the heat transfer tubes of the heat exchanger 3 is cooled by using the latent heat of vaporization when the refrigerant evaporates.
  • Cold water pipes 4 and 5 are connected to the heat exchanger 3, and cold water for supplying cold heat to the load side is passed through.
  • the solution concentrated in the low pressure regenerator 22 and the high pressure regenerator 33 is sprayed from the spray device 10 to the outside of the heat transfer tube of the heat exchanger 11.
  • the sprayed solution absorbs the refrigerant vapor from the evaporator 1 and decreases in concentration, and then passes through the low-temperature solution heat exchanger 55 by the solution pump 14 installed in the middle of the solution pipe 15 and then the branch point A (branch). And one of them is led to the low pressure regenerator 22 via the flow rate adjusting valve 32 (flow rate adjusting means) of the solution pipe 31.
  • the other solution branched at the branch point A is led to the high pressure regenerator 33 through the high temperature solution heat exchanger 56.
  • Cooling water is passed through the heat transfer tube of the heat exchanger 11 of the absorber 9 in order to remove the absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 12 and 13 are connected to the heat exchanger 11.
  • the solution whose concentration is reduced by the absorber 9 is sprayed from the spraying device 23 to the outside of the heat transfer tube of the heat exchanger 24.
  • the dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 24 and separated into a concentrated solution and refrigerant vapor.
  • the concentrated solution passes through the solution pipe 27 and joins with the solution from the high pressure regenerator 33 at the junction B (merging portion).
  • the refrigerant vapor is guided to the auxiliary absorber 16 on the auxiliary cycle side via the eliminator 21.
  • Heat source medium pipes 25 and 26 are connected to the heat exchanger 24 of the low pressure regenerator 22.
  • the solution whose concentration is reduced by the absorber 9 and heated by the low temperature solution heat exchanger 55 and the high temperature solution heat exchanger 56 is sprayed from the spraying device 34 to the outside of the heat transfer tube of the heat exchanger 35.
  • the dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 35 and separated into a concentrated solution and refrigerant vapor.
  • the concentrated solution is guided to the junction B through a high temperature solution heat exchanger 56 installed in the middle of the solution pipe 49.
  • the concentrated solution from the low pressure regenerator 22 and the high pressure regenerator 33 that have joined at the junction B is boosted by the solution pump 30 and led to the absorber 9 through the low temperature solution heat exchanger 55.
  • the refrigerant vapor separated from the solution concentrated by the high pressure regenerator 33 is guided to the condenser 40 through the baffle 39.
  • Heat source medium pipes 36 and 37 are connected to the heat exchanger 35 of the high pressure regenerator 33.
  • the refrigerant vapor separated from the solution concentrated in the high pressure regenerator 33 and the auxiliary regenerator 44 is cooled with cooling water flowing in the heat transfer tube of the heat exchanger 41 to be condensed and liquefied.
  • the condensed and liquefied refrigerant is guided to the evaporator 1 through the refrigerant pipe 50.
  • Cooling water pipes 42 and 43 are connected to the heat exchanger 41.
  • the solution concentrated in the auxiliary regenerator 44 is sprayed from the spraying device 17 to the outside of the heat transfer tube of the heat exchanger 18.
  • the sprayed solution absorbs the refrigerant vapor from the low-pressure regenerator 22 in the single effect side cycle and decreases in concentration, and then passes through the intermediate temperature solution heat exchanger 57 by the solution pump 29 installed in the middle of the solution pipe 28. Later, it is guided to the auxiliary regenerator 44.
  • Cooling water is passed through the heat transfer tube of the heat exchanger 18 of the auxiliary absorber 16 in order to remove absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 19 and 20 are connected to the heat exchanger 18.
  • the solution whose concentration has been reduced by the auxiliary absorber 16 is sprayed from the spraying device 45 to the outside of the heat transfer tube of the heat exchanger 46.
  • the dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 46, and is separated into a concentrated solution and refrigerant vapor.
  • the concentrated solution is guided to the auxiliary absorber 16 through the intermediate temperature solution heat exchanger 57 by the solution pump 54 installed in the middle of the solution pipe 51.
  • the refrigerant vapor separated from the concentrated solution is guided to the condenser 40 through the baffle 52.
  • Heat source medium pipes 47 and 48 are connected to the heat exchanger 46 of the auxiliary regenerator 44.
  • the heat source medium is passed through the heat exchanger 35 of the high pressure regenerator 33, the heat exchanger 24 of the low pressure regenerator 22, and the heat exchanger 46 of the auxiliary regenerator 44 in this order, for example.
  • the heat source medium is utilized from a temperature higher than the solution temperature at the outlet of the high pressure regenerator 33 (about 90 ° C.) to a temperature close to the solution temperature at the outlet of the auxiliary regenerator 44 (about 60 ° C.). can do.
  • the evaporator 1 is a refrigerant
  • the auxiliary regenerator 44 is a solution. It is a falling liquid film type heat exchanger sprayed from the spraying device at the top of the heat exchanger.
  • the configuration of the present invention communicates the gas phase portion between the low-pressure regenerator 22 on the single effect cycle side and the auxiliary absorber 16 on the auxiliary cycle side, and the high-pressure regenerator 33 and condenser on the single-effect cycle side.
  • the gas phase part of 40 and the auxiliary regenerator 44 on the auxiliary cycle side, the single effect cycle and the two-stage absorption cycle can be combined and operated.
  • an aqueous lithium bromide solution is used as the solution (absorbent), and water is used as the refrigerant.
  • the solution coming out of the absorber 9 is branched at the branch point A after passing through the low temperature solution heat exchanger 55.
  • a low-concentration solution from the absorber 9 can flow into the low-pressure regenerator 22. That is, the temperature of the solution flowing into the low pressure regenerator 22 can be lowered by the amount that is lower than the outlet of the high pressure regenerator 33. Therefore, a large temperature difference from the drive heat source temperature for driving the low-pressure regenerator 22 can be taken, and the heat transfer area can be reduced by the amount of the increased temperature difference.
  • the circulation amount in the high temperature solution heat exchanger 56 can be reduced from the circulation amount from the absorber 9.
  • the size of the high-temperature liquid heat exchanger 56 can be reduced in accordance with the circulation amount, and the sensible heat loss of the solution can be reduced, so that the efficiency of the absorption refrigerator can be improved.
  • the low pressure regenerator 22 and the high pressure regenerator 33 can adjust the distribution amount of the solution by a flow rate adjusting valve 32 provided in the middle of the solution pipe 31 connected to the low pressure regenerator 22.
  • the amount of solution applied to the low-pressure regenerator 22 and the high-pressure regenerator 33 can be arbitrarily adjusted. Therefore, when determining the arrangement of the devices, the size of the heat exchangers 24 and 35 can be adjusted within the range in which the amount of spray can be adjusted. Can be set freely.
  • the solution concentrated in the low pressure regenerator 22 and the high pressure regenerator 33 is merged at the merge point B, and the solution pump 30 is disposed between the merge point B and the low temperature solution heat exchanger 55.
  • the solution from the high pressure regenerator 33 is pushed into the solution pump 30 by utilizing the pressure difference between the liquid head of the solution pump 30 and the solution stored in the high pressure regenerator 33 and the low pressure regenerator 22.
  • the solution from the low pressure regenerator 22 can be pushed into the solution pump 30 by using a liquid head of the solution pump 30 and the solution stored in the low pressure regenerator 22.
  • the solution pump 30 can guide the solution from the high pressure regenerator 33 and the low pressure regenerator 22 to the absorber 9. That is, since the solution of the low pressure regenerator 22 and the high pressure regenerator 33 can be handled by one solution pump 30, it is possible to reduce the cost and the power consumption.
  • the configuration including the falling film type heat exchanger is described.
  • the embodiment of the present invention is not limited to this, and heat is generated from one exhaust heat source until the temperature reaches a low temperature. From the viewpoint of collecting the effect, the effect of the present invention can be obtained even in a configuration in which a full-liquid heat exchanger is incorporated.
  • the flow rate adjusting means provided with the flow rate adjusting valve in the solution flow path branched and directed to the low pressure regenerator has been described.
  • the embodiment of the present invention is not limited to this, and the high pressure It is good also as a structure which provided the flow volume adjustment valve in the solution flow path which goes to a regenerator, and the structure which provided the appropriate flow path resistance previously set to two solution flow paths downstream of a branch part without providing a valve It is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

This absorption refrigerator is provided with: an evaporator; an absorber; a low-pressure regenerator; a high-pressure regenerator; an auxiliary absorber; an auxiliary regenerator; a condenser; and a solution pump, wherein the evaporator and the absorber are connected with each other at respective gas phase parts, the low-pressure regenerator and the auxiliary absorber are connected with each other at respective gas phase parts, the high-pressure regenerator, the auxiliary regenerator, and the condenser are connected with one another at respective gas phase parts, solution piping laid from the absorber toward the high-pressure regenerator has a branch part, solution piping laid toward the low-pressure regenerator is connected to the branch part, the solution pump is provided to solution piping laid from the absorber to the branch part, and solution piping laid from the high-pressure regenerator toward the absorber has a confluence part connected to solution piping from the low-pressure regenerator. Thus, in the absorption refrigerator that combines a two-stage absorption cycle with a single-effect cycle, cold can be supplied by recovering heat from one exhaust heat source of about 90°C until a low temperature is reached, the low-pressure regenerator can be downsized, each heat exchanger can be freely arranged, the solution pump can be made smaller, and power consumption can be reduced.

Description

吸収式冷凍機Absorption refrigerator
 本発明は、吸収式冷凍機に関する。 The present invention relates to an absorption refrigerator.
 吸収式冷凍機は、熱駆動できることから、排熱として出た温水を駆動熱源として冷熱を供給することができる。再生器が1つの単効用サイクルでは、90℃程度の温水を駆動熱源として7℃程度の冷熱を供給できる。 Since the absorption refrigerator can be driven by heat, cold water can be supplied using hot water generated as exhaust heat as a driving heat source. In a single effect cycle with one regenerator, cold water of about 7 ° C. can be supplied using hot water of about 90 ° C. as a driving heat source.
 特許文献1には、再生器が2つの2段吸収サイクルとし、単効用サイクルより低い温度の温水を駆動熱源として冷熱を供給できることが記載されている。 Patent Document 1 describes that the regenerator has two two-stage absorption cycles, and cold water can be supplied using hot water having a temperature lower than that of the single effect cycle as a driving heat source.
 また、特許文献2には、単効用サイクルと2段吸収サイクルを組合せた吸収式冷凍機が記載されている。これは、単効用サイクルと補助サイクルからなり、単効用サイクル側に高圧再生器と低圧再生器を設け、溶液の全量を吸収器、高圧再生器、低圧再生器、吸収器の順で循環させるシリーズフローとなっている。また、補助サイクル側は、補助吸収器と補助再生器からなり、補助吸収器の気相部が低圧再生器と連通し、補助再生器の気相部が高圧再生器と凝縮器の気相部と連通した構成が記載されている。特許文献2では、駆動熱源の温水を単効用サイクルに必要な温度から、2段吸収サイクルに必要な温度まで利用できるとしている。 Also, Patent Document 2 describes an absorption refrigerator that combines a single effect cycle and a two-stage absorption cycle. This series consists of a single-effect cycle and an auxiliary cycle. A high-pressure regenerator and a low-pressure regenerator are provided on the single-effect cycle side, and the entire amount of the solution is circulated in the order of absorber, high-pressure regenerator, low-pressure regenerator, and absorber. It is a flow. The auxiliary cycle side is composed of an auxiliary absorber and an auxiliary regenerator. The gas phase part of the auxiliary absorber communicates with the low pressure regenerator, and the gas phase part of the auxiliary regenerator is the gas phase part of the high pressure regenerator and the condenser. The structure communicated with is described. In Patent Document 2, the hot water of the driving heat source can be used from the temperature required for the single effect cycle to the temperature required for the two-stage absorption cycle.
特開2004-211979号公報(図6)JP 2004-211979 A (FIG. 6) 韓国公開特許第10-2011-0014376号公報(図2)Korean Published Patent No. 10-2011-0014376 (FIG. 2)
 省エネルギーを図るためには、1つの排熱源からできるだけ多くの冷熱を発生させ再利用することが有効な手段となる。そのための手段として、例えば、90℃程度の温水を単効用サイクルの駆動熱源として利用し、その後、温度が下がった温水を再度2段吸収サイクルの駆動熱源として利用することが考えられる。しかし、この場合、それぞれサイクル構成の異なる吸収式冷凍機が2台必要となり、冷水及び冷却水の配管系統が2つとなるため、配管構成が複雑になってしまい、設置面積が大きくなるとともにコスト増加になってしまう。さらに、吸収式冷凍機を2台とした場合においては、溶液ポンプや冷媒ポンプの数もほぼ倍増してしまうので、消費電力量が多くなってしまう。 In order to save energy, it is an effective means to generate as much cold as possible from one exhaust heat source and reuse it. As a means for that, for example, it is conceivable to use hot water of about 90 ° C. as the driving heat source for the single effect cycle, and then use the hot water whose temperature has decreased again as the driving heat source for the two-stage absorption cycle. However, in this case, two absorption refrigerators having different cycle configurations are required, and two piping systems for chilled water and cooling water are required, which complicates the piping configuration and increases the installation area and costs. Become. Furthermore, when two absorption refrigerators are used, the number of solution pumps and refrigerant pumps is almost doubled, resulting in an increase in power consumption.
 特許文献2の技術では、1台の吸収式冷凍機で上記課題に対応したサイクルとなっている。しかしながら、特許文献2の技術では、単効用サイクル側の吸収器から出た溶液の全量が流下液膜式の熱交換器からなる高圧再生器に流入し、高圧再生器を出た溶液の全量が流下液膜式の熱交換器からなる低圧再生器に流入するシリーズフローになっている。したがって、低圧再生器には、高圧再生器で濃縮された後の溶液が流入する。このため、低圧再生器で濃縮された溶液が最も濃度が濃くなる。溶液は同じ圧力であれば濃度の濃い方の溶液温度が高くなることから、低圧再生器では、高圧再生器で濃縮された溶液より濃度が濃くなることにより、駆動熱源との温度差が小さくなり、必要な伝熱面積が大きくなる。 In the technology of Patent Document 2, a single absorption refrigerator serves as a cycle corresponding to the above problem. However, in the technique of Patent Document 2, the total amount of the solution discharged from the absorber on the single effect cycle side flows into the high-pressure regenerator composed of a falling film heat exchanger, and the total amount of the solution discharged from the high-pressure regenerator is It is a series flow that flows into a low-pressure regenerator consisting of a falling film type heat exchanger. Therefore, the solution after being concentrated in the high pressure regenerator flows into the low pressure regenerator. For this reason, the solution concentrated in the low pressure regenerator has the highest concentration. If the solution has the same pressure, the solution temperature of the higher concentration will be higher, so the concentration difference in the low-pressure regenerator is higher than that of the solution concentrated in the high-pressure regenerator, and the temperature difference from the drive heat source is reduced. The required heat transfer area is increased.
 また、シリーズフローの場合、高圧再生器と低圧再生器で熱交換器サイズが異なった場合に、それぞれに適した溶液流量に調整できない。特に、高圧再生器及び低圧再生器において流下液膜式の熱交換器を用いる場合、溶液の散布密度に適した熱交換器サイズにしようとすると、熱交換器サイズが固定されてしまい、機器の配置の自由度が小さくなってしまう。 Also, in the case of the series flow, when the heat exchanger size is different between the high pressure regenerator and the low pressure regenerator, the solution flow rate suitable for each cannot be adjusted. In particular, when using a falling film type heat exchanger in a high-pressure regenerator and a low-pressure regenerator, the heat exchanger size is fixed when trying to make the heat exchanger size suitable for the spraying density of the solution, The degree of freedom of arrangement becomes small.
 さらに、単効用サイクル側では、溶液の全量を吸収器、高圧再生器、低圧再生器の順で循環させるために、それぞれの出口部に溶液ポンプを設置していることから、溶液ポンプの消費電力量が多くなることが考えられる。吸収式冷凍機では、熱駆動のメリットを出すためには、ポンプ駆動に必要な消費電力量の低減が有効な手段の一つとなる。 Furthermore, on the single-effect cycle side, a solution pump is installed at each outlet in order to circulate the entire amount of the solution in the order of the absorber, high-pressure regenerator, and low-pressure regenerator. The amount can be increased. In the absorption refrigerator, in order to obtain the merit of heat driving, reduction of the power consumption required for driving the pump is one of effective means.
 本発明の目的は、単効用サイクルに2段吸収サイクルを組合せた吸収式冷凍機において、90℃程度の1つの排熱源から低温度に達するまで熱を回収して冷熱を供給するとともに、低圧再生器を小形化し、各熱交換器の配置に自由度を与え、溶液ポンプの数を適正化することにある。 The object of the present invention is to recover heat from a single exhaust heat source at about 90 ° C. until it reaches a low temperature and supply cold heat in an absorption refrigerator that combines a single-effect cycle with a two-stage absorption cycle, and at low pressure regeneration The purpose of this is to reduce the size of the chamber, give freedom to the arrangement of each heat exchanger, and optimize the number of solution pumps.
 本発明の吸収式冷凍機は、蒸発器と、吸収器と、低圧再生器と、高圧再生器と、補助吸収器と、補助再生器と、凝縮器と、溶液ポンプと、を備え、蒸発器と吸収器とは、気相部が連通し、低圧再生器と補助吸収器とは、気相部が連通し、高圧再生器と補助再生器と凝縮器とは、気相部が連通し、吸収器から高圧再生器に向かう溶液配管は、分岐部を有し、この分岐部には、低圧再生器に向かう溶液配管が連結され、溶液ポンプは、吸収器から分岐部に向かう溶液配管に設けられ、高圧再生器から吸収器に向かう溶液配管は、低圧再生器からの溶液配管と連結された合流部を有する。 An absorption refrigerator according to the present invention includes an evaporator, an absorber, a low-pressure regenerator, a high-pressure regenerator, an auxiliary absorber, an auxiliary regenerator, a condenser, and a solution pump. And the absorber are in communication with the gas phase, the low pressure regenerator and auxiliary absorber are in communication with the gas phase, and the high pressure regenerator, auxiliary regenerator and condenser are in communication with the gas phase, The solution pipe from the absorber to the high pressure regenerator has a branch part, and the solution pipe to the low pressure regenerator is connected to the branch part, and the solution pump is provided in the solution pipe from the absorber to the branch part. The solution piping from the high-pressure regenerator to the absorber has a junction connected to the solution piping from the low-pressure regenerator.
 本発明によれば、単効用サイクルに2段吸収サイクルを組合せた吸収式冷凍機において、90℃程度の1つの駆動熱源をより低温まで回収して冷熱を供給することができ、かつ、低圧再生器を小形化することができる。 According to the present invention, in an absorption refrigerator that combines a single-effect cycle with a two-stage absorption cycle, one drive heat source of about 90 ° C. can be recovered to a lower temperature and cold can be supplied, and low pressure regeneration can be performed. The vessel can be miniaturized.
 また、本発明によれば、機器の配置に自由度を持たせるとともに、溶液ポンプを削減し、消費電力を低減することができる。 Further, according to the present invention, it is possible to give flexibility to the arrangement of devices, reduce the solution pump, and reduce power consumption.
実施例の吸収式冷凍機を示す模式構成図である。It is a schematic block diagram which shows the absorption refrigerator of an Example. 実施例の吸収式冷凍機の吸収サイクルを示すデューリング線図である。It is a Duhring diagram which shows the absorption cycle of the absorption refrigerator of an Example.
 本発明は、3つの再生器へ熱源媒体を供給し、独立した2つの溶液サイクルからなる吸収式冷凍機に関する。 The present invention relates to an absorption refrigerator that supplies a heat source medium to three regenerators and includes two independent solution cycles.
 以下、本発明の具体的実施例について、図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。 Hereinafter, specific examples of the present invention will be described with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.
 図1は、実施例の吸収式冷凍機を示すサイクル系統図である。 FIG. 1 is a cycle system diagram showing an absorption refrigerator according to an embodiment.
 図2は、溶液の等濃度線からなるデューリング線図中に、本発明のサイクルの状態を示したグラフである。横軸に溶液温度を、縦軸に圧力をとっている。 FIG. 2 is a graph showing the state of the cycle of the present invention in a Duhring diagram composed of isoconcentration lines of the solution. The horizontal axis represents solution temperature and the vertical axis represents pressure.
 図1のE、A、LG、HG、AA、AG、Cと、図2のE、A、LG、HG、AA、AG、Cとは同じ部分を示す。 1 E, A, LG, HG, AA, AG, C in FIG. 1 and E, A, LG, HG, AA, AG, C in FIG.
 先ず、本発明に係る吸収式冷凍機のサイクルフローについて説明する。 First, the cycle flow of the absorption refrigerator according to the present invention will be described.
 吸収式冷凍機は、単効用サイクル側と補助サイクル側とからなり、それぞれのサイクルで溶液が独立して循環する。単効用サイクル側は、蒸発器1、吸収器9、低圧再生器22、高圧再生器33、凝縮器40、低温溶液熱交換器55及び高温溶液熱交換器56の熱交換器要素、冷媒ポンプ6、溶液ポンプ14、30などを備えている。補助サイクル側は、補助吸収器16、補助再生器44及び中温溶液熱交換器57の熱交換器要素、溶液ポンプ29、54などを備えている。 The absorption refrigerator has a single effect cycle side and an auxiliary cycle side, and the solution circulates independently in each cycle. The single-effect cycle side includes the evaporator 1, the absorber 9, the low pressure regenerator 22, the high pressure regenerator 33, the condenser 40, the heat exchanger elements of the low temperature solution heat exchanger 55 and the high temperature solution heat exchanger 56, and the refrigerant pump 6. And solution pumps 14 and 30 are provided. The auxiliary cycle side includes the auxiliary absorber 16, the auxiliary regenerator 44, the heat exchanger elements of the intermediate temperature solution heat exchanger 57, the solution pumps 29 and 54, and the like.
 次に、単効用サイクル側の動作について説明する。 Next, the operation on the single effect cycle side will be described.
 蒸発器1では、冷媒ポンプ6で蒸発器1下部に溜められた冷媒を、冷媒配管7を通って散布装置2に導き、熱交換器3の伝熱管外に散布する。散布された冷媒は、熱交換器3の伝熱管内を流れる冷水に加熱され、一部冷媒蒸気となり、エリミネータ8を介して吸収器9に導かれる。このときに、冷媒が蒸発する際の蒸発潜熱を利用し、熱交換器3の伝熱管内を流れる冷水を冷却する。熱交換器3には、冷水配管4、5が接続され、負荷側に冷熱を供給するための冷水が通水される。 In the evaporator 1, the refrigerant stored in the lower part of the evaporator 1 by the refrigerant pump 6 is guided to the spraying device 2 through the refrigerant pipe 7 and sprayed outside the heat transfer tube of the heat exchanger 3. The sprayed refrigerant is heated by the cold water flowing in the heat transfer tube of the heat exchanger 3, becomes a part of the refrigerant vapor, and is led to the absorber 9 through the eliminator 8. At this time, the cold water flowing in the heat transfer tubes of the heat exchanger 3 is cooled by using the latent heat of vaporization when the refrigerant evaporates. Cold water pipes 4 and 5 are connected to the heat exchanger 3, and cold water for supplying cold heat to the load side is passed through.
 吸収器9では、低圧再生器22と高圧再生器33で濃縮された溶液が散布装置10から熱交換器11の伝熱管外に散布する。散布された溶液は、蒸発器1からの冷媒蒸気を吸収し、濃度が薄くなった後、溶液配管15の途中に設置した溶液ポンプ14で低温溶液熱交換器55を通過後に分岐点A(分岐部)で分岐し、一方が溶液配管31の流量調整弁32(流量調整手段)を介して低圧再生器22に導かれる。分岐点Aで分岐したもう一方の溶液は、高温溶液熱交換器56を通って高圧再生器33に導かれる。吸収器9の熱交換器11の伝熱管内には、溶液が冷媒蒸気を吸収する際に発生する吸収熱を取り除くために冷却水が通水される。熱交換器11には、冷却水配管12、13が接続されている。 In the absorber 9, the solution concentrated in the low pressure regenerator 22 and the high pressure regenerator 33 is sprayed from the spray device 10 to the outside of the heat transfer tube of the heat exchanger 11. The sprayed solution absorbs the refrigerant vapor from the evaporator 1 and decreases in concentration, and then passes through the low-temperature solution heat exchanger 55 by the solution pump 14 installed in the middle of the solution pipe 15 and then the branch point A (branch). And one of them is led to the low pressure regenerator 22 via the flow rate adjusting valve 32 (flow rate adjusting means) of the solution pipe 31. The other solution branched at the branch point A is led to the high pressure regenerator 33 through the high temperature solution heat exchanger 56. Cooling water is passed through the heat transfer tube of the heat exchanger 11 of the absorber 9 in order to remove the absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 12 and 13 are connected to the heat exchanger 11.
 低圧再生器22では、吸収器9で濃度の薄くなった溶液が散布装置23から熱交換器24の伝熱管外に散布する。散布された溶液は、熱交換器24の伝熱管内を流れる熱源媒体で加熱され、濃縮された溶液と冷媒蒸気に分離される。濃縮された溶液は、溶液配管27を通って合流点B(合流部)で高圧再生器33からの溶液と合流する。冷媒蒸気は、エリミネータ21を介して補助サイクル側の補助吸収器16に導かれる。低圧再生器22の熱交換器24には、熱源媒体配管25、26が接続されている。 In the low-pressure regenerator 22, the solution whose concentration is reduced by the absorber 9 is sprayed from the spraying device 23 to the outside of the heat transfer tube of the heat exchanger 24. The dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 24 and separated into a concentrated solution and refrigerant vapor. The concentrated solution passes through the solution pipe 27 and joins with the solution from the high pressure regenerator 33 at the junction B (merging portion). The refrigerant vapor is guided to the auxiliary absorber 16 on the auxiliary cycle side via the eliminator 21. Heat source medium pipes 25 and 26 are connected to the heat exchanger 24 of the low pressure regenerator 22.
 高圧再生器33では、吸収器9で濃度の薄くなり、低温溶液熱交換器55と高温溶液熱交換器56で昇温された溶液が散布装置34から熱交換器35の伝熱管外に散布される。散布された溶液は、熱交換器35の伝熱管内を流れる熱源媒体で加熱され、濃縮された溶液と冷媒蒸気に分離される。濃縮された溶液は、溶液配管49の途中に設置した高温溶液熱交換器56を通って合流点Bに導かれる。合流点Bで合流した低圧再生器22と高圧再生器33からの濃縮された溶液は、溶液ポンプ30で昇圧され、低温溶液熱交換器55を通って吸収器9に導かれる。高圧再生器33で濃縮された溶液から分離された冷媒蒸気は、バッフル39を介して凝縮器40に導かれる。高圧再生器33の熱交換器35には、熱源媒体配管36、37が接続されている。 In the high pressure regenerator 33, the solution whose concentration is reduced by the absorber 9 and heated by the low temperature solution heat exchanger 55 and the high temperature solution heat exchanger 56 is sprayed from the spraying device 34 to the outside of the heat transfer tube of the heat exchanger 35. The The dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 35 and separated into a concentrated solution and refrigerant vapor. The concentrated solution is guided to the junction B through a high temperature solution heat exchanger 56 installed in the middle of the solution pipe 49. The concentrated solution from the low pressure regenerator 22 and the high pressure regenerator 33 that have joined at the junction B is boosted by the solution pump 30 and led to the absorber 9 through the low temperature solution heat exchanger 55. The refrigerant vapor separated from the solution concentrated by the high pressure regenerator 33 is guided to the condenser 40 through the baffle 39. Heat source medium pipes 36 and 37 are connected to the heat exchanger 35 of the high pressure regenerator 33.
 凝縮器40では、高圧再生器33と補助再生器44とで濃縮された溶液から分離された冷媒蒸気を、熱交換器41の伝熱管内を流れる冷却水で冷却し、凝縮液化する。凝縮液化した冷媒は、冷媒配管50を通って蒸発器1に導かれる。熱交換器41には、冷却水配管42、43が接続される。 In the condenser 40, the refrigerant vapor separated from the solution concentrated in the high pressure regenerator 33 and the auxiliary regenerator 44 is cooled with cooling water flowing in the heat transfer tube of the heat exchanger 41 to be condensed and liquefied. The condensed and liquefied refrigerant is guided to the evaporator 1 through the refrigerant pipe 50. Cooling water pipes 42 and 43 are connected to the heat exchanger 41.
 次に、補助サイクル側の動作について説明する。 Next, the operation on the auxiliary cycle side will be described.
 補助吸収器16では、補助再生器44で濃縮された溶液が散布装置17から熱交換器18の伝熱管外に散布される。散布された溶液は、単効用側サイクルの低圧再生器22からの冷媒蒸気を吸収し濃度が薄くなった後、溶液配管28の途中に設置された溶液ポンプ29で中温溶液熱交換器57を通過後に補助再生器44に導かれる。補助吸収器16の熱交換器18の伝熱管内には、溶液が冷媒蒸気を吸収する際に発生する吸収熱を取り除くために冷却水が通水される。熱交換器18には、冷却水配管19、20が接続されている。 In the auxiliary absorber 16, the solution concentrated in the auxiliary regenerator 44 is sprayed from the spraying device 17 to the outside of the heat transfer tube of the heat exchanger 18. The sprayed solution absorbs the refrigerant vapor from the low-pressure regenerator 22 in the single effect side cycle and decreases in concentration, and then passes through the intermediate temperature solution heat exchanger 57 by the solution pump 29 installed in the middle of the solution pipe 28. Later, it is guided to the auxiliary regenerator 44. Cooling water is passed through the heat transfer tube of the heat exchanger 18 of the auxiliary absorber 16 in order to remove absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 19 and 20 are connected to the heat exchanger 18.
 補助再生器44では、補助吸収器16で濃度の薄くなった溶液が散布装置45から熱交換器46の伝熱管外に散布される。散布された溶液は、熱交換器46の伝熱管内を流れる熱源媒体で加熱され、濃縮された溶液と冷媒蒸気に分離される。濃縮された溶液は、溶液配管51の途中に設置した溶液ポンプ54で、中温溶液熱交換器57を通って補助吸収器16に導かれる。濃縮された溶液から分離された冷媒蒸気は、バッフル52を介して凝縮器40に導かれる。補助再生器44の熱交換器46には、熱源媒体配管47、48が接続されている。 In the auxiliary regenerator 44, the solution whose concentration has been reduced by the auxiliary absorber 16 is sprayed from the spraying device 45 to the outside of the heat transfer tube of the heat exchanger 46. The dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 46, and is separated into a concentrated solution and refrigerant vapor. The concentrated solution is guided to the auxiliary absorber 16 through the intermediate temperature solution heat exchanger 57 by the solution pump 54 installed in the middle of the solution pipe 51. The refrigerant vapor separated from the concentrated solution is guided to the condenser 40 through the baffle 52. Heat source medium pipes 47 and 48 are connected to the heat exchanger 46 of the auxiliary regenerator 44.
 熱源媒体は、例えば、高圧再生器33の熱交換器35、低圧再生器22の熱交換器24、補助再生器44の熱交換器46の順で通水される。このとき、図2に示すように、熱源媒体を、高圧再生器33出口の溶液温度より高い温度(90℃程度)から、補助再生器44出口の溶液温度に近い温度(60℃程度)まで利用することができる。 The heat source medium is passed through the heat exchanger 35 of the high pressure regenerator 33, the heat exchanger 24 of the low pressure regenerator 22, and the heat exchanger 46 of the auxiliary regenerator 44 in this order, for example. At this time, as shown in FIG. 2, the heat source medium is utilized from a temperature higher than the solution temperature at the outlet of the high pressure regenerator 33 (about 90 ° C.) to a temperature close to the solution temperature at the outlet of the auxiliary regenerator 44 (about 60 ° C.). can do.
 なお、本実施例においては、図1に示すように、蒸発器1では冷媒が、吸収器9、低圧再生器22、高圧再生器33及び補助吸収器16、補助再生器44では溶液が、各熱交換器上部の散布装置から散布される流下液膜式の熱交換器としている。 In the present embodiment, as shown in FIG. 1, the evaporator 1 is a refrigerant, the absorber 9, the low pressure regenerator 22, the high pressure regenerator 33 and the auxiliary absorber 16, and the auxiliary regenerator 44 is a solution. It is a falling liquid film type heat exchanger sprayed from the spraying device at the top of the heat exchanger.
 以上のように、本発明の構成は、単効用サイクル側の低圧再生器22と補助サイクル側の補助吸収器16との気相部を連通し、単効用サイクル側の高圧再生器33と凝縮器40と補助サイクル側の補助再生器44との気相部を連通することによって、単効用サイクルと2段吸収サイクルを組合せて運転することができる。なお、本実施例においては、溶液(吸収剤)として臭化リチウム水溶液を使用し、冷媒として水を使用している。 As described above, the configuration of the present invention communicates the gas phase portion between the low-pressure regenerator 22 on the single effect cycle side and the auxiliary absorber 16 on the auxiliary cycle side, and the high-pressure regenerator 33 and condenser on the single-effect cycle side. By connecting the gas phase part of 40 and the auxiliary regenerator 44 on the auxiliary cycle side, the single effect cycle and the two-stage absorption cycle can be combined and operated. In this embodiment, an aqueous lithium bromide solution is used as the solution (absorbent), and water is used as the refrigerant.
 次に、本発明に係る構成と効果について図1及び図2で説明する。 Next, the configuration and effects according to the present invention will be described with reference to FIGS.
 吸収器9から出た溶液は、低温溶液熱交換器55を通過後に分岐点Aで分岐させる。これにより、図2にも示すように、低圧再生器22には、吸収器9からの濃度の薄い溶液を流入させることができる。つまり、低圧再生器22に流入させる溶液の温度を、高圧再生器33出口より濃度が薄い分、低くすることができる。したがって、低圧再生器22を駆動するための駆動熱源温度との温度差を大きく取ることができ、温度差が大きくなった分、伝熱面積を削減できる。 The solution coming out of the absorber 9 is branched at the branch point A after passing through the low temperature solution heat exchanger 55. As a result, as shown in FIG. 2, a low-concentration solution from the absorber 9 can flow into the low-pressure regenerator 22. That is, the temperature of the solution flowing into the low pressure regenerator 22 can be lowered by the amount that is lower than the outlet of the high pressure regenerator 33. Therefore, a large temperature difference from the drive heat source temperature for driving the low-pressure regenerator 22 can be taken, and the heat transfer area can be reduced by the amount of the increased temperature difference.
 また、吸収器9からの溶液を、分岐点Aで分岐させることで、高温溶液熱交換器56での循環量を、吸収器9からの循環量より減らすことができる。これにより、循環量に併せて高温用液熱交換器56のサイズを小形化できるとともに、溶液の顕熱損失を低減でき、吸収式冷凍機の効率向上を図ることができる。さらに、低圧再生器22と高圧再生器33は、低圧再生器22と接続する溶液配管31の途中に設けた流量調整弁32によって、溶液の分配量を調整できるようにした。これにより、低圧再生器22と高圧再生器33への溶液の散布量を任意に調整できるので、機器の配置を決定する際に、熱交換器24、35のサイズを散布量が調整できる範囲で自由に設定できる。 Further, by branching the solution from the absorber 9 at the branch point A, the circulation amount in the high temperature solution heat exchanger 56 can be reduced from the circulation amount from the absorber 9. Thus, the size of the high-temperature liquid heat exchanger 56 can be reduced in accordance with the circulation amount, and the sensible heat loss of the solution can be reduced, so that the efficiency of the absorption refrigerator can be improved. Furthermore, the low pressure regenerator 22 and the high pressure regenerator 33 can adjust the distribution amount of the solution by a flow rate adjusting valve 32 provided in the middle of the solution pipe 31 connected to the low pressure regenerator 22. As a result, the amount of solution applied to the low-pressure regenerator 22 and the high-pressure regenerator 33 can be arbitrarily adjusted. Therefore, when determining the arrangement of the devices, the size of the heat exchangers 24 and 35 can be adjusted within the range in which the amount of spray can be adjusted. Can be set freely.
 また、低圧再生器22と高圧再生器33とで濃縮された溶液を合流点Bで合流し、合流点Bと低温溶液熱交換器55との間に溶液ポンプ30を配置する構成とした。これにより、高圧再生器33からの溶液は、溶液ポンプ30と高圧再生器33内に溜められる溶液との液ヘッドと、低圧再生器22との器内圧力差を利用して溶液ポンプ30に押し込むとともに、低圧再生器22からの溶液は、溶液ポンプ30と低圧再生器22内に溜められる溶液との液ヘッドを利用して溶液ポンプ30に押し込むことができる。これにより、溶液ポンプ30で高圧再生器33と低圧再生器22からの溶液を吸収器9に導くことができる。つまり、低圧再生器22と高圧再生器33の溶液を溶液ポンプ30の1台で対応できるので、コスト低減とともに消費電力量を削減できる。 Further, the solution concentrated in the low pressure regenerator 22 and the high pressure regenerator 33 is merged at the merge point B, and the solution pump 30 is disposed between the merge point B and the low temperature solution heat exchanger 55. As a result, the solution from the high pressure regenerator 33 is pushed into the solution pump 30 by utilizing the pressure difference between the liquid head of the solution pump 30 and the solution stored in the high pressure regenerator 33 and the low pressure regenerator 22. At the same time, the solution from the low pressure regenerator 22 can be pushed into the solution pump 30 by using a liquid head of the solution pump 30 and the solution stored in the low pressure regenerator 22. Thus, the solution pump 30 can guide the solution from the high pressure regenerator 33 and the low pressure regenerator 22 to the absorber 9. That is, since the solution of the low pressure regenerator 22 and the high pressure regenerator 33 can be handled by one solution pump 30, it is possible to reduce the cost and the power consumption.
 上述の実施例においては、流下液膜式の熱交換器を内蔵した構成について説明したが、本発明の実施形態はこれに限定されるものではなく、1つの排熱源から低温度に達するまで熱を回収する観点から、満液式の熱交換器を内蔵した構成等においても本発明の効果を得ることができる。また、上述の実施例においては、分岐され低圧再生器に向かう溶液流路に流量調整弁を設けた流量調整手段について説明したが、本発明の実施形態はこれに限定されるものではなく、高圧再生器に向かう溶液流路に流量調整弁を設けた構成としてもよいし、弁を設けずに、分岐部の下流側の2つの溶液流路にあらかじめ設定した適切な流路抵抗を設けた構成としてもよい。 In the above-described examples, the configuration including the falling film type heat exchanger is described. However, the embodiment of the present invention is not limited to this, and heat is generated from one exhaust heat source until the temperature reaches a low temperature. From the viewpoint of collecting the effect, the effect of the present invention can be obtained even in a configuration in which a full-liquid heat exchanger is incorporated. Further, in the above-described embodiment, the flow rate adjusting means provided with the flow rate adjusting valve in the solution flow path branched and directed to the low pressure regenerator has been described. However, the embodiment of the present invention is not limited to this, and the high pressure It is good also as a structure which provided the flow volume adjustment valve in the solution flow path which goes to a regenerator, and the structure which provided the appropriate flow path resistance previously set to two solution flow paths downstream of a branch part without providing a valve It is good.
 1:蒸発器、2、10、17、23、34、45:散布装置、3、11、18、24、35、41、46:熱交換器、4、5:冷水配管、6:冷媒ポンプ、7、50:冷媒配管、8、21:エリミネータ、9:吸収器、12,13、19、20、42、43:冷却水配管、14、29、30、54:溶液ポンプ、15、27、28、31、49、51:溶液配管、16:補助吸収器、22:低圧再生器、25、26、36、37、47,48:熱源媒体配管、32:流量調整弁、33:高圧再生器、39、52:バッフル、40:凝縮器、44:補助再生器、55:低温溶液熱交換器、56:高温溶液熱交換器、57:中温溶液熱交換器。 1: Evaporator 2, 10, 17, 23, 34, 45: Spreading device 3, 11, 18, 24, 35, 41, 46: Heat exchanger 4, 5: Cold water piping, 6: Refrigerant pump, 7, 50: Refrigerant piping, 8, 21: Eliminator, 9: Absorber, 12, 13, 19, 20, 42, 43: Cooling water piping, 14, 29, 30, 54: Solution pump, 15, 27, 28 31, 49, 51: solution piping, 16: auxiliary absorber, 22: low pressure regenerator, 25, 26, 36, 37, 47, 48: heat source medium piping, 32: flow control valve, 33: high pressure regenerator, 39, 52: Baffle, 40: Condenser, 44: Auxiliary regenerator, 55: Cold solution heat exchanger, 56: Hot solution heat exchanger, 57: Medium solution heat exchanger.

Claims (7)

  1.  蒸発器と、吸収器と、低圧再生器と、高圧再生器と、補助吸収器と、補助再生器と、凝縮器と、溶液ポンプと、を備え、
     前記蒸発器と前記吸収器とは、気相部が連通し、
     前記低圧再生器と前記補助吸収器とは、気相部が連通し、
     前記高圧再生器と前記補助再生器と前記凝縮器とは、気相部が連通し、
     前記吸収器から前記高圧再生器に向かう溶液配管は、分岐部を有し、この分岐部には、前記低圧再生器に向かう溶液配管が連結され、
     前記溶液ポンプは、前記吸収器から前記分岐部に向かう前記溶液配管に設けられ、
     前記高圧再生器から前記吸収器に向かう溶液配管は、前記低圧再生器からの溶液配管と連結された合流部を有する、吸収式冷凍機。
    An evaporator, an absorber, a low pressure regenerator, a high pressure regenerator, an auxiliary absorber, an auxiliary regenerator, a condenser, and a solution pump;
    The vaporizer and the absorber communicate with each other in a gas phase part,
    The low-pressure regenerator and the auxiliary absorber communicate with the gas phase part,
    The high-pressure regenerator, the auxiliary regenerator, and the condenser are in communication with a gas phase part,
    The solution pipe from the absorber to the high pressure regenerator has a branch part, and the solution pipe to the low pressure regenerator is connected to the branch part,
    The solution pump is provided in the solution pipe from the absorber toward the branch portion,
    The absorption refrigerating machine, wherein the solution pipe from the high-pressure regenerator to the absorber has a junction connected to the solution pipe from the low-pressure regenerator.
  2.  前記分岐部から前記低圧再生器に向かう前記溶液配管には、流量調整手段が設けられている、請求項1記載の吸収式冷凍機。 The absorption refrigerating machine according to claim 1, wherein a flow rate adjusting means is provided in the solution pipe from the branch part to the low pressure regenerator.
  3.  前記蒸発器、前記吸収器、前記低圧再生器、前記高圧再生器、前記補助吸収器及び前記補助再生器は、流下液膜式の熱交換器を有する、請求項1又は2に記載の吸収式冷凍機。 The absorption type according to claim 1 or 2, wherein the evaporator, the absorber, the low-pressure regenerator, the high-pressure regenerator, the auxiliary absorber, and the auxiliary regenerator include a falling liquid film type heat exchanger. refrigerator.
  4.  前記合流部から前記吸収器に向かう前記溶液配管には、溶液ポンプが設けられている、請求項1~3のいずれか一項に記載の吸収式冷凍機。 The absorption refrigerator according to any one of claims 1 to 3, wherein a solution pump is provided in the solution pipe from the junction to the absorber.
  5.  前記吸収器から前記分岐部に向かう前記溶液配管と、前記合流部から前記吸収器に向かう前記溶液配管と、が熱交換をする低温溶液熱交換器が設けられている、請求項1~4のいずれか一項に記載の吸収式冷凍機。 The low-temperature solution heat exchanger for exchanging heat between the solution pipe from the absorber toward the branch part and the solution pipe from the junction to the absorber is provided. The absorption refrigerator as described in any one of Claims.
  6.  前記高圧再生器から前記合流部に向かう前記溶液配管と、前記分岐部から前記高圧再生器に向かう前記溶液配管と、が熱交換をする高温溶液熱交換器が設けられている、請求項1~5のいずれか一項に記載の吸収式冷凍機。 A high-temperature solution heat exchanger is provided in which the solution pipe from the high-pressure regenerator to the junction and the solution pipe from the branch to the high-pressure regenerator exchange heat. The absorption refrigerator according to any one of 5.
  7.  前記補助吸収器から前記補助再生器に向かう溶液配管と、前記補助再生器から前記補助吸収器に向かう溶液配管と、が熱交換をする中温溶液熱交換器が設けられている、請求項1~6のいずれか一項に記載の吸収式冷凍機。 An intermediate temperature solution heat exchanger is provided in which a solution pipe from the auxiliary absorber to the auxiliary regenerator and a solution pipe from the auxiliary regenerator to the auxiliary absorber exchange heat. The absorption refrigerator as described in any one of Claims 6.
PCT/JP2017/005716 2017-02-16 2017-02-16 Absorption refrigerator WO2018150516A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197019536A KR102206209B1 (en) 2017-02-16 2017-02-16 Absorption chiller
DE112017006707.3T DE112017006707B4 (en) 2017-02-16 2017-02-16 Absorption chiller
CN201780083943.7A CN110234941B (en) 2017-02-16 2017-02-16 Absorption refrigerator
PCT/JP2017/005716 WO2018150516A1 (en) 2017-02-16 2017-02-16 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005716 WO2018150516A1 (en) 2017-02-16 2017-02-16 Absorption refrigerator

Publications (1)

Publication Number Publication Date
WO2018150516A1 true WO2018150516A1 (en) 2018-08-23

Family

ID=63169735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005716 WO2018150516A1 (en) 2017-02-16 2017-02-16 Absorption refrigerator

Country Status (4)

Country Link
KR (1) KR102206209B1 (en)
CN (1) CN110234941B (en)
DE (1) DE112017006707B4 (en)
WO (1) WO2018150516A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161887A1 (en) 2020-02-14 2021-08-19 住友化学株式会社 Compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858908B2 (en) * 1990-09-05 1999-02-17 株式会社日立製作所 Absorption air conditioner
JP2004211979A (en) * 2003-01-06 2004-07-29 Ebara Corp Absorption refrigerating system
KR20110014376A (en) * 2009-08-05 2011-02-11 주식회사 신성엔지니어링 (low temperature water two-stage absorbtion typerefrigerator
JP2012167905A (en) * 2011-02-16 2012-09-06 Hitachi Appliances Inc Double effect absorption refrigerating machine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236920A (en) * 1988-03-18 1989-09-21 Hitachi Ltd Absorption-refrigeration type dehumidifier
JP3599850B2 (en) * 1995-08-31 2004-12-08 三洋電機株式会社 Absorption refrigerator
JP3824436B2 (en) * 1998-12-08 2006-09-20 荏原冷熱システム株式会社 Triple effect absorption refrigerator
CN100380069C (en) * 2002-09-27 2008-04-09 株式会社荏原制作所 Absorption refrigerator
KR100746241B1 (en) * 2006-06-20 2007-08-03 한국지역난방공사 Low temperature water two-stage absorbtion type refrigerator
CN100504242C (en) * 2006-11-24 2009-06-24 李华玉 Two-stage and multi-stage first kind absorption heat pump
KR101042812B1 (en) * 2009-04-10 2011-06-20 주식회사 센추리 Low temperature water absorbtion type refrigerator having two-stage
JP2010266095A (en) * 2009-05-13 2010-11-25 Sanyo Electric Co Ltd Absorption refrigerating machine for single/double effect
JP2011075180A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Absorption type refrigerating machine
CN203385235U (en) * 2013-06-24 2014-01-08 河南省煤气(集团)有限责任公司 Optimized ammonia absorption refrigeration system
KR101616516B1 (en) * 2014-07-18 2016-04-29 주식회사 성지테크 Free cooling system with absorption chiller
JP6325951B2 (en) * 2014-09-11 2018-05-16 日立ジョンソンコントロールズ空調株式会社 Working medium for absorption refrigerator and absorption refrigerator using the same
CN204063674U (en) * 2014-09-16 2014-12-31 同方川崎节能设备有限公司 Lithium bromide absorption refrigerating set
KR101652484B1 (en) 2015-05-11 2016-08-31 한국지역난방공사 Heating and hot water supply chiller of low temperature water two-stage absorption
CN106016815B (en) * 2016-06-01 2019-04-19 河南科技大学 A kind of single-action two-stage coupling absorption refrigerator
CN205690733U (en) * 2016-06-22 2016-11-16 烟台荏原空调设备有限公司 A kind of single-double effect compound type absorption refrigeration unit
JP6632951B2 (en) * 2016-09-23 2020-01-22 株式会社日立製作所 Absorption refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858908B2 (en) * 1990-09-05 1999-02-17 株式会社日立製作所 Absorption air conditioner
JP2004211979A (en) * 2003-01-06 2004-07-29 Ebara Corp Absorption refrigerating system
KR20110014376A (en) * 2009-08-05 2011-02-11 주식회사 신성엔지니어링 (low temperature water two-stage absorbtion typerefrigerator
JP2012167905A (en) * 2011-02-16 2012-09-06 Hitachi Appliances Inc Double effect absorption refrigerating machine

Also Published As

Publication number Publication date
DE112017006707B4 (en) 2023-10-19
CN110234941B (en) 2021-05-18
KR20190089997A (en) 2019-07-31
CN110234941A (en) 2019-09-13
KR102206209B1 (en) 2021-01-22
DE112017006707T5 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
KR101710072B1 (en) Triple effect absorption chiller using heat source
JP2011075180A (en) Absorption type refrigerating machine
KR101702952B1 (en) Triple effect absorption chiller
WO2018150516A1 (en) Absorption refrigerator
CN108139126B (en) Absorption refrigerator
JP5261111B2 (en) Absorption refrigerator
KR101690303B1 (en) Triple effect absorption chiller
JP6698297B2 (en) Absorption refrigerator
KR102012354B1 (en) Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam
JP4315854B2 (en) Absorption refrigerator
KR20080094985A (en) Hot-water using absorption chiller
JP5055071B2 (en) Absorption refrigerator
JP5785800B2 (en) Vapor absorption refrigerator
US10018383B2 (en) Triple effect absorption chiller
WO2002018850A1 (en) Absorption refrigerating machine
KR20200120186A (en) Absorption type chiller-heater
JP6364238B2 (en) Absorption type water heater
JP7080001B2 (en) Absorption chiller
JP2004011928A (en) Absorption refrigerator
JP2005300126A (en) Absorption type refrigerating machine
JP4260099B2 (en) Absorption refrigerator
JP2009287806A (en) Absorption refrigerator
WO2004046622A1 (en) Absorption refrigerating machine
JP6326899B2 (en) Evaporator
JP2011163615A (en) Absorption type refrigerating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019536

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17897185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP