WO2018143224A1 - Resin compound and molded product of resin compound - Google Patents

Resin compound and molded product of resin compound Download PDF

Info

Publication number
WO2018143224A1
WO2018143224A1 PCT/JP2018/003074 JP2018003074W WO2018143224A1 WO 2018143224 A1 WO2018143224 A1 WO 2018143224A1 JP 2018003074 W JP2018003074 W JP 2018003074W WO 2018143224 A1 WO2018143224 A1 WO 2018143224A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin compound
resin
carbon black
graphite
present
Prior art date
Application number
PCT/JP2018/003074
Other languages
French (fr)
Japanese (ja)
Inventor
信猛 見勢
Original Assignee
Nti株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nti株式会社 filed Critical Nti株式会社
Publication of WO2018143224A1 publication Critical patent/WO2018143224A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin compound from which a molded product excellent in thermal conductivity or electrical conductivity, resin fluidity and mechanical properties during molding can be obtained.
  • Patent Document 1 a resin compound using a carbon-based material such as graphite, carbon black, or carbon nanotube as a conductive filler other than metal has been developed (for example, Patent Document 1).
  • Such a resin compound has a low specific gravity and lowers the molding cost, but a large amount of thermally conductive filler is kneaded to obtain good thermal conductivity, so that the fluidity (moldability) of the resin is deteriorated. There was a drawback that the mechanical strength was lowered.
  • the main object of the present invention is to provide a thermal conductive resin compound having high thermal conductivity and electrical conductivity, excellent moldability, and high mechanical strength.
  • JP2013-159624A and the like have also studied an organic additive for improving the fluidity of the resin.
  • these organic additives often bleed on the surface of the parts, causing the surfaces to become dirty or painted or plated.
  • the coating film or plating peeled off.
  • the second object of the present invention is to provide a thermally conductive resin compound in which the bleeding of various organic substances on the surface of the component is small.
  • the present invention is characterized in that graphite and specific carbon black are blended in a thermoplastic resin as a heat conductive filler. That is, the present invention is as follows.
  • the present invention (1) In a resin compound containing a thermoplastic resin and graphite, A resin compound characterized by further containing carbon black having a nitrogen adsorption specific surface area of 10 to 100 m 2 / g.
  • the present invention (2) In a resin compound containing a thermoplastic resin and graphite, A resin compound further comprising carbon black having a DBP absorption of 30 to 100 ml / 100 g.
  • the present invention (3) In a resin compound containing a thermoplastic resin and graphite, A resin compound characterized by further containing carbon black having a nitrogen adsorption specific surface area of 10 to 100 m 2 / g and a DBP absorption of 30 to 100 ml / 100 g.
  • the present invention (4) The resin compound according to any one of the inventions (1) to (3), wherein the carbon black is contained in an amount of 1 to 30% by weight with respect to the entire resin compound.
  • the present invention (5) The resin compound according to any one of the inventions (1) to (4), wherein the graphite is scaly.
  • the present invention (6) The resin compound according to any one of the inventions (1) to (5), wherein the graphite is contained in an amount of 20 to 80% by weight based on the entire resin compound.
  • the present invention (7) The resin compound according to any one of the inventions (1) to (6), further comprising 1 to 10% by weight of carbon nanotubes based on the whole resin compound.
  • the present invention (8) A molded product obtained by molding the resin compound according to any one of the inventions (1) to (7).
  • thermoly conductive resin compound and a molded product thereof having high thermal conductivity and electrical conductivity, excellent moldability, and high mechanical strength. Furthermore, according to this invention, the heat conductive resin compound with few bleed
  • FIG. 1 is an image diagram of DBP absorption and form of carbon black.
  • FIG. 2 is an image of the specific surface area and form of carbon black.
  • FIG. 3 is an image diagram explaining the action of the carbon black roller and the effect of improving the heat conduction in the thickness direction of the CNT.
  • nitrogen adsorption specific surface area may be simply expressed as “specific surface area”.
  • the resin compound according to the present invention contains at least a thermoplastic resin and a heat conductive filler. Each will be described below.
  • thermoplastic resin used in the present invention is not limited, and any thermoplastic resin used in the thermally conductive resin compound can be used.
  • thermoplastic resins include polyamide, polyacetate, polyketone, polyolefin, polycarbonate, polystyrene, polyester, polyether, polysulfone, polyfluoropolymer, polyurethane, polyamideimide, polyarylate, polyallylsulfone, polyethersulfone, polysulfone.
  • examples include allyl sulfide, polyvinyl chloride, polyetherimide, polytetrafluoroethylene, polyether ketone, polylactate, and polyphenylene sulfide.
  • Polyamide, polycarbonate, polyester (for example, polybutylene terephthalate) and the like are preferably used because they are economical, easy to mold, and easy to knead.
  • the blending amount of the thermoplastic resin is not particularly limited, but it is preferably 10 to 90% by weight, more preferably 20 to 70% by weight with respect to the entire resin compound.
  • the resin compound according to the present invention includes at least graphite and carbon black as heat conductive fillers, and further includes carbon nanotubes as a suitable optional component.
  • heat conductive fillers will be described.
  • heat conductive fillers other heat conductive fillers
  • Graphite is layered graphite having a hexagonal plate-like crystal structure, and may be either an artificial product or a natural product.
  • graphite having various shapes such as flaky shape, massive shape, and spherical shape can be applied, but in order to obtain a material having high thermal conductivity, a highly anisotropic flaky shape is preferable.
  • the blending amount of graphite is preferably 20 to 80% by weight, more preferably 20 to 70% by weight, and even more preferably 50 to 70% by weight based on the entire resin compound. By setting it as such a range, it becomes possible to raise the effect of this invention more.
  • Carbon black as the second thermally conductive filler is black fine particles mainly composed of carbon, and is produced by a furnace method, a thermal method, a channel method, an acetylene method, or the like.
  • the carbon black in the present invention must satisfy at least one of the following properties: (A1) specific surface area of 10 to 100 m 2 / g, or (B1) DBP absorption amount of 30 to 100 ml / 100 g. And Furthermore, the carbon black in the present invention preferably satisfies (A2) a specific surface area of 10 to 60 m 2 / g, more preferably (A3) a specific surface area of 30 to 60 m 2 , and (A4) a specific surface area of 40 to more preferably satisfying 60 m 2, it is particularly preferable to satisfy the (A5) a specific surface area of 50 ⁇ 60 m 2.
  • the carbon black in the present invention preferably has (B2) DBP absorption of 30 to 70 ml / 100 g, more preferably (B3) DBP absorption of 40 to 70 ml / 100 g, and (B4) DBP. More preferably, the absorption amount satisfies 50 to 70 ml / 100 g, and (B5) the DBP absorption amount particularly preferably satisfies 60 to 70 ml / 100 g.
  • the carbon black in the present invention satisfies the properties of any one of (A1) to (A5) regarding the specific surface area and any one of (B1) to (B5) regarding the DBP absorption amount. Is preferred.
  • (A1) and (B1), (A1) and (B2), (A1) and (B3), (A1) and (B4), (A1) and (B5), (A2) and ( B1), (A2) and (B2), (A2) and (B3), (A2) and (B4), (A2) and (B5), (A3) and (B1), (A3) and (B2) , (A3) and (B3), (A3) and (B4), (A3) and (B5), (A4) and (B1), (A4) and (B2), (A4) and (B3), ( (A4) and (B4), (A4) and (B5), (A5) and (B1), (A5) and (B2), (A5) and (B3), (A5) and (B4), (A5) And (B5) are preferably satisfied.
  • the nitrogen adsorption specific surface area of carbon black is a value measured according to JIS K-6217-2.
  • the DBP absorption amount of carbon black is a value measured according to JIS K-6221.
  • the particle size of carbon black is not particularly limited, but is preferably 25 to 100 nm, and more preferably 30 to 60 nm. This particle size is the number average diameter (average of 1000 particles) obtained from observation with a transmission microscope.
  • heat-treated carbon black in which the crystallinity is increased by heating the carbon black in an inert gas to 1000 ° C. or higher can also be used.
  • the carbon black according to the present invention may have various functional groups on the particle surface.
  • carbon blacks include # 30B, # 33B, # 25B, # 95, # 85, # 240, MA220, etc. of Mitsubishi Chemical Corporation, and others such as Cabot, Orion Engineered Carbon, Aditya It is sold by builders and Tokai Carbon companies.
  • the compounding amount of carbon black is preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the entire resin compound. By setting it as such a range, it becomes possible to raise the effect of this invention more.
  • JP-A-11-71515 shows an example of a resin compound using ketjen black as graphite and carbon black.
  • So-called conductive carbon black such as ketjen black is used to impart conductivity to the resin, and it is said that these carbon blacks form chains in the resin and develop conductivity. This chain is considered to have thermal conductivity.
  • Conductive carbon black (carbon black expected to have high conductivity) is characterized by a high specific surface area and a high DBP absorption.
  • the carbon black used in the present invention is characterized by a low specific surface area and / or a low DBP absorption.
  • FIG. 1 shows an image of carbon black having a different DBP absorption
  • FIG. 2 shows an image of carbon black having a different specific surface area.
  • carbon black having a low specific surface area and a low DBP absorption amount has a low anisotropy, is closer to a sphere, and becomes a large sphere.
  • the specific surface area and particle size of carbon black tend to be inversely proportional, and the distance between graphites in the resin tends to be determined by the particle size of carbon black.
  • the specific surface area of carbon black is less than 10 m 2 / g and the DBP absorption is less than 30 ml / g, as shown in FIG. 3, the roller becomes too large and the distance between fillers such as graphite becomes too wide, so that the thermal conductivity Falls.
  • the specific surface area of carbon black is greater than 100 m 2 / g and the DBP absorption is greater than 100 ml / 100 g, the rollers will be too small and friction between materials will increase, and graphite will become too close. It is thought that the effect of is reduced.
  • the total amount of the carbon black and graphite is preferably 30 to 90% by weight, more preferably 40 to 80% by weight, based on the entire resin compound. it can.
  • a commonly used organic fluidity modifier such as Ca stearate has a melting point of 160 ° C., and the softening point of rosin or the like varies depending on the type, but the melting point is generally 150 ° C. or less. Since the heat conductive resin compound is used to dissipate heat generated from the heating element, the temperature of the heat conductive resin compound during use always exceeds 100 ° C. or 150 ° C. Therefore, the melting point of the organic fluidity modifier may be lower than the temperature at which the resin used in the thermally conductive resin compound is softened. When such an organic fluidity modifier is used, the organic matter is contained in the resin. Often moves and deposits on the surface. As the organic fluid modifier is deposited on the surface in this way, the environment is polluted during use of the part, causing problems. Also, if the parts are painted or plated for coloring or the like, peeling of the coating or plating is caused.
  • carbon black Since carbon black has a high melting point and hardly melts even at 3000 ° C., carbon black does not melt even if the resin melts. Therefore, in the usage environment where the resin does not soften, the above-mentioned carbon black that also functions as a flow modifier by the above-mentioned roller principle does not deposit on the surface of the component, and various troubles due to deposition may occur. Disappear.
  • the carbon nanotube (hereinafter referred to as CNT) as the third heat conductive filler is a filler having high heat conductivity that does not melt even at 3000 ° C. like carbon black.
  • CNT carbon nanotube
  • a cylindrical shape having a multilayer structure, an outer shape of around 10 nm, and a length of several microns to several hundred microns can be given.
  • Graphite has a flat structure and heat conduction in the surface direction is good, but heat conduction in the thickness direction is not good.
  • the graphite is oriented along the flow of the resin, so the heat conduction in the flow direction of the molded part is good, but the heat conduction in the thickness direction may deteriorate.
  • CNT is further added to the system of the present invention containing carbon black and graphite, CNT further enters the space generated by the carbon black as a roller between graphite and graphite. As a result, it is considered that the heat conduction between graphite and graphite is increased. If carbon black does not exist (for example, in the case of a system containing only graphite and CNT), heat between graphite and graphite cannot be effectively transferred.
  • CNT has the effect of increasing the heat conduction between graphite and graphite, thereby producing an effect of improving the heat conduction in the thickness direction of the part.
  • the blending amount of CNT is preferably 1 to 10% by weight, more preferably 1 to 3% by weight, based on the entire resin compound. When the content is less than 1% by weight, the effect is difficult to be obtained.
  • the wire diameter of the CNT is not particularly limited, but is preferably 1 to 100 nm, more preferably 5 to 30 nm.
  • the wire diameter of CNT is the number average diameter (1000 average) measured by transmission microscope observation.
  • the resin compound of the present invention may contain other heat conductive fillers. Any other heat conductive filler may be used as long as the heat conductivity is higher than that of the resin.
  • Various fillers such as metal powder, ceramic powder, and other carbon materials (for example, carbon fiber) may be used. It can. Among these, those having high thermal conductivity, low specific gravity, and good economic efficiency are desirable. For example, boron nitride, aluminum nitride, or the like is used.
  • the blending amount of other heat conductive fillers is preferably 10% by weight or less, and more preferably 5% by weight or less based on the entire resin compound.
  • additives such as resin heat stabilizers, antioxidants, flame retardants, flow modifiers, and the like can be used as appropriate. These additives may be used singly or in a plurality, but it is desirable to use a small amount so that they do not precipitate on the surface and cause a problem.
  • a thermal conductive resin compound having high thermal conductivity and electrical conductivity, excellent moldability and high mechanical strength can be obtained without using an organic fluidity modifier or the like. Therefore, there is an effect that organic matter bleeding on the surface of the component is also suppressed.
  • the method for producing the resin compound of the present invention is not limited, but can be obtained by appropriately mixing raw materials.
  • the raw material resin (resin material) to be the matrix resin is blended with other raw materials (other additives, etc.) containing the above-mentioned heat conductive filler, and mixed (preliminary mixing).
  • the resin composition of the present invention can be produced by preparing a raw material composition, mixing (kneading) the raw material composition, and further pelletizing as necessary. Note that the preliminary mixing and kneading may be performed simultaneously or continuously as the mixing step.
  • a general known resin kneader when it is desired to knead a plurality of fillers and additives efficiently, a short-shaft or twin-screw extruder, a Banbury mixer, a pressure kneader, a heated two roll, or the like can be used.
  • a twin screw extruder when using a twin screw extruder, the resin, the heat conductive filler, and the additive may be mixed and kneaded in advance with a mixer such as a super mixer, or the resin and the additive may be introduced with a main screw. It is also possible to introduce a heat conductive filler separately from the side feeder and knead.
  • this thermally conductive resin compound can be molded by a general molding machine to form a molded part.
  • a general molding machine such as an injection molding machine, an extrusion molding machine, a film molding machine, or a pressure molding machine can be used.
  • the parts formed by molding the resin compound of the present invention can be used as various heat dissipation parts.
  • the present invention it becomes possible to obtain a resin compound and a molded product thereof having high thermal conductivity and high electrical conductivity, excellent moldability, and high mechanical strength, and thus can be used for various applications.
  • the present invention can be suitably applied to various radiators including LEDs, electrostatic shields, bipolar plates for fuel cells, and the like.
  • test resin compounds according to Examples 1 to 5 and Comparative Examples 1 to 4 were prepared.
  • Comparative Examples 3 and 4 a resin compound having a desired shape could not be produced.
  • Liquidity Measurement was performed based on JIS K-7210. The measurement temperature was 280 ° C. and the measurement weight was 5 kg. This fluidity (MFR) is preferably 0.1 g / 10 min or more.
  • the impact strength is preferably in the range of 2 to 20 kJ / m 2 .
  • thermo conductivity thermal diffusion coefficient ⁇ density ⁇ heat capacity was obtained.
  • the resistance of type 1 dumbbells was measured using Loresta manufactured by Mitsubishi Chemical Analytech.
  • the volume resistivity is preferably 100 ⁇ ⁇ cm or less (0.01 ⁇ cm or more).

Abstract

[Problem] To provide: a thermally conductive resin compound having high thermal conductivity, excellent moldability, and high mechanical strength; and a molded product of the resin compound. [Solution] The present invention provides a resin compound containing a thermoplastic resin and graphite, the resin compound further containing carbon black having a nitrogen adsorption specific surface area of 10-100 m2/g and/or a DBP absorption of 30-100 ml/100 g.

Description

樹脂コンパウンド及び樹脂コンパウンドを成型した成形物Resin compound and molded product formed from resin compound
 本発明は、熱伝導率あるいは電気伝導率、成形時の樹脂の流動性と機械特性が優れた成形物が得られる、樹脂コンパウンドに関する。 The present invention relates to a resin compound from which a molded product excellent in thermal conductivity or electrical conductivity, resin fluidity and mechanical properties during molding can be obtained.
 電子部品において高密度、高出力、軽量化を目指した構成の部品の開発が進められている。電子部品の高性能化に伴い、単位面積あるいは単位体積あたりの発熱量は増大しており、そのため電子部品は長時間高温環境に曝されることがある。この熱の影響によって、電子部品の動作が不安定となり、誤動作、性能低下、故障へと繋がる可能性が高くなる。このような熱の影響を防止するために、発生した熱を効率良く放熱する要求が高まっている。 Developed components with high density, high output, and light weight are being developed for electronic components. As the performance of electronic components increases, the amount of heat generated per unit area or unit volume increases, so that the electronic components may be exposed to a high temperature environment for a long time. Due to the influence of this heat, the operation of the electronic component becomes unstable, and there is a high possibility of malfunction, performance degradation, and failure. In order to prevent the influence of such heat, there is an increasing demand for efficiently radiating the generated heat.
 現在はこのために、銅やアルミニウム等の熱伝導の良い金属が使われている。しかしながらこれらの金属は、比重が大きいため重くなる、またフィン等の複雑な形状をした部品を作成するときには加工コストが上がる、といった欠点があった。 Currently, metals with good thermal conductivity such as copper and aluminum are used for this purpose. However, these metals are disadvantageous in that they are heavy due to their large specific gravity, and that the processing cost increases when a part having a complicated shape such as a fin is produced.
 そのため金属以外の導電性フィラーとしてグラファイト、カーボンブラック、カーボンナノチューブ等の炭素系材料を用いた樹脂コンパウンドが開発されている(例えば、特許文献1)。 Therefore, a resin compound using a carbon-based material such as graphite, carbon black, or carbon nanotube as a conductive filler other than metal has been developed (for example, Patent Document 1).
特開2012―507587JP2012-507587
 このような樹脂コンパウンドは、比重が低く、成形コストが下がるが、良好な熱伝導性を得るために大量の熱伝導性フィラーが混練されるために、樹脂の流動性(成形性)が悪化する、機械強度が下がる、といった欠点があった。 Such a resin compound has a low specific gravity and lowers the molding cost, but a large amount of thermally conductive filler is kneaded to obtain good thermal conductivity, so that the fluidity (moldability) of the resin is deteriorated. There was a drawback that the mechanical strength was lowered.
 そこで、本発明は、熱伝導率及び電気伝導率が高く、成型性が優れ、機械的強度が高い熱伝導性樹脂コンパウンドを提供することを主の課題とする。 Therefore, the main object of the present invention is to provide a thermal conductive resin compound having high thermal conductivity and electrical conductivity, excellent moldability, and high mechanical strength.
 また、樹脂の流動性を上げるために、特開2013-159624等では、樹脂の流動性改善用の有機物添加剤の検討も行われている。しかしながら、樹脂と有機物添加剤との相溶性が十分でないとき、あるいは部品の使用温度が高いときに、しばしば部品表面にこれらの有機物添加剤がブリードし、表面を汚したり、あるいは塗装やメッキされている場合に塗膜やメッキがはげたりする欠点があった。 Further, in order to increase the fluidity of the resin, JP2013-159624A and the like have also studied an organic additive for improving the fluidity of the resin. However, when the compatibility between the resin and organic additives is not sufficient, or when the operating temperature of the parts is high, these organic additives often bleed on the surface of the parts, causing the surfaces to become dirty or painted or plated. There was a drawback that the coating film or plating peeled off.
 以上を踏まえ、本発明は、部品の表面への各種有機物のブリードが少ない熱伝導性樹脂コンパウンドを提供することを第2の課題とする。 Based on the above, the second object of the present invention is to provide a thermally conductive resin compound in which the bleeding of various organic substances on the surface of the component is small.
 本発明は熱可塑性樹脂に熱伝導フィラーとして、グラファイトと、特定のカーボンブラックを配合することを特徴とするものである。即ち、本発明は以下の通りである。
 本発明(1)は、
 熱可塑性樹脂とグラファイトを含有する樹脂コンパウンドにおいて、
 窒素吸着比表面積が10~100m/gのカーボンブラックを更に含有することを特徴とする樹脂コンパウンドである。
 本発明(2)は、
 熱可塑性樹脂とグラファイトを含有する樹脂コンパウンドにおいて、
 DBP吸収量が30~100ml/100gのカーボンブラックを更に含有することを特徴とする樹脂コンパウンドである。
 本発明(3)は、
 熱可塑性樹脂とグラファイトを含有する樹脂コンパウンドにおいて、
 窒素吸着比表面積が10~100m/gかつDBP吸収量が30~100ml/100gのカーボンブラックを更に含有することを特徴とする樹脂コンパウンドである。
 本発明(4)は、
 樹脂コンパウンド全体に対して、前記カーボンブラックを1~30重量%含有することを特徴とする前記発明(1)~(3)のいずれかの樹脂コンパウンドである。
 本発明(5)は、
 前記グラファイトが鱗片状であることを特徴とする前記発明(1)~(4)のいずれかの樹脂コンパウンドである。
 本発明(6)は、
 樹脂コンパウンド全体に対して、前記グラファイトを20~80重量%含有することを特徴とする前記発明(1)~(5)のいずれかの樹脂コンパウンドである。
 本発明(7)は、
 樹脂コンパウンド全体に対して、1~10重量%のカーボンナノチューブを更に含有することを特徴とする前記発明(1)~(6)のいずれかの樹脂コンパウンドである。
 本発明(8)は、
 前記発明(1)~(7)のいずれかの樹脂コンパウンドを成型した成形物である。
The present invention is characterized in that graphite and specific carbon black are blended in a thermoplastic resin as a heat conductive filler. That is, the present invention is as follows.
The present invention (1)
In a resin compound containing a thermoplastic resin and graphite,
A resin compound characterized by further containing carbon black having a nitrogen adsorption specific surface area of 10 to 100 m 2 / g.
The present invention (2)
In a resin compound containing a thermoplastic resin and graphite,
A resin compound further comprising carbon black having a DBP absorption of 30 to 100 ml / 100 g.
The present invention (3)
In a resin compound containing a thermoplastic resin and graphite,
A resin compound characterized by further containing carbon black having a nitrogen adsorption specific surface area of 10 to 100 m 2 / g and a DBP absorption of 30 to 100 ml / 100 g.
The present invention (4)
The resin compound according to any one of the inventions (1) to (3), wherein the carbon black is contained in an amount of 1 to 30% by weight with respect to the entire resin compound.
The present invention (5)
The resin compound according to any one of the inventions (1) to (4), wherein the graphite is scaly.
The present invention (6)
The resin compound according to any one of the inventions (1) to (5), wherein the graphite is contained in an amount of 20 to 80% by weight based on the entire resin compound.
The present invention (7)
The resin compound according to any one of the inventions (1) to (6), further comprising 1 to 10% by weight of carbon nanotubes based on the whole resin compound.
The present invention (8)
A molded product obtained by molding the resin compound according to any one of the inventions (1) to (7).
 本発明により熱伝導率及び電気伝導率が高く、成型性が優れ、機械的強度が高い、熱伝導性樹脂コンパウンド及びその成形物を提供することができる。更に本発明によれば、部品の表面への各種有機物のブリードが少ない熱伝導性樹脂コンパウンド及びその成形物を提供することもできる。 According to the present invention, it is possible to provide a thermally conductive resin compound and a molded product thereof having high thermal conductivity and electrical conductivity, excellent moldability, and high mechanical strength. Furthermore, according to this invention, the heat conductive resin compound with few bleed | bleed of various organic substances to the surface of components, and its molded article can also be provided.
図1は、カーボンブラックのDBP吸収量と形態のイメージ図である。FIG. 1 is an image diagram of DBP absorption and form of carbon black. 図2は、カーボンブラックの比表面積と形態のイメージ図である。FIG. 2 is an image of the specific surface area and form of carbon black. 図3は、カーボンブラックのコロの作用とCNTの厚み方向への熱伝導向上作用を説明したイメージ図である。FIG. 3 is an image diagram explaining the action of the carbon black roller and the effect of improving the heat conduction in the thickness direction of the CNT.
 以下、本発明に係る樹脂コンパウンドの、構成、製造方法及び用途等を詳述するが、本発明はこれには限定されない。なお、以下においては、「窒素吸着比表面積」を、単に「比表面積」と表現する場合がある。 Hereinafter, the configuration, production method, application, and the like of the resin compound according to the present invention will be described in detail, but the present invention is not limited to this. In the following, “nitrogen adsorption specific surface area” may be simply expressed as “specific surface area”.
<<構成>>
 本発明に係る樹脂コンパウンドは、熱可塑性樹脂と熱伝導フィラーとを少なくとも含有する。以下、それぞれについて説明する。
<< Configuration >>
The resin compound according to the present invention contains at least a thermoplastic resin and a heat conductive filler. Each will be described below.
<熱可塑性樹脂>
 本発明に用いられる熱可塑性樹脂の種類は限定されず、熱伝導性樹脂コンパウンドにおいて用いられるあらゆる熱可塑性樹脂を使用可能である。このような樹脂としては、例えば、ポリアミド、ポリアセテート、ポリケトン、ポリオレフィン、ポリカーボネート、ポリスチレン、ポリエステル、ポリエーテル、ポリスルホン、ポリフルオロポリマー、ポリウレタン、ポリアミドイミド、ポリアリレート、ポリアリルスルホン、ポリエーテルスルホン、ポリアリルスルファイド、ポリビニルクロライド、ポリエーテルイミド、ポリテトラフルオロエチレン、ポリエーテルケトン、ポリラクテート、ポリフェニレンサルファイド等が挙げられる。なお、経済性、成型性、混練性の容易なことからポリアミド、ポリカーボネート、ポリエステル(例えば、ポリブチレンテレフタレート)等が好ましく用いられる。
<Thermoplastic resin>
The kind of the thermoplastic resin used in the present invention is not limited, and any thermoplastic resin used in the thermally conductive resin compound can be used. Examples of such resins include polyamide, polyacetate, polyketone, polyolefin, polycarbonate, polystyrene, polyester, polyether, polysulfone, polyfluoropolymer, polyurethane, polyamideimide, polyarylate, polyallylsulfone, polyethersulfone, polysulfone. Examples include allyl sulfide, polyvinyl chloride, polyetherimide, polytetrafluoroethylene, polyether ketone, polylactate, and polyphenylene sulfide. Polyamide, polycarbonate, polyester (for example, polybutylene terephthalate) and the like are preferably used because they are economical, easy to mold, and easy to knead.
 なお、熱可塑性樹脂の配合量としては、特に限定されないが、樹脂コンパウンド全体に対して、10~90重量%含有することが好ましく、20~70重量%含有することがより好ましい。 The blending amount of the thermoplastic resin is not particularly limited, but it is preferably 10 to 90% by weight, more preferably 20 to 70% by weight with respect to the entire resin compound.
<熱伝導フィラー>
 本発明に係る樹脂コンパウンドは、熱伝導フィラーとして、グラファイトとカーボンブラックとを少なくとも含み、更に好適な任意成分としてカーボンナノチューブを含む。以下、それぞれの熱伝導フィラーについて説明する。なお、これら以外の熱伝導フィラー(その他の熱伝導フィラー)を含んでいてもよいし、含んでいなくともよい。
<Thermal conductive filler>
The resin compound according to the present invention includes at least graphite and carbon black as heat conductive fillers, and further includes carbon nanotubes as a suitable optional component. Hereinafter, each heat conductive filler will be described. In addition, heat conductive fillers (other heat conductive fillers) other than these may or may not be included.
(グラファイト)
 グラファイトとは、六角板状の結晶構造を有する層状の黒鉛であり、人工品及び天然品のいずれであってもよい。
(Graphite)
Graphite is layered graphite having a hexagonal plate-like crystal structure, and may be either an artificial product or a natural product.
 グラファイトの粒径は大きいものほど樹脂コンパウンドの熱伝導率が高くなるが価格が高くなり、また数百ミクロンを超えると樹脂に配合する際に粉砕されるため、平均粒径が数百ミクロン以下(好ましくは1000μm以下であり、より好ましくは500μm以下である。)のものが好ましい。またグラファイトの粒径が小さくなると樹脂コンパウンドの熱伝導率が小さくなるため、平均粒径が10μm以上(より好ましくは50μm以上)となること、又は、粒径が10μm以上のグラファイトが、グラファイト全体の90重量%以上となることが好ましい。更に、このような粒径範囲とすることにより、後述するカーボンブラックによるコロの原理がより働きやすくなるものと推測される。なお、ここで示す平均粒径とは、重量50%径を示す。 The larger the particle size of graphite, the higher the thermal conductivity of the resin compound, but the higher the price, and if it exceeds several hundred microns, it will be crushed when blended into the resin, so the average particle size will be several hundred microns or less ( The thickness is preferably 1000 μm or less, more preferably 500 μm or less. Further, since the thermal conductivity of the resin compound decreases as the particle size of the graphite decreases, the average particle size becomes 10 μm or more (more preferably 50 μm or more), or graphite having a particle size of 10 μm or more It is preferably 90% by weight or more. Furthermore, by setting it as such a particle size range, it is estimated that the principle of the roller by the carbon black mentioned later becomes easier to work. In addition, the average particle diameter shown here shows a 50% weight diameter.
 また、グラファイトとしては、鱗片状、塊状、球状等の様々な形態をしたものを適用可能であるが、熱伝導率の高いものを得るためには異方性の高い鱗片状のものが好ましい。 In addition, graphite having various shapes such as flaky shape, massive shape, and spherical shape can be applied, but in order to obtain a material having high thermal conductivity, a highly anisotropic flaky shape is preferable.
 グラファイトの配合量は、樹脂コンパウンド全体に対して、20~80重量%含有することが好ましく、20~70重量%含有することがより好ましく、さらには50~70重量%含有することが好ましい。このような範囲とすることにより、本発明の効果をより高めることが可能となる。 The blending amount of graphite is preferably 20 to 80% by weight, more preferably 20 to 70% by weight, and even more preferably 50 to 70% by weight based on the entire resin compound. By setting it as such a range, it becomes possible to raise the effect of this invention more.
(カーボンブラック)
 第2の熱伝導性フィラーであるカーボンブラックは、炭素を主成分とする黒色微粒子であり、ファーネス法、サーマル法、チャンネル法、アセチレン法等で作られる。
(Carbon black)
Carbon black as the second thermally conductive filler is black fine particles mainly composed of carbon, and is produced by a furnace method, a thermal method, a channel method, an acetylene method, or the like.
 ここで、本発明におけるカーボンブラックは、(A1)比表面積が10~100m/g、又は、(B1)DBP吸収量が30~100ml/100g、の少なくともいずれか一方の性質を満たすことを必須とする。更には、本発明におけるカーボンブラックは、(A2)比表面積10~60m/gを満たすことが好ましく、(A3)比表面積30~60mを満たすことがより好ましく、(A4)比表面積40~60mを満たすことが更に好ましく、(A5)比表面積50~60mを満たすことが特に好ましい。また、本発明におけるカーボンブラックは、(B2)DBP吸収量が30~70ml/100gを満たすことが好ましく、(B3)DBP吸収量が40~70ml/100gを満たすことがより好ましく、(B4)DBP吸収量が50~70ml/100gを満たすことが更に好ましく、(B5)DBP吸収量が60~70ml/100gを満たすことが特に好ましい。ここで、本発明におけるカーボンブラックは、比表面積に関して(A1)~(A5)のいずれか1つ、及び、DBP吸収量に関して(B1)~(B5)のいずれか1つ、の性質を満たすことが好ましい。具体的には、(A1)及び(B1)、(A1)及び(B2)、(A1)及び(B3)、(A1)及び(B4)、(A1)及び(B5)、(A2)及び(B1)、(A2)及び(B2)、(A2)及び(B3)、(A2)及び(B4)、(A2)及び(B5)、(A3)及び(B1)、(A3)及び(B2)、(A3)及び(B3)、(A3)及び(B4)、(A3)及び(B5)、(A4)及び(B1)、(A4)及び(B2)、(A4)及び(B3)、(A4)及び(B4)、(A4)及び(B5)、(A5)及び(B1)、(A5)及び(B2)、(A5)及び(B3)、(A5)及び(B4)、(A5)及び(B5)、のいずれかを満たすことが好ましい。 Here, the carbon black in the present invention must satisfy at least one of the following properties: (A1) specific surface area of 10 to 100 m 2 / g, or (B1) DBP absorption amount of 30 to 100 ml / 100 g. And Furthermore, the carbon black in the present invention preferably satisfies (A2) a specific surface area of 10 to 60 m 2 / g, more preferably (A3) a specific surface area of 30 to 60 m 2 , and (A4) a specific surface area of 40 to more preferably satisfying 60 m 2, it is particularly preferable to satisfy the (A5) a specific surface area of 50 ~ 60 m 2. The carbon black in the present invention preferably has (B2) DBP absorption of 30 to 70 ml / 100 g, more preferably (B3) DBP absorption of 40 to 70 ml / 100 g, and (B4) DBP. More preferably, the absorption amount satisfies 50 to 70 ml / 100 g, and (B5) the DBP absorption amount particularly preferably satisfies 60 to 70 ml / 100 g. Here, the carbon black in the present invention satisfies the properties of any one of (A1) to (A5) regarding the specific surface area and any one of (B1) to (B5) regarding the DBP absorption amount. Is preferred. Specifically, (A1) and (B1), (A1) and (B2), (A1) and (B3), (A1) and (B4), (A1) and (B5), (A2) and ( B1), (A2) and (B2), (A2) and (B3), (A2) and (B4), (A2) and (B5), (A3) and (B1), (A3) and (B2) , (A3) and (B3), (A3) and (B4), (A3) and (B5), (A4) and (B1), (A4) and (B2), (A4) and (B3), ( (A4) and (B4), (A4) and (B5), (A5) and (B1), (A5) and (B2), (A5) and (B3), (A5) and (B4), (A5) And (B5) are preferably satisfied.
 ここで、本発明において、カーボンブラックの窒素吸着比表面積は、JIS K-6217-2にて測定された値を示す。 Here, in the present invention, the nitrogen adsorption specific surface area of carbon black is a value measured according to JIS K-6217-2.
 また、本発明において、カーボンブラックのDBP吸収量は、JIS K-6221にて測定された値を示す。 In the present invention, the DBP absorption amount of carbon black is a value measured according to JIS K-6221.
 なお、カーボンブラックの粒径は、特に限定されないが、25~100nmであることが好ましく、30~60nmであることがより好ましい。この粒径は、透過型顕微鏡の観察から個数平均径(1000個平均)を求めたものである。 The particle size of carbon black is not particularly limited, but is preferably 25 to 100 nm, and more preferably 30 to 60 nm. This particle size is the number average diameter (average of 1000 particles) obtained from observation with a transmission microscope.
 また結晶化度が高くなるほどカーボンブラックの熱伝導は高くなることから、カーボンブラックを不活性ガス中で1000℃以上に加熱して結晶化度を高めた熱処理カーボンブラックも使用することができる。 Further, since the heat conduction of carbon black increases as the crystallinity increases, heat-treated carbon black in which the crystallinity is increased by heating the carbon black in an inert gas to 1000 ° C. or higher can also be used.
 更には、本発明に係るカーボンブラックは、その粒子表面に各種の官能基を有していてもよい。 Furthermore, the carbon black according to the present invention may have various functional groups on the particle surface.
 これらのカーボンブラックの代表的な例として、三菱化学株式会社の#30B、#33B、#25B、#95、#85、#240、MA220等があり、その他キャボット、オリオンエンジニアードカーボン、アディティア・ビルダー、東海カーボン各社から販売されている。 Representative examples of these carbon blacks include # 30B, # 33B, # 25B, # 95, # 85, # 240, MA220, etc. of Mitsubishi Chemical Corporation, and others such as Cabot, Orion Engineered Carbon, Aditya It is sold by builders and Tokai Carbon companies.
 カーボンブラックの配合量は、樹脂コンパウンド全体に対して、1~30重量%含有することが好ましく、さらには5~20重量%含有することが好ましい。このような範囲とすることにより、本発明の効果をより高めることが可能となる。 The compounding amount of carbon black is preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the entire resin compound. By setting it as such a range, it becomes possible to raise the effect of this invention more.
 ここで、特開平11-71515には、グラファイトとカーボンブラックとしてケッチェンブラックを用いた樹脂コンパウンドの例が示されている。ケッチェンブラックを始めとした所謂導電性カーボンブラックは樹脂に導電性を付与するために用いられており、これらのカーボンブラックが樹脂の中でチエーンを作り導電性が発現するといわれている。またこのチエーンは熱伝導性を有すると考えられる。導電性カーボンブラック(高い導電性が期待されるカーボンブラック)は、比表面積が高く、DBP吸収量が高いことが特徴である。他方で、本発明で用いられるカーボンブラックは、比表面積が低い、及び/又は、DBP吸収量が低いことに特徴がある。 Here, JP-A-11-71515 shows an example of a resin compound using ketjen black as graphite and carbon black. So-called conductive carbon black such as ketjen black is used to impart conductivity to the resin, and it is said that these carbon blacks form chains in the resin and develop conductivity. This chain is considered to have thermal conductivity. Conductive carbon black (carbon black expected to have high conductivity) is characterized by a high specific surface area and a high DBP absorption. On the other hand, the carbon black used in the present invention is characterized by a low specific surface area and / or a low DBP absorption.
 DBP吸収量が異なるカーボンブラックのイメージを図1に、比表面積が異なるカーボンブラックのイメージを図2に示す。該図に示されるように、比表面積が低く、DBP吸収量が低いカーボンブラックは、異方性が低くより球に近く、且つ、大きな球になる。このようなカーボンブラックを、カーボンブラックに比べ大きな平板形状となるグラファイト等の炭素材料とともに用いることで、成形をする際の熱可塑性樹脂が溶融した状態において、カーボンブラックが平板と平板の間に入り、あたかもコロの役割を果たす(コロの原理)。このコロの原理によって、平板形状となるグラファイト等の炭素材料が滑らかに樹脂中に分散され、熱可塑性樹脂の流動性を良くするものと考えられる。その結果、樹脂の流動性(成形性)を維持しつつも、フィラーをより高配合とすることや、樹脂中のフィラー量を維持しつつも、樹脂の流動性(成形性)を向上させることも可能となる。なお、DBP吸収量が大きいほどカーボンブラックの凸凹が多くなり、樹脂の中で流動する際にカーボンブラックが相互に引っかかるため、樹脂の流動性低下の原因となると考えられる。また、カーボンブラックの比表面積と粒径は反比例する傾向にあり、カーボンブラックの粒径により樹脂中でのグラファイト間の距離が決まる傾向にある。カーボンブラックの比表面積が10m/gより小さく且つDBP吸収量が30ml/gより小さいと、図3に示すように、コロが大きくなりすぎグラファイト等のフィラー間の距離が広がりすぎるため熱伝導率が落ちる。また逆にカーボンブラックの比表面積が100m/gより大きく且つDBP吸収量が100ml/100gより大きいと、コロが小さくなりすぎ各材料同士の摩擦が増える、またグラファイト等が近づき過ぎるためにコロとしての効果が低くなるものと考えられる。 FIG. 1 shows an image of carbon black having a different DBP absorption, and FIG. 2 shows an image of carbon black having a different specific surface area. As shown in the figure, carbon black having a low specific surface area and a low DBP absorption amount has a low anisotropy, is closer to a sphere, and becomes a large sphere. By using such a carbon black together with a carbon material such as graphite, which has a larger flat plate shape than carbon black, the carbon black enters between the flat plate in a state where the thermoplastic resin at the time of molding is melted. , As if it is a roller (the principle of roller). By this roller principle, it is considered that a carbon material such as graphite having a flat plate shape is smoothly dispersed in the resin, thereby improving the fluidity of the thermoplastic resin. As a result, while maintaining the fluidity (moldability) of the resin, it is possible to improve the fluidity (moldability) of the resin while maintaining higher filler content and maintaining the amount of filler in the resin. Is also possible. In addition, since the unevenness of carbon black increases as the DBP absorption amount increases and carbon black is caught by each other when flowing in the resin, it is considered to cause a decrease in fluidity of the resin. Further, the specific surface area and particle size of carbon black tend to be inversely proportional, and the distance between graphites in the resin tends to be determined by the particle size of carbon black. When the specific surface area of carbon black is less than 10 m 2 / g and the DBP absorption is less than 30 ml / g, as shown in FIG. 3, the roller becomes too large and the distance between fillers such as graphite becomes too wide, so that the thermal conductivity Falls. Conversely, if the specific surface area of carbon black is greater than 100 m 2 / g and the DBP absorption is greater than 100 ml / 100 g, the rollers will be too small and friction between materials will increase, and graphite will become too close. It is thought that the effect of is reduced.
 なお、このような観点からは、上記のカーボンブラックとグラファイトとの合計の配合量として、樹脂コンパウンド全体に対して、好ましくは30~90重量%、より好ましくは40~80重量%とすることができる。 From this point of view, the total amount of the carbon black and graphite is preferably 30 to 90% by weight, more preferably 40 to 80% by weight, based on the entire resin compound. it can.
 ここで、一般的に使用される有機物流動改質剤、例えばステアリン酸Caはその融点が160℃であり、ロジン等の軟化点は種類によって異なるがその融点がおおむね150℃以下である。熱伝導性樹脂コンパウンドは発熱体から発生する熱を放熱するために用いられることから、使用時の熱伝導性樹脂コンパウンドの温度は100℃、あるいは150℃を超えることが常に起きる。従って、熱伝導性樹脂コンパウンドで使われる樹脂が軟化する温度より有機物流動改質剤の融点の方が低い場合があり、このような有機物流動改質剤を使った場合には樹脂の中を有機物が動き、しばしば表面に析出してくる。このように表面に有機物流動改質剤が析出することにより、部品の使用中に環境を汚し問題を起こす。また着色等をするために部品を塗装したり、メッキをしている場合には塗装やメッキの剥がれを引き起こす。 Here, a commonly used organic fluidity modifier such as Ca stearate has a melting point of 160 ° C., and the softening point of rosin or the like varies depending on the type, but the melting point is generally 150 ° C. or less. Since the heat conductive resin compound is used to dissipate heat generated from the heating element, the temperature of the heat conductive resin compound during use always exceeds 100 ° C. or 150 ° C. Therefore, the melting point of the organic fluidity modifier may be lower than the temperature at which the resin used in the thermally conductive resin compound is softened. When such an organic fluidity modifier is used, the organic matter is contained in the resin. Often moves and deposits on the surface. As the organic fluid modifier is deposited on the surface in this way, the environment is polluted during use of the part, causing problems. Also, if the parts are painted or plated for coloring or the like, peeling of the coating or plating is caused.
 カーボンブラックは融点が高く、3000℃でも溶融し難いため、樹脂が溶融してもカーボンブラックが溶けることはない。このことから、樹脂が軟化しない使用環境において、上述のコロの原理によって流動改質剤としても機能する上記のカーボンブラックが部品の表面に析出することはなく、析出による様々なトラブルを起こすことがなくなる。 Since carbon black has a high melting point and hardly melts even at 3000 ° C., carbon black does not melt even if the resin melts. Therefore, in the usage environment where the resin does not soften, the above-mentioned carbon black that also functions as a flow modifier by the above-mentioned roller principle does not deposit on the surface of the component, and various troubles due to deposition may occur. Disappear.
(カーボンナノチューブ)
 第3の熱伝導フィラーであるカーボンナノチューブ(以降CNT)は、カーボンブラックと同様3000℃でも溶融しない、熱伝導が高いフィラーである。一般的なCNTの一例としては、多層構造をした円柱状で外形が10nm前後で、長さが数ミクロンから数百ミクロンのものが挙げられる。
(carbon nanotube)
The carbon nanotube (hereinafter referred to as CNT) as the third heat conductive filler is a filler having high heat conductivity that does not melt even at 3000 ° C. like carbon black. As an example of a general CNT, a cylindrical shape having a multilayer structure, an outer shape of around 10 nm, and a length of several microns to several hundred microns can be given.
 グラファイトは扁平な構造をもち、面方向の熱伝導は良いが厚み方向の熱伝導は良くない。グラファイトを配合したコンパウンドを射出成型した際に、樹脂の流れに沿ってグラファイトが配向するため成型した部品の流れ方向の熱伝導は良いが、厚み方向の熱伝導が悪くなる場合もある。カーボンブラックとグラファイトを含む本発明の系に、更にCNTを加えることにより、グラファイトとグラファイトの間にコロとしてのカーボンブラックが入ることにより生じる空間に、更にCNTが入りこむこととなる。その結果、グラファイトとグラファイトの間の熱伝導を増やすものと考えられる。なお、カーボンブラックが存在しないと(例えば、グラファイトとCNTのみを含む系の場合)、効果的にグラファイトとグラファイト間の熱を伝えることができない。 Graphite has a flat structure and heat conduction in the surface direction is good, but heat conduction in the thickness direction is not good. When a compound containing graphite is injection-molded, the graphite is oriented along the flow of the resin, so the heat conduction in the flow direction of the molded part is good, but the heat conduction in the thickness direction may deteriorate. When CNT is further added to the system of the present invention containing carbon black and graphite, CNT further enters the space generated by the carbon black as a roller between graphite and graphite. As a result, it is considered that the heat conduction between graphite and graphite is increased. If carbon black does not exist (for example, in the case of a system containing only graphite and CNT), heat between graphite and graphite cannot be effectively transferred.
 このように、CNTが、グラファイトとグラファイトの熱伝導を上げる作用があることにより、部品の厚み方向の熱伝導が良くなる効果が生じる。 Thus, CNT has the effect of increasing the heat conduction between graphite and graphite, thereby producing an effect of improving the heat conduction in the thickness direction of the part.
 CNTの配合量は、樹脂コンパウンド全体に対して、1~10重量%が好ましく、さらには1~3重量%が好ましい。1重量%を切ると効果が出難く、10重量%を超えると、樹脂の流動性が悪くなり成型し難くなる。 The blending amount of CNT is preferably 1 to 10% by weight, more preferably 1 to 3% by weight, based on the entire resin compound. When the content is less than 1% by weight, the effect is difficult to be obtained.
 なお、CNTの線径は特に限定されないが、1~100nmであることが好ましく、5~30nmであることがより好ましい。CNTの線径は、透過型顕微鏡観察で測定された個数平均径(1000個平均)である。 The wire diameter of the CNT is not particularly limited, but is preferably 1 to 100 nm, more preferably 5 to 30 nm. The wire diameter of CNT is the number average diameter (1000 average) measured by transmission microscope observation.
(その他の熱伝導フィラー)
 本発明の樹脂コンパウンドには、その他の熱伝導フィラーを含有してもよい。その他の熱伝導フィラーとしては、熱伝導率が樹脂より高いものであればどのようなものでも良く、金属粉、セラミックス粉、その他の炭素材料(例えば、カーボンファイバー)等各種のフィラーを使うことができる。中でも、熱伝導が高く、低比重でかつ経済性の良いものが望ましく、例えば、窒化ホウ素、窒化アルミ等が用いられる。
(Other heat conductive filler)
The resin compound of the present invention may contain other heat conductive fillers. Any other heat conductive filler may be used as long as the heat conductivity is higher than that of the resin. Various fillers such as metal powder, ceramic powder, and other carbon materials (for example, carbon fiber) may be used. it can. Among these, those having high thermal conductivity, low specific gravity, and good economic efficiency are desirable. For example, boron nitride, aluminum nitride, or the like is used.
 その他の熱伝導フィラーの配合量としては、樹脂コンパウンド全体に対して、10重量%以下であることが好ましく、5重量%以下であることがより好ましい。 The blending amount of other heat conductive fillers is preferably 10% by weight or less, and more preferably 5% by weight or less based on the entire resin compound.
<その他の添加剤>
 その他の添加剤として公知であるもの、例えば、樹脂の熱安定剤、酸化防止剤、難燃剤あるいは流動改質剤等も適宜使用することができる。これらの添加剤は単品でも複数使用しても構わないが、表面に析出して問題を起こさない程度の少量とすることが望ましい。
<Other additives>
Other known additives such as resin heat stabilizers, antioxidants, flame retardants, flow modifiers, and the like can be used as appropriate. These additives may be used singly or in a plurality, but it is desirable to use a small amount so that they do not precipitate on the surface and cause a problem.
 本発明によれば、有機物流動改質剤等を用いずとも、熱伝導率及び電気伝導率が高く、成型性が優れ、機械的強度が高い熱伝導性樹脂コンパウンドが得られる。従って、部品表面への有機物のブリードも抑制されるという効果も奏する。 According to the present invention, a thermal conductive resin compound having high thermal conductivity and electrical conductivity, excellent moldability and high mechanical strength can be obtained without using an organic fluidity modifier or the like. Therefore, there is an effect that organic matter bleeding on the surface of the component is also suppressed.
<<製造方法>>
 次に、本発明の樹脂コンパウンド及びその成形物(成型部品)の製造方法について説明する。なお、原料に関しては上述した通りであるので説明を省略する。
<< Manufacturing method >>
Next, the resin compound of this invention and the manufacturing method of the molded product (molded part) are demonstrated. In addition, since it is as above-mentioned regarding a raw material, description is abbreviate | omitted.
 本発明の樹脂コンパウンドの製造方法は限定されないが、原料を適宜混合することによって得られる。具体的には、例えば、マトリックス樹脂となる原料樹脂(樹脂材料)に対して、前述の熱伝導性フィラーを含むその他の原料(その他の添加剤等)を配合し、混合(予備混合)を行うことで原料組成物を作製し、当該原料組成物を混合(混練)し、更に必要に応じてペレット化することによって本発明の樹脂コンパウンドを製造可能である。なお、予備混合と混練は、混合工程として、同時に又は連続的に行われてもよい。 The method for producing the resin compound of the present invention is not limited, but can be obtained by appropriately mixing raw materials. Specifically, for example, the raw material resin (resin material) to be the matrix resin is blended with other raw materials (other additives, etc.) containing the above-mentioned heat conductive filler, and mixed (preliminary mixing). Thus, the resin composition of the present invention can be produced by preparing a raw material composition, mixing (kneading) the raw material composition, and further pelletizing as necessary. Note that the preliminary mixing and kneading may be performed simultaneously or continuously as the mixing step.
 より具体的には、本発明の樹脂コンパウンドの混練に際しては、一般的な公知の樹脂混練機が適用できる。具体的な例として、複数のフィラーや添加剤を効率よく混練したい場合には、短軸あるいは2軸押出機、バンバリーミキサ、加圧ニーダ、加熱2本ロール等を用いることができる。例えば、2軸押出機を用いる際には、樹脂と熱伝導フィラー、添加剤をスーパミキサー等の混合器であらかじめ混合して混錬しても良いし、樹脂と添加剤をメインスクリューで導入し、熱伝導フィラーをサイドフィーダから別に導入し混練することも可能である。 More specifically, when kneading the resin compound of the present invention, a general known resin kneader can be applied. As a specific example, when it is desired to knead a plurality of fillers and additives efficiently, a short-shaft or twin-screw extruder, a Banbury mixer, a pressure kneader, a heated two roll, or the like can be used. For example, when using a twin screw extruder, the resin, the heat conductive filler, and the additive may be mixed and kneaded in advance with a mixer such as a super mixer, or the resin and the additive may be introduced with a main screw. It is also possible to introduce a heat conductive filler separately from the side feeder and knead.
 また、この熱伝導性樹脂コンパウンドは、一般的な成型機で成型を行い、成型部品とすることができる。成型機としては射出成型機、押出成形機、フイルム成型機、加圧成型機等の一般的な成型機を使うことが可能である。本発明の樹脂コンパウンドを成型した部品は各種放熱部品として使うことができる。 In addition, this thermally conductive resin compound can be molded by a general molding machine to form a molded part. As the molding machine, a general molding machine such as an injection molding machine, an extrusion molding machine, a film molding machine, or a pressure molding machine can be used. The parts formed by molding the resin compound of the present invention can be used as various heat dissipation parts.
<<用途>>
 本発明によれば、熱伝導率及び電気伝導率が高く、成型性が優れ、機械的強度が高い樹脂コンパウンド及びその成形物とすることが可能となるため、様々な用途に用いることが可能である。例えば、LEDを含めた各種放熱器、静電シールド、燃料電池用のバイポーラプレート等に好適に適用可能である。
<< Usage >>
According to the present invention, it becomes possible to obtain a resin compound and a molded product thereof having high thermal conductivity and high electrical conductivity, excellent moldability, and high mechanical strength, and thus can be used for various applications. is there. For example, the present invention can be suitably applied to various radiators including LEDs, electrostatic shields, bipolar plates for fuel cells, and the like.
 以下の実施例に基づき本発明について具体的に説明するが、本発明は、これらの実施例にのみ限定されるものではない。 The present invention will be specifically described based on the following examples, but the present invention is not limited only to these examples.
 原料として、以下を用いた。
(1)ポリアミド
・宇部興産社製、1013B
(2)グラファイト
・中越黒鉛社製、CPB-80、平均粒径316μm
(3)カーボンブラック
・#25B(三菱化学株式会社製)
 平均粒径47nm、DBP吸収量66ml/100g、窒素吸着比表面積55m/g
・ケッチェンブラック(ライオン・スペシャリティ・ケミカルズ社製)
 平均粒径39.5nm、DBP吸収量360ml/100g、窒素吸着比表面積800m/g
・#40B(三菱化学株式会社製)
 平均粒径24nm、DBP吸収量113ml/100g、窒素吸着比表面積115m/g
(6)カーボンナノチューブ
・KUMH PETROCHEMICAL社製、K・Nanos100P 平均粒径は約10nm
The following were used as raw materials.
(1) Polyamide, manufactured by Ube Industries, Ltd., 1013B
(2) Graphite, manufactured by Chuetsu Graphite Co., CPB-80, average particle size of 316 μm
(3) Carbon black # 25B (Mitsubishi Chemical Corporation)
Average particle size 47 nm, DBP absorption 66 ml / 100 g, nitrogen adsorption specific surface area 55 m 2 / g
・ Ketjen Black (Lion Specialty Chemicals)
Average particle size 39.5 nm, DBP absorption 360 ml / 100 g, nitrogen adsorption specific surface area 800 m 2 / g
・ # 40B (Mitsubishi Chemical Corporation)
Average particle size 24 nm, DBP absorption 113 ml / 100 g, nitrogen adsorption specific surface area 115 m 2 / g
(6) Carbon nanotubes / KUMH PETROCHEMICAL, K / Nanos100P Average particle size is about 10 nm
 表1に示す配合量にて原料を混合し、加熱及び混練した後、実施例1~5及び比較例1~4に係る試験用樹脂コンパウンドを作成した。なお、比較例3及び4に関しては、所望形状の樹脂コンパウンドを作成することが出来なかった。 After mixing the raw materials in the blending amounts shown in Table 1, heating and kneading, test resin compounds according to Examples 1 to 5 and Comparative Examples 1 to 4 were prepared. For Comparative Examples 3 and 4, a resin compound having a desired shape could not be produced.
 各実施例及び比較例に係る試験用樹脂コンパウンドに関して、流動性(MFR)、機械的強度(曲げ弾性率及び引張最大応力)、衝撃強度(シャルピー衝撃値)、熱伝導率、電気伝導率(体積固有抵抗)を測定した。測定結果を表1に示す。また、各性質の測定方法は、以下の通りである。 For the test resin compounds according to the examples and comparative examples, fluidity (MFR), mechanical strength (flexural modulus and tensile maximum stress), impact strength (Charpy impact value), thermal conductivity, electrical conductivity (volume) Specific resistance) was measured. The measurement results are shown in Table 1. Moreover, the measuring method of each property is as follows.
(流動性)
 JIS K-7210に基づき測定を行った。測定温度を280℃、測定加重として5kgを用いた。
 この流動性(MFR)は、0.1g/10分以上であることが好ましい。
(Liquidity)
Measurement was performed based on JIS K-7210. The measurement temperature was 280 ° C. and the measurement weight was 5 kg.
This fluidity (MFR) is preferably 0.1 g / 10 min or more.
(機械的強度)
 1号型ダンベルを成型し
 引張強度 JIS K-7113
 試験片 JIS K-7113
 曲げ弾性率 JIS K-7203
で行った。
(Mechanical strength)
No. 1 type dumbbell is molded and tensile strength JIS K-7113
Test piece JIS K-7113
Flexural modulus JIS K-7203
I went there.
(シャルピー衝撃強度)
 JIS K-7110に基づき、ノッチ付きの試験片で測定を行った。
 衝撃強度は、2~20kJ/mの範囲内であることが好ましい。
(Charpy impact strength)
Based on JIS K-7110, the measurement was performed using a notched specimen.
The impact strength is preferably in the range of 2 to 20 kJ / m 2 .
(熱伝導率)
 1号型ダンベルから直径10mm、厚み1mmの円盤を切り出し厚み方向の熱伝導測定試料とした。またダンベルを数枚重ねて熱プレスし厚みを10mm以上とし重ねた面が平面になるように直径10mm、厚み1mmの円盤を切り出し成型の樹脂の流れ方向の熱伝導測定試料とした。
 熱伝導の測定はNETZSCH社のLFA 467 HyperFlashを使い熱拡散係数と熱容量を測定し、別途ダンベルの密度を測定し、計算式:熱伝導率=熱拡散係数×密度×熱容量、から求めた。
(Thermal conductivity)
A disk having a diameter of 10 mm and a thickness of 1 mm was cut out from a No. 1 type dumbbell and used as a heat conduction measurement sample in the thickness direction. In addition, several dumbbells were stacked and hot pressed to obtain a thickness of 10 mm or more, and a disk having a diameter of 10 mm and a thickness of 1 mm was cut out so that the stacked surface was a flat surface.
The thermal conductivity was measured using a NETZSCH LFA 467 HyperFlash, the thermal diffusion coefficient and the heat capacity were measured, and the density of the dumbbell was separately measured, and the calculation formula: thermal conductivity = thermal diffusion coefficient × density × heat capacity was obtained.
(電気伝導率(体積固有抵抗))
 1号型ダンベルの抵抗を三菱化学アナリテック社のロレスタを用いて測定を行った。
 体積固有抵抗は、100Ω・cm以下(0.01Ωcm以上)であることが好ましい。
(Electric conductivity (volume resistivity))
The resistance of type 1 dumbbells was measured using Loresta manufactured by Mitsubishi Chemical Analytech.
The volume resistivity is preferably 100 Ω · cm or less (0.01 Ωcm or more).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  熱可塑性樹脂とグラファイトを含有する樹脂コンパウンドにおいて、
     窒素吸着比表面積が10~100m/gのカーボンブラックを更に含有することを特徴とする樹脂コンパウンド。
    In a resin compound containing a thermoplastic resin and graphite,
    A resin compound further comprising carbon black having a nitrogen adsorption specific surface area of 10 to 100 m 2 / g.
  2.  熱可塑性樹脂とグラファイトを含有する樹脂コンパウンドにおいて、
     DBP吸収量が30~100ml/100gのカーボンブラックを更に含有することを特徴とする樹脂コンパウンド。
    In a resin compound containing a thermoplastic resin and graphite,
    A resin compound further comprising carbon black having a DBP absorption of 30 to 100 ml / 100 g.
  3.  熱可塑性樹脂とグラファイトを含有する樹脂コンパウンドにおいて、
     窒素吸着比表面積が10~100m/gかつDBP吸収量が30~100ml/100gのカーボンブラックを更に含有することを特徴とする樹脂コンパウンド。
    In a resin compound containing a thermoplastic resin and graphite,
    A resin compound further comprising carbon black having a nitrogen adsorption specific surface area of 10 to 100 m 2 / g and a DBP absorption of 30 to 100 ml / 100 g.
  4.  樹脂コンパウンド全体に対して、前記カーボンブラックを1~30重量%含有することを特徴とする請求項1~3のいずれかに記載する樹脂コンパウンド。 The resin compound according to any one of claims 1 to 3, wherein the carbon black is contained in an amount of 1 to 30% by weight with respect to the entire resin compound.
  5.  前記グラファイトが鱗片状であることを特徴とする請求項1~4のいずれかに記載する樹脂コンパウンド。 5. The resin compound according to claim 1, wherein the graphite is scaly.
  6.  樹脂コンパウンド全体に対して、前記グラファイトを20~80重量%含有することを特徴とする請求項1~5のいずれかに記載する樹脂コンパウンド。 6. The resin compound according to claim 1, wherein the graphite compound is contained in an amount of 20 to 80% by weight based on the entire resin compound.
  7.  樹脂コンパウンド全体に対して、1~10重量%のカーボンナノチューブを更に含有することを特徴とする請求項1~6のいずれかに記載する樹脂コンパウンド。 The resin compound according to any one of claims 1 to 6, further comprising 1 to 10% by weight of carbon nanotubes based on the entire resin compound.
  8.  請求項1~7のいずれかの樹脂コンパウンドを成型した成形物。 A molded product obtained by molding the resin compound according to any one of claims 1 to 7.
PCT/JP2018/003074 2017-01-31 2018-01-31 Resin compound and molded product of resin compound WO2018143224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-016247 2017-01-31
JP2017016247A JP2020055889A (en) 2017-01-31 2017-01-31 Resin compound and molding molded with resin compound

Publications (1)

Publication Number Publication Date
WO2018143224A1 true WO2018143224A1 (en) 2018-08-09

Family

ID=63040199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003074 WO2018143224A1 (en) 2017-01-31 2018-01-31 Resin compound and molded product of resin compound

Country Status (3)

Country Link
JP (1) JP2020055889A (en)
TW (1) TW201840733A (en)
WO (1) WO2018143224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158599A1 (en) 2021-01-25 2022-07-28 積水テクノ成型株式会社 Resin composition, resin molded article, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395803A (en) * 1989-09-07 1991-04-22 Tokai Carbon Co Ltd Conductive resin composition for shielding electromagnetic wave
WO2005012428A1 (en) * 2003-07-30 2005-02-10 Zeon Corporation Electroconductive composition, electroconductive coating, electroconductive fiber material and exothermic article in plane shape
JP2008227481A (en) * 2007-02-15 2008-09-25 Unitika Ltd Conductive slurry, electrode slurry and electrode for electric double-layer capacitor using the slurry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395803A (en) * 1989-09-07 1991-04-22 Tokai Carbon Co Ltd Conductive resin composition for shielding electromagnetic wave
WO2005012428A1 (en) * 2003-07-30 2005-02-10 Zeon Corporation Electroconductive composition, electroconductive coating, electroconductive fiber material and exothermic article in plane shape
JP2008227481A (en) * 2007-02-15 2008-09-25 Unitika Ltd Conductive slurry, electrode slurry and electrode for electric double-layer capacitor using the slurry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158599A1 (en) 2021-01-25 2022-07-28 積水テクノ成型株式会社 Resin composition, resin molded article, and method for producing same
KR20230134119A (en) 2021-01-25 2023-09-20 세끼스이 테크노 세이께이 가부시끼가이샤 Resin composition, resin molded body, and method for producing the same

Also Published As

Publication number Publication date
JP2020055889A (en) 2020-04-09
TW201840733A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
US8299159B2 (en) Highly thermally-conductive moldable thermoplastic composites and compositions
US7462656B2 (en) Electrically conductive compositions and method of manufacture thereof
KR102347760B1 (en) Thermoplastic resin composite composition for shielding electromagnetc wave
JP6860774B2 (en) Fused Deposition Modeling Filament Manufacturing Method for 3D Printers
CN101568599B (en) Heat-conductive resin composition and plastic article
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
JP5250154B2 (en) Conductive thermoplastic resin composition
KR20070108368A (en) Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
US8388869B2 (en) Thermally conductive resin composition including a milled pitch based carbon fiber
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
JP2005200620A (en) Thermoplastic resin composition and thermoplastic resin molded product
JP5029344B2 (en) Thermoplastic resin molded product
JP5359825B2 (en) Thermally conductive resin composition
Kwon et al. Thermally conducting yet electrically insulating epoxy nanocomposites containing aluminum@ electrochemically exfoliated graphene hybrid
Bühler et al. Highly conductive polypropylene‐based composites for bipolar plates for polymer electrolyte membrane fuel cells
KR102258483B1 (en) A composite material composition having electromagnetic wave shielding function and a shaped product comprising the same
WO2018143224A1 (en) Resin compound and molded product of resin compound
JP2016194046A (en) Resin pellet, method for producing resin pellet, molding and method for producing molding
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
Kasgoz et al. Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites
Kadiyala et al. Correlating microstructure-property relationships in carbon fiber-expanded graphite hybrid composites for synergistic improvements in thermal and mechanical properties
KR100792782B1 (en) Partially aromatic polyamides resin composition and process for preparing the same
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
KR20170100469A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18748630

Country of ref document: EP

Kind code of ref document: A1