WO2018142939A1 - 多重管バーナ - Google Patents

多重管バーナ Download PDF

Info

Publication number
WO2018142939A1
WO2018142939A1 PCT/JP2018/001237 JP2018001237W WO2018142939A1 WO 2018142939 A1 WO2018142939 A1 WO 2018142939A1 JP 2018001237 W JP2018001237 W JP 2018001237W WO 2018142939 A1 WO2018142939 A1 WO 2018142939A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas pipe
gas
injection port
auxiliary
pipe
Prior art date
Application number
PCT/JP2018/001237
Other languages
English (en)
French (fr)
Inventor
信敏 佐藤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2018142939A1 publication Critical patent/WO2018142939A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other

Definitions

  • the present invention relates to a multi-tube burner, which is suitable for manufacturing, for example, an optical fiber preform.
  • a manufacturing method is used in which a raw material gas is sprayed with a flame and glass particles obtained by the combustion reaction are deposited on a target.
  • production methods include VAD (Vapor-phase Axial Deposition), OVD (Outside Vapor Deposition), and MCVD (Modified Chemical Vapor Deposition). Glass particles are called soot.
  • Patent Document 1 As a burner used in such a method for producing a porous glass deposit, a burner that oxidizes a silicon-containing compound not containing a halide is disclosed in Patent Document 1 below. A plurality of injection regions are provided on one surface of the burner of Patent Document 1 below.
  • a first region for injecting a mixed gas of octamethylcyclotetrasiloxane, which is a raw material gas, and oxygen, which is a combustible gas, is disposed at the center of the burner outlet, and a second region for injecting nitrogen is provided. It is provided so as to surround the first region. Further, a plurality of third regions for injecting oxygen, which is an auxiliary combustion gas, are provided at predetermined intervals around the second region, and a plurality of injecting a mixed gas of methane, which is an inflammable gas, and oxygen, which is an auxiliary combustion gas.
  • the fourth region is provided outside the third region at a predetermined interval.
  • the 1st field which injects the mixed gas of source gas and auxiliary combustion gas is provided in the innermost peripheral side of the injection mouth of a burner. For this reason, there is a concern that soot spreads to the outer peripheral side of the first region due to the flame that spreads widely, and the amount of soot deposited on the target decreases.
  • the present invention provides a multi-tube burner capable of depositing soot efficiently.
  • a multi-tube burner of the present invention includes a raw material gas pipe for flowing a raw material gas, a flammable gas pipe for flowing a flammable gas, and a first auxiliary flammable gas pipe for flowing a flammable gas.
  • the injection port of the raw material gas pipe and the injection port of the first auxiliary combustible gas pipe are disposed inside the injection port of the combustible gas pipe, and the injection port of the first auxiliary combustible gas pipe is the raw material gas. It is arranged to surround the injection port of the tube.
  • the raw material gas is injected inside the auxiliary combustion gas, and the combustible gas is injected so as to surround the auxiliary combustion gas and the raw material gas.
  • the auxiliary combustion gas acts like a wall that suppresses the diffusion of the raw material gas, and the raw material gas is easily confined inside the auxiliary combustion gas. Accordingly, it is possible to reduce the outward diffusion of the soot. Thus, it is possible to suppress the soot from diffusing, and to suppress a decrease in the amount of soot deposited on the target. Further, since the injection port of the first auxiliary combustible gas pipe and the injection port of the raw material gas pipe are separately arranged, the gas flow rate can be set individually.
  • the flow rate of the auxiliary combustion gas injected from the injection port of the first auxiliary combustion gas pipe is set so that the soot does not diffuse outward due to the expanded flame. Can be adjusted.
  • the flow rate of the combustible gas does not need to be increased so much that the soot temperature is lowered by the gas flow, so that it is difficult for the soot to adhere to the target.
  • the amount of soot deposited per unit raw material gas can be increased.
  • soot can be deposited efficiently.
  • the second auxiliary combustible gas pipe further flows a second auxiliary combustible gas pipe, and an injection port of the second auxiliary combustible gas pipe is an inner side of the injection port of the combustible gas pipe. It is preferable that it is arranged outside the injection port.
  • the combustible gas can be burned more efficiently and the temperature of the soot deposited on the target can be controlled.
  • the auxiliary combustion gas doubles the raw material gas, the raw material gas can be more easily confined inside the auxiliary combustion gas.
  • a first seal gas pipe for flowing a seal gas is further provided, the injection port of the raw material gas pipe is disposed inside the injection port of the first seal gas pipe, and the injection port of the first auxiliary combustion gas pipe is The first sealing gas pipe is preferably disposed so as to surround the injection port.
  • the raw material gas can be prevented from diffusing outward, and the reaction position between the raw material gas and the combustible gas injected from the raw material gas injection port and the combustible gas injection port is sealed. It can be adjusted by the gas flow rate or the like. Therefore, it is possible to further reduce the soot from diffusing to the outside, and to deposit the soot on an appropriate range of the target.
  • the ratio of the flow rate of the raw material gas flowing through the raw material gas tube and the flow rate of the auxiliary combustible gas flowing through the first auxiliary combustion gas tube is preferably within a range of 0.35 to 0.75.
  • the flow rate of the raw material gas changes within a predetermined range when the deposition efficiency is 100% when all Si atoms contained in the raw material become soot (SiO 2 ) and adhere to the target.
  • the deposition efficiency of 50% or more can be ensured.
  • the ratio is preferably in the range of 0.4 to 0.75.
  • the flow rate of the raw material gas changes within a predetermined range when the deposition efficiency is 100% when all Si atoms contained in the raw material become soot (SiO 2 ) and adhere to the target.
  • the deposition efficiency 100% when all Si atoms contained in the raw material become soot (SiO 2 ) and adhere to the target.
  • the injection port of the raw material gas pipe is disposed inside the injection port of the first auxiliary combustion gas pipe, and the injection port of the first auxiliary combustion gas pipe extends over the entire circumference of the injection port of the raw material gas pipe. It is preferable to surround.
  • a plurality of the first auxiliary combustion gas pipes are provided, and the injection ports of the plurality of first auxiliary combustion gas pipes are arranged at predetermined intervals around the injection port of the raw material gas pipe. It is also possible. In this case, the production of the multi-tube burner can be facilitated.
  • a multi-tube burner capable of efficiently depositing soot is provided.
  • FIG. 1 is a view showing a state where an injection port which is an injection port of a multi-tube burner according to the present embodiment is viewed from the gas injection side.
  • the multi-tube burner 1 includes a raw material gas pipe 11, a first seal gas pipe 12, a plurality of first auxiliary combustible gas pipes 13, a plurality of second auxiliary combustible gas pipes 14, and a combustible gas.
  • the gas tube 15 and the second seal gas tube 16 are provided.
  • the raw material gas pipe 11 the first seal gas pipe 12, the respective first auxiliary gas pipes 13, the respective second auxiliary gas pipes 14, the combustible gas pipes 15, the first
  • the two-seal gas pipe 16 is hatched, the hatched line does not indicate the cross section of the pipe.
  • the source gas pipe 11 is a pipe through which source gas flows, and a gas supply device is connected to the end of the source gas pipe 11 opposite to the injection end side through a connecting pipe.
  • the raw material of the raw material gas include octamethylcyclotetrasiloxane.
  • silicon-containing compounds that do not contain halides such as octamethylcyclotetrasiloxane and hexamethyldisiloxane are used as a raw material gas, hydrochloric acid is not generated by the combustion reaction of the raw materials, so the halides are contained. Silicon-containing compounds that are not preferred are preferred as source gases.
  • the first seal gas pipe 12 is a pipe through which a seal gas flows, and a gas supply device is connected to the end of the first seal gas pipe 12 opposite to the injection end side through a connecting pipe.
  • seal gas inert gas, such as nitrogen and argon, is mentioned, for example.
  • the plurality of first auxiliary combustion gas pipes 13 are pipes through which auxiliary combustion gas flows.
  • the end of the first auxiliary combustible gas pipe 13 opposite to the injection end side is connected to a gas supply device via a connecting pipe.
  • Examples of the auxiliary gas include oxygen.
  • the plural second auxiliary gas pipes 14 are pipes through which auxiliary gas flows.
  • An end portion of the second auxiliary combustible gas pipe 14 opposite to the injection end side is connected to a gas supply device via a connecting pipe.
  • the first auxiliary gas pipe 13 and the second auxiliary gas pipe 14 may be connected to the gas supply device via a common communication pipe, or connected to the gas supply device via separate connection pipes. May be. However, when the first auxiliary gas pipe 13 and the second auxiliary gas pipe 14 are connected to the gas supply device via separate connecting pipes, the first auxiliary gas pipe 13 and the second auxiliary gas pipe 14 are connected.
  • the flow rate and type of auxiliary combustion gas can be changed.
  • the combustible gas pipe 15 is a pipe through which combustible gas flows, and a gas supply device is connected to the end of the combustible gas pipe 15 opposite to the injection end side through a connecting pipe.
  • Examples of the combustible gas include hydrogen and methane.
  • the second seal gas pipe 16 is a pipe through which seal gas flows, and a gas supply device is connected to the end of the second seal gas pipe 16 opposite to the injection end side through a connecting pipe.
  • the first seal gas pipe 12 and the second seal gas pipe 16 may be connected to the gas supply apparatus via a common communication pipe, or connected to the gas supply apparatus via separate connection pipes. Also good. However, when the first seal gas pipe 12 and the second seal gas pipe 16 are connected to the gas supply device via separate connecting pipes, the seal gas is generated between the first seal gas pipe 12 and the second seal gas pipe 16. The flow rate and type of can be changed.
  • the gas supply apparatus described above supplies the source gas to the source gas pipe 11, supplies the combustible gas to the combustible gas pipe 15, and the first auxiliary gas pipe 13 and the second auxiliary gas pipe 14.
  • An auxiliary combustible gas is supplied to the first seal gas pipe 12 and the second seal gas pipe 16.
  • the gas supply device can individually change the supply amount and flow rate of the raw material gas, the combustible gas, the auxiliary combustible gas, and the seal gas.
  • the respective injection ports 11A to 16A that are the injection ports of the respective gas pipes will be described.
  • the respective injection ports 11A to 16A are viewed from the gas injection side, the respective injection ports 11A to 16A are arranged as follows.
  • the injection port 12A of the first seal gas pipe 12 is arranged so as to surround the outer periphery of the injection port 11A of the source gas pipe 11 over the entire circumference. That is, the injection port 11 ⁇ / b> A of the source gas pipe 11 is disposed inside the injection port 12 ⁇ / b> A of the first seal gas pipe 12.
  • the injection ports 13A of the plurality of first auxiliary combustible gas pipes 13 are arranged at predetermined intervals so as to surround the outer periphery of the injection port 12A of the first seal gas pipe 12. Therefore, each injection port 13 ⁇ / b> A of the plurality of first auxiliary combustible gas pipes 13 also surrounds the injection port 11 ⁇ / b> A of the source gas pipe 11.
  • the injection ports 14A of the plurality of second auxiliary combustion gas pipes 14 are arranged at predetermined intervals outside the injection ports 13A of the plurality of first auxiliary combustion gas pipes 13.
  • a plurality of injection ports 13A are arranged at predetermined equal intervals on a circle having a diameter larger than the diameter of the injection port 12A with the same position as the center of the injection port 11A as the center.
  • a plurality of injection ports 14A are arranged at predetermined intervals equal to each other on a circle larger than the circle.
  • a combustible gas pipe 15 is disposed outside the injection ports 14A of the plurality of second auxiliary combustible gas pipes 14 so as to surround the injection ports 14A. That is, the injection port 11A of the raw material gas pipe 11, the injection port 12A of the first seal gas pipe 12, the injection ports 13A of the plurality of first auxiliary combustible gas pipes 13, the plurality of injection ports 11A arranged in the positional relationship as described above.
  • Each injection port 14 ⁇ / b> A of the second auxiliary combustible gas pipe 14 is disposed inside the injection port 15 ⁇ / b> A of the combustible gas pipe 15.
  • the injection port 16A of the second seal gas pipe 16 is disposed outside the injection port 15A of the combustible gas pipe 15 so as to surround the outer periphery of the injection port 15A over the entire circumference.
  • the injection port 11A of the source gas pipe 11 from the inner side to the outer side of the multi-tube burner 1, the injection port 11A of the source gas pipe 11, the injection port 12A of the first seal gas pipe 12, the injection port 15A of the combustible gas pipe 15,
  • the injection ports are arranged concentrically in the order of the injection port 16A of the two-seal gas pipe 16.
  • the area of the injection region AR4 of the combustible gas is made larger than the area of the injection region AR1 of the raw material gas at the injection port 11A of the raw material gas pipe 11. Further, the area of the injection region AR4 of the combustible gas is larger than the area of the injection region AR2 of the seal gas that combines the injection port 12A of the first seal gas pipe 12 and the injection port 16A of the second seal gas pipe 16. Has been.
  • the area of the injection region AR3 of the auxiliary combustion gas which includes the injection ports 13A of the plurality of first auxiliary combustion gas pipes 13 and the injection ports 14A of the plurality of second auxiliary combustion gas pipes 14, The area of the combustible gas injection area AR4 is increased.
  • injection regions AR1 to AR4 are regions where gas is injected, and the combustible gas injection region AR4 includes the outer periphery of each injection port 13A of the first auxiliary combustible gas tube 13 and the second auxiliary combustible gas tube.
  • the outer periphery of each of the 14 injection ports 14A and the outer periphery of the injection port 12A of the first seal gas pipe 12 are surrounded over the entire periphery.
  • the temperature of the soot deposited on the target is controlled by the auxiliary combustion gas injected from the injection port 14A of the second auxiliary combustion gas pipe 14.
  • the temperature of the auxiliary combustion gas injected from the injection port 14A of the second auxiliary combustion gas pipe 14 is combusted with the combustible gas, so that the temperature can be increased.
  • the raw material gas can be prevented from diffusing outside by the seal gas injected from the injection port 12A of the first seal gas pipe 12, and the raw material gas and the flammable gas can be reduced depending on the flow rate of the seal gas.
  • the reaction position can be adjusted.
  • the injection port 11A of the source gas pipe 11 and the injection port 13A of the first auxiliary combustible gas pipe 13 are arranged inside the injection port 15A of the combustible gas pipe 15.
  • the injection port 13A of the first auxiliary combustible gas pipe 13 is disposed so as to surround the injection port 11A of the raw material gas pipe 11 via the injection port 12A of the first seal gas pipe 12.
  • the raw material gas is injected inside the auxiliary combustion gas, and the inflammable gas is injected so as to surround the auxiliary combustion gas and the raw material gas. Therefore, the auxiliary gas acts like a wall that suppresses the diffusion of the raw material gas, so that the raw material gas can be easily confined inside the auxiliary gas. Accordingly, it is possible to reduce the outward diffusion of the soot. Accordingly, it is possible to suppress a decrease in the amount of soot deposited on the target due to the diffusion of soot.
  • the gas flow rate can be set individually. Therefore, the flow rate of the auxiliary combustible gas injected from the injection port 13A of the first auxiliary combustible gas pipe 13 is set so that the soot does not diffuse to the outside due to the enlarged flame even if the flame becomes larger due to the increase in the amount of raw material gas. Can be adjusted. Accordingly, the flow rate of the combustible gas does not need to be increased so much that the soot temperature is lowered by the gas flow, so that it is difficult for the soot to adhere to the target.
  • the optimum deposition efficiency can be adjusted according to the increase or decrease in the amount of the source gas.
  • the amount of soot deposited per unit raw material gas can be increased.
  • soot can be deposited efficiently.
  • the multi-tube burner 1 of the present embodiment further includes a second auxiliary combustible gas pipe 14 through which auxiliary gas flows.
  • the injection port 14 ⁇ / b> A of the second auxiliary combustible gas pipe 14 is disposed on the inner side of the injection port 15 ⁇ / b> A of the combustible gas pipe 15, and is disposed on the outer side of the injection port 13 ⁇ / b> A of the first auxiliary combustible gas pipe 13.
  • combustible gas can be burned more efficiently and the temperature of the soot deposited on the target can be controlled.
  • the auxiliary combustion gas doubles the raw material gas, the raw material gas can be more easily confined inside the auxiliary combustion gas.
  • the multi-tube burner 1 of the present embodiment further includes a first seal gas pipe 12 through which a seal gas flows, and an injection port 11A of the source gas pipe 11 is disposed inside the injection port 12A of the first seal gas pipe 12.
  • a first seal gas pipe 12 through which a seal gas flows
  • an injection port 11A of the source gas pipe 11 is disposed inside the injection port 12A of the first seal gas pipe 12.
  • the injection port 16A of the second seal gas pipe 16 is disposed so as to surround the outer periphery of the injection port 15A of the combustible gas pipe 15. Therefore, it is possible to suppress the flame from spreading greatly, and soot can be deposited in a more appropriate range of the target.
  • FIG. 2 is a view showing a state in which the injection port of the multi-tube burner according to the present embodiment is viewed from the gas injection side.
  • the multi-tube burner 2 according to the second embodiment includes a raw material gas pipe 11, a first seal gas pipe 12, a first combustible gas pipe 23, and a first auxiliary combustible gas pipe 24.
  • a plurality of second auxiliary combustible gas pipes 14, a second combustible gas pipe 25, and a second seal gas pipe 16 are provided. That is, in this embodiment, it replaces with the some 1st auxiliary combustion gas pipe 13 of 1st Embodiment, and the 1st auxiliary combustion gas pipe 24 is provided.
  • tube 15 of 1st Embodiment replaces with the combustible gas pipe
  • Two combustible gas pipes 25 are provided.
  • the flammable gas pipe 25 and the second seal gas pipe 16 are indicated by hatching, the hatching does not indicate a cross section of the pipe.
  • the first combustible gas pipe 23 is a pipe through which a combustible gas flows like the combustible gas pipe 15 of the first embodiment, and the first combustible gas pipe 23 has an end opposite to the injection end side.
  • a gas supply device is connected via the connecting pipe.
  • combustible gas the gas similar to the combustible gas of 1st Embodiment can be mentioned.
  • the first auxiliary combustible gas pipe 24 is a pipe through which auxiliary combustible gas flows in the same manner as the first auxiliary combustible gas pipe 13 of the first embodiment.
  • the end of the first auxiliary combustible gas pipe 24 opposite to the injection end side is connected to a gas supply device via a connecting pipe.
  • Examples of the auxiliary combustion gas include the same gases as the auxiliary combustion gas of the first embodiment.
  • the second combustible gas pipe 25 is a pipe for flowing a combustible gas having the same configuration as the combustible gas pipe 15 of the first embodiment.
  • combustible gas the gas similar to the combustible gas of 1st Embodiment can be mentioned.
  • the injection port 11 ⁇ / b> A of the source gas pipe 11 and the injection port 12 ⁇ / b> A of the first seal gas pipe 12 surrounding the raw gas pipe 11 are disposed inside the injection port 23 ⁇ / b> A of the first combustible gas pipe 23. Accordingly, the injection port 23A of the first combustible gas pipe 23 surrounds the outer periphery of the injection port 12A of the first seal gas pipe 12 over the entire circumference, and the raw material gas pipe is connected via the injection port 12A of the first seal gas pipe 12. 11 injection ports 11A are surrounded all around.
  • the injection port 23A of the first combustible gas pipe 23 is disposed inside the injection port 24A of the first auxiliary combustible gas pipe 24. Therefore, the injection port 24A of the first auxiliary combustible gas pipe 24 surrounds the entire outer periphery of the injection port 23A of the first combustible gas pipe 23, and the injection port 23A of the first combustible gas pipe 23 and the first seal gas.
  • the injection port 11A of the source gas pipe 11 is surrounded over the entire circumference via the injection port 12A of the pipe 12. Further, outside the injection port 13A of the first auxiliary combustible gas pipe 13, the injection ports 14A of the plurality of second auxiliary gas pipes 14 are arranged at predetermined intervals.
  • the injection port 25A of the second combustible gas pipe 25 is arranged so as to surround the outer periphery of the injection port 24A of the first auxiliary combustible gas pipe 24 over the entire circumference. That is, the injection port 11A of the raw material gas pipe 11, the injection port 12A of the first seal gas pipe 12, the injection port 23A of the first combustible gas pipe 23, and the first auxiliary combustible gas pipe arranged in the above positional relationship.
  • the 24 injection ports 24 ⁇ / b> A and the injection ports 14 ⁇ / b> A of the plurality of second auxiliary combustible gas pipes 14 are arranged inside the injection ports 15 ⁇ / b> A of the second combustible gas pipes 25.
  • a plurality of second auxiliary combustible gas pipes 14 are arranged between the inner wall of the injection port 25A of the second combustible gas pipe 25 and the outer wall of the injection port 24A of the first auxiliary combustible gas pipe 24.
  • the injection region AR4 of the injection port 23A of the first combustible gas pipe 23 surrounds the outer periphery of the injection port 12A of the first seal gas pipe 12 over the entire circumference.
  • the injection region AR3 of the injection port 24A of the first auxiliary combustible gas pipe 24 surrounds the outer periphery of the injection port 23A of the first combustible gas pipe 23 over the entire circumference. Therefore, the injection region AR3 of the injection port 24A of the first auxiliary combustible gas pipe 24 surrounds the outer periphery of the injection port 11A of the source gas pipe 11 over the entire circumference via the injection port 23A of the first combustible gas pipe 23. Yes.
  • the injection region AR4 of the injection port 25A of the second combustible gas pipe 25 includes the outer periphery of each injection port 14A of the second auxiliary combustible gas pipe 14, and the outer periphery of the injection port 24A of the first auxiliary combustible gas pipe 24. Is surrounded all around.
  • the injection port 24A of the first auxiliary combustible gas pipe 24 surrounds the outside of the injection port 11A of the raw material gas pipe 11 over the entire circumference.
  • the auxiliary combustion gas Therefore, the diffusion of the raw material gas can be further suppressed, and the combustion can be made uniform in the circumferential direction, so that the soot generation can be made uniform in the circumferential direction.
  • the injection ports 11A to 16A of the first embodiment are viewed from the gas injection side, the injection ports 11A to 16A are on the same surface as long as the positional relationship described above in the first embodiment is satisfied. It does not need to be arranged even if it is arranged.
  • the injection ports 11A, 12A, 23A, 24A, 14A, 25A, and 16A of the second embodiment are viewed from the gas injection side, the injection ports have the positional relationship described above in the second embodiment. As long as they are arranged, they may or may not be arranged on the same surface. Moreover, although each said injection port was made circular, it may be non-circular.
  • the second auxiliary gas pipe 14, the first seal gas pipe 12, and the second seal gas pipe 16 are provided. However, all of the second auxiliary combustion gas pipe 14, the first sealing gas pipe 12, and the second sealing gas pipe 16 may be omitted, and the second auxiliary combustion gas pipe 14, the first sealing gas pipe 12, and the first sealing gas pipe 12 may be omitted. One or two of the two seal gas pipes 16 may be omitted.
  • Example 1 Soot was deposited on the target by the OVD method using the multi-tube burner 1 in the first embodiment.
  • the deposition efficiency of soot was measured when the flow rate of the raw material gas flowing through the raw material gas tube 11 and the flow rate of the auxiliary combustion gas flowing through the first auxiliary combustion gas tube 13 were changed.
  • the deposition efficiency is calculated from the weight of the soot deposited on the target during the experiment, assuming that all Si atoms contained in the raw material are SiO 2 and adhere to the target as 1.0 (100%). .
  • the diameter of the injection port 11A of the raw material gas pipe 11 was 3.6 mm, and the diameter of the injection port 13A of the first auxiliary combustible gas pipe 13 was 1.6 mm.
  • octamethylcyclotetrasiloxane was used as a raw material for the raw material gas
  • hydrogen was used as the combustible gas
  • oxygen was used as the auxiliary combustible gas
  • nitrogen was used as the seal gas.
  • the flow rate of the raw material gas was changed from 20 m / s to 35 m / s
  • the flow rate of the auxiliary combustible gas was changed from 10 m / s to 20 m / s.
  • the flow rate of the raw material gas was changed to a predetermined ratio with the flow rate of the auxiliary combustible gas.
  • the flow rate of the combustible gas was fixed at 0.15 m / s.
  • the diameter of the injection port 14A of the second auxiliary combustion gas pipe 14 is the same as the injection port 13A of the first auxiliary combustion gas pipe 13, and the flow rate of the auxiliary combustion gas flowing through the second auxiliary combustion gas pipe 14 is the first auxiliary combustion property.
  • the flow velocity is the same as that flowing through the gas pipe 13.
  • the flow rate of the seal gas was fixed at 0.3 m / s.
  • FIG. 3 is a graph showing the relationship between the gas flow rate ratio and the deposition efficiency in Example 1.
  • the deposition efficiency is 0.5 or more.
  • the flow rate ratio was within the range of 0.4 to 0.75, the deposition efficiency was 0.7 or more.
  • the flow rate ratio is within the range of 0.35 to 0.75, even if the flow rate of the source gas changes within the range of 20 g / min to 38 g / min, a deposition efficiency of 50% or more is secured. I can confirm that I can do it. Further, if the flow rate ratio is in the range of 0.4 to 0.75, even if the flow rate of the raw material gas is changed in the range of 20 g / min to 38 g / min, it is possible to ensure a deposition efficiency of 70% or more. I was able to confirm.
  • Example 2 The diameter of the injection port of the raw material gas pipe is 2.8 mm, and the other conditions are the same as in Example 1 except that the flow rate of the raw material gas flowing through the raw material gas pipe and the flow rate of the auxiliary combustion gas flowing through the first auxiliary combustion gas pipe are changed. The deposition efficiency of soot was measured.
  • FIG. 4 is a graph showing the relationship between the gas flow rate ratio and the deposition efficiency in Example 2. As shown in FIG. 4, when the ratio of the flow rate of the auxiliary combustible gas to the flow rate of the raw material gas (flow rate ratio) is within the range of 0.35 to 0.75, the deposition efficiency is 0. It became 5 or more. When the flow rate ratio was in the range of 0.4 to 0.75, the deposition efficiency was 0.7 or more, as in Example 1.
  • a multi-tube burner capable of efficiently depositing soot is provided, and can be used in industries for manufacturing optical fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

多重管バーナ(1)は、原料ガスを流す原料ガス管(11)と、可燃性ガスを流す可燃性ガス管(15)と、助燃性ガスを流す第1助燃性ガス管(13)と、を備え、原料ガス管(11)の射出ポート(11A)及び第1助燃性ガス管(13)の射出ポート(13A)は、可燃性ガス管(15)の射出ポート(15A)の内側に配置され、第1助燃性ガス管(13)の射出ポート(13A)は、原料ガス管(11)の射出ポート(11A)を囲むように配置されている。

Description

多重管バーナ
 本発明は、多重管バーナに関し、例えば光ファイバ母材等を製造する場合に好適なものである。
 光ファイバ母材などを製造する場合、原料ガスを火炎と共に吹き付け、その燃焼反応により得られるガラス粒子をターゲットに堆積させる製法が用いられる。この様な製法として、例えば、VAD法(Vapor-phase Axial Deposition)、OVD(Outside Vapor Deposition)法、MCVD(Modified Chemical Vapor Deposition)法などを挙げることができる。なお、ガラス粒子はスートと呼ばれている。
 このような多孔質ガラス堆積体の製法に用いられるバーナとして、ハロゲン化物を含有しないケイ素含有化合物を酸化させるバーナが下記特許文献1に開示されている。下記特許文献1のバーナの一面には複数の射出領域が設けられている。
 具体的には、原料ガスであるオクタメチルシクロテトラシロキサンと助燃性ガスである酸素との混合ガスを射出させる第1領域がバーナの射出口における中央に配置され、窒素を射出させる第2領域が第1領域を囲うように設けられている。また、助燃性ガスである酸素を射出させる複数の第3領域が第2領域の周りに所定間隔で設けられ、可燃性ガスであるメタンと助燃性ガスである酸素との混合ガスを射出させる複数の第4領域が第3領域の外側に所定間隔で設けられている。
特表平11-510778号公報
 ところで、原料ガス量が増加した場合、燃焼反応を起こした際の火炎の広がりが大きくなり、その火炎によりスートが拡散する傾向がある。上記特許文献1のバーナでは、原料ガスと助燃性ガスとの混合ガスを射出させる第1領域がバーナの射出口の最も内周側に設けられている。このため、大きく広がった火炎により第1領域よりも外周側にスートが拡散し、ターゲットに堆積するスートの堆積量が減ることが懸念される。
 一方、第2領域から射出される窒素ガスの流速を大きくすれば、第1領域よりも外側にスートが拡散することが低減可能であると考えられる。しかし、窒素ガスの流速を大きくした場合、ガスの流れによってスートの温度が低くなり、ターゲットにスートが付着せずにスートの堆積量が減ることが懸念される。
 そこで、本発明は、効率良くスートを堆積させ得る多重管バーナを提供するものである。
 上記課題を解決するため、本発明の多重管バーナは、原料ガスを流す原料ガス管と、可燃性ガスを流す可燃性ガス管と、助燃性ガスを流す第1助燃性ガス管と、を備え、前記原料ガス管の射出ポート及び前記第1助燃性ガス管の射出ポートは、前記可燃性ガス管の射出ポートの内側に配置され、前記第1助燃性ガス管の射出ポートは、前記原料ガス管の射出ポートを囲むように配置されることを特徴とする。
 このような多重管バーナによれば、助燃性ガスの内側で原料ガスが射出され、その助燃性ガス及び原料ガスを囲むように可燃性ガスが射出される。このため、助燃性ガスが原料ガスの拡散を抑える壁のように作用し、助燃性ガスの内側に原料ガスを閉じ込め易くなる。従って、スートが外側に拡散することを低減することができる。このようにスートが拡散することを抑制して、ターゲットに堆積するスートの堆積量の減少を抑制することができる。
 また、第1助燃性ガス管の射出ポートと原料ガス管の射出ポートとが別々に配置されているため、ガスの流速を個別に設定することが可能となる。従って、原料ガス量が増加することで火炎の広がりが大きくなっても、その広がった火炎によりスートが外側に拡散しないように第1助燃性ガス管の射出ポートから射出する助燃性ガスの流速を調整することができる。これにより、可燃性ガスの流速をさほど大きくしなくてもすみ、ガスの流れによりスートの温度が低くなることでターゲットにスートが付着しにくくなることを低減できる。この結果、ターゲットに堆積するスートの堆積量の減少を抑制することができる。
 このように本発明の多重管バーナによれば、単位原料ガス当たりのスートの堆積量を増加し得る。こうして、効率良くスートを堆積させることができる。
 また、前記助燃性ガスを流す第2助燃性ガス管をさらに備え、前記第2助燃性ガス管の射出ポートは、前記可燃性ガス管の射出ポートよりも内側における前記第1助燃性ガス管の射出ポートよりも外側に配置されることが好ましい。
 このようにすれば、より効率的に可燃性ガスを燃焼させることができ、ターゲットに堆積したスートの温度をコントロールすることができる。また、助燃性ガスが原料ガスを二重に囲うため、助燃性ガスの内側に原料ガスをより閉じ込め易くすることができる。
 また、シールガスを流す第1シールガス管をさらに備え、前記原料ガス管の射出ポートは、前記第1シールガス管の射出ポートの内側に配置され、前記第1助燃性ガス管の射出ポートは、前記第1シールガス管の射出ポートを囲むように配置されることが好ましい。
 このようにすれば、原料ガスが外側に拡散することを抑制することができるとともに、原料ガスの射出ポート及び可燃性ガスの射出ポートから射出される原料ガスと可燃性ガスとの反応位置をシールガスの流速等により調整することができる。従って、スートが外側に拡散することをより一段と低減することができるとともに、ターゲットの適切な範囲にスートを堆積させることができる。
 また、前記原料ガス管を流れる前記原料ガスの流速と前記第1助燃性ガス管を流れる前記助燃性ガスの流速との比は、0.35~0.75の範囲内であることが好ましい。
 このようにすれば、原料に含まれるSi原子すべてがスート(SiO)となってターゲットに付着した場合の堆積効率を100%とした場合に、原料ガスの流量が所定の範囲内で変化しても、50%以上の堆積効率を確保することができる。
 また、前記比は、0.4~0.75の範囲内であることが好ましい。
 このようにすれば、原料に含まれるSi原子すべてがスート(SiO)となってターゲットに付着した場合の堆積効率を100%とした場合に、原料ガスの流量が所定の範囲内で変化しても、70%以上の堆積効率を確保することができる。
 また、前記原料ガス管の射出ポートは、前記第1助燃性ガス管の射出ポートの内側に配置され、前記第1助燃性ガス管の射出ポートは前記原料ガス管の射出ポートを全周に渡って囲むことが好ましい。
 このように第1助燃性ガス管の射出ポートが原料ガス管の射出ポートを囲むことで、第1助燃性ガス管の射出ポートの射出領域が原料ガス管の射出ポートの外側を全周にわたって囲うこととなる。このため、助燃性ガスによって原料ガスの拡散をより一段と抑えることができると共に、周方向に均一な燃焼に近づけることができ、スートの発生を周方向において均一に近づけることができる。
 また、前記第1助燃性ガス管を複数有し、複数の前記第1助燃性ガス管のそれぞれの射出ポートは、前記原料ガス管の射出ポートの周囲に所定間隔ごとに配置されるようにすることも可能である。この場合、多重管バーナの作製を容易にすることができる。
 以上のように、本発明によれば、効率良くスートを堆積させ得る多重管バーナが提供される。
本発明の第1実施形態に係る多重管バーナの射出ポートをガスの射出側から見た様子を示す図である。 本発明の第2実施形態に係る多重管バーナの射出ポートをガスの射出側から見た様子を示す図である。 実施例1におけるガスの流速比と堆積効率との関係を示すグラフである。 実施例2におけるガスの流速比と堆積効率との関係を示すグラフである。
 以下、本発明に係る多重管バーナの好適な実施形態について図面を参照しながら詳細に説明する。
(第1実施形態)
 図1は、本実施形態に係る多重管バーナの射出口である射出ポートをガスの射出側から見た様子を示す図である。図1に示すように、多重管バーナ1は、原料ガス管11と、第1シールガス管12と、複数の第1助燃性ガス管13と、複数の第2助燃性ガス管14と、可燃性ガス管15と、第2シールガス管16とを備える。なお、図1では、視認の容易のため原料ガス管11、第1シールガス管12、それぞれの第1助燃性ガス管13、それぞれの第2助燃性ガス管14、可燃性ガス管15、第2シールガス管16に斜線を付して示しているが、当該斜線は管の断面を示すものではない。
 原料ガス管11は原料ガスを流す管であり、この原料ガス管11における射出端側とは反対の端部には連結管を介してガス供給装置が接続される。原料ガスの原料としては、例えば、オクタメチルシクロテトラシロキサン等が挙げられる。このようなオクタメチルシクロテトラシロキサンや、ヘキサメチルジシロキサン等のハロゲン化物を含有しないケイ素含有化合物が原料ガスとして用いられた場合には原料の燃焼反応により塩酸が発生しないため、当該ハロゲン化物を含有しないケイ素含有化合物は原料ガスとして好ましい。
 第1シールガス管12はシールガスを流す管であり、この第1シールガス管12における射出端側とは反対の端部には連結管を介してガス供給装置が接続される。シールガスとしては、例えば、窒素、アルゴン等の不活性ガスが挙げられる。
 複数の第1助燃性ガス管13はそれぞれ助燃性ガスを流す管である。これら第1助燃性ガス管13の射出端側とは反対の端部には、連結管を介してガス供給装置に接続される。助燃性ガスとしては、例えば、酸素が挙げられる。
 複数の第2助燃性ガス管14はそれぞれ助燃性ガスを流す管である。これら第2助燃性ガス管14における射出端側とは反対の端部には、連結管を介してガス供給装置に接続される。なお、第1助燃性ガス管13と第2助燃性ガス管14とは共用の連通管を介してガス供給装置に接続されていても良く、別々の連結管を介してガス供給装置に接続されていても良い。ただし、第1助燃性ガス管13と第2助燃性ガス管14とが別々の連結管を介してガス供給装置に接続された場合、第1助燃性ガス管13と第2助燃性ガス管14とで助燃性ガスの流量や種類を変えることができる。
 可燃性ガス管15は可燃性ガスを流す管であり、この可燃性ガス管15における射出端側とは反対の端部には連結管を介してガス供給装置が接続される。可燃性ガスとしては、例えば、水素、メタン等が挙げられる。
 第2シールガス管16はシールガスを流す管であり、この第2シールガス管16における射出端側とは反対の端部には連結管を介してガス供給装置が接続される。なお、第1シールガス管12と第2シールガス管16とは共用の連通管を介してガス供給装置に接続されていても良く、別々の連結管を介してガス供給装置に接続されていても良い。ただし、第1シールガス管12と第2シールガス管16とが別々の連結管を介してガス供給装置に接続された場合、第1シールガス管12と第2シールガス管16とでシールガスの流量や種類を変えることができる。
 なお、上記で説明したガス供給装置は、原料ガス管11に原料ガスを供給し、可燃性ガス管15に可燃性ガスを供給し、第1助燃性ガス管13及び第2助燃性ガス管14に助燃性ガスを供給し、第1シールガス管12及び第2シールガス管16にシールガスを供給する。このガス供給装置は、原料ガス、可燃性ガス、助燃性ガス、シールガスそれぞれの供給量と流速とを個別に変更できるようになっている。
 次に、それぞれのガス管の射出口である射出ポート11A~16Aの配置について説明する。それぞれの射出ポート11A~16Aをガスの射出側から見る場合に、それぞれの射出ポート11A~16Aは次のように配置される。
 原料ガス管11の射出ポート11Aの外周を全周にわたって囲むように、第1シールガス管12の射出ポート12Aが配置される。つまり、原料ガス管11の射出ポート11Aは第1シールガス管12の射出ポート12Aの内側に配置される。この第1シールガス管12の射出ポート12Aの外周を囲うように複数の第1助燃性ガス管13のそれぞれの射出ポート13Aが所定間隔ごとに配置される。従って、複数の第1助燃性ガス管13のそれぞれの射出ポート13Aは、原料ガス管11の射出ポート11Aをも囲っている。また、複数の第1助燃性ガス管13のそれぞれの射出ポート13Aよりも外側には、複数の第2助燃性ガス管14のそれぞれの射出ポート14Aが所定間隔ごとに配置される。
 本実施形態の場合、射出ポート11Aの中心と同じ位置を中心とし射出ポート12Aの直径よりも大きい直径の円上に、複数の射出ポート13Aが互いに等しい所定の間隔ごとに配置されており、当該円よりも大きい円上に複数の射出ポート14Aが互いに等しい所定の間隔ごとに配置される。
 複数の第2助燃性ガス管14のそれぞれの射出ポート14Aの外側には、これら射出ポート14Aを囲うように可燃性ガス管15が配置される。つまり、上記のような位置関係で配置される原料ガス管11の射出ポート11A、第1シールガス管12の射出ポート12A、複数の第1助燃性ガス管13のそれぞれの射出ポート13A、複数の第2助燃性ガス管14のそれぞれの射出ポート14Aは、可燃性ガス管15の射出ポート15Aの内側に配置される。また、可燃性ガス管15の射出ポート15Aの外側には、射出ポート15Aの外周を全周にわたって囲むように、第2シールガス管16の射出ポート16Aが配置される。
 また、本実施形態では、多重管バーナ1の内側から外側に向かって、原料ガス管11の射出ポート11A、第1シールガス管12の射出ポート12A、可燃性ガス管15の射出ポート15A、第2シールガス管16の射出ポート16Aの順で、当該射出ポートが同心円状に配置されている。
 また、原料ガス管11の射出ポート11Aにおける原料ガスの射出領域AR1の面積に比べて、可燃性ガスの射出領域AR4の面積が大きくされている。また、第1シールガス管12の射出ポート12Aと第2シールガス管16の射出ポート16Aとを合わせたシールガスの射出領域AR2の面積に比べて、可燃性ガスの射出領域AR4の面積が大きくされている。また、複数の第1助燃性ガス管13のそれぞれの射出ポート13Aと複数の第2助燃性ガス管14のそれぞれの射出ポート14Aとを合わせた助燃性ガスの射出領域AR3の面積に比べて、可燃性ガスの射出領域AR4の面積が大きくされている。なお、これら射出領域AR1~AR4はガスが射出される領域であり、可燃性ガスの射出領域AR4は、第1助燃性ガス管13のそれぞれの射出ポート13Aの外周と、第2助燃性ガス管14のそれぞれの射出ポート14Aの外周と、第1シールガス管12の射出ポート12Aの外周とを全周にわたって囲っている。
 次に多重管バーナ1によるガスの燃焼とスートの生成について説明する。可燃性ガス管15の射出ポート15Aから射出される可燃性ガスは、第1助燃性ガス管13の射出ポート13Aから射出される助燃性ガスとともに燃焼する。この燃焼火炎内で、原料ガス管11の射出ポート11Aから射出される原料ガスの燃焼反応によりスートが生成される。そして、生成されたスートがターゲットに堆積する。
 このとき、第2助燃性ガス管14の射出ポート14Aから射出される助燃性ガスによってターゲットに堆積したスートの温度がコントロールされる。具体的には、第2助燃性ガス管14の射出ポート14Aから射出される助燃性ガスが可燃性ガスと共に燃焼することで、温度を高くすることができる。また、第1シールガス管12の射出ポート12Aから射出されるシールガスによって原料ガスが外側に拡散することを抑制することができると共に、当該シールガスの流速等によって原料ガスと可燃性ガスとの反応位置を調整することができる。さらに、第2シールガス管16の射出ポート16Aから射出されるシールガスによって火炎が広がることを抑制することができ、さらに、シールガスの周りの気体に可燃性ガスが触れることを抑制することができる。
 以上のように本実施形態に係る多重管バーナ1では、原料ガス管11の射出ポート11A及び第1助燃性ガス管13の射出ポート13Aが、可燃性ガス管15の射出ポート15Aの内側に配置されている。また、第1助燃性ガス管13の射出ポート13Aは、第1シールガス管12の射出ポート12Aを介して、原料ガス管11の射出ポート11Aを囲むように配置されている。
 このような多重管バーナ1によれば、助燃性ガスの内側で原料ガスが射出され、その助燃性ガス及び原料ガスを囲むように可燃性ガスが射出される。このため、助燃性ガスが原料ガスの拡散を抑える壁のように作用して、助燃性ガスの内側に原料ガスを閉じ込め易くすることができる。従って、スートが外側に拡散することを低減することができる。これによりスートが拡散することでターゲットに堆積するスートの堆積量の減少を抑制することができる。
 また、第1助燃性ガス管13の射出ポート13Aと原料ガス管11の射出ポート11Aとが別々に配置されているため、ガスの流速を個別に設定することが可能となる。従って、原料ガス量が増加することで火炎が大きくなっても、大きくなった火炎によりスートが外側に拡散しないように第1助燃性ガス管13の射出ポート13Aから射出する助燃性ガスの流速を調整することができる。これにより、可燃性ガスの流速をさほど大きくしなくても良いので、ガスの流れによりスートの温度が低くなることでターゲットにスートが付着しにくくなることを低減できる。この結果、ターゲットに堆積するスートの堆積量の減少を抑制することができる。なお、原料ガスと可燃性ガスとの流速を個々に調整可能になるので、原料ガス量の増減に応じて最適な堆積効率を調整することもできる。
 このように本実施形態に係る多重管バーナ1によれば、単位原料ガス当たりのスートの堆積量を増加し得る。こうして、効率良くスートを堆積させることができる。
 また、本実施形態の多重管バーナ1は、助燃性ガスを流す第2助燃性ガス管14をさらに備えている。この第2助燃性ガス管14の射出ポート14Aは、可燃性ガス管15の射出ポート15Aよりも内側に配置され、第1助燃性ガス管13の射出ポート13Aよりも外側に配置されている。このため、より効率的に可燃性ガスを燃焼させることができ、ターゲットに堆積したスートの温度をコントロールすることができる。また、助燃性ガスが原料ガスを二重に囲うので、助燃性ガスの内側に原料ガスをより閉じ込め易くすることができる。
 さらに、本実施形態の多重管バーナ1は、シールガスを流す第1シールガス管12をさらに備え、この第1シールガス管12の射出ポート12Aの内側に原料ガス管11の射出ポート11Aが配置されている。このため、原料ガスが外側に拡散することを抑制することができるとともに、射出ポート11A,15Aから射出される原料ガスと可燃性ガスとの反応位置をシールガスの流速等により調整することができる。従って、スートが外側に拡散することをより一段と低減することができ、ターゲットの適切な範囲にスートを堆積させることができる。
 また、本実施形態の多重管バーナ1は、可燃性ガス管15の射出ポート15Aの外周を囲うように第2シールガス管16の射出ポート16Aが配置されている。従って、火炎が大きく広がることを抑制することができ、ターゲットのより適切な範囲にスートを堆積させることができる。
(第2実施形態)
 次に、本発明の第2実施形態に係る多重管バーナについて図2を参照して説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図2は、本実施形態に係る多重管バーナの射出ポートをガスの射出側から見た様子を示す図である。図2に示すように、第2実施形態に係る多重管バーナ2は、原料ガス管11と、第1シールガス管12と、第1可燃性ガス管23と、第1助燃性ガス管24と、複数の第2助燃性ガス管14と、第2可燃性ガス管25と、第2シールガス管16とを備える。すなわち、本実施形態では、第1実施形態の複数の第1助燃性ガス管13に代えて第1助燃性ガス管24が備えられる。また、本実施形態では、第1実施形態の可燃性ガス管15に代えて、第1助燃性ガス管24を隔てて内側に配置される第1可燃性ガス管23と外側に配置される第2可燃性ガス管25とが設けられる。なお、図2では、視認の容易のため原料ガス管11、第1シールガス管12、第1可燃性ガス管23、第1助燃性ガス管24、それぞれの第2助燃性ガス管14、第2可燃性ガス管25、第2シールガス管16に斜線を付して示しているが、当該斜線は管の断面を示すものではない。
 第1可燃性ガス管23は第1実施形態の可燃性ガス管15と同様に可燃性ガスを流す管であり、この第1可燃性ガス管23における射出端側とは反対の端部には連結管を介してガス供給装置が接続される。可燃性ガスとしては、第1実施形態の可燃性ガスと同様のガスを挙げることができる。
 第1助燃性ガス管24は第1実施形態の第1助燃性ガス管13と同様にそれぞれ助燃性ガスを流す管である。この第1助燃性ガス管24の射出端側とは反対の端部には、連結管を介してガス供給装置に接続される。助燃性ガスとしては、第1実施形態の助燃性ガスと同様のガスを挙げることができる。
 第2可燃性ガス管25は第1実施形態の可燃性ガス管15と同様の構成とされる可燃性ガスを流す管である。可燃性ガスとしては、第1実施形態の可燃性ガスと同様のガスを挙げることができる。
 次に、それぞれのガス管の射出ポートの配置について説明する。ただし、第1実施形態と同様の射出ポートの配置については、その説明を省略する。原料ガス管11の射出ポート11A及びこれを囲う第1シールガス管12の射出ポート12Aは第1可燃性ガス管23の射出ポート23Aの内側に配置される。従って、第1可燃性ガス管23の射出ポート23Aは、第1シールガス管12の射出ポート12Aの外周を全周にわたって囲み、第1シールガス管12の射出ポート12Aを介して、原料ガス管11の射出ポート11Aを全周に渡って囲んでいる。
 また、第1可燃性ガス管23の射出ポート23Aは第1助燃性ガス管24の射出ポート24Aの内側に配置される。従って、第1助燃性ガス管24の射出ポート24Aは、第1可燃性ガス管23の射出ポート23Aの外周を全周にわたって囲み、第1可燃性ガス管23の射出ポート23A及び第1シールガス管12の射出ポート12Aを介して、原料ガス管11の射出ポート11Aを全周に渡って囲んでいる。また、第1助燃性ガス管13の射出ポート13Aの外側には、複数の第2助燃性ガス管14のそれぞれの射出ポート14Aが所定間隔ごとに配置される。
 また、第2可燃性ガス管25の射出ポート25Aは、第1助燃性ガス管24の射出ポート24Aの外周を全周にわたって囲むように配置される。つまり、上記のような位置関係で配置される原料ガス管11の射出ポート11A、第1シールガス管12の射出ポート12A、第1可燃性ガス管23の射出ポート23A、第1助燃性ガス管24の射出ポート24A、複数の第2助燃性ガス管14のそれぞれの射出ポート14Aは、第2可燃性ガス管25の射出ポート15Aの内側に配置される。従って、第2可燃性ガス管25の射出ポート25Aの内壁と、第1助燃性ガス管24の射出ポート24Aの外壁との間には、複数の第2助燃性ガス管14が配置される。
 このような多重管バーナ2では、第1可燃性ガス管23の射出ポート23Aの射出領域AR4は、第1シールガス管12の射出ポート12Aの外周を全周にわたって囲っている。また、第1助燃性ガス管24の射出ポート24Aの射出領域AR3は、第1可燃性ガス管23の射出ポート23Aの外周を全周にわたって囲っている。従って、第1助燃性ガス管24の射出ポート24Aの射出領域AR3は、第1可燃性ガス管23の射出ポート23Aを介して、原料ガス管11の射出ポート11Aの外周を全周にわたって囲っている。さらに、第2可燃性ガス管25の射出ポート25Aの射出領域AR4は、第2助燃性ガス管14のそれぞれの射出ポート14Aの外周と、第1助燃性ガス管24の射出ポート24Aの外周とを全周にわたって囲っている。
 このように本実施形態の多重管バーナ2によれば、第1助燃性ガス管24の射出ポート24Aが原料ガス管11の射出ポート11Aの外側を全周にわたって囲っている。このため、第1実施形態のように複数の第1助燃性ガス管13のそれぞれの射出ポート13Aが原料ガス管11の射出ポート11Aの周囲に所定間隔で配置される場合に比べ、助燃性ガスによって原料ガスの拡散をより一段と抑えることができ、また、周方向に均一な燃焼に近づけることができるのでスートの発生を周方向において均一に近づけることができる。
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、上記第1実施形態の射出ポート11A~16Aをガスの射出側から見た場合に、射出ポート11A~16Aは、第1実施形態で上述した位置関係となっている限り、同一の面上に配置されていても配置されていなくても良い。同様に、上記第2実施形態の射出ポート11A、12A、23A、24A、14A、25A、16Aをガスの射出側から見た場合に、当該射出ポートは、第2実施形態で上述した位置関係となっている限り、同一の面上に配置されていても配置されていなくても良い。また、上記の各射出ポートが円形とされたが円形以外であっても良い。
 また、上記実施形態では、第2助燃性ガス管14、第1シールガス管12及び第2シールガス管16が設けられた。しかし、第2助燃性ガス管14と第1シールガス管12と第2シールガス管16との全てが省略されていても良く、第2助燃性ガス管14と第1シールガス管12と第2シールガス管16との1つ又は2つが省略されていても良い。
 以下、実施例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものでは無い。
(実施例1)
 上記第1実施形態における多重管バーナ1を用いてOVD法によりターゲットにスートを堆積させた。このとき、原料ガス管11に流す原料ガスの流速と第1助燃性ガス管13に流す助燃性ガスの流速を変化させたときのスートの堆積効率を測定した。なお、堆積効率は、原料に含まれるSi原子すべてがSiOとなってターゲットに付着した場合を1.0(100%)として、実験した際にターゲットに堆積したスートの重量より算出している。
 なお、原料ガス管11の射出ポート11Aの直径は3.6mmとし、第1助燃性ガス管13の射出ポート13Aの直径は1.6mmとした。また、原料ガスの原料はオクタメチルシクロテトラシロキサンを用い、可燃性ガスは水素を用い、助燃性ガスは酸素を用い、シールガスは窒素を用いた。また、原料ガスの流速は20m/s~35m/sで変化させ、助燃性ガスの流速は10m/s~20m/sまで変化させた。
 なお、原料ガスの流速は助燃性ガスの流速と所定の比率になるように変化させた。また、可燃性ガスの流速は0.15m/sで固定とした。さらに、第2助燃性ガス管14の射出ポート14Aの直径は第1助燃性ガス管13の射出ポート13Aと同じとし、第2助燃性ガス管14を流れる助燃性ガスの流速は第1助燃性ガス管13を流れる流速と同じとしている。さらに、シールガスの流速は0.3m/sで固定とした。
 図3は、実施例1におけるガスの流速比と堆積効率との関係を示すグラフである。図3に示すように、原料ガスの流速に対する助燃性ガスの流速の比率(流速比)が0.35~0.75の範囲内である場合、堆積効率は0.5以上となった。また、流速比が0.4~0.75の範囲内である場合、堆積効率は0.7以上となった。
 このように、流速比が0.35~0.75の範囲内であれば、原料ガスの流量が20g/min~38g/minの範囲内で変化しても、50%以上の堆積効率を確保することができることが確認できた。また、流速比が0.4~0.75の範囲内であれば、原料ガスの流量が20g/min~38g/minの範囲内で変化しても、70%以上の堆積効率を確保することができることが確認できた。
(実施例2)
 原料ガス管の射出ポートの直径を2.8mmとし、その他は実施例1と同じ条件で、原料ガス管に流す原料ガスの流速と第1助燃性ガス管に流す助燃性ガスの流速を変化させたときのスートの堆積効率を測定した。
 図4は、実施例2におけるガスの流速比と堆積効率との関係を示すグラフである。図4に示すように、原料ガスの流速に対する助燃性ガスの流速の比率(流速比)が0.35~0.75の範囲内である場合、実施例1と同様に、堆積効率は0.5以上となった。また、流速比が0.4~0.75の範囲内である場合、実施例1と同様に、堆積効率は0.7以上となった。
 このように、原料ガス管の射出ポートの直径が小さい場合にも、実施例1と同じように堆積効率を確保することができることが確認できた。なお、この堆積効率には、原料ガスの流速と第1助燃性ガス管を流れる助燃性ガスの流速との比が主に寄与すると考えられる。例えば、シールガスを用い無い場合には、シールガスを用いる場合よりも原料ガスが拡散してスートが堆積する範囲が広くなる傾向にあるが、堆積効率への影響は上記原料ガスの流速に対する助燃性ガスの流速の比率の影響と比べれば小さいと考えられる。
 以上説明したように、本発明によれば、効率良くスートを堆積させ得る多重管バーナが提供され、光ファイバを製造する産業等において利用することができる。
1,2・・・多重管バーナ
11・・・原料ガス管
12・・・第1シールガス管
13,24・・・第1助燃性ガス管
14・・・第2助燃性ガス管
15・・・可燃性ガス管
16・・・第2シールガス管
23・・・第1可燃性ガス管
25・・・第2可燃性ガス管
11A・・・原料ガス管の射出ポート
12A・・・第1シールガス管の射出ポート
13A,24A・・・第1助燃性ガス管の射出ポート
14A・・・第2助燃性ガス管の射出ポート
15A・・・可燃性ガス管の射出ポート
16A・・・第2シールガス管の射出ポート
23A・・・第1可燃性ガス管の射出ポート
25A・・・第2可燃性ガス管の射出ポート

Claims (7)

  1.  原料ガスを流す原料ガス管と、
     可燃性ガスを流す可燃性ガス管と、
     助燃性ガスを流す第1助燃性ガス管と、
    を備え、
     前記原料ガス管の射出ポート及び前記第1助燃性ガス管の射出ポートは、前記可燃性ガス管の射出ポートの内側に配置され、
     前記第1助燃性ガス管の射出ポートは、前記原料ガス管の射出ポートを囲むように配置される
    ことを特徴とする多重管バーナ。
  2.  前記助燃性ガスを流す第2助燃性ガス管をさらに備え、
     前記第2助燃性ガス管の射出ポートは、前記可燃性ガス管の射出ポートの内側における前記第1助燃性ガス管の射出ポートよりも外側に配置される
    ことを特徴とする請求項1に記載の多重管バーナ。
  3.  シールガスを流す第1シールガス管をさらに備え、
     前記原料ガス管の射出ポートは、前記第1シールガス管の射出ポートの内側に配置され、
     前記第1助燃性ガス管の射出ポートは、前記第1シールガス管の射出ポートを囲むように配置される
    ことを特徴とする請求項1又は2に記載の多重管バーナ。
  4.  前記原料ガス管を流れる前記原料ガスの流速と前記第1助燃性ガス管を流れる前記助燃性ガスの流速との比は、0.35~0.75の範囲内である
    ことを特徴とする請求項1~3のいずれか1項に記載の多重管バーナ。
  5.  前記比は、0.4~0.75の範囲内である
    ことを特徴とする請求項4に記載の多重管バーナ。
  6.  前記原料ガス管の射出ポートは、前記第1助燃性ガス管の射出ポートの内側に配置される
    ことを特徴とする請求項1~5のいずれか1項に記載の多重管バーナ。
  7.  前記第1助燃性ガス管を複数有し、
     複数の前記第1助燃性ガス管のそれぞれの射出ポートは、前記原料ガス管の射出ポートの周囲に所定間隔ごとに配置される
    ことを特徴とする請求項1~5のいずれか1項に記載の多重管バーナ。
PCT/JP2018/001237 2017-01-31 2018-01-17 多重管バーナ WO2018142939A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015798A JP6532902B2 (ja) 2017-01-31 2017-01-31 多重管バーナ
JP2017-015798 2017-07-21

Publications (1)

Publication Number Publication Date
WO2018142939A1 true WO2018142939A1 (ja) 2018-08-09

Family

ID=63039559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001237 WO2018142939A1 (ja) 2017-01-31 2018-01-17 多重管バーナ

Country Status (2)

Country Link
JP (1) JP6532902B2 (ja)
WO (1) WO2018142939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014147A1 (ja) * 2020-07-14 2022-01-20 株式会社フジクラ 光ファイバ用母材の製造装置、及び光ファイバ用母材の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289189B2 (ja) 2018-06-28 2023-06-09 シャープ株式会社 端末装置、ロケーションサーバー及び方法
US11242277B2 (en) 2018-08-21 2022-02-08 Corning Incorporated Method of producing soot
CN111256114B (zh) * 2018-11-30 2022-04-05 河南神玖天航新材料股份有限公司 一种石英纤维熔制平面燃烧器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182624A (ja) * 2004-12-28 2006-07-13 Fujikura Ltd ガラス棒状体の製造方法
JP2007076957A (ja) * 2005-09-14 2007-03-29 Sumitomo Electric Ind Ltd ガラス合成用バーナ及び該バーナを用いたガラス微粒子堆積体の製造方法
JP2016064954A (ja) * 2014-09-25 2016-04-28 住友電気工業株式会社 ガラス微粒子堆積用バーナおよびガラス微粒子堆積体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182624A (ja) * 2004-12-28 2006-07-13 Fujikura Ltd ガラス棒状体の製造方法
JP2007076957A (ja) * 2005-09-14 2007-03-29 Sumitomo Electric Ind Ltd ガラス合成用バーナ及び該バーナを用いたガラス微粒子堆積体の製造方法
JP2016064954A (ja) * 2014-09-25 2016-04-28 住友電気工業株式会社 ガラス微粒子堆積用バーナおよびガラス微粒子堆積体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014147A1 (ja) * 2020-07-14 2022-01-20 株式会社フジクラ 光ファイバ用母材の製造装置、及び光ファイバ用母材の製造方法
JP7467638B2 (ja) 2020-07-14 2024-04-15 株式会社フジクラ 光ファイバ用母材の製造装置、及び光ファイバ用母材の製造方法

Also Published As

Publication number Publication date
JP2018123022A (ja) 2018-08-09
JP6532902B2 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2018142939A1 (ja) 多重管バーナ
EP0978491B1 (en) Precision burners for oxidizing halide-free, silicon-containing compounds
FI82031C (fi) Braennare foer tillverkning av optiskt fiberbasmaterial.
JP5624796B2 (ja) 光ファイバ素線の製造装置及び製造方法
US9032761B2 (en) Porous glass matrix producing burner and porous glass matrix producing method
WO2009107392A1 (ja) 多孔質ガラス母材製造用バーナー
JP2005524597A (ja) ガラスプリフォームを作製するバーナ組立体及び相応する作製方法
JP4241952B2 (ja) テクニカルガラス製造プロセス及び該プロセス用バーナー
JP4241173B2 (ja) 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ
JP4663605B2 (ja) 光ファイバ用ガラス母材の製造装置及び製造方法
EP1572593A1 (en) Burner for chemical vapour deposition of glass
CN112088142A (zh) 用于直接还原工艺的氧气注入***
WO2004063104A1 (en) Modified chemical vapor deposition device for manufacturing optical fiber preform
CN210457965U (zh) 一种大尺寸、高沉积速率光纤预制棒制造用喷灯
US8459063B2 (en) Burner for producing porous glass preform
JP2002526363A (ja) 溶融シリカガラスのブールを製造するためのバーナ
JP3567574B2 (ja) 多孔質ガラス母材合成用バーナ
WO2018155036A1 (ja) 多孔質体合成用多重管バーナー及び多孔質体合成装置
WO2017188334A1 (ja) ガラス微粒子の合成方法
CN214571512U (zh) 一种多层石英灯具
KR20090092685A (ko) 다공질 유리 모재 제조용 버너
JP5168772B2 (ja) ガラス微粒子堆積体の製造方法
JPH0322257Y2 (ja)
US20100218554A1 (en) Burner for producing glass fine particles and method for manufacturing porous glass base material using the same
JP2022019240A (ja) 光ファイバ用多孔質母材の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748438

Country of ref document: EP

Kind code of ref document: A1