JP5359825B2 - Thermally conductive resin composition - Google Patents

Thermally conductive resin composition Download PDF

Info

Publication number
JP5359825B2
JP5359825B2 JP2009274117A JP2009274117A JP5359825B2 JP 5359825 B2 JP5359825 B2 JP 5359825B2 JP 2009274117 A JP2009274117 A JP 2009274117A JP 2009274117 A JP2009274117 A JP 2009274117A JP 5359825 B2 JP5359825 B2 JP 5359825B2
Authority
JP
Japan
Prior art keywords
inorganic filler
zinc oxide
resin composition
conductive resin
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009274117A
Other languages
Japanese (ja)
Other versions
JP2011132264A (en
Inventor
義則 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2009274117A priority Critical patent/JP5359825B2/en
Publication of JP2011132264A publication Critical patent/JP2011132264A/en
Application granted granted Critical
Publication of JP5359825B2 publication Critical patent/JP5359825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive resin composition in which even when a small amount of a filler having high thermal conductivity is added to a thermoplastic resin, it is possible to efficiently form a heat transfer course, and which does not spoil moldability and has electric insulation peculiar to the resin. <P>SOLUTION: A thermoplastic resin is blended with zinc oxide whiskers including a nuclear part and needle crystal parts extended from the nuclear part in different two or more axial directions, preferably four axial directions within one plane or in different planes and a tabular inorganic filler having an average particle diameter of &ge;1 &mu;m and an average thickness of &ge;0.1 &mu;m, and the resulting blend is molded to obtain the objective thermally conductive resin composition having thermal conductivity of &ge;1.0 W/m K. A total amount of tetrapod-like zinc oxide whiskers comprising a nuclear part and needle crystal parts extended from the nuclear part in different four axial directions and the tabular inorganic filler is 10-70 vol.%, preferably 40-60 vol.%. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、各種部品の射出成形材料として用いることが可能な熱伝導性樹脂組成物に関するものである。   The present invention relates to a heat conductive resin composition that can be used as an injection molding material for various parts.

近年、電気・電子部品の小型化、高性能化にともない部品内での発熱が顕著となり、熱の蓄積による機器の性能低下が問題となっている。そこで、安全性や信頼性の観点から熱伝導性に優れた材料が求められている。従来、高い熱伝導性を必要とする材料には金属材料が用いられてきたが、部品の小型化、高性能化のため材料には軽量性や易成形加工性が要求されており、樹脂への代替が進んでいる。しかしながら、樹脂は熱伝導性が元々低く、樹脂自体の高熱伝導化には限界がある。   In recent years, with the miniaturization and high performance of electric / electronic components, heat generation in the components has become remarkable, and there has been a problem that the performance of the equipment is deteriorated due to heat accumulation. Therefore, a material excellent in thermal conductivity is required from the viewpoint of safety and reliability. Conventionally, metal materials have been used for materials that require high thermal conductivity. However, materials are required to be lightweight and easy to process to reduce the size and performance of parts. Substitution is progressing. However, the resin has low thermal conductivity from the beginning, and there is a limit to increasing the thermal conductivity of the resin itself.

熱伝導率の高い充填材料を樹脂に高充填し、樹脂組成物を高熱伝導率化する方法が行われている。例えば、特許文献1には、熱可塑性樹脂100重量部に対し、湿式法により得られた平均粒子径1〜15μmの酸化亜鉛20〜900重量部を配合した熱放散性に優れた熱可塑性樹脂組成物が開示されている。また、特許文献2では、液晶性高分子100重量部に対して、アルミナ、酸化マグネシウム、窒化ホウ素、炭素繊維等の熱伝導性充填剤を5〜800重量部を配合した熱伝導性高分子成形体が開示されている。   A method of highly filling a resin with a filling material having high thermal conductivity to increase the thermal conductivity of the resin composition has been performed. For example, in Patent Document 1, a thermoplastic resin composition having excellent heat dissipation properties, in which 20 to 900 parts by weight of zinc oxide having an average particle diameter of 1 to 15 μm obtained by a wet method is blended with 100 parts by weight of a thermoplastic resin. Things are disclosed. Moreover, in patent document 2, the heat conductive polymer shaping | molding which mix | blended 5-800 weight part of heat conductive fillers, such as an alumina, magnesium oxide, boron nitride, carbon fiber, with respect to 100 weight part of liquid crystalline polymers. The body is disclosed.

粒子状充填材料を樹脂に配合した場合、樹脂成形体の高熱伝導化には多量の充填材料が必要となる。充填量が多いと成形体の流動性が低下し成形加工が困難となるため、樹脂化のメリットが小さくなる。繊維状充填材料を配合した場合、繊維同士の接触確率は粒子状充填材料と比較して高く熱伝導路が形成されやすいため、粒子状充填材料より少ない充填量で高い熱伝導率が期待できる。しかしながら、射出成形により樹脂成形体を作製した場合、繊維は射出方向に平行に配向する傾向にあるため、繊維同士の接触確率は繊維がランダムに分散した場合と比較して低くなってしまう。   When the particulate filler material is blended with the resin, a large amount of filler material is required to increase the thermal conductivity of the resin molded body. When the filling amount is large, the fluidity of the molded body is lowered and the molding process becomes difficult. When the fibrous filler is blended, the contact probability between the fibers is higher than that of the particulate filler, and a heat conduction path is easily formed. Therefore, a high thermal conductivity can be expected with a smaller filling amount than the particulate filler. However, when a resin molded body is produced by injection molding, the fibers tend to be oriented parallel to the injection direction, so the contact probability between the fibers is lower than when the fibers are randomly dispersed.

フィラーの接触点を増やして熱伝導率を向上させる技術として特許文献3においてテトラポット酸化亜鉛ウィスカーとナノサイズの酸化亜鉛を組み合わせる方法が行なわれているが、どちらのフィラーも酸化亜鉛であるため、複合樹脂材料の熱伝導率は高々1.5W/m・Kであり、更には表面積が非常に大きいナノサイズのフィラーを用いると流動性が著しく低下するという問題がある。 As a technique for increasing the contact point of the filler to improve the thermal conductivity, a method of combining tetrapot- like zinc oxide whisker and nano-sized zinc oxide is performed in Patent Document 3, but both fillers are zinc oxide. Further, the thermal conductivity of the composite resin material is 1.5 W / m · K at the maximum, and further, when a nano-sized filler having a very large surface area is used, there is a problem that the fluidity is remarkably lowered.

特開平8−73651号公報JP-A-8-73651 特開2004−51852号公報JP 2004-51852 A 特開2006−57064号公報JP 2006-57064 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、熱可塑性樹脂に熱伝導率の高い充填材料を少量添加しても熱を伝える経路を効率よく形成することが可能であり、成形性を損なうことがなく、また樹脂本来の電気絶縁性を供えた熱伝導性樹脂組成物を提供する点にある。   Therefore, in view of the situation described above, the present invention intends to solve the problem that it is possible to efficiently form a path for transferring heat even if a small amount of a high thermal conductivity filler is added to the thermoplastic resin. The object is to provide a thermally conductive resin composition that does not impair the moldability and provides the inherent electrical insulation of the resin.

本発明は、前述の課題解決のために、同一平面内あるいは異なる平面において核部と該核部から異なる2軸以上に伸びた針状結晶部とからなる酸化亜鉛ウィスカー及び平均粒子径が1μm以上、平均厚さが0.1μm以上の平板形状無機充填材料を熱可塑性樹脂に配合して成形して得られる熱伝導率が1.0W/m・K以上の熱伝導性樹脂組成物であって、前記平板形状無機充填材が六方晶窒化ホウ素又は平板形状酸化アルミであり、前記酸化亜鉛ウィスカー及び平板形状無機充填材の配合量合計が10体積%〜70体積%であり、前記酸化亜鉛ウィスカーと前記平板形状無機充填材料の配合比が1:99〜50:50であることを特徴とする熱伝導性樹脂組成物を構成した(請求項1)。 In order to solve the above-mentioned problems, the present invention provides a zinc oxide whisker composed of a core part and needle-like crystal parts extending from two or more different axes in the same plane or in different planes, and an average particle diameter of 1 μm or more. A thermal conductive resin composition having a thermal conductivity of 1.0 W / m · K or more obtained by blending and molding a flat plate-shaped inorganic filler having an average thickness of 0.1 μm or more into a thermoplastic resin, The tabular inorganic filler is hexagonal boron nitride or tabular aluminum oxide, the total amount of the zinc oxide whisker and the tabular inorganic filler is 10% by volume to 70% by volume, and the zinc oxide whisker A thermal conductive resin composition characterized in that the compounding ratio of the plate-shaped inorganic filler is 1:99 to 50:50 (Claim 1).

ここで、前記酸化亜鉛ウィスカーが、核部と該核部から異なる4軸方向に伸びた針状結晶部とからなるテトラポット状酸化亜鉛ウィスカーであり、該テトラポット状酸化亜鉛ウィスカー及び平板形状無機充填材の配合量合計40体積%〜60体積%であることが好ましい(請求項2)。 Here, the zinc oxide whiskers is a tetrapod-like zinc oxide whiskers comprising the extended needle crystal portion in four different axial directions from the core portion and the core portion, the tetrapod-like zinc oxide whiskers and the flat plate shape inorganic It is preferable that the total amount of the filler is 40% by volume to 60% by volume (claim 2).

更に、前記テトラポット酸化亜鉛ウィスカーと前記平板形状無機充填材料の配合比5:95〜40:60である(請求項3)。 Furthermore, the compounding ratio of the tetrapot- shaped zinc oxide whisker and the flat plate-shaped inorganic filler is 5:95 to 40:60 (Claim 3).

そして、前記平板形状無機充填材料の熱伝導率が20℃において10W/m・K以上であるものを用いる(請求項4)。   And the thermal conductivity of the said plate-shaped inorganic filler is 10 W / m * K or more in 20 degreeC (Claim 4).

更に、前記平板形状無機充填材の平均粒子径が、1μm以上50μm以下及び平均厚さが0.1μm以上50μm以下であり、平均厚さに対する平均粒子径の比が1より大きく500以下である(請求項5)。更に好ましくは、前記平板形状無機充填材の平均粒子径が、3μm以上20μm以下及び平均厚さが0.1μm以上20μm以下であり(請求項6)、前記平板形状無機充填材の平均厚さに対する平均粒子径の比が1より大きく200以下である(請求項7)。   Furthermore, the average particle diameter of the flat inorganic filler is 1 μm or more and 50 μm or less, the average thickness is 0.1 μm or more and 50 μm or less, and the ratio of the average particle diameter to the average thickness is greater than 1 and 500 or less ( Claim 5). More preferably, the average particle diameter of the tabular inorganic filler is 3 μm or more and 20 μm or less and the average thickness is 0.1 μm or more and 20 μm or less (Claim 6), and the average thickness of the tabular inorganic filler is The ratio of the average particle diameter is greater than 1 and not greater than 200 (claim 7).

本発明の熱伝導性樹脂組成物は、同一平面内あるいは異なる平面において核部と該核部から異なる2軸以上に伸びた針状結晶部とからなる酸化亜鉛ウィスカー及び平均粒子径が1μm以上、平均厚さが0.1μm以上の平板形状無機充填材料を熱可塑性樹脂に配合して成形して得られる熱伝導率が1.0W/m・K以上の熱伝導性樹脂組成物であって、前記平板形状無機充填材が六方晶窒化ホウ素又は平板形状酸化アルミであり、前記酸化亜鉛ウィスカー及び平板形状無機充填材の配合量合計が10体積%〜70体積%であり、前記酸化亜鉛ウィスカーと前記平板形状無機充填材料の配合比が1:99〜50:50であるので、比較的少量の熱伝導性充填材の添加によって、高い熱伝導性を付与することができ、射出成形性も良好である。 The thermally conductive resin composition of the present invention has a zinc oxide whisker composed of a core part and needle-like crystal parts extending from two or more different axes in the same plane or different planes, and an average particle diameter of 1 μm or more, A thermal conductivity resin composition having a thermal conductivity of 1.0 W / m · K or more obtained by blending and molding a plate-shaped inorganic filler having an average thickness of 0.1 μm or more into a thermoplastic resin , The tabular inorganic filler is hexagonal boron nitride or tabular aluminum oxide, the total amount of the zinc oxide whisker and the tabular inorganic filler is 10% by volume to 70% by volume, the zinc oxide whisker and the Since the compounding ratio of the flat plate-shaped inorganic filler is 1:99 to 50:50 , high heat conductivity can be imparted by adding a relatively small amount of heat conductive filler , and the injection moldability is also good. is there.

また、前記酸化亜鉛ウィスカーが、核部から異なる4軸方向に伸びた針状結晶部とからなるテトラポット状酸化亜鉛ウィスカーであり、該テトラポット状酸化亜鉛ウィスカー及び平板形状無機充填材の配合量合計40体積%〜60体積%であるので、比較的少量の熱伝導性充填材の添加によって、高い熱伝導性を付与でき、射出成形性も良好である。 Further, the zinc oxide whisker is a tetrapot-like zinc oxide whisker composed of needle-like crystal parts extending in different four-axis directions from the core part , and the blending amount of the tetrapot-like zinc oxide whisker and the plate-shaped inorganic filler Since the total is 40% by volume to 60% by volume, high thermal conductivity can be imparted by adding a relatively small amount of the thermally conductive filler, and the injection moldability is also good.

窒化ホウ素の走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of boron nitride.

本発明の熱伝導性樹脂組成物は、比較的少量のテトラポット形状の充填材及び平板形状充填材の添加によって、高い熱伝導性を付与し、射出成形性も良好なことが特徴である。   The heat conductive resin composition of the present invention is characterized by imparting high heat conductivity and good injection moldability by the addition of a relatively small amount of tetrapot-shaped filler and flat plate-shaped filler.

本発明で用いる酸化亜鉛ウィスカーは、核部から異なる4軸方向に伸びた針状結晶部を備えており、本発明の技術的思想は、四方に伸びた針状結晶部により熱を伝える経路を効率よく形成することにある。特に、平均厚さに対する平均粒子径の比(アスペクト比)の高い平板形状無機充填材料との組み合わせにより、各々を単一に充填した場合よりも高い熱伝導率を得られ、樹脂成形体においてより高い熱伝導率を達成できる。   The zinc oxide whisker used in the present invention has acicular crystal parts extending in different four-axis directions from the core part, and the technical idea of the present invention is to provide a path for transferring heat by the acicular crystal parts extending in all directions. It is to form efficiently. In particular, by combining with a flat inorganic filler material having a high ratio of average particle diameter to average thickness (aspect ratio), it is possible to obtain a higher thermal conductivity than when each is filled singly, more in the resin molded body High thermal conductivity can be achieved.

本発明の熱伝導性樹脂組成物は、熱伝導性充填材として、核部と該核部から異なる4軸方向に伸びた針状結晶部とからなるテトラポット状酸化亜鉛ウィスカー及び平均粒子径が1μm以上の平板形状無機充填材料を熱可塑性樹脂に配合して得られ、この熱伝導性樹脂組成物を成形してペレット化し、樹脂成形材料として提供するものである。   The heat conductive resin composition of the present invention has, as a heat conductive filler, a tetrapot-like zinc oxide whisker composed of a core part and needle-like crystal parts extending in four axial directions different from the core part, and an average particle size. It is obtained by blending a plate-shaped inorganic filler of 1 μm or more into a thermoplastic resin, and this thermally conductive resin composition is molded into pellets and provided as a resin molding material.

本発明においては、熱伝導性充填材としては、テトラポット状酸化亜鉛ウィスカー及び平均粒子径が1μm以上の平板形状無機充填材料が必須成分である。本発明に使用されるテトラポット状酸化亜鉛ウィスカーは、核部と該核部から異なる4軸方向に伸びた針状結晶部とからなり、前記針状結晶部の基部の径は好ましくは0.7〜14μmであり、前記針状結晶部の基部から先端までの長さは好ましくは3〜200μmである。かかるテトラポット状酸化亜鉛ウィスカーは、特開平1−252599号公報記載の方法で得られ、また、株式会社アムテックから種々のグレードが市販されている。   In the present invention, as the thermally conductive filler, tetrapot-shaped zinc oxide whiskers and a flat inorganic filler having an average particle diameter of 1 μm or more are essential components. The tetrapot-like zinc oxide whisker used in the present invention comprises a core part and a needle-like crystal part extending from the core part in different four-axis directions, and the diameter of the base part of the needle-like crystal part is preferably 0.00. The length from the base to the tip of the acicular crystal part is preferably 3 to 200 μm. Such tetrapot-like zinc oxide whiskers are obtained by the method described in JP-A-1-252599, and various grades are commercially available from Amtec Corporation.

通常、テトラポット状酸化亜鉛ウィスカーは、異なる平面において核部と該核部から異なる4軸方向に伸びた針状結晶部とからなるが、一部の針状結晶部が欠損して同一平面内に2軸の針状結晶部を有するもの、あるいは3軸の針状結晶部を有するものを用いても良い。   Usually, a tetrapot-like zinc oxide whisker is composed of a core part and needle-like crystal parts extending in different four-axis directions from the core part in different planes, but some needle-like crystal parts are missing in the same plane. In addition, one having a biaxial needle crystal part or a triaxial needle crystal part may be used.

平板形状無機充填材料とは、平均粒子径が1μm以上50μm以下及び平均厚さが0.1μm以上50μm以下、アスペクト比が1より大きく500以下であり、好ましくは平均粒子径が3μm以上20μm以下及び平均厚さが0.1μm以上20μm以下、アスペクト比が1より大きく200以下であり、20℃において熱伝導率が10W/m・K以上のものを指すが、特に六方晶窒化ホウ素と酸化アルミで効果が高い。図1に窒化ホウ素の走査電子顕微鏡写真を示す。ここで、平板形状無機充填材料の平均粒子径とは、平面内の長軸方向の粒子径とし、厚みとは最も小さい軸方向長さとする。   The flat inorganic filler material has an average particle diameter of 1 μm to 50 μm, an average thickness of 0.1 μm to 50 μm, an aspect ratio of greater than 1 and 500 or less, preferably an average particle diameter of 3 μm to 20 μm and An average thickness of 0.1 μm or more and 20 μm or less, an aspect ratio greater than 1 and 200 or less, and a thermal conductivity at 20 ° C. of 10 W / m · K or more, particularly hexagonal boron nitride and aluminum oxide High effect. FIG. 1 shows a scanning electron micrograph of boron nitride. Here, the average particle diameter of the tabular inorganic filler is the particle diameter in the long axis direction in the plane, and the thickness is the smallest axial length.

本発明の熱伝導性樹脂組成物に使用される熱可塑性樹脂とは、LCP、PBT、PEEK、PEI、PES、TPIなどの成形加工が可能な合成樹脂を指す。特に、熱可塑性樹脂として、ポリアリーレン系樹脂(PPS、LCPなど)及びポリアミド樹脂(PA6、PA12、PA66、PA9Tなど)が好適に使用できる。   The thermoplastic resin used in the thermally conductive resin composition of the present invention refers to a synthetic resin that can be molded such as LCP, PBT, PEEK, PEI, PES, TPI. In particular, polyarylene resins (such as PPS and LCP) and polyamide resins (such as PA6, PA12, PA66, and PA9T) can be suitably used as the thermoplastic resin.

本発明においては、前記テトラポット状酸化亜鉛ウィスカー及び前記平板形状無機充填材料の配合量合計の樹脂成形体全体に対する体積分率は10体積%以上であることが好ましい。該配合量合計が少ないと、充填材同士の接触点が少なく熱伝導率の向上に効果的でなくなってくる。該配合量合計が多すぎると、成形加工時の流動性が低下し更に成形体が脆くなるため、該配合量合計は70体積%以下であることが好ましい。更に、充填材の配合量合計の樹脂成形体全体に対する体積分率は40体積%〜60体積%であるとより好ましい。本発明の熱伝導性樹脂組成物の熱伝導率は、1.0W/m・K以上、好ましくは2W/m・K以上になるように熱伝導性充填材を配合する。   In this invention, it is preferable that the volume fraction with respect to the whole resin molding of the compounding quantity sum total of the said tetrapot-shaped zinc oxide whisker and the said flat plate-shaped inorganic filler is 10 volume% or more. When the total amount is small, the number of contact points between the fillers is small, and it is not effective for improving the thermal conductivity. If the total blending amount is too large, the fluidity at the time of molding processing is lowered and the molded body becomes brittle. Therefore, the total blending amount is preferably 70% by volume or less. Furthermore, it is more preferable that the volume fraction of the total blended amount of the filler with respect to the entire resin molded body is 40% by volume to 60% by volume. The heat conductive filler is blended so that the heat conductivity of the heat conductive resin composition of the present invention is 1.0 W / m · K or more, preferably 2 W / m · K or more.

そして、前記テトラポット状酸化亜鉛ウィスカーと前記平板形状無機充填材料の配合比は、特に制限はなく広い範囲から適宜選択してよいが、好ましくは1:99〜50:50であり、更に好ましくは5:95〜40:60である。また、従来の樹脂組成物と同様に、樹脂と充填材の密着性を高めるため、充填材の表面を配合に先立ち予めシランカップリング剤等で処理して用いることができる。   And the compounding ratio of the tetrapot-shaped zinc oxide whisker and the flat plate-shaped inorganic filler is not particularly limited and may be appropriately selected from a wide range, but is preferably 1:99 to 50:50, more preferably 5: 95-40: 60. Further, like the conventional resin composition, in order to improve the adhesion between the resin and the filler, the surface of the filler can be treated with a silane coupling agent or the like prior to blending.

また、本発明においては、本発明の目的を損なわない範囲で、ガラス繊維や有機繊維などの充填材、フッ素樹脂、金属石鹸類などの離型改良剤、染料,顔料などの着色剤、酸化防止剤、熱安定剤、紫外線吸収材、帯電防止剤、界面活性剤などの通常の添加剤を1種以上添加して用いてもよい。また、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、フルオロカーボン系界面活性剤等の外部滑剤効果を有するものを1種以上添加して用いてもよい。   Further, in the present invention, a filler such as glass fiber or organic fiber, a mold release improver such as fluororesin or metal soap, a colorant such as a dye or a pigment, an antioxidant, and the like within a range not impairing the object of the present invention. One or more ordinary additives such as an agent, a heat stabilizer, an ultraviolet absorber, an antistatic agent, and a surfactant may be added and used. Moreover, you may add and use 1 or more types which have external lubricant effects, such as a higher fatty acid, a higher fatty acid ester, a higher fatty acid metal salt, and a fluorocarbon type surfactant.

また、本発明における配合手段は特に限定されない。熱可塑性樹脂および充填材をヘンシェルミキサー、タンブラー等を用いて混合した後、押出機を用いて溶融混練することが好ましい。本発明の成形体にはペレット形状のものも含まれるが、本発明は、射出成形して得られる熱可塑性樹脂成形体に特に好適である。本発明の熱可塑性樹脂成形体は、照明器具やコイルボビン、リレー部品、コネクターなどの電子部品等の材料として有用なものである。   Further, the blending means in the present invention is not particularly limited. It is preferable that the thermoplastic resin and the filler are mixed using a Henschel mixer, a tumbler or the like and then melt-kneaded using an extruder. The molded article of the present invention includes pellets, but the present invention is particularly suitable for a thermoplastic resin molded article obtained by injection molding. The thermoplastic resin molded article of the present invention is useful as a material for electronic parts such as lighting equipment, coil bobbins, relay parts, connectors, and the like.

本発明の実施例を比較例と共に説明する。   Examples of the present invention will be described together with comparative examples.

(実施例1、2)
本実施例では熱可塑性樹脂(DIC社製PPS T−1)をマトリックスとした。そして、表1に示す組成で熱可塑性樹脂と平均粒子径10μmのテトラポット酸化亜鉛ウィスカー(株式会社アムテック製 パナテトラWZ−0511)及び平均粒子径10μm、厚さ0.5μmの平板形状無機フィラー(水島合金鉄株式会社製 窒化ホウ素 HP−1W)とをヘンシェルミキサー(三井鉱山株式会社製)を用いて混合した。その後、2軸押出機(池貝株式会社製PCM30型)を用いて溶融混練した後、ストランドを押し出して、該ストランドを空冷後切断してペレットを得た。このペレットを130℃で3時間以上乾燥させた後、形状が100×50×3t(mm)の成形体を射出成形し、熱伝導率を熱線法(京都電子工業株式会社製 QTM500)により測定した。また、体積抵抗率を絶縁抵抗計(Agilent Technologies社製 ハイ・レジスタンス・メータ)により測定した。この結果を表1に示す。
(Examples 1 and 2)
In this example, a thermoplastic resin (PPS T-1 manufactured by DIC) was used as a matrix. And the thermoplastic resin and tetrapot- like zinc oxide whisker (Panatetra WZ-0511 manufactured by Amtec Co., Ltd.) having a composition shown in Table 1 and a flat inorganic filler having an average particle diameter of 10 μm and a thickness of 0.5 μm ( Mizushima Alloy Iron Co., Ltd. Boron Nitride HP-1W) was mixed using a Henschel mixer (Mitsui Mining Co., Ltd.). Then, after melt-kneading using a biaxial extruder (Ikegai Co., Ltd., PCM30 type), the strand was extruded, and the strand was air-cooled and cut to obtain a pellet. After drying this pellet at 130 ° C. for 3 hours or more, a molded body having a shape of 100 × 50 × 3 t (mm) was injection molded, and the thermal conductivity was measured by a hot wire method (QTM500, manufactured by Kyoto Electronics Industry Co., Ltd.). . The volume resistivity was measured with an insulation resistance meter (High Resistance Meter, manufactured by Agilent Technologies). The results are shown in Table 1.

(比較例1)
熱可塑性樹脂と平均粒子径10μmの平板形状無機フィラーとを表1に示す組成でヘンシェルミキサーを用いて混合した。その後、2軸押出機を用いて溶融混練した後、ストランドを押し出して、該ストランドを空冷後切断してペレットを得た。押し出しの際、吐出が安定せず、加工性が著しく低下した。
(Comparative Example 1)
A thermoplastic resin and a tabular inorganic filler having an average particle diameter of 10 μm were mixed with the composition shown in Table 1 using a Henschel mixer. Then, after melt-kneading using a twin screw extruder, the strand was extruded, and the strand was air-cooled and then cut to obtain a pellet. During extrusion, the discharge was not stable and the workability was significantly reduced.

(比較例2)
熱可塑性樹脂と平均粒子径10μmのテトラポット酸化亜鉛ウィスカーとを表1に示す組成でヘンシェルミキサーを用いて混合した。その後、2軸押出機を用いて溶融混練した後、ストランドを押し出して、該ストランドを空冷後切断してペレットを得た。20体積%より多くのテトラポット酸化亜鉛ウィスカーを充填した系では、材料の流動性が著しく低下し、射出成形が困難となり成形体を得られなかった。
(Comparative Example 2)
A thermoplastic resin and a tetrapot- like zinc oxide whisker having an average particle diameter of 10 μm were mixed with the composition shown in Table 1 using a Henschel mixer. Then, after melt-kneading using a twin screw extruder, the strand was extruded, and the strand was air-cooled and then cut to obtain a pellet. In a system filled with more than 20% by volume of tetrapot- like zinc oxide whiskers, the fluidity of the material was remarkably lowered, and injection molding became difficult and a molded product could not be obtained.

一般に、窒化ホウ素の長軸方向への熱伝導率が200W/m・Kである。比較例1において熱伝導率の高い窒化ホウ素を50体積%充填した材料の熱伝導率がせいぜい2.7W/m・Kであるのに対し、実施例1,2で示すように、比較例1の50体積%の窒化ホウ素の一部をテトラポット酸化亜鉛ウィスカーに置き換えた場合、つまり窒化ホウ素を40体積%とテトラポット酸化亜鉛ウィスカーを10体積%充填した実施例1、窒化ホウ素を45体積%とテトラポット酸化亜鉛ウィスカーを5体積%充填した実施例2では、熱伝導率は3.2〜3.5W/m・Kという高い値となる。一方、テトラポット状酸化亜鉛ウィスカーは20体積%より多く充填した材料では、材料の流動性が著しく低下し射出成形では成形体を得られなかった。比較例2では射出成形で成形体を得られるテトラポット状酸化亜鉛ウィスカー20体積%充填した材料の熱伝導率を示しているが、せいぜい1.0W/m・Kと低い。テトラポット酸化亜鉛ウィスカーの材質である酸化亜鉛の熱伝導率は25W/m・Kであることを考えると50体積%でも比較例1より高い熱伝導率にはならないことが容易に推測できる。したがって、実施例1及び2に示す熱伝導率の向上は各無機フィラーを単一に充填した場合には容易に達成できない値であると言える。これは各無機フィラーの形状が重要な役割を果たしており、実施例における無機フィラーの組み合わせにおいて効率よく熱を伝えるパスが形成され高熱伝導率を達成していると考えられる。
In general, the thermal conductivity of boron nitride in the major axis direction is 200 W / m · K. In Comparative Example 1, the thermal conductivity of the material filled with 50% by volume of boron nitride having high thermal conductivity is 2.7 W / m · K at most, whereas as shown in Examples 1 and 2, Comparative Example 1 If you replace the portion of the 50% by volume of boron nitride in the tetrapod-like zinc oxide whiskers, i.e. example 1 boron nitride 40% by volume and the tetrapod-like zinc oxide whiskers was filled 10% by volume, the boron nitride 45 In Example 2 in which 5% by volume and 5% by volume of tetrapot- like zinc oxide whiskers are filled, the thermal conductivity is as high as 3.2 to 3.5 W / m · K. On the other hand, when the tetrapot-like zinc oxide whisker was filled in an amount of more than 20% by volume, the fluidity of the material was remarkably lowered, and a molded product could not be obtained by injection molding. Comparative Example 2 shows the thermal conductivity of a material filled with 20% by volume of tetrapot-like zinc oxide whiskers that can be obtained by injection molding, but it is as low as 1.0 W / m · K at most. The thermal conductivity of zinc oxide as the material of the tetrapod-like zinc oxide whiskers can easily be presumed that not a higher thermal conductivity than Comparative Example 1 even consider the 50% by volume that is 25W / m · K. Therefore, it can be said that the improvement in thermal conductivity shown in Examples 1 and 2 is a value that cannot be easily achieved when each inorganic filler is filled in a single unit. The shape of each inorganic filler plays an important role in this, and it is considered that a path for efficiently transferring heat is formed in the combination of inorganic fillers in the examples, and high thermal conductivity is achieved.

Claims (7)

同一平面内あるいは異なる平面において核部と該核部から異なる2軸以上に伸びた針状結晶部とからなる酸化亜鉛ウィスカー及び平均粒子径が1μm以上、平均厚さが0.1μm以上の平板形状無機充填材料を熱可塑性樹脂に配合して成形して得られる熱伝導率が1.0W/m・K以上の熱伝導性樹脂組成物であって、前記平板形状無機充填材が六方晶窒化ホウ素又は平板形状酸化アルミであり、前記酸化亜鉛ウィスカー及び平板形状無機充填材の配合量合計が10体積%〜70体積%であり、前記酸化亜鉛ウィスカーと前記平板形状無機充填材料の配合比が1:99〜50:50であることを特徴とする熱伝導性樹脂組成物。 Same plane or different zinc oxide whiskers and the average particle size consisting of extended needle crystal portion than two axes different from the core portion and the nucleic portion in plan is 1μm or more, more average thickness of 0.1μm of the plate-shaped A thermally conductive resin composition having a thermal conductivity of 1.0 W / m · K or more obtained by blending an inorganic filler with a thermoplastic resin and molding the hexagonal boron nitride Or it is a plate-shaped aluminum oxide, the compounding quantity sum total of the said zinc oxide whisker and a plate-shaped inorganic filler is 10 volume%-70 volume%, and the compounding ratio of the said zinc oxide whisker and the said plate-shaped inorganic filler is 1: It is 99-50: 50, The heat conductive resin composition characterized by the above-mentioned . 前記酸化亜鉛ウィスカーが、核部と該核部から異なる4軸方向に伸びた針状結晶部とからなるテトラポット状酸化亜鉛ウィスカーであり、該テトラポット状酸化亜鉛ウィスカー及び平板形状無機充填材の配合量合計40体積%〜60体積%である請求項1記載の熱伝導性樹脂組成物。 The zinc oxide whiskers, a core portion and a tetrapod-like zinc oxide whiskers made of a needle crystal portions extending four different axial directions from said core portion, of the tetrapod-like zinc oxide whiskers and the flat plate shape inorganic filler The heat conductive resin composition according to claim 1, wherein the total amount is 40 vol% to 60 vol%. 前記テトラポット酸化亜鉛ウィスカーと前記平板形状無機充填材料の配合比5:95〜40:60である請求項1又は2記載の熱伝導性樹脂組成物。 The heat conductive resin composition of Claim 1 or 2 whose compounding ratio of the said tetrapot- shaped zinc oxide whisker and the said flat plate-shaped inorganic filler is 5: 95-40: 60. 前記平板形状無機充填材料の熱伝導率が20℃において10W/m・K以上である請求項1〜3何れかに記載の熱伝導性樹脂組成物。   The thermal conductivity of the flat inorganic filler is 10 W / m · K or higher at 20 ° C. 前記平板形状無機充填材の平均粒子径が、1μm以上50μm以下及び平均厚さが0.1μm以上50μm以下であり、平均厚さに対する平均粒子径の比が1より大きく500以下である請求項1〜4何れかに記載の熱伝導性樹脂組成物。   The average particle diameter of the flat inorganic filler is 1 μm or more and 50 μm or less, the average thickness is 0.1 μm or more and 50 μm or less, and the ratio of the average particle diameter to the average thickness is greater than 1 and 500 or less. The heat conductive resin composition in any one of -4. 前記平板形状無機充填材の平均粒子径が、3μm以上20μm以下及び平均厚さが0.1μm以上20μm以下である請求項5記載の熱伝導性樹脂組成物。   The heat conductive resin composition according to claim 5, wherein the flat inorganic filler has an average particle diameter of 3 μm to 20 μm and an average thickness of 0.1 μm to 20 μm. 前記平板形状無機充填材の平均厚さに対する平均粒子径の比が1より大きく200以下である請求項5又は6記載の熱伝導性樹脂組成物。   The heat conductive resin composition according to claim 5 or 6, wherein a ratio of an average particle diameter to an average thickness of the flat inorganic filler is greater than 1 and 200 or less.
JP2009274117A 2009-11-27 2009-12-02 Thermally conductive resin composition Active JP5359825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274117A JP5359825B2 (en) 2009-11-27 2009-12-02 Thermally conductive resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009269782 2009-11-27
JP2009269782 2009-11-27
JP2009274117A JP5359825B2 (en) 2009-11-27 2009-12-02 Thermally conductive resin composition

Publications (2)

Publication Number Publication Date
JP2011132264A JP2011132264A (en) 2011-07-07
JP5359825B2 true JP5359825B2 (en) 2013-12-04

Family

ID=44345375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274117A Active JP5359825B2 (en) 2009-11-27 2009-12-02 Thermally conductive resin composition

Country Status (1)

Country Link
JP (1) JP5359825B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652365B2 (en) * 2011-09-28 2015-01-14 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive and pressure-sensitive adhesive sheet-like molded product, production method thereof, and electronic component
JP6157896B2 (en) * 2013-04-02 2017-07-05 株式会社東芝 Arc-resistant insulator, method for manufacturing arc-resistant insulator, and gas circuit breaker
JP6496109B2 (en) * 2014-07-04 2019-04-03 スターライト工業株式会社 Method for producing electrically insulating heat conductive resin composition
JP2019178054A (en) * 2018-03-30 2019-10-17 Tdk株式会社 Core material and heat dissipation substrate
JP2019179886A (en) * 2018-03-30 2019-10-17 Tdk株式会社 Filler, resin composition, resin sheet, resin plate, core material and heat dissipation substrate
JP6923493B2 (en) * 2018-07-26 2021-08-18 住友電気工業株式会社 Insulated wire
CN111303626A (en) * 2019-12-19 2020-06-19 厦门海洋南方特种光电材料有限公司 Flexible insulating radiating fin of 5G antenna and preparation process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176062A (en) * 2002-11-15 2004-06-24 Toray Ind Inc Tablet for optical pickup part, optical pickup part obtained therefrom, and method for preparation of the same
JP2007277300A (en) * 2006-04-03 2007-10-25 Asahi Kasei Chemicals Corp New copolymer composition
JP2008127481A (en) * 2006-11-21 2008-06-05 Asahi Kasei Chemicals Corp Flame-retardant copolymer composition and resin sheet
JP2008127482A (en) * 2006-11-21 2008-06-05 Asahi Kasei Chemicals Corp Flame-retardant copolymer composition and resin sheet
JP2008163145A (en) * 2006-12-27 2008-07-17 Asahi Kasei Chemicals Corp Heat radiation material and heat radiation sheet formed of heat radiation material

Also Published As

Publication number Publication date
JP2011132264A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5359825B2 (en) Thermally conductive resin composition
KR101683913B1 (en) Heat-processable thermally conductive polymer composition
JP5861185B2 (en) Thermally conductive polymer composition
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
KR20100075227A (en) Thermally conductive insulating resin composition and plastic article
WO2013177850A1 (en) Resin composition with laser direct structuring function, preparation method thereof, and application of resin composition
JP6527010B2 (en) Thermally conductive resin molding and method for producing the same
US20140080954A1 (en) Methods for making thermally conductve compositions containing boron nitride
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
JP2015168783A (en) Highly thermal conductive resin composition
KR20120077995A (en) High thermal conductive resin composition including a milled pitch based carbon fiber
JPWO2016031212A1 (en) Thermally conductive resin molded product
JP6526939B2 (en) Thermal conductive resin molding
JP5029344B2 (en) Thermoplastic resin molded product
KR101437880B1 (en) Thermal conductive polyphenylene sulfide resin composition having a good surface gloss and article using the same
JP2012229315A (en) Thermally-conductive polyalkylene terephthalate resin composition and molding
JP6496109B2 (en) Method for producing electrically insulating heat conductive resin composition
KR100885653B1 (en) Hybrid filler type resin composition for high thermal conductivity
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JP5786817B2 (en) Thermally conductive resin composition for extrusion molding and thermal conductive resin extrusion molded article using the same
WO2018181146A1 (en) Thermally conductive resin composition
TW201416431A (en) Thermally conductive polymer composites containing magnesium silicate and boron nitride
JP2020055889A (en) Resin compound and molding molded with resin compound
JP2006057064A (en) Thermoplastic resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250