KR102012354B1 - Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam - Google Patents

Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam

Info

Publication number
KR102012354B1
KR102012354B1 KR1020190010276A KR20190010276A KR102012354B1 KR 102012354 B1 KR102012354 B1 KR 102012354B1 KR 1020190010276 A KR1020190010276 A KR 1020190010276A KR 20190010276 A KR20190010276 A KR 20190010276A KR 102012354 B1 KR102012354 B1 KR 102012354B1
Authority
KR
South Korea
Prior art keywords
coil
regenerator
shell
waste heat
heat
Prior art date
Application number
KR1020190010276A
Other languages
Korean (ko)
Inventor
김인관
김한길
풍익
Original Assignee
(주)월드이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)월드이엔씨 filed Critical (주)월드이엔씨
Priority to KR1020190010276A priority Critical patent/KR102012354B1/en
Application granted granted Critical
Publication of KR102012354B1 publication Critical patent/KR102012354B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Disclosed is an absorption type heat pump system. According to an embodiment of the present invention, the absorption type heat pump system includes: a regenerator exchanging heat with a first waste heat coil through the spraying of a low-temperature weak solution; a high-temperature evaporator generating steam and exchanging heat with a second waste heat coil at the rear end of the first waste heat coil through the spraying of a refrigerant; a high-temperature absorber taking the steam generated by the high-temperature evaporator, and exchanging heat with a high-temperature absorption coil through the spraying of the refrigerant supplied from the regenerator; a low-temperature absorber exchanging heat with a first cooling coil through the spraying of a concentrated solution discharged from the regenerator, and supplying a generated weak solution to the regenerator; a condenser taking the steam generated by the regenerator to exchange heat with a second cooling coil at the rear end of the first cooling coil; and a low-temperature evaporator exchanging heat with a cold water coil through the spraying of a refrigerant generated by the condenser. The high-temperature evaporator and the high-temperature absorber are placed in a first shell, the low-temperature evaporator and the low-temperature absorber are placed in a second shell, the condenser and the regenerator are placed in a third shell, the first and second shells are placed vertically, and the third shell is placed beside the first and second shells. Therefore, a facility can be built in a more compact size through an optimal arrangement of shells.

Description

열교환기 배치를 개선한 냉수 및 스팀 동시 생산 흡수식 히트펌프 시스템{Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam}Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam

본 발명은 흡수식 히트펌프 시스템에 관한 것이다.The present invention relates to an absorption heat pump system.

각종 폐수, 지하수, 산업시설의 냉각수 등을 열원으로 이용 가능한 흡수식 히트펌프 시스템은 냉난방, 급탕, 산업설비 등에서 다양하게 활용되고 있다. 흡수식 히트펌프 시스템은 냉매로 물(H2O)을 사용하고, 냉매를 회수하기 위한 흡수액으로는 리튬브로마이드(LiBr) 용액을 사용할 수 있어, 압축식 냉동기 등에 비해 환경 친화적이며, 냉매와 흡수액이 반영구적으로 사용될 수 있고, 유지비용이 저렴한 이점도 있다. 또한, 폐열을 열원으로 재사용하기 때문에, 에너지의 효율적 이용이 가능하기도 하다. 이러한 이점을 바탕으로 흡수식 히트펌프 시스템은 그 사용범위가 점차 확대되어 가고 있으며, 이에 대응하여 당업계에서는 그 효율을 보다 향상시키고, 에너지 소모를 줄이며, 사용상의 안전성을 확보하기 위한 노력 등이 지속되고 있다.Absorption heat pump systems that can use various wastewater, groundwater, and cooling water in industrial facilities as heat sources are being used in various ways such as air conditioning, hot water supply, and industrial facilities. Absorption heat pump system uses water (H2O) as the refrigerant, and lithium bromide (LiBr) solution can be used as the absorption liquid to recover the refrigerant, which is more environmentally friendly than a compression refrigerator, etc., and the refrigerant and the absorption liquid are used semi-permanently. It also has the advantage of low maintenance costs. In addition, since the waste heat is reused as a heat source, it is also possible to efficiently use energy. Based on these advantages, the range of absorption heat pump system is gradually expanding, and in response, the industry continues to make efforts to improve efficiency, reduce energy consumption, and ensure safety of use. have.

일반적으로, 흡수식 히트펌프 시스템은 흡수기로부터 공급된 희용액을 가열해서 냉매 증기를 분리하는 재생기와, 재생기로부터 이송되는 냉매 증기를 응축시켜 액화하는 응축기와, 응축기로부터 이송되는 냉매액을 냉수관에 살포하여 증발시키는 증발기와, 증발기로부터 이송되는 냉매 증기를 재생기로부터 이송된 농용액에 흡수시키는 흡수기를 포함하여 구성된다.In general, the absorption heat pump system sprays the cold water pipes with a regenerator for heating the rare solution supplied from the absorber to separate the refrigerant vapor, a condenser for condensing and liquefying the refrigerant vapor from the regenerator, and spraying the refrigerant liquid from the condenser to the cold water pipe. And an absorber for absorbing the refrigerant vapor conveyed from the evaporator into the concentrated liquid conveyed from the regenerator.

공개특허공보 제10-2009-0103740호Patent Publication No. 10-2009-0103740

본 발명의 실시예들은 냉매 및 흡수액으로 이뤄진 작동유체를 가압하면서 공급하여, 폐열원으로부터 회수되는 열에너지를 승온시켜 고온수 및 증기로 공급하고, 설정 온도 이하의 냉수도 동시에 공급할 수 있으며, 보다 컴팩트한 구조로 구현할 수 있는 흡수식 히트펌프 시스템을 제공하고자 한다.Embodiments of the present invention by supplying a pressurized working fluid consisting of a refrigerant and an absorbing liquid to heat up the heat energy recovered from the waste heat source to supply hot water and steam, and at the same time can supply cold water below a set temperature, more compact To provide an absorption heat pump system that can be implemented in a structure.

본 발명의 일 측면에 따르면, 저온의 희용액이 분사되어, 제1폐열코일과 열교환되는 재생기; 냉매가 분사되어, 제1폐열코일 후단의 제2폐열코일과 열교환되고, 증기가 생성되는 고온증발기; 고온증발기로부터 생성된 냉매 증기가 유입되고, 재생기로부터 공급되는 농용액이 분사되어, 고온흡수코일과 열교환되는 고온흡수기; 재생기에서 배출되는 농용액이 분사되어, 제1냉각코일과 열교환되고, 생성된 희용액을 재생기로 공급하는 저온흡수기; 재생기에서 생성된 증기가 유입되어, 제1냉각코일 후단의 제2냉각코일과 열교환되는 응축기; 및 응축기에서 생성된 냉매가 분사되어, 냉수코일과 열교환되는 저온증발기;를 포함하는 흡수식 히트펌프 시스템에 제공될 수 있다.According to an aspect of the invention, the low-temperature rare solution is injected, the regenerator for heat exchange with the first waste heat coil; A high temperature evaporator in which a refrigerant is injected to exchange heat with a second waste heat coil at a rear end of the first waste heat coil, and steam is generated; A high temperature absorber into which the refrigerant vapor generated from the high temperature evaporator is introduced, and the agricultural liquid supplied from the regenerator is injected to exchange heat with the high temperature absorption coil; A low temperature absorber for spraying the concentrated solution discharged from the regenerator, heat-exchanging with the first cooling coil, and supplying the generated rare solution to the regenerator; A condenser in which steam generated in the regenerator flows in and exchanges heat with a second cooling coil after the first cooling coil; And a low temperature evaporator in which the refrigerant generated in the condenser is injected and heat-exchanged with the cold water coil may be provided to the absorption heat pump system.

본 발명의 실시예들에 따른 흡수식 히트펌프 시스템은, 폐열로부터 회수된 열에너지를 통해 고온수 및 증기를 공급하고, 설정 온도 이하의 냉수를 공급할 수 있으며, 각 쉘의 최적 배치를 통해 보다 컴팩트한 크기로 설비 구현될 수 있다.Absorptive heat pump system according to embodiments of the present invention, the hot water and steam can be supplied through the heat energy recovered from the waste heat, cold water below the set temperature, and the compact size through the optimum arrangement of each shell The facility can be implemented.

도 1은 본 발명의 일 실시예에 따른 흡수식 히트펌프 시스템을 보여주는 구성도이다.1 is a block diagram showing an absorption heat pump system according to an embodiment of the present invention.

이하, 본 발명의 실시예들을 첨부된 도면을 참조하여 설명하기로 한다. 다만, 이하의 실시예들은 본 발명의 이해를 돕기 위해 제공되는 것이며, 본 발명의 범위가 이하의 실시예들에 한정되는 것은 아님을 알려둔다. 이하의 실시예들은 해당 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것으로, 불필요하게 본 발명의 기술적 요지를 흐릴 수 있다고 판단되는 공지의 구성에 대해서는 상세한 기술을 생략하기로 한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the following embodiments are provided to aid the understanding of the present invention, and the scope of the present invention is not limited to the following embodiments. The following embodiments are provided to more completely explain the present invention to those skilled in the art, and the detailed descriptions of well-known configurations which are determined to unnecessarily obscure the technical gist of the present invention will be described. It will be omitted.

도 1은 본 발명의 일 실시예에 따른 흡수식 히트펌프 시스템을 보여주는 구성도이다.1 is a block diagram showing an absorption heat pump system according to an embodiment of the present invention.

도 1을 참조하면, 본 실시예에 따른 흡수식 히트펌프 시스템은, 재생기(70), 고온증발기(10), 고온흡수기(30), 저온흡수기(90), 응축기(50) 및 저온증발기(80)를 포함하여 구성될 수 있다.Referring to FIG. 1, the absorption heat pump system according to the present embodiment includes a regenerator 70, a high temperature evaporator 10, a high temperature absorber 30, a low temperature absorber 90, a condenser 50, and a low temperature evaporator 80. It may be configured to include.

재생기(70)는 폐열공급관(12)이 통과되고, 여기에 희용액노즐부(38b)를 통해 저온 냉매인 희용액이 분사된다. 이에 의해, 재생기(70)는 폐열로부터 열에너지를 흡수하고, 중온 냉매를 공급한다.The waste heat supply pipe 12 passes through the regenerator 70, and a rare solution, which is a low temperature refrigerant, is injected through the rare solution nozzle part 38b. As a result, the regenerator 70 absorbs thermal energy from the waste heat and supplies the medium temperature refrigerant.

고온증발기(10)는 재생기(70)를 거친 폐열공급관(12)이 통과되고, 여기에 고온냉매노즐부(14b)를 통해 냉매가 분사된다. 분사된 냉매는 폐열공급관(12)으로부터 열에너지를 흡수하여, 고온의 증기로 증발된다.The high temperature evaporator 10 is passed through the waste heat supply pipe 12 through the regenerator 70, the refrigerant is injected through the high temperature refrigerant nozzle unit 14b. The injected refrigerant absorbs thermal energy from the waste heat supply pipe 12 and is evaporated into hot steam.

고온흡수기(30)는 고온증발기(10)와 제1엘리미네이터(18)로 연결되어, 고온증발기(10)에서 발생되는 냉매 증기가 유입된다. 또한, 재생기(70)에서 공급되는 농용액이 분사되어, 플래시탱크(36)로부터 연장되는 온수순환관(34)에 열에너지를 공급하고, 고온수를 제공한다.The high temperature absorber 30 is connected to the high temperature evaporator 10 and the first eliminator 18 so that refrigerant vapor generated from the high temperature evaporator 10 is introduced. In addition, the agricultural liquid supplied from the regenerator 70 is injected to supply thermal energy to the hot water circulation pipe 34 extending from the flash tank 36 to provide hot water.

저온흡수기(90)에서는, 재생기(70)에서 배출되는 농용액이 분사되고, 냉각수배관(52)이 통과되어 농용액을 냉각시켜 희용액으로 변환시키며, 냉각된 희용액을 재생기(70)에 공급한다.In the low temperature absorber (90), the agricultural solution discharged from the regenerator (70) is injected, the cooling water pipe (52) passes, cools the agricultural solution, converts the rare solution, and supplies the cooled rare solution to the regenerator (70). do.

응축기(50)에서는, 냉각수배관(52)이 통과되고, 재생기(70)에서 발생되는 고온의 증기가 유입되어 냉각되면서, 중온 냉매를 고온증발기(10)에 공급한다. 응축기(50)는 재생기(70)와 제2엘리미네이터(54)로 구획된다.In the condenser 50, the cooling water pipe 52 passes and the hot steam generated in the regenerator 70 flows in and cools, thereby supplying the medium temperature refrigerant to the high temperature evaporator 10. The condenser 50 is divided into a regenerator 70 and a second eliminator 54.

저온증발기(80)에서는, 응축기(50)에서 배출되는 중온 냉매가 공급되고, 중온 냉매가 순환되면서 분사되며, 냉수관(82)이 통과되어 냉수를 저온으로 냉각시킨다.In the low temperature evaporator 80, the medium temperature refrigerant discharged from the condenser 50 is supplied, the medium temperature refrigerant is circulated and injected, and the cold water pipe 82 passes to cool the cold water to low temperature.

상기와 같은 흡수식 히트펌프 시스템에서, 고온증발기(10) 및 고온흡수기(30)는 제1쉘(S1)에 배치될 수 있으며, 저온증발기(80) 및 저온흡수기(90)는 제2쉘(S2)에 배치될 수 있다. 또한, 응축기(50) 및 재생기(70)는 제3쉘(S3)에 배치될 수 있다.In the absorption heat pump system as described above, the high temperature evaporator 10 and the high temperature absorber 30 may be disposed in the first shell S1, and the low temperature evaporator 80 and the low temperature absorber 90 may have a second shell S2. ) May be disposed. In addition, the condenser 50 and the regenerator 70 may be disposed in the third shell S3.

제1, 2쉘(S1, S2)은 흡수식 히트펌프 시스템의 일측에 상하로 배치될 수 있다. 도시된 바에 따르면, 제1, 2쉘(S1, S2)은 흡수식 히트펌프 시스템의 좌측 영역에 배치되어, 제1쉘(S1)이 제2쉘(S2)의 상측에 배치되고 있다. 제3쉘(S3)은 제1, 2쉘(S1, S2)의 반대측에 배치될 수 있다. 도시된 바에 따르면, 제3쉘(S3)은 제1, 2쉘(S1, S2)과 대응되도록 흡수식 히트펌프 시스템의 우측 영역에 배치되고 있다. 또한, 제3쉘(S3) 내에서, 응축기(50) 및 재생기(70)는 상하 배치 구조를 이룰 수 있다. 도시된 바에 따르면, 응축기(50)는 제3쉘(S3) 내에서 재생기(70)의 상측 영역에 배치되고 있다.The first and second shells S1 and S2 may be disposed up and down on one side of the absorption heat pump system. As shown, the first and second shells S1 and S2 are disposed in the left region of the absorption heat pump system, and the first shell S1 is disposed above the second shell S2. The third shell S3 may be disposed opposite to the first and second shells S1 and S2. As shown, the third shell S3 is disposed in the right region of the absorption heat pump system so as to correspond to the first and second shells S1 and S2. In addition, in the third shell S3, the condenser 50 and the regenerator 70 may form a vertical arrangement. As shown, the condenser 50 is disposed in the upper region of the regenerator 70 in the third shell S3.

상기와 같은 제1 내지 3쉘(S1~S3)의 배치, 또는, 고온증발기(10), 고온흡수기(30), 저온흡수기(90), 저온증발기(80), 응축기(50) 및 재생기(70)의 배치는 흡수식 히트펌프 시스템을 보다 컴팩트한 구조로 구성할 수 있게 한다. 특히, 제1, 2쉘(S1, S2)과 제3쉘(S3)이 수평적 구조로 배치되어, 전체 시스템의 외부 높이를 상당히 낮출 수 있다. 이는 운반, 설치 등에 있어서 이점을 가져온다.The arrangement of the first to third shells S1 to S3 as described above, or the high temperature evaporator 10, the high temperature absorber 30, the low temperature absorber 90, the low temperature evaporator 80, the condenser 50, and the regenerator 70. ) Allows the absorption heat pump system to be constructed in a more compact structure. In particular, the first, second shells (S1, S2) and the third shell (S3) is arranged in a horizontal structure, it can significantly lower the external height of the entire system. This brings advantages in transportation, installation and the like.

한편, 산업 공정 등에서 폐열이 발생되면, 폐열공급관(12)을 따라 공급되는 유체가 재생기(70) 및 고온증발기(10)를 순차적으로 거쳐 열에너지가 회수된다. 재생기(70) 내부에는 폐열공급관(12)으로부터 연장된 제1폐열코일(12a)이 구비되어, 재생기(70) 내부에서 열교환이 이뤄지고, 고온증발기(10) 내부에는 제2폐열코일(12b)이 구비되어, 열교환이 이뤄진다.On the other hand, when waste heat is generated in an industrial process or the like, the fluid supplied along the waste heat supply pipe 12 is sequentially passed through the regenerator 70 and the high temperature evaporator 10 to recover the heat energy. The first waste heat coil 12a extending from the waste heat supply pipe 12 is provided inside the regenerator 70, and heat exchange is performed inside the regenerator 70, and the second waste heat coil 12b is inside the high temperature evaporator 10. Provided, heat exchange takes place.

도시된 바에 따르면, 폐열공급관(12) 입구부에서 폐열 유체의 온도는 약 90도이고, 재생기(70) 및 고온증발기(10)를 거쳐 배출되는 폐열 유체의 온도는 약 70 내지 75도를 이룰 수 있다.As shown, the temperature of the waste heat fluid at the inlet of the waste heat supply pipe 12 is about 90 degrees, and the temperature of the waste heat fluid discharged through the regenerator 70 and the hot evaporator 10 may be about 70 to 75 degrees. have.

한편, 재생기(70) 내부에서 희용액노즐부(38b)를 통해 분사된 희용액은 제1폐열코일(12a)과 접촉되면서 열에너지를 흡수하여 농용액으로 전환된다.Meanwhile, the rare solution injected through the rare solution nozzle part 38b in the regenerator 70 is converted into a concentrated solution by absorbing thermal energy while being in contact with the first waste heat coil 12a.

여기서, 농용액은 농용액펌프(32i)에 의해 고온흡수기(30) 또는 저온흡수기(90)로 공급되어 분사될 수 있다.Here, the concentrate may be supplied and sprayed to the high temperature absorber 30 or the low temperature absorber 90 by the concentrate pump 32i.

고온흡수기(30)로 공급되는 농용액은 제1열교환부(74)를 거쳐 제1농용액노즐부(32e)를 통해 고온흡수기(30) 내에서 분사되고, 고온흡수기(30)를 통과하는 온수순환관(34)에 열에너지를 전달하여, 플래시탱크(36) 내부로 고온수를 공급한다. 고온수는 플래시탱크(36)에서 기화되어 고온의 증기를 배출한다.The hot liquid supplied to the high temperature absorber 30 is sprayed in the high temperature absorber 30 through the first heat solution nozzle part 32e via the first heat exchanger 74 and passes through the high temperature absorber 30. Thermal energy is transferred to the circulation pipe 34 to supply hot water into the flash tank 36. The hot water is vaporized in the flash tank 36 to discharge hot steam.

필요에 따라, 재생기(70)에서 생성된 농용액은 제2열교환부(38a)를 거쳐 제2농용액노즐부(32f)를 통해 저온흡수기(90) 내에서 분사된다. 분사된 농용액은 제1냉각코일(52a)에서 열교환되어 희용액으로 전환된다.If necessary, the concentrated solution generated in the regenerator 70 is injected into the low temperature absorber 90 through the second concentrated solution nozzle part 32f via the second heat exchange part 38a. The sprayed agricultural solution is heat-exchanged in the first cooling coil 52a to be converted into a rare solution.

상기와 같이 재생기(70)로부터의 농용액이 필요에 따라 복수의 경로를 가질 수 있도록, 폐열회수관(32)은 농용액펌프(32i) 후단에서 제1폐열회수관(32a)과 제2폐열회수관(32b)으로 분지될 수 있다.As described above, the waste heat recovery pipe 32 has a first waste heat recovery pipe 32a and a second waste heat at the rear end of the farm liquid pump 32i so that the farm solution from the regenerator 70 may have a plurality of paths as necessary. It may be branched to the recovery pipe 32b.

제1폐열회수관(32a)은 제1열교환부(74)에서 열교환이 이뤄지는 제1농용액코일(32c)을 포함하고, 제1농용액노즐부(32e)까지 연장될 수 있다. 또한, 제1폐열회수관(32a)에는 농용액의 유동 방향 또는 유동량을 조절하기 위한 농액제어밸브A(32g)가 마련될 수 있다. 농액제어밸브A(32g)는 제1열교환부(74) 전단에 배치될 수 있다.The first waste heat recovery pipe 32a includes a first concentrate coil 32c through which heat is exchanged in the first heat exchange unit 74, and may extend to the first concentrate nozzle unit 32e. In addition, the first waste heat recovery pipe (32a) may be provided with a concentrate control valve A (32g) for adjusting the flow direction or the flow amount of the agricultural solution. The concentrate control valve A 32g may be disposed in front of the first heat exchange unit 74.

따라서, 농용액펌프(32i)에 의해, 재생기(70)에서 생성된 농용액이 제1폐열회수관(32a)을 따라 고온흡수기(30)로 공급될 수 있으며, 고온흡수기(30) 내부에서 분사된 농용액이 고온흡수코일(34a)에 접촉되면서, 열에너지를 온수순환관(34)에 제공할 수 있다.Therefore, the agricultural liquid generated in the regenerator 70 may be supplied to the high temperature absorber 30 along the first waste heat recovery pipe 32a by the agricultural liquid pump 32i, and sprayed inside the high temperature absorber 30. While the concentrated solution is in contact with the high temperature absorption coil (34a), it is possible to provide thermal energy to the hot water circulation pipe (34).

한편, 제2폐열회수관(32b)은 제2열교환부(38a)에서 열교환이 이뤄지는 제2농용액코일(32d)을 포함하고, 제2농용액노즐부(32f)까지 연장될 수 있다. 또한, 제2폐열회수관(32b)에는 농용액의 유동 방향 또는 유동량을 조절하기 위한 농액제어밸브B(32h)가 마련될 수 있다. 농액제어밸브B(32h)는 제2열교환부(38a) 전단에 배치될 수 있다.On the other hand, the second waste heat recovery pipe (32b) includes a second concentrate coil (32d) heat exchange is performed in the second heat exchange unit (38a), it may extend to the second concentrate nozzle portion (32f). In addition, the second waste heat recovery pipe (32b) may be provided with a concentrate control valve B (32h) for adjusting the flow direction or the flow amount of the agricultural solution. The concentrate control valve B 32h may be disposed in front of the second heat exchanger 38a.

필요에 따라, 농액제어밸브A(32g) 및 농액제어밸브B(32h)는 제1, 2폐열회수관(32a, 32b)의 분지점에 마련되는 3-way 밸브 등으로 대체될 수 있다.If necessary, the concentrate control valve A 32g and the concentrate control valve B 32h may be replaced by a 3-way valve or the like provided at the branch points of the first and second waste heat recovery pipes 32a and 32b.

본 실시예의 흡수식 히트펌프 시스템은 상기와 같이 재생기(70)의 농용액이 온도 조건, 시스템 부하 등에 따라, 제1폐열회수관(32a)을 통해 고온흡수기(30)로 제공되거나, 제2폐열회수관(32b)을 통해 저온흡수기(90)로 제공되도록 구성됨으로써, 부하에 따른 최적 운용이 가능하고, 시스템 효율을 향상시킬 수 있다.In the absorption heat pump system of the present embodiment, the agricultural liquid of the regenerator 70 is provided to the high temperature absorber 30 through the first waste heat recovery pipe 32a, or the second waste heat recovery as described above. By being configured to be provided to the cold absorber 90 through the pipe (32b), it is possible to optimize the operation according to the load, it is possible to improve the system efficiency.

한편, 플래시탱크(36)에는 온수순환관(34)이 설치되고, 온수순환관(34)은 고온흡수기(30)를 거쳐 플래시탱크(36)로 순환되게 연결된다. 온수순환관(34)에서의 온수 순환은 온수펌프(34b)에 의해 이뤄질 수 있다.On the other hand, the hot water circulation pipe 34 is installed in the flash tank 36, the hot water circulation pipe 34 is circulated to the flash tank 36 through the high temperature absorber (30). The hot water circulation in the hot water circulation pipe 34 may be achieved by the hot water pump 34b.

또한, 저온흡수기(90)에서 공급되는 희용액이 재생기(70)에서 분사될 수 있도록, 저온흡수기(90)와 재생기(70) 사이에는 희용액순환관(92)이 설치된다. 저온흡수기(90)에 포집된 희용액은 희용액펌프(92a)에 의해 재생기(70)로 유동되어, 재생기(70) 내부에 배치된 희용액노즐부(38b)를 통해 제1폐열코일(12a)로 분사될 수 있다. 여기서, 희용액순환관(92)은 경우에 따라 제2열교환부(38a)에서 제2농용액코일(32d)과 열교환될 수 있다.In addition, the rare solution circulation tube 92 is installed between the low temperature absorber 90 and the regenerator 70 so that the rare solution supplied from the low temperature absorber 90 can be injected from the regenerator 70. The rare solution collected in the low temperature absorber 90 flows to the regenerator 70 by the rare solution pump 92a, and the first waste heat coil 12a through the rare solution nozzle part 38b disposed inside the regenerator 70. Can be sprayed). Here, the rare solution circulation tube 92 may be heat-exchanged with the second concentrated solution coil 32d in the second heat exchange unit 38a in some cases.

저온흡수기(90)에는 냉각수배관(52)이 통과되고, 저온흡수기(90) 내부에 배치된 냉각수배관(52)에는 제1냉각코일(52a)이 마련되어, 제2농용액노즐부(32f)를 통해 분사되는 농용액이 제1냉각코일(52a)에 접촉되면서 냉각된다. 이에 의해, 농용액은 희용액으로 변환되고, 희용액펌프(92a) 및 희용액순환관(92)에 의해 다시 재생기(70)로 공급된다. 또한, 희용액은 재생기(70) 내부에서 폐열을 흡수하여 다시 농용액으로 재생된다.The cooling water pipe 52 passes through the low temperature absorber 90, and the first cooling coil 52a is provided in the cooling water pipe 52 disposed inside the low temperature absorber 90 to provide the second concentrated liquid nozzle part 32f. The concentrated solution sprayed through is cooled while contacting the first cooling coil 52a. As a result, the concentrated solution is converted into a rare solution and supplied to the regenerator 70 again by the rare solution pump 92a and the rare solution circulation tube 92. In addition, the rare solution absorbs waste heat inside the regenerator 70 and is regenerated into a concentrated solution again.

한편, 응축기(50)와 고온증발기(10) 사이에는 냉매관(16)이 설치되고, 냉매관(16)에는 응축기(50)에서 공급된 냉매액을 고온증발기(10)로 압송하는 냉매펌프(16a)가 설치된다. 따라서 응축기(50)에서 생성된 냉매액은 냉매펌프(16a) 및 냉매제어밸브(16b)를 거쳐 고온증발기(10)로 제공될 수 있다. 또한, 고온증발기(10)에는 냉매액을 순환시켜 제2폐열코일(12b)로 분사하도록, 고온냉매순환관(14)이 설치되고, 고온냉매순환관(14)에는 냉매액을 고온증발기(10) 내부로 분사하는 고온냉매노즐부(14b)가 마련된다.Meanwhile, a refrigerant pipe 16 is installed between the condenser 50 and the high temperature evaporator 10, and a refrigerant pump for pumping the refrigerant liquid supplied from the condenser 50 to the high temperature evaporator 10. 16a) is installed. Therefore, the refrigerant liquid generated in the condenser 50 may be provided to the high temperature evaporator 10 via the refrigerant pump 16a and the refrigerant control valve 16b. In addition, the high temperature evaporator 10 is provided with a high temperature refrigerant circulation tube 14 so as to circulate the refrigerant liquid to be injected into the second waste heat coil 12b, and the high temperature refrigerant circulation tube 14 is a high temperature evaporator 10. ) A high temperature refrigerant nozzle portion 14b for injecting the inside is provided.

따라서, 고온증발기(10) 내부로 고온 냉매가 분사되고, 제2폐열코일(12b)과 접촉되면서 열교환이 이뤄지며, 냉매가 고온의 증기로 변환되어, 제1엘리미네이터(18)를 통해 고온흡수기(30)로 냉매 증기가 공급된다. 공급된 증기는 고온흡수기(30) 내부에서 고온흡수코일(34a)과 열교환되면서 고온수를 제공하게 된다.Therefore, a high temperature refrigerant is injected into the high temperature evaporator 10, heat exchange is performed while contacting the second waste heat coil 12b, and the refrigerant is converted into high temperature steam, and the high temperature absorber is provided through the first eliminator 18. Coolant vapor is supplied to 30. The supplied steam exchanges heat with the high temperature absorption coil 34a in the high temperature absorber 30 to provide high temperature water.

한편, 응축기(50)와 저온증발기(80) 사이에는 냉매배출관(56)이 설치되며, 냉매배출관(56)에는 냉매개폐밸브(56a)가 마련된다. 따라서 응축기(50)로부터 배출되는 냉매는 냉매배출관(56)을 통해 저온증발기(80)로 공급될 수 있다.Meanwhile, a refrigerant discharge pipe 56 is installed between the condenser 50 and the low temperature evaporator 80, and a refrigerant open / close valve 56a is provided in the refrigerant discharge pipe 56. Therefore, the refrigerant discharged from the condenser 50 may be supplied to the low temperature evaporator 80 through the refrigerant discharge pipe 56.

즉, 냉매개폐밸브(56a)가 개방되면, 응축기(50)에서 배출되는 냉매가 냉매배출관(56)을 따라 저온증발기(80)로 공급되고, 저온냉매펌프(16a)에 의해 순환되어, 저온냉매노즐부(84b)를 통해 저온증발기(80) 내부에 분사될 수 있다. 분사된 냉매는 냉수코일(82a)과 접촉되면서 증발되고, 이에 의해, 냉수관(82)을 유동하는 냉수가 냉각되어 배출된다. 예컨대, 냉수는 약 13도에서 약 8도로 냉각될 수 있다.That is, when the refrigerant open / close valve 56a is opened, the refrigerant discharged from the condenser 50 is supplied to the low temperature evaporator 80 along the refrigerant discharge pipe 56, circulated by the low temperature refrigerant pump 16a, and the low temperature refrigerant It may be injected into the low-temperature evaporator 80 through the nozzle unit 84b. The injected refrigerant is evaporated while contacting the cold water coil 82a, whereby cold water flowing through the cold water pipe 82 is cooled and discharged. For example, cold water can be cooled from about 13 degrees to about 8 degrees.

저온증발기(80) 내부에서 증발된 냉매는 제3엘리미네이터(86)를 통해 저온흡수기(90)로 공급된다. 공급된 냉매는 저온흡수기(90) 내에서 제1냉각코일(52a)과 접촉되면서 희용액으로 변환된다.The refrigerant evaporated in the low temperature evaporator 80 is supplied to the low temperature absorber 90 through the third eliminator 86. The supplied coolant is converted into a rare solution while contacting the first cooling coil 52a in the low temperature absorber 90.

또한, 재생기(70)에서 증발된 냉매는 제2엘리미네이터(54)를 통해 응축기(50)로 공급된다. 공급된 냉매는 응축기(50) 내에서 제2냉각코일(52b)과 접촉되면서 액체 냉매로 변환된다.In addition, the refrigerant evaporated in the regenerator 70 is supplied to the condenser 50 through the second eliminator 54. The supplied refrigerant is converted into a liquid refrigerant while being in contact with the second cooling coil 52b in the condenser 50.

또한, 저온증발기(80)에는 저온증발기(80)로부터 배출되는 저온 냉매가 순환되어 분사되도록 저온냉매순환관(84)이 설치되고, 저온냉매순환관(84)에는 저온냉매펌프(16a) 및 저온냉매노즐부(84b)가 설치되므로, 저온증발기(80)에 공급되는 냉매가 저온냉매펌프(16a)에 의해 순환되고, 저온냉매노즐부(84b)에 의해 저온증발기(80) 내부에 분사되면서 냉각수배관(52)과 열교환을 행하게 된다.In addition, the low temperature evaporator 80 is provided with a low temperature refrigerant circulation tube 84 so that the low temperature refrigerant discharged from the low temperature evaporator 80 is circulated and injected, and the low temperature refrigerant pump 16 and low temperature refrigerant pump 16a and low temperature. Since the coolant nozzle part 84b is installed, the coolant supplied to the low temperature evaporator 80 is circulated by the low temperature refrigerant pump 16a, and is injected into the low temperature evaporator 80 by the low temperature refrigerant nozzle part 84b. The heat exchange with the pipe 52 is performed.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As described above, embodiments of the present invention have been described, but those skilled in the art may add, change, delete, or add elements within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

10: 고온증발기 30: 고온흡수기
50: 응축기 70: 재생기
80: 저온증발기 90: 저온흡수기
80: 저온증발기
10: high temperature evaporator 30: high temperature absorber
50: condenser 70: regenerator
80: low temperature evaporator 90: low temperature absorber
80: cryogenic evaporator

Claims (4)

저온의 희용액이 분사되어, 제1폐열코일(12a)과 열교환되는 재생기(70);
냉매가 분사되어, 제1폐열코일(12a) 후단의 제2폐열코일(12b)과 열교환되고, 증기가 생성되는 고온증발기(10);
고온증발기(10)로부터 생성된 냉매 증기가 유입되고, 재생기(70)로부터 공급되는 농용액이 분사되어, 고온흡수코일(34a)과 열교환되는 고온흡수기(30);
재생기(70)에서 배출되는 농용액이 분사되어, 제1냉각코일(52a)과 열교환되고, 생성된 희용액을 재생기(70)로 공급하는 저온흡수기(90);
재생기(70)에서 생성된 증기가 유입되어, 제1냉각코일(52a) 후단의 제2냉각코일(52b)과 열교환되는 응축기(50); 및
응축기(50)에서 생성된 냉매가 분사되어, 냉수코일(82a)과 열교환되는 저온증발기(80);를 포함하되,
고온증발기(10) 및 고온흡수기(30)는 제1쉘(S1)에 배치되고,
저온증발기(80) 및 저온흡수기(90)는 제2쉘(S2)에 배치되고,
응축기(50) 및 재생기(70)는 제3쉘(S3)에 배치되고,
제1쉘(S1) 및 제2쉘(S2)은 상하 배치되고, 제3쉘(S3)은 제1, 2쉘(S1, S2)의 측방에 배치되고,
재생기(70)로부터 농용액을 배출 안내하는 폐열회수관(32)을 더 포함하되,
폐열회수관(32)은, 제1, 2폐열회수관(32a, 32b)으로 분지되고,
제1폐열회수관(32a)은, 제1열교환부(74)에 배치된 제1농용액코일(32c)을 구비하고, 고온흡수기(30)에 배치된 제1농용액노즐부(32e)로 연장 형성되며,
제2폐열회수관(32b)은, 제2열교환부(38a)에 배치된 제2농용액코일(32d)을 구비하고, 저온흡수기(90)에 배치된 제2농용액노즐부(32f)로 연장 형성되며,
제1열교환부(74)는, 고온흡수기(30)로부터 희용액공급관(38)을 통해 배출되는 희용액과, 제1농용액코일(32c)을 열교환시키도록 형성되고,
제2열교환부(38a)는, 저온흡수기(90)로부터 희용액순환관(92)을 통해 배출되는 희용액과, 제2농용액코일(32d)을 열교환시키도록 형성되고,
제1폐열회수관(32a)은, 제2폐열회수관(32b)과의 분지점과, 제1농용액코일(32c)과의 사이에 농액제어밸브A(32g)를 구비하고,
제2폐열회수관(32b)은, 제1폐열회수관(32a)과의 분지점과, 제2농용액코일(32d)과의 사이에 농액제어밸브B(32h)를 구비하는 것을 특징으로 하는 흡수식 히트펌프 시스템.
A regenerator 70 in which a low temperature rare solution is injected and heat-exchanged with the first waste heat coil 12a;
A high temperature evaporator 10 in which a refrigerant is injected, heat-exchanged with the second waste heat coil 12b at the rear end of the first waste heat coil 12a, and steam is generated;
A high temperature absorber 30 into which the refrigerant vapor generated from the high temperature evaporator 10 flows in, and the agricultural solution supplied from the regenerator 70 is injected to exchange heat with the high temperature absorption coil 34a;
A low temperature absorber 90 which sprays the concentrated solution discharged from the regenerator 70, exchanges heat with the first cooling coil 52 a, and supplies the generated rare solution to the regenerator 70;
A condenser 50 into which the steam generated by the regenerator 70 flows in and exchanges heat with the second cooling coil 52b after the first cooling coil 52a; And
It includes; low temperature evaporator 80 is injected into the refrigerant generated in the condenser 50, the heat exchange with the cold water coil (82a),
The high temperature evaporator 10 and the high temperature absorber 30 are disposed in the first shell S1,
The low temperature evaporator 80 and the low temperature absorber 90 are disposed in the second shell S2,
The condenser 50 and the regenerator 70 are disposed in the third shell S3,
The first shell S1 and the second shell S2 are disposed up and down, and the third shell S3 is disposed on the side of the first and second shells S1 and S2,
Further comprising a waste heat recovery pipe 32 for guiding the discharge of the agricultural liquid from the regenerator 70,
The waste heat recovery pipe 32 is branched into first and second waste heat recovery pipes 32a and 32b,
The first waste heat recovery pipe (32a) is provided with a first concentrated solution coil (32c) disposed in the first heat exchange unit (74), and the first concentrated solution nozzle (32e) disposed in the high temperature absorber (30). Extends,
The second waste heat recovery pipe 32b is provided with a second concentrated liquid coil 32d disposed in the second heat exchanger 38a, and is provided as a second concentrated liquid nozzle part 32f disposed in the low temperature absorber 90. Extends,
The first heat exchange part 74 is formed to heat exchange the rare solution discharged from the high temperature absorber 30 through the rare solution supply pipe 38 with the first concentrated solution coil 32c.
The second heat exchanger 38a is formed to exchange heat between the rare solution discharged from the low temperature absorber 90 through the rare solution circulation tube 92 and the second concentrated solution coil 32d.
The first waste heat recovery pipe 32a includes a concentrate control valve A 32g between the branch point of the second waste heat recovery pipe 32b and the first concentrate coil 32c.
The second waste heat recovery pipe 32b includes a concentrate control valve B 32h between the branch point of the first waste heat recovery pipe 32a and the second concentrate liquid coil 32d. Absorption heat pump system.
청구항 1에 있어서,
제1쉘(S1)은, 제2쉘(S2)의 상측에 배치되고,
고온증발기(10) 및 고온흡수기(30)는, 제1쉘(S1) 내에서 제1엘리미네이터(18)를 중심으로 좌우 배치되고,
저온증발기(80) 및 저온흡수기(90)는, 제2쉘(S2) 내에서 제3엘리미네이터(86)를 중심으로 좌우 배치되고,
응축기(50) 및 재생기(70)는, 제3쉘(S3) 내에서 응축기(50)가 상측에 배치되고, 재생기(70)가 하측에 배치되어, 상하 배치된 구조를 이루는 것을 특징으로 하는 흡수식 히트펌프 시스템.
The method according to claim 1,
The first shell S1 is disposed above the second shell S2,
The high temperature evaporator 10 and the high temperature absorber 30 are disposed left and right about the first eliminator 18 in the first shell S1,
The low temperature evaporator 80 and the low temperature absorber 90 are disposed left and right about the third eliminator 86 in the second shell S2,
As for the condenser 50 and the regenerator 70, the condenser 50 is arrange | positioned at the upper side in the 3rd shell S3, and the regenerator 70 is arrange | positioned at the lower side, and it is comprised by the absorption type characterized by the above-mentioned structure. Heat pump system.
삭제delete 삭제delete
KR1020190010276A 2019-01-28 2019-01-28 Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam KR102012354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190010276A KR102012354B1 (en) 2019-01-28 2019-01-28 Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190010276A KR102012354B1 (en) 2019-01-28 2019-01-28 Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam

Publications (1)

Publication Number Publication Date
KR102012354B1 true KR102012354B1 (en) 2019-10-14

Family

ID=68171450

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190010276A KR102012354B1 (en) 2019-01-28 2019-01-28 Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam

Country Status (1)

Country Link
KR (1) KR102012354B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110822763A (en) * 2019-11-05 2020-02-21 石河子大学 Power plant waste heat recovery system capable of achieving double-effect operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171121A (en) * 1998-12-07 2000-06-23 Sanyo Electric Co Ltd Absorption refrigerating machine
KR20090103740A (en) 2008-03-28 2009-10-01 산요덴키가부시키가이샤 Absorption heat pump
KR101851231B1 (en) * 2017-04-19 2018-04-23 (주)월드이엔씨 Absorption type heat pump system for gaining high temperature
KR20180068437A (en) * 2016-12-14 2018-06-22 전북대학교산학협력단 Hybrid system of absorption type refrigeration and heat pupm for supplying cooling and steam simultaneously
KR20180085363A (en) * 2017-01-18 2018-07-26 (주)월드이엔씨 Low load control system for 2-stage low temperature hot water absorption chiller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171121A (en) * 1998-12-07 2000-06-23 Sanyo Electric Co Ltd Absorption refrigerating machine
KR20090103740A (en) 2008-03-28 2009-10-01 산요덴키가부시키가이샤 Absorption heat pump
KR20180068437A (en) * 2016-12-14 2018-06-22 전북대학교산학협력단 Hybrid system of absorption type refrigeration and heat pupm for supplying cooling and steam simultaneously
KR20180085363A (en) * 2017-01-18 2018-07-26 (주)월드이엔씨 Low load control system for 2-stage low temperature hot water absorption chiller
KR101851231B1 (en) * 2017-04-19 2018-04-23 (주)월드이엔씨 Absorption type heat pump system for gaining high temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110822763A (en) * 2019-11-05 2020-02-21 石河子大学 Power plant waste heat recovery system capable of achieving double-effect operation
CN110822763B (en) * 2019-11-05 2021-07-27 石河子大学 Power plant waste heat recovery system capable of achieving double-effect operation

Similar Documents

Publication Publication Date Title
CN103411347A (en) Coupling type heat pump waste heat recovery system
CN202521938U (en) Heat pump system and drying system
CN201705400U (en) Power plant cooling system adopting waste heat refrigeration form to increase cooling efficiency
CN102374698B (en) Refrigerating and heating device with refrigerating system being opening-type
JP2011112272A (en) Method and device for heating and cooling
CN101135511A (en) Compression-absorption mixed refrigerating device
CN105423594A (en) Heating normal-temperature smoke discharge smoke hot water type lithium bromide absorbing type cold and hot water unit
CN105444464A (en) Smoke-type lithium bromide absorption type water chiller-heater unit for heating and normal temperature smoke exhaust
JP2011089722A (en) Method and device for refrigeration/air conditioning
CN201100780Y (en) Compression-absorption mixed refrigerator
CN105910456A (en) Green comprehensive cold island equipment and cooling method
CN105444457A (en) Two-stage type absorption refrigerating unit and control method thereof
CN102322705A (en) Circulating device combining diffusing absorption-type refrigeration and vapor compression refrigeration
KR102012354B1 (en) Absorption type heat pump system that improves heat exchanger placement and simultaneously produces cold water and steam
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
CN207741379U (en) A kind of absorption deep refrigerating system of industrial waste heat driving
CN105509365A (en) Efficient heating smoke water-heating type lithium bromide absorption type water chiller-heater unit
CN105972673B (en) A kind of relaying energy site type great temperature difference heat supply system and method
CN204063674U (en) Lithium bromide absorption refrigerating set
CN108139126B (en) Absorption refrigerator
CN105423596A (en) Heating efficient smoke type lithium bromide absorbing type cold and hot water unit
CN205718534U (en) A kind of green composite cool island equipment
CN205279512U (en) Cold, hot water unit of flue gas hot water type lithium bromide absorption formula that heating normal atmospheric temperature is discharged fume
CN205279508U (en) Cold, hot water unit of high -efficient flue gas hot water type lithium bromide absorption formula of heating
CN205279507U (en) Cold, hot water unit of high -efficient flue gas type lithium bromide absorption formula of heating