WO2018145587A1 - 一种下行信号预纠偏方法及装置 - Google Patents

一种下行信号预纠偏方法及装置 Download PDF

Info

Publication number
WO2018145587A1
WO2018145587A1 PCT/CN2018/074494 CN2018074494W WO2018145587A1 WO 2018145587 A1 WO2018145587 A1 WO 2018145587A1 CN 2018074494 W CN2018074494 W CN 2018074494W WO 2018145587 A1 WO2018145587 A1 WO 2018145587A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
frequency offset
correction
value
downlink
Prior art date
Application number
PCT/CN2018/074494
Other languages
English (en)
French (fr)
Inventor
范玉静
陈跃潭
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to JP2019542603A priority Critical patent/JP6765544B2/ja
Priority to US16/484,112 priority patent/US10715217B2/en
Priority to EP18751959.0A priority patent/EP3582419B1/en
Publication of WO2018145587A1 publication Critical patent/WO2018145587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a downlink signal pre-distortion method and apparatus.
  • the frequency of the signal received by the receiver produces a deviation from the frequency of the signal emitted by the transmitter, which is called the Doppler frequency offset.
  • c is the speed of light
  • f is the carrier frequency
  • v is the relative speed of movement between the receiver and the transmitter
  • is the angle between the direction of movement of the receiver and the direction of signal propagation.
  • the terminal has a high absolute value of the Doppler frequency offset due to the high LTE carrier frequency.
  • the carrier frequency is 2.6 GHz.
  • the speed is 300km/h, and the Doppler frequency offset is up to 720Hz.
  • the excessive Doppler frequency offset causes the receiver performance to deteriorate sharply, resulting in a decrease in network throughput and even affecting the terminal access network.
  • a cell merging technique is generally used, that is, multiple radio remote units (RRUs) arranged along a highway/railway are cascaded together as a logical cell. Increase the single cell coverage radius.
  • the terminal moves from one RRU coverage area to another RRU coverage area, the received signals of the two RRUs are opposite in direction, and correspondingly, the Doppler frequency is reversed, thereby affecting the downlink signal reception of the terminal. performance.
  • the amplitudes of the two RRU signals received by the terminal are close.
  • the terminal cannot use the Automatic Frequency Control (AFC) technology to make the local oscillator frequency coincide with the received signal frequency.
  • AFC Automatic Frequency Control
  • the base station may send a Dedicated Reference Signal (DRS) to the terminal in some specific transmission modes, and the base station may perform radio resource control (RRC) interaction signaling (such as RRC heavy).
  • RRC radio resource control
  • the configuration message informs the terminal to transmit signals using a specific transmission mode.
  • the base station side performs pre-distortion processing only on the DRS and the Physical Downlink Shared Channel (PDSCH) transmitted to the terminal, and does not pre-determine the cell-specific reference signal (CRS).
  • the DRS received by the terminal acquires the corresponding downlink signal frequency offset, and after receiving the downlink signal of the rectification processing, the downlink signal is subjected to the rectification processing according to the obtained downlink signal frequency offset.
  • the current scheme of transmitting DRS by using a specific mode is a scheme for estimating and compensating downlink frequency offset in a high-speed scenario proposed by the protocol layer.
  • the scheme requires the base station to configure a special transmission mode for the terminal through RRC signaling.
  • the base station and the terminal are required to support the solution at the same time, and the scheme for transmitting the DRS by using the specific mode needs to pass the periodicity when the terminal service is sparse.
  • the DRS signal is sent to the terminal and the terminal performs downlink scheduling, which additionally adds unnecessary scheduling.
  • the embodiments of the present invention provide a downlink signal pre-correcting method and device, which are used to solve the problem that the downlink signal pre-correcting process existing in the prior art is complicated and the signaling burden is increased.
  • a downlink signal pre-distortion method includes:
  • the uplink frequency offset value of the first RRU and the second RRU corresponding to any client is obtained, including:
  • the uplink frequency offset value of the first RRU corresponding to the one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs;
  • the uplink frequency offset value of the second RRU corresponding to one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs.
  • determining, according to the average uplink frequency offset value of the one RRU and the downlink pre-correction value in the previous pre-correction period, determining a downlink pre-correction value of the current RRU in the current downlink pre-correction period specifically include:
  • the downlink pre-correction value of the current RRU in the current downlink pre-correction period is adjusted in a stepwise manner, which specifically includes:
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period is reduced by a preset step frequency value;
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period plus a preset step frequency value;
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period.
  • a downlink signal pre-distortion device includes:
  • the acquiring unit is configured to obtain an uplink frequency offset value of the first radio remote unit RRU and the second RRU corresponding to each client, where the first RRU is the most powerful RRU used by the client.
  • the second RRU is a power-efficient RRU used by a client;
  • a determining unit configured to determine, according to an uplink frequency offset value of the first RRU and the second RRU corresponding to each of the clients, a frequency offset value set corresponding to each RRU, where the frequency offset value set corresponding to one RRU includes All uplink frequency offset values of the first RRU or the second RRU corresponding to the client that selects to use the one RRU;
  • the execution unit is configured to perform the following operations for each RRU when determining to reach the downlink pre-correction period:
  • the acquiring unit when acquiring an uplink frequency offset value of the first RRU and the second RRU corresponding to any client, is specifically configured to:
  • the determining unit is specifically configured to: when determining, according to an uplink frequency offset value of the first RRU and the second RRU corresponding to each of the clients, a set of frequency offset values corresponding to any RRU:
  • the uplink frequency offset value of the first RRU corresponding to the one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs;
  • the uplink frequency offset value of the second RRU corresponding to one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs.
  • the execution unit is specifically configured to:
  • the executing unit is specifically configured to:
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period is reduced by a preset step frequency value;
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period plus a preset step frequency value;
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period.
  • the base station determines each RRU based on the obtained uplink frequency offset values of the first RRU and the second RRU corresponding to each client. And corresponding to the set of uplink frequency offset values, and when determining that the downlink pre-correction period is reached, performing the following operations for each RRU: calculating an average uplink frequency offset value of the RRU based on a set of frequency offset values of one RRU, and acquiring the RRU Determining the downlink pre-correction value in the previous pre-correction period, and determining the downlink pre-determination of the RRU in the current downlink pre-correction period based on the average uplink frequency offset value of the RRU and the downlink pre-correction value in the previous pre-correction period Correction value.
  • the base station side support is required to complete the downlink signal pre-correction and correction, and the cooperation between the base station side and the terminal side is not required.
  • the uplink frequency offset value of each terminal is counted in units of RRUs, and no RRU is involved. Inter-data interaction, which reduces the complexity of the implementation of the solution and reduces the signaling burden on the basis of ensuring performance, thereby improving the user experience.
  • FIG. 1 is a detailed flowchart of a method for pre-correcting a downlink signal according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a downlink signal pre-distortion device according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • the embodiment of the present invention provides a downlink signal pre-distortion method and device, which is based on each acquired client.
  • the uplink radio frequency offset (Radio Remote Unit (RRU) corresponding to the end and the uplink frequency offset value of the second RRU respectively determine the uplink frequency offset value set corresponding to each RRU, and when determining the arrival of the downlink pre-correction period,
  • An RRU performs the following operations: calculating an average uplink frequency offset value of the RRU based on a set of frequency offset values of an RRU, and obtaining a downlink pre-correction value of the RRU in a previous pre-correction period, and an average uplink based on the RRU
  • the frequency offset value and the downlink pre-correction value in the previous pre-correction period determine the downlink pre-correction value of the RRU in the current downlink pre-correction period.
  • a detailed process of a downlink signal pre-correcting method is as follows:
  • Step 101 Obtain an uplink frequency offset value of the RRU and the second RRU corresponding to each client, where the first RRU is the most powerful RRU used by the client, and the second RRU is used by a client. The second most powerful RRU.
  • the base station obtains the power of each RRU used by the client when receiving the uplink signal sent by the client through the RRU.
  • the base station determines, according to the received Sounding Reference Signal (SRS) of each client on each RRU, the power of the SRS signal corresponding to any of the clients is the best.
  • SRS Sounding Reference Signal
  • the second RRU with the second RRU and SRS signal power is second.
  • the base station receives the SRS signal sent by the client 1 through the RRU1, the RRU2, the RRU3, and the RRU4. If the base station determines that the RRS1 is the best RRU for the SRS signal power of the client 1, the RRU1 is determined to be the corresponding to the client 1. The first RRU determines the RRU4 as the second RRU corresponding to the client 1 if it is determined that the RRU4 is the second best RRU for the SRS signal power of the client 1.
  • the base station calculates an uplink frequency offset value of the first RRU and an uplink frequency offset value of the second RRU corresponding to any of the foregoing clients.
  • the base station calculates the uplink frequency offset of the RRU1 as 300 Hz, and calculates the uplink frequency offset of the RRU 4 as 200 Hz.
  • the base station may process the uplink signal sent by the client by using the uplink correcting algorithm to obtain the uplink frequency offset value of the first RRU and the second RRU corresponding to the client.
  • Step 102 Determine, according to the uplink frequency offset values of the first RRU and the second RRU corresponding to each client, the uplink frequency offset value set corresponding to each RRU, where the uplink frequency offset value set corresponding to one RRU includes all The uplink frequency offset value of the first RRU or the second RRU corresponding to the client that uses the foregoing one RRU is selected.
  • the base station sets a corresponding RRU frequency offset value set for each RRU, and the base station according to the uplink frequency offset value of the first RRU and the second RRU corresponding to each client, and between the first RRU and the second RRU.
  • the absolute value of the power difference is determined by the RRU frequency offset value set corresponding to each RRU, and the base station determines that the absolute value of the power difference between the first RRU and the second RRU corresponding to any client is less than a preset threshold.
  • the first RRU and the second RRU may be respectively allocated to the corresponding RRU frequency offset value set; if the base station determines that the power difference between the first RRU and the second RRU corresponding to any client is greater than or equal to the preset gate In the case of the limit, only the first RRU is divided into corresponding sets of RRU frequency offset values.
  • the base station determines the RRU1 and the RRU4.
  • the power difference between the uplink frequency offset of the RRU1 corresponding to the client 1 is divided into the frequency offset value set of the RRU1 corresponding to the client 1, and the uplink frequency offset value of the RRU4 corresponding to the client 1 is divided into RRU4 frequency offset value set.
  • the base station determines RRU1 and RRU4. The power difference between the two is only 30 dB (that is, 30 dB ⁇ 15 dB). Then, the base station only divides the uplink frequency offset value of the RRU1 corresponding to the client 1 into the RRU frequency offset value set corresponding to the RRU1.
  • the base station when performing step 102, separately calculates the absolute value of the power difference between the first RRU and the second RRU corresponding to each client, and performs the following operations for each client separately:
  • the uplink frequency offset value of the first RRU corresponding to the one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs.
  • the base station divides the uplink frequency offset value of the RRU1 corresponding to the client 1 into the RRU frequency offset value corresponding to the RRU1.
  • the uplink frequency offset value of the RRU3 corresponding to the client 2 is divided into the RRU frequency offset value set corresponding to the RRU3.
  • the foregoing one client When determining that any RRU is a second RRU corresponding to one client, and the absolute value of the power difference between the first RRU and the second RRU corresponding to the one client is less than a preset threshold, the foregoing one client
  • the uplink frequency offset value of the corresponding second RRU is divided into the RRU frequency offset value set corresponding to any one of the RRUs.
  • the preset threshold is 15 dB. If the absolute value of the power difference between RRU1 and RRU2 is less than 15 dB, then The base station divides the uplink frequency offset value of the RRU2 corresponding to the client 2 into the RRU frequency offset value set corresponding to the RRU2.
  • Step 103 Determine whether the downlink pre-correction period is reached. If yes, execute step 104; otherwise, perform step 101.
  • the size of the downlink pre-correction period can be set according to different application environments and/or different actual service requirements.
  • the downlink pre-correction period is set to 20 ms, that is, the base station adjusts the downlink pre-correction value once every 20 ms.
  • Step 104 Calculate the average uplink frequency offset value of the foregoing one RRU based on the uplink frequency offset value of the first RRU or the second RRU corresponding to the client of the one RRU based on all the selections included in the frequency offset value set of one RRU, and obtain the foregoing The downlink pre-correction value of an RRU in the last pre-correction period.
  • the base station when determining that the downlink pre-correction period is reached, calculates an average uplink frequency offset value of each RRU according to the frequency offset value set corresponding to each RRU.
  • the base station calculates an average uplink frequency offset of the one RRU according to an uplink frequency offset value of the first RRU or the second RRU corresponding to each client included in the RRU frequency offset value set corresponding to one RRU. value.
  • the frequency offset set of the RRU1 includes the uplink frequency offset value 1 of the RRU1 corresponding to the client 1, the uplink frequency offset value 2 of the RRU1 corresponding to the client 2, and the uplink frequency offset value 3 of the RRU1 corresponding to the client 3.
  • the base station can calculate the average uplink frequency offset value of the RRU1 according to the uplink frequency offset value 1, the uplink frequency offset value 2, and the uplink frequency offset value 3, for example, (uplink frequency offset value 1 + uplink frequency offset value 2+ uplink frequency offset value) 3) / 3.
  • the base station acquires a downlink pre-correction value of the one RRU in the previous pre-correction period, where the initial downlink pre-correction value is set to 0.
  • the subsequent service operation can be performed according to the average uplink frequency offset value of the RRU and the initial downlink pre-correction value.
  • Step 105 Determine, according to the average uplink frequency offset value of the one RRU and the downlink pre-correction value in the previous pre-correction period, the downlink pre-correction value of the current RRU in the current downlink pre-correction period.
  • the base station determines the average uplink frequency offset value of the one RRU according to the frequency offset value set corresponding to one RRU, and obtains the downlink pre-correction value of the previous RRU in the previous pre-correction period, and then the foregoing one RRU.
  • the average uplink frequency offset value is compared with the inverse of the downlink pre-correction value in the previous pre-correction period, and according to the comparison result, the downlink prediction of the current RRU in the current downlink pre-correction period is adopted in a stepwise manner. The correction value is adjusted.
  • the base station adjusts the downlink pre-correction value of the current RRU in the current downlink pre-correction period according to different comparison results by using different stepping manners:
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is the foregoing one RRU.
  • the downlink pre-correction value in the last pre-correction period is reduced by a preset step frequency value.
  • the downlink pre-correction value of the current RRU in the current downlink pre-correction period is the foregoing one RRU.
  • the downlink pre-correction value in the previous pre-correction period plus a preset step frequency value is the downlink pre-correction value in the previous pre-correction period plus a preset step frequency value.
  • the downlink pre-correction value of the current RRU in the current downlink pre-correction period is the foregoing one RRU.
  • the downlink pre-correction value in the last pre-correction period is the foregoing one RRU.
  • the client assumes a carrier frequency of 2.6 GHz, a client moving speed of 360 km/h, a downlink pre-correction period of 20 ms, and a maximum downlink offset of about 16 Hz in a 20 ms period.
  • the preset step frequency value is set to 16 Hz.
  • the base station calculates the average uplink frequency offset of the RRU1 as 200 Hz.
  • the downlink pre-correction value in the first downlink pre-correction period is 0 Hz.
  • the downlink pre-correction value of an RRU in the current downlink pre-correction period is adjusted in a stepwise manner, and after n adjustments, the final downlink pre-correction value of the one RRU and the average uplink offset value of the one RRU are The size is almost the same, that is, after the downlink signal sent by the base station finally reaches the client, there is almost no frequency offset phenomenon, where n is a positive integer greater than or equal to 1.
  • a downlink signal pre-correcting device for example, a base station
  • the obtaining unit 20 is configured to obtain an uplink frequency offset value of the first radio remote unit RRU and the second RRU corresponding to each client, where the first RRU is the most powerful RRU used by the client.
  • the second RRU is a power-efficient RRU used by a client;
  • a determining unit 21 configured to determine, according to an uplink frequency offset value of the first RRU and the second RRU corresponding to each of the clients, a frequency offset value set corresponding to each RRU, where a frequency offset value set corresponding to one RRU And including an uplink frequency offset value of the first RRU or the second RRU corresponding to the client that selects to use the one RRU;
  • the executing unit 22 is configured to perform the following operations for each RRU when determining to reach the downlink pre-correction period:
  • the acquiring unit 20 when acquiring the uplink frequency offset values of the first RRU and the second RRU corresponding to any client, is specifically configured to:
  • the determining unit 21 when determining the frequency offset value set corresponding to any RRU based on the uplink frequency offset values of the first RRU and the second RRU corresponding to each of the clients, the determining unit 21 is specifically configured to:
  • the uplink frequency offset value of the first RRU corresponding to the one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs;
  • the uplink frequency offset value of the second RRU corresponding to one client is divided into the RRU frequency offset value set corresponding to any one of the RRUs.
  • the execution unit 22 is specifically configured to:
  • the executing unit 22 is specifically configured to:
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period is reduced by a preset step frequency value;
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period plus a preset step frequency value;
  • the downlink pre-correction value of the one RRU in the current downlink pre-correction period is The downlink pre-correction value of the one RRU in the previous pre-correction period.
  • the base station determines each RRU based on the obtained uplink frequency offset values of the first RRU and the second RRU corresponding to each client. And corresponding to the set of uplink frequency offset values, and when determining that the downlink pre-correction period is reached, performing the following operations for each RRU: calculating an average uplink frequency offset value of the RRU based on a set of frequency offset values of one RRU, and acquiring the RRU Determining the downlink pre-correction value in the previous pre-correction period, and determining the downlink pre-determination of the RRU in the current downlink pre-correction period based on the average uplink frequency offset value of the RRU and the downlink pre-correction value in the previous pre-correction period Correction value.
  • the base station side support is required to complete the downlink signal pre-correction and correction, and the cooperation between the base station side and the terminal side is not required.
  • the uplink frequency offset value of each terminal is counted in units of RRUs, and no RRU is involved. The data interaction between the two reduces the complexity of the implementation and reduces the signaling burden, thereby improving the user experience.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术领域,特别涉及一种下行信号预纠偏方法及装置。该方法为:基于获取到的每一个客户端对应的第一RRU和第二RRU的上行频偏值,确定每一个RRU对应的上行频偏值集合,并在确定到达下行预纠偏周期时,基于任一RRU的频偏值集合,计算该RRU的平均上行频偏值,并基于该RRU的平均上行频偏值和在上一预纠偏周期中的下行预纠偏值,确定该RRU在当前下行预纠偏周期中的下行预纠偏值。采用上述方法,仅需基站侧支持即可完成下行信号预纠偏及纠偏,进一步的,以RRU为单位统计各终端的上行频偏值,不涉及各RRU之间的数据交互,从而降低了方案实现的复杂度,减少信令负担,进而提升了用户体验。

Description

一种下行信号预纠偏方法及装置
本申请要求在2017年02月07日提交中国专利局、申请号为201710067711.4、发明名称为“一种下行信号预纠偏方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种下行信号预纠偏方法及装置。
背景技术
通信***中当发射机和接收机间存在相对运动时,由于多普勒效应,接收机接收到的信号频率将发射机发出的信号频率产生一个偏差,称为多普勒频偏,其计算公式为:
Figure PCTCN2018074494-appb-000001
其中,c是光速,f是载波频率,v是接收机和发射机之间的相对移动速度,θ为接收机移动方向与信号传播方向的夹角。
长期演进(Long Term Evolution,LTE)***中,终端在高速移动覆盖场景下,由于LTE载波频率高,多普勒频偏绝对值很大,如LTE高铁覆盖场景下,载波频率2.6GHz,终端移动速度300km/h,多普勒频偏最大可达720Hz,过大的多普勒频偏导致接收机性能急剧恶化,导致网络吞吐量下降,甚至影响终端接入网络。在高速覆盖场景下,为了避免频繁切换导致的性能恶化,通常使用小区合并技术,即将沿高速公路/铁路布设的多个射频拉远单元(Radio Remote Unit,RRU)级联起来作为一个逻辑小区来提高单小区覆盖半径。这种情况下,当终端从一个RRU覆盖区域向另一个RRU覆盖区域移动时,由于接收到的两个RRU的信号传播方向相反,相应的,多普勒频偏相反,从而影响终端下行信号接收性能。尤其是在信号交叠覆盖处,终端收到的两个RRU信号的幅度接近,此时终端无法通过自动频率控制(Automatic Frequency Control,AFC)技术使本振频率与接收信号频率一致,也无法区分两个RRU的信号分别进行纠偏,因此下行信号接收性能严重恶化。
现有技术中,利用基站在一些特定传输模式下会给终端发送专用参考信号(Dedicated Reference Signal,DRS)的特性,基站可以通过无线资源控制(Radio Resource Control,RRC)交互信令(如RRC重配置消息)通知终端使用特定的传输模式传输信号。在这些特定传输模式下,基站侧仅对向终端发送的DRS和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)进行预纠偏处理,不对小区公共参考信号(Cell-specific Reference Signal,CRS)进行预纠偏,终端接收到的DRS获取对应的下行信号频偏,后续在接收到 纠偏处理的下行信号后,根据获取到的下行信号频偏对下行信号进行纠偏处理。
然而,目前利用特定模式发送DRS的方案,是以协议层为出发点提出的一种高速场景下预估和补偿下行频偏的方案,该方案需要基站通过RRC信令来给终端配置特殊的传输模式,增加信令负担,同时需要通过网络侧和终端侧的配合进行下行预纠偏及纠偏,要求基站和终端同时支持该方案,且利用特定模式发送DRS的方案在终端业务稀疏时需要通过周期性的向终端发送DRS信号与终端进行下行调度,额外增加不必要的调度。
因此,需要设计一种新的下行信号预纠偏方法及装置,来弥补现有下行信号预纠偏方案存在的缺陷和不足之处。
发明内容
本发明实施例提供一种下行信号预纠偏方法及装置,用以解决现有技术中存在的下行信号预纠偏过程复杂,以及增加信令负担的问题。
本发明实施例提供的具体技术方案如下:
一种下行信号预纠偏方法,包括:
分别获取每一个客户端对应的第一射频拉远单元RRU和第二RRU的上行频偏值,其中,所述第一RRU为一个客户端使用的功率最强的RRU,所述第二RRU为一个客户端使用的功率次强的RRU;
基于所述每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的频偏值集合,其中,一个RRU对应的频偏值集合包含所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值;
在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:
基于一个RRU的频偏值集合包含的所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值,计算所述一个RRU的平均上行频偏值,获取所述一个RRU在上一个预纠偏周期中的下行预纠偏值;
基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值。
可选的,获取任一客户端对应的第一RRU和第二RRU的上行频偏值,具体包括:
根据接收到的所述任一客户端在每一个RRU上的探测参考信号SRS信号功率,分别确定所述任一客户端对应的SRS信号功率最好的第一RRU和SRS信号功率次好的第二RRU;
计算所述任一客户端对应的第一RRU的上行频偏值和第二RRU的上行频偏值。
可选的,基于所述每一个客户端分别对应的第一RRU和第二RRU的上行频偏值,确 定任一RRU对应的频偏值集合,具体包括:
分别计算每一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值;
分别针对每一个客户端执行以下操作:
在确定所述任一RRU为一个客户端对应的第一RRU时,将所述一个客户端对应的第一RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中;
在确定所述任一RRU为一个客户端对应的第二RRU,且所述一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,将所述一个客户端对应的第二RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中。
可选的,基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值,具体包括:
将所述一个RRU的平均上行频偏值与所述在上一个预纠偏周期中的下行预纠偏值的相反数进行比较,并根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整。
可选的,根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整,具体包括:
若所述一个RRU的平均上行频偏值大于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值减一个预设步进频率值;
若所述一个RRU的平均上行频偏值小于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值加一个预设步进频率值;
若所述一个RRU的平均上行频偏值等于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值。
一种下行信号预纠偏装置,包括:
获取单元,用于分别获取每一个客户端对应的第一射频拉远单元RRU和第二RRU的上行频偏值,其中,所述第一RRU为一个客户端使用的功率最强的RRU,所述第二RRU为一个客户端使用的功率次强的RRU;
确定单元,用于基于所述每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的频偏值集合,其中,一个RRU对应的频偏值集合包含所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值;
执行单元,用于在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:
基于一个RRU的频偏值集合包含的所有选择使用所述一个RRU的客户端对应的 第一RRU或第二RRU的上行频偏值,计算所述一个RRU的平均上行频偏值,获取所述一个RRU在上一个预纠偏周期中的下行预纠偏值;
基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值。
可选的,在获取任一客户端对应的第一RRU和第二RRU的上行频偏值时,所述获取单元具体用于:
根据接收到的所述任一客户端在每一个RRU上的探测参考信号SRS信号功率,分别确定所述任一客户端对应的SRS信号功率最好的第一RRU和SRS信号功率次好的第二RRU;
计算所述任一客户端对应的第一RRU的上行频偏值和第二RRU的上行频偏值。
可选的,在基于所述每一个客户端分别对应的第一RRU和第二RRU的上行频偏值,确定任一RRU对应的频偏值集合时,所述确定单元具体用于:
分别计算每一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值;
分别针对每一个客户端执行以下操作:
在确定所述任一RRU为一个客户端对应的第一RRU时,将所述一个客户端对应的第一RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中;
在确定所述任一RRU为一个客户端对应的第二RRU,且所述一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,将所述一个客户端对应的第二RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中。
可选的,在基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值时,所述执行单元具体用于:
将所述一个RRU的平均上行频偏值与所述在上一个预纠偏周期中的下行预纠偏值的相反数进行比较,并根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整。
可选的,在根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整时,所述执行单元具体用于:
若所述一个RRU的平均上行频偏值大于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值减一个预设步进频率值;
若所述一个RRU的平均上行频偏值小于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值加一个预设步进频率值;
若所述一个RRU的平均上行频偏值等于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值。
本发明有益效果如下:
综上所述,本发明实施例中,基站在进行下行信号预纠偏的过程中,基于获取到的每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的上行频偏值集合,并在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:基于一个RRU的频偏值集合,计算该RRU的平均上行频偏值,并获取该RRU在上一个预纠偏周期中的下行预纠偏值,以及基于该RRU的平均上行频偏值和在上一预纠偏周期中的下行预纠偏值,确定该RRU在当前下行预纠偏周期中的下行预纠偏值。采用上述方法,仅需要基站侧支持即可完成下行信号预纠偏及纠偏,不需要基站侧和终端侧的配合,进一步的,以RRU为单位统计各终端的上行频偏值,不涉及各RRU之间的数据交互,从而在保证性能的基础上降低了方案实现的复杂度,减少信令负担,进而提升了用户体验。
附图说明
图1为本发明实施例中,一种下行信号预纠偏方法的详细流程图;
图2为本发明实施例中,一种下行信号预纠偏装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio  Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
为了解决现有技术中存在的下行信号预纠偏过程复杂,以及增加信令负担的问题,本发明实施例提供了一种下行信号预纠偏方法及装置,该方法为:基于获取到的每一个客户端对应的第一射频拉远单元(Radio Remote Unit,RRU)和第二RRU的上行频偏值,分别确定每一个RRU对应的上行频偏值集合,在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:基于一个RRU的频偏值集合,计算该RRU的平均上行频偏值,并获取该RRU在上一个预纠偏周期中的下行预纠偏值,以及基于该RRU的平均上行频偏值和在上一预纠偏周期中的下行预纠偏值,确定该RRU在当前下行预纠偏周期中的下行预纠偏值。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将通过具体实施例对本发明的方案进行详细描述,当然,本发明并不限于以下实施例。
参阅图1所示,本发明实施例中,一种下行信号预纠偏方法的详细流程如下:
步骤101:分别获取每一个客户端对应的RRU和第二RRU的上行频偏值,其中,上述第一RRU为一个客户端使用的功率最强的RRU,上述第二RRU为一个客户端使用的功率次强的RRU。
实际应用中,基站在通过RRU接收到客户端发送的上行信号时,获得该客户端使用的各RRU的功率。
具体的,在执行步骤101时,基站根据接收到的任一客户端在每一个RRU上的探测参考信号(Sounding Reference Signal,SRS),分别确定上述任一客户端对应的SRS信号功率最好的第一RRU和SRS信号功率次好的第二RRU。
例如,假设基站通过RRU1,RRU2,RRU3和RRU4接收客户端1发送的SRS信号,若基站判定RRU1针对客户端1的SRS信号功率为最好的一个RRU,则将RRU1确定为客户端1对应的第一RRU,若判定RRU4针对客户端1的SRS信号功率为次好的RRU,则将RRU4确定为客户端1对应的第二RRU。
进一步的,基站计算上述任一客户端对应的第一RRU的上行频偏值和第二RRU的上行频偏值。
例如,假设RRU1为客户端1对应的第一RRU,RRU4为客户端1对应的第二RRU,那么,基站计算RRU1的上行频偏值为300Hz,计算RRU4的上行频偏值为200Hz。
当然,基站计算上述任一客户端对应的第一RRU和第二RRU的上行频偏值的方法为现有技术,在此不再赘述。基站可以通过但不限于使用上行纠偏算法对客户端发送的上行信号进行处理,获取客户端对应的第一RRU和第二RRU的上行频偏值。
步骤102:基于上述每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的上行频偏值集合,其中,一个RRU对应的上行频偏值集合包含所有选择使用上述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值。
实际应用中,基站针对每一个RRU设置有对应的RRU频偏值集合,基站根据每一个客户端对应的第一RRU和第二RRU的上行频偏值,以及第一RRU与第二RRU之间的功率差的绝对值,分别确定每一个RRU对应的RRU频偏值集合,若基站判定任一客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,可以将该第一RRU和第二RRU分别划分至对应的RRU频偏值集合中;若基站判定任一客户端对应的第一RRU和第二RRU之间的功率差大于等于预设门限值时,仅将该第一RRU划分至对应的RRU频偏值集合中。
例如,假设客户端1对应的第一RRU(如,RRU1)的功率为80dB,第二RRU(如,RRU4)的功率为70dB,预设门限值为15dB,那么,基站判定RRU1和RRU4之间的功率差为10dB(10dB<15dB),那么,基站将客户端1对应的RRU1的上行频偏值划分至RRU1频偏值集合中,将客户端1对应的RRU4的上行频偏值划分至RRU4频偏值集合中。
又例如,假设客户端1对应的第一RRU(如,RRU1)的功率为80dB,第二RRU(如,RRU4)的功率为50dB,预设门限值为30dB,那么,基站判定RRU1和RRU4之间的功率差为30dB(即30dB<15dB),那么,基站仅将客户端1对应的RRU1的上行频偏值划分至RRU1对应的RRU频偏值集合中。
具体的,在执行步骤102时,基站分别计算每一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值,并分别针对每一个客户端执行以下操作:
在确定任一RRU为一个客户端对应的第一RRU时,将上述一个客户端对应的第一RRU的上行频偏值划分至上述任一RRU对应的RRU频偏值集合中。
例如,假设RRU1为客户端1对应的第一RRU,RRU3为客户端2对应的第一RRU,那么,基站就将客户端1对应的RRU1的上行频偏值划分至RRU1对应的RRU频偏值集合中,将客户端2对应的RRU3的上行频偏值划分至RRU3对应的RRU频偏值集合中。
在确定任一RRU为一个客户端对应的第二RRU,且上述一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,将上述一个客户端对应的第二RRU的上行频偏值划分至上述任一RRU对应的RRU频偏值集合中。
例如,假设RRU1为客户端2对应的第一RRU,RRU2为客户端1对应的第二RRU,预设门限值为15dB,若RRU1与RRU2之间的功率差的绝对值小于15dB,那么,基站将客户端2对应的RRU2的上行频偏值划分至RRU2对应的RRU频偏值集合中。
步骤103:判断是否到达下行预纠偏周期,若是,则执行步骤104;否则执行步骤101。
具体的,该下行预纠偏周期的大小可以根据不同的应用环境和/或不同的实际业务需求,进行相应的设置。优选的,该下行预纠偏周期设置为20ms,即每隔20ms基站对下行预纠偏值进行一次相应的调整。
步骤104:基于一个RRU的频偏值集合包含的所有选择使用上述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值,计算上述一个RRU的平均上行频偏值,获取上述一个RRU在上一个预纠偏周期中的下行预纠偏值。
实际应用中,基站在判定到达下行预纠偏周期时,根据每一个RRU对应的频偏值集合,分别计算每一个RRU的平均上行频偏值。
具体的,在执行步骤104时,基站根据一个RRU对应的RRU频偏值集合中包含的各客户端对应的第一RRU或第二RRU的上行频偏值,计算上述一个RRU的平均上行频偏值。
例如,假设RRU1的频偏值集合中包含客户端1对应的RRU1的上行频偏值1,客户端2对应的RRU1的上行频偏值2和客户端3对应的RRU1的上行频偏值3,那么,基站可以根据上行频偏值1,上行频偏值2和上行频偏值3计算RRU1的平均上行频偏值,如,(上行频偏值1+上行频偏值2+上行频偏值3)/3。
进一步的,基站获取上述一个RRU在上一个预纠偏周期中的下行预纠偏值,其中,初始下行预纠偏值设置为0。在第一个预纠偏周期中,由于不存在上一个预纠偏周期,那么,就可以根据RRU的平均上行频偏值和初始下行预纠偏值进行后续业务操作。
步骤105:基于上述一个RRU的平均上行频偏值和上述在上一预纠偏周期中的下行预纠偏值,确定上述一个RRU在当前下行预纠偏周期中的下行预纠偏值。
实际应用中,基站在根据一个RRU对应的频偏值集合确定上述一个RRU的平均上行频偏值,并获取到上述一个RRU在上一个预纠偏周期中的下行预纠偏值后,将上述一个RRU的平均上行频偏值与上述在上一个预纠偏周期中的下行预纠偏值的相反数进行比较, 并根据比较结果,采用步进的方式对上述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整。
具体的,在执行步骤105时,基站根据不同的比较结果,采用不同的步进的方式对上述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整:
若上述一个RRU的平均上行频偏值大于上述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则上述一个RRU在当前下行预纠偏周期中的下行预纠偏值为上述一个RRU在上一个预纠偏周期中的下行预纠偏值减一个预设步进频率值。
例如,假设RRU1的平均上行频偏值为400Hz,RRU1在上一个预纠偏周期中的下行纠偏值为-300Hz,预设步进频率值为20Hz,那么,基站将400Hz与-300Hz的相反数(300Hz)进行比较,确定400Hz>300Hz,那么,就确定RRU1在当前下行预纠偏周期中的下行预纠偏值为-300Hz-20Hz=-320Hz。
又例如,假设RRU2的平均上行频偏值为-300Hz,RRU2在上一个预纠偏周期中的下行纠偏值为400Hz,预设步进频率值为20Hz,那么,基站将-300Hz与400Hz的相反数(-400Hz)进行比较,确定-300Hz>-400Hz,那么,就确定RRU2在当前下行预纠偏周期中的下行预纠偏值为400Hz-20Hz=380Hz。
若上述一个RRU的平均上行频偏值小于上述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则上述一个RRU在当前下行预纠偏周期中的下行预纠偏值为上述一个RRU在上一个预纠偏周期中的下行预纠偏值加一个预设步进频率值。
例如,假设RRU1的平均上行频偏值为300Hz,RRU1在上一个预纠偏周期中的下行纠偏值为-400Hz,预设步进频率值为20Hz,那么,基站将300Hz与-400Hz的相反数(400Hz)进行比较,确定300Hz<400Hz,那么,就确定RRU1在当前下行预纠偏周期中的下行预纠偏值为-400Hz+20Hz=-380Hz。
又例如,假设RRU2的平均上行频偏值为-400Hz,RRU2在上一个预纠偏周期中的下行纠偏值为300Hz,预设步进频率值为20Hz,那么,基站将-400Hz与300Hz的相反数(-300Hz)进行比较,确定-400Hz<-300Hz,那么,就确定RRU2在当前下行预纠偏周期中的下行预纠偏值为300Hz+20Hz=320Hz。
若上述一个RRU的平均上行频偏值等于上述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则上述一个RRU在当前下行预纠偏周期中的下行预纠偏值为上述一个RRU在上一个预纠偏周期中的下行预纠偏值。
例如,假设RRU1的平均上行频偏值为300Hz,RRU1在上一个预纠偏周期中的下行纠偏值为-300Hz,预设步进频率值为20Hz,那么,基站将300Hz与-300Hz的相反数(300Hz)进行比较,确定300Hz=300Hz,那么,就确定RRU1在当前下行预纠偏周期中的下行预纠偏值为-300Hz。
又例如,假设RRU2的平均上行频偏值为-400Hz,RRU2在上一个预纠偏周期中的下行纠偏值为400Hz,预设步进频率值为20Hz,那么,基站将-400Hz与400Hz的相反数(-400Hz)进行比较,确定-400Hz=-400Hz,那么,就确定RRU2在当前下行预纠偏周期中的下行预纠偏值为400Hz。
下面采用具体的应用场景对上述实施例作进一步详细说明。
在LTE***中,客户端在高速移动覆盖场景下,假设载波频率为2.6GHz,客户端移动速度为360km/h,下行预纠偏周期为20ms,20ms周期内下行频偏最大变化约为16Hz,即将预设步进频率值设为16Hz,在到达第一个20ms时,基站计算RRU1的平均上行频偏值为200Hz,此时,由于第一个下行预纠偏周期中未进行下行预纠偏,那么,取第一个下行预纠偏周期中的下行预纠偏值为0Hz,此刻RRU1平均上行频偏值(200Hz)大于第一个下行预纠偏周期中的下行预纠偏值(0Hz),那么,第二个下行预纠偏周期中的下行预纠偏值为0-16Hz=-16Hz;在确定到达第二个20ms时,基站计算RRU1的平均上行频偏值为180Hz,此时,第二个下行预纠偏周期中的下行频偏值为-16Hz,显然,180Hz大于-(-16Hz),那么,第三个下行预纠偏周期中的下行预纠偏值为-16Hz-16Hz=-32Hz;……。采用步进的方式对一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整,经过n次调整后,上述一个RRU的最终的下行预纠偏值与上述一个RRU的平均上行频偏值的大小相差无几,即基站发送的下行信号最终达到客户端后,几乎无频偏现象,其中,n为大于等于1的正整数。
基于上述实施例,参阅图2所示,本发明实施例中,一种下行信号预纠偏装置(如,基站),至少包括获取单元20,确定单元21和执行单元22,其中,
获取单元20,用于分别获取每一个客户端对应的第一射频拉远单元RRU和第二RRU的上行频偏值,其中,所述第一RRU为一个客户端使用的功率最强的RRU,所述第二RRU为一个客户端使用的功率次强的RRU;
确定单元21,用于基于所述每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的频偏值集合,其中,一个RRU对应的频偏值集合包含所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值;
执行单元22,用于在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:
基于一个RRU的频偏值集合包含的所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值,计算所述一个RRU的平均上行频偏值,获取所述一个RRU在上一个预纠偏周期中的下行预纠偏值;
基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值。
可选的,在获取任一客户端对应的第一RRU和第二RRU的上行频偏值时,获取单元20具体用于:
根据接收到的所述任一客户端在每一个RRU上的探测参考信号SRS信号功率,分别确定所述任一客户端对应的SRS信号功率最好的第一RRU和SRS信号功率次好的第二RRU;
计算所述任一客户端对应的第一RRU的上行频偏值和第二RRU的上行频偏值。
可选的,在基于所述每一个客户端分别对应的第一RRU和第二RRU的上行频偏值,确定任一RRU对应的频偏值集合时,确定单元21具体用于:
分别计算每一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值;
分别针对每一个客户端执行以下操作:
在确定所述任一RRU为一个客户端对应的第一RRU时,将所述一个客户端对应的第一RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中;
在确定所述任一RRU为一个客户端对应的第二RRU,且所述一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,将所述一个客户端对应的第二RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中。
可选的,在基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值时,执行单元22具体用于:
将所述一个RRU的平均上行频偏值与所述在上一个预纠偏周期中的下行预纠偏值的相反数进行比较,并根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整。
可选的,在根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整时,执行单元22具体用于:
若所述一个RRU的平均上行频偏值大于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值减一个预设步进频率值;
若所述一个RRU的平均上行频偏值小于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值加一个预设步进频率值;
若所述一个RRU的平均上行频偏值等于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值。
综上所述,本发明实施例中,基站在进行下行信号预纠偏的过程中,基于获取到的每 一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的上行频偏值集合,并在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:基于一个RRU的频偏值集合,计算该RRU的平均上行频偏值,并获取该RRU在上一个预纠偏周期中的下行预纠偏值,以及基于该RRU的平均上行频偏值和在上一预纠偏周期中的下行预纠偏值,确定该RRU在当前下行预纠偏周期中的下行预纠偏值。采用上述方法,仅需要基站侧支持即可完成下行信号预纠偏及纠偏,不需要基站侧和终端侧的配合,进一步的,以RRU为单位统计各终端的上行频偏值,不涉及各RRU之间的数据交互,从而降低了方案实现的复杂度,减少信令负担,进而提升了用户体验。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种下行信号预纠偏方法,其特征在于,包括:
    分别获取每一个客户端对应的第一射频拉远单元RRU和第二RRU的上行频偏值,其中,所述第一RRU为一个客户端使用的功率最强的RRU,所述第二RRU为一个客户端使用的功率次强的RRU;
    基于所述每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的频偏值集合,其中,一个RRU对应的频偏值集合包含所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值;
    在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:
    基于一个RRU的频偏值集合包含的所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值,计算所述一个RRU的平均上行频偏值,获取所述一个RRU在上一个预纠偏周期中的下行预纠偏值;
    基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值。
  2. 如权利要求1所述的方法,其特征在于,获取任一客户端对应的第一RRU和第二RRU的上行频偏值,具体包括:
    根据接收到的所述任一客户端在每一个RRU上的探测参考信号SRS信号功率,分别确定所述任一客户端对应的SRS信号功率最好的第一RRU和SRS信号功率次好的第二RRU;
    计算所述任一客户端对应的第一RRU的上行频偏值和第二RRU的上行频偏值。
  3. 如权利要求1所述的方法,其特征在于,基于所述每一个客户端分别对应的第一RRU和第二RRU的上行频偏值,确定任一RRU对应的频偏值集合,具体包括:
    分别计算每一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值;
    分别针对每一个客户端执行以下操作:
    在确定所述任一RRU为一个客户端对应的第一RRU时,将所述一个客户端对应的第一RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中;
    在确定所述任一RRU为一个客户端对应的第二RRU,且所述一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,将所述一个客户端对应的第二RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中。
  4. 如权利要求1-3任一项所述的方法,其特征在于,基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值,具体包括:
    将所述一个RRU的平均上行频偏值与所述在上一个预纠偏周期中的下行预纠偏值的 相反数进行比较,并根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整。
  5. 如权利要求4所述的方法,其特征在于,根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整,具体包括:
    若所述一个RRU的平均上行频偏值大于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值减一个预设步进频率值;
    若所述一个RRU的平均上行频偏值小于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值加一个预设步进频率值;
    若所述一个RRU的平均上行频偏值等于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值。
  6. 一种下行信号预纠偏装置,其特征在于,包括:
    获取单元,用于分别获取每一个客户端对应的第一射频拉远单元RRU和第二RRU的上行频偏值,其中,所述第一RRU为一个客户端使用的功率最强的RRU,所述第二RRU为一个客户端使用的功率次强的RRU;
    确定单元,用于基于所述每一个客户端对应的第一RRU和第二RRU的上行频偏值,分别确定每一个RRU对应的频偏值集合,其中,一个RRU对应的频偏值集合包含所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值;
    执行单元,用于在确定到达下行预纠偏周期时,针对每一个RRU分别执行以下操作:
    基于一个RRU的频偏值集合包含的所有选择使用所述一个RRU的客户端对应的第一RRU或第二RRU的上行频偏值,计算所述一个RRU的平均上行频偏值,获取所述一个RRU在上一个预纠偏周期中的下行预纠偏值;
    基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值。
  7. 如权利要求6所述的装置,其特征在于,在获取任一客户端对应的第一RRU和第二RRU的上行频偏值时,所述获取单元具体用于:
    根据接收到的所述任一客户端在每一个RRU上的探测参考信号SRS信号功率,分别确定所述任一客户端对应的SRS信号功率最好的第一RRU和SRS信号功率次好的第二RRU;
    计算所述任一客户端对应的第一RRU的上行频偏值和第二RRU的上行频偏值。
  8. 如权利要求6所述的装置,其特征在于,在基于所述每一个客户端分别对应的第 一RRU和第二RRU的上行频偏值,确定任一RRU对应的频偏值集合时,所述确定单元具体用于:
    分别计算每一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值;
    分别针对每一个客户端执行以下操作:
    在确定所述任一RRU为一个客户端对应的第一RRU时,将所述一个客户端对应的第一RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中;
    在确定所述任一RRU为一个客户端对应的第二RRU,且所述一个客户端对应的第一RRU和第二RRU之间的功率差的绝对值小于预设门限值时,将所述一个客户端对应的第二RRU的上行频偏值划分至所述任一RRU对应的RRU频偏值集合中。
  9. 如权利要求6-8任一项所述的装置,其特征在于,在基于所述一个RRU的平均上行频偏值和所述在上一个预纠偏周期中的下行预纠偏值,确定所述一个RRU在当前下行预纠偏周期中的下行预纠偏值时,所述执行单元具体用于:
    将所述一个RRU的平均上行频偏值与所述在上一个预纠偏周期中的下行预纠偏值的相反数进行比较,并根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整。
  10. 如权利要求9所述的装置,其特征在于,在根据比较结果,采用步进的方式对所述一个RRU在当前下行预纠偏周期中的下行预纠偏值进行调整时,所述执行单元具体用于:
    若所述一个RRU的平均上行频偏值大于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值减一个预设步进频率值;
    若所述一个RRU的平均上行频偏值小于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值加一个预设步进频率值;
    若所述一个RRU的平均上行频偏值等于所述一个RRU在上一个预纠偏周期中的下行预纠偏值的相反数,则所述一个RRU在当前下行预纠偏周期中的下行预纠偏值为所述一个RRU在上一个预纠偏周期中的下行预纠偏值。
PCT/CN2018/074494 2017-02-07 2018-01-29 一种下行信号预纠偏方法及装置 WO2018145587A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019542603A JP6765544B2 (ja) 2017-02-07 2018-01-29 ダウンリンク信号の事前補正方法および装置
US16/484,112 US10715217B2 (en) 2017-02-07 2018-01-29 Downlink signal pre-correction method and device
EP18751959.0A EP3582419B1 (en) 2017-02-07 2018-01-29 Downlink signal pre-correction method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710067711.4 2017-02-07
CN201710067711.4A CN108400835B (zh) 2017-02-07 2017-02-07 一种下行信号预纠偏方法及装置

Publications (1)

Publication Number Publication Date
WO2018145587A1 true WO2018145587A1 (zh) 2018-08-16

Family

ID=63093996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074494 WO2018145587A1 (zh) 2017-02-07 2018-01-29 一种下行信号预纠偏方法及装置

Country Status (5)

Country Link
US (1) US10715217B2 (zh)
EP (1) EP3582419B1 (zh)
JP (1) JP6765544B2 (zh)
CN (1) CN108400835B (zh)
WO (1) WO2018145587A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164109A (zh) * 2010-02-22 2011-08-24 鼎桥通信技术有限公司 下行频偏补偿方法及用于进行下行频偏补偿的直放站
CN105337693A (zh) * 2014-08-14 2016-02-17 ***通信集团公司 下行信号预纠偏及纠偏方法、装置、***和相关设备
WO2016101386A1 (zh) * 2014-12-27 2016-06-30 华为技术有限公司 通信方法、设备及***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996375B2 (en) * 2001-07-26 2006-02-07 Ericsson Inc. Transmit diversity and separating multiple loopback signals
JP4563278B2 (ja) 2005-08-03 2010-10-13 三菱電機株式会社 自動周波数制御装置
CN102045094B (zh) * 2009-10-14 2013-07-24 鼎桥通信技术有限公司 一种下行信号的发送方法
CN102332942A (zh) * 2010-07-12 2012-01-25 鼎桥通信技术有限公司 下行频偏预置方法及设备
CN102891708A (zh) * 2012-09-17 2013-01-23 华为技术有限公司 收发通道响应的校正方法、装置、***及bbu
CN103716075B (zh) * 2012-09-29 2016-12-21 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
CN104301270B (zh) 2014-10-27 2018-04-10 大唐移动通信设备有限公司 一种应用于铁路***的接收信号处理方法及装置
CN104683270A (zh) 2015-03-05 2015-06-03 苏州微站通信科技有限公司 Lte小基站小区合并信道频率偏移估计方法
CN110740504A (zh) * 2015-03-09 2020-01-31 华为技术有限公司 一种数据传输设备、方法及***
CN106034093A (zh) 2015-03-19 2016-10-19 中兴通讯股份有限公司 一种下行链路数据发射方法、装置及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164109A (zh) * 2010-02-22 2011-08-24 鼎桥通信技术有限公司 下行频偏补偿方法及用于进行下行频偏补偿的直放站
CN105337693A (zh) * 2014-08-14 2016-02-17 ***通信集团公司 下行信号预纠偏及纠偏方法、装置、***和相关设备
WO2016101386A1 (zh) * 2014-12-27 2016-06-30 华为技术有限公司 通信方法、设备及***

Also Published As

Publication number Publication date
JP2020509665A (ja) 2020-03-26
EP3582419B1 (en) 2020-10-21
JP6765544B2 (ja) 2020-10-07
CN108400835A (zh) 2018-08-14
US10715217B2 (en) 2020-07-14
CN108400835B (zh) 2020-05-26
EP3582419A4 (en) 2020-01-08
EP3582419A1 (en) 2019-12-18
US20200028542A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US10484997B2 (en) Communication method, base station and user equipment
US9838934B2 (en) Method for opening radio pipeline capability and apparatus thereof
CN106160964B (zh) 一种基于多频段能力的载波聚合配置方法及装置
US10945176B2 (en) Method, device and computer program for primary cell change
US20170019810A1 (en) Rrm measurement method and apparatus in tdd system
CN108293195B (zh) 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
US10805814B2 (en) Signal measurement method and apparatus
US20140315561A1 (en) Inter-System Interference in Communications
US20140241198A1 (en) Method for measuring and feeding back radio resource management information, base station, and user equipment
US20170086107A1 (en) Handover method, bearer setup method, base station, and terminal
WO2021155789A1 (zh) 频偏预补偿指示方法、终端设备和网络设备
WO2016138784A1 (zh) 一种调度方法及终端
EP4193718A1 (en) Configuring positioning signals and measurements to reduce latency
US20210185636A1 (en) Method and device for controlling uplink interference of terminal information-collecting device in wireless communication system
US11218982B2 (en) Radio link monitoring method and apparatus
WO2019233205A1 (zh) 一种配置传输带宽的方法、装置及设备
EP3422601B1 (en) Method and device for realizing synchronization
US10567978B2 (en) Method and apparatus for setting initial window value in wireless communication system
CN111148144B (zh) 一种rrm测量方法及装置
KR20220097868A (ko) 신호 감청 방법, 송신 방법, 단말 기기, 네트워크 기기
WO2018145587A1 (zh) 一种下行信号预纠偏方法及装置
US20200205147A1 (en) Resource allocation method and device
US20170078982A1 (en) Setting initial transmission power for a secondary carrier after a transmission gap
KR20130119269A (ko) 단말, 그의 사운딩 참조 신호 전송 방법 및 기지국의 srs 전송 정보 설정 방법
WO2018059221A1 (zh) 一种下行控制信道接收和发送的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751959

Country of ref document: EP

Effective date: 20190909