WO2018138942A1 - Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system - Google Patents

Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system Download PDF

Info

Publication number
WO2018138942A1
WO2018138942A1 PCT/JP2017/018641 JP2017018641W WO2018138942A1 WO 2018138942 A1 WO2018138942 A1 WO 2018138942A1 JP 2017018641 W JP2017018641 W JP 2017018641W WO 2018138942 A1 WO2018138942 A1 WO 2018138942A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
electromagnetic wave
unit
information
transmission facility
Prior art date
Application number
PCT/JP2017/018641
Other languages
French (fr)
Japanese (ja)
Inventor
星野 俊弘
崇文 飯島
広明 長
田中 元史
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to JP2018541230A priority Critical patent/JPWO2018138942A1/en
Publication of WO2018138942A1 publication Critical patent/WO2018138942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables

Definitions

  • Embodiments of the present invention relate to a power transmission facility monitoring device, a power transmission facility monitoring unit, and a power transmission facility monitoring system.
  • an inspection method in which an unmanned air vehicle flies in the vicinity of a transmission line and an image of the transmission line is taken to inspect the transmission line.
  • an image of the transmission line is taken to inspect the transmission line.
  • the problem to be solved by the present invention is to provide a power transmission equipment monitoring device and a power transmission equipment monitoring unit capable of providing a mechanism for acquiring information about power transmission equipment.
  • the power transmission facility monitoring apparatus of the embodiment includes an imaging unit, an electromagnetic wave detection unit, a transmission unit, an instruction information acquisition unit, and a flight control unit. Moreover, the power transmission equipment monitoring apparatus of the embodiment is mounted on an unmanned aerial vehicle.
  • the imaging unit images the power transmission facility.
  • the electromagnetic wave detection unit detects an electromagnetic wave generated by the power transmission facility.
  • the transmission unit transmits at least one of image information based on the image captured by the imaging unit and electromagnetic wave information based on the electromagnetic wave detected by the electromagnetic wave detection unit to another device.
  • the instruction information acquisition unit acquires instruction information for instructing the flight of the unmanned air vehicle from a terminal of a driver who controls the unmanned air vehicle.
  • the flight control unit controls the flight of the unmanned air vehicle based on the instruction information acquired by the instruction information acquisition unit.
  • the power transmission monitoring device of the embodiment is a device that supports monitoring of electric wires and power transmission equipment.
  • the power transmission monitoring device is mounted on an unmanned air vehicle flying in the vicinity of an electric wire or power transmission equipment, and collects information on the electric wire or power transmission equipment.
  • the information on the electric wire and the power transmission facility is, for example, information on an electromagnetic wave generated by the electric wire or the power transmission facility, or information indicating an image generated by imaging the electric wire or the power transmission facility.
  • FIG. 1 is a diagram illustrating a use environment of an unmanned air vehicle 11 on which the power transmission facility monitoring device 1 according to the first embodiment is mounted.
  • the unmanned air vehicle 11 is used in the vicinity of a power transmission facility including a tower 51, an electric wire 52, a transformer, a lightning arrester, a switchgear, and the like (not shown).
  • the unmanned air vehicle 11 is, for example, a drone.
  • the power transmission facility monitoring apparatus 1 acquires information (hereinafter referred to as instruction information) instructing flight from the terminal 30 of the operator who controls the unmanned air vehicle 11, and controls the flight of the unmanned air vehicle 11 based on the acquired instruction information. To do.
  • the pilot maneuvers the unmanned air vehicle 11 so that the unmanned air vehicle 11 flies in the vicinity of the electric wire 52, and the terminal 30 transmits the instruction information of the unmanned air vehicle 11 according to the maneuvering to the power transmission equipment monitoring device 1.
  • the instruction information is information indicating an instruction for moving the unmanned air vehicle 11 in the vertical direction, the front-rear direction, and the left-right direction, for example.
  • the power transmission facility monitoring apparatus 1 acquires various types of information related to the power transmission facility as the unmanned air vehicle 11 flies near the electric wire 52.
  • the power transmission facility monitoring device 1 transmits the acquired various types of information to another device that collects information (hereinafter, the collection device 32).
  • the terminal 30 has a function as the collection device 32. Transmission / reception of information between the terminal 30 and the power transmission facility monitoring apparatus 1 is performed by wireless communication.
  • FIG. 2 is a diagram illustrating an outline of the power transmission facility monitoring apparatus 1 according to the first embodiment.
  • the power transmission facility monitoring device 1 is a device mounted on the unmanned air vehicle 11, and includes, for example, an imaging unit 12, an electromagnetic wave detection unit 13, and a control device 14.
  • the imaging unit 12 images the power transmission facility and generates an image.
  • the imaging unit 12 includes, for example, an ultraviolet imaging unit 12-1 and a visible light imaging unit 12-2.
  • the ultraviolet imaging unit 12-1 generates an image by receiving light in the ultraviolet region.
  • the visible light imaging unit 12-2 generates an image by receiving light in the visible light region.
  • the image captured by the visible light imaging unit 12-2 is sent to the operator, and is used, for example, for confirming the positional relationship between the unmanned air vehicle 11 and the power transmission equipment by visual observation.
  • the imaging unit 12 and the control device 14 are connected so that information can be transmitted and received.
  • the imaging unit 12 supplies information (image information) indicating the captured image to the control device 14 at all times or at a predetermined interval.
  • the imaging unit 12 has information indicating the ultraviolet image generated by the ultraviolet imaging unit 12-1 (hereinafter referred to as ultraviolet image information 72-1) and information indicating the visible light image generated by the visible light imaging unit 12-2.
  • the visible light image information 72-2) may be voluntarily supplied to the control device 14, or may be supplied in response to a request from the control device 14.
  • the electromagnetic wave detection unit 13 and the control device 14 are connected so that information can be transmitted and received.
  • the electromagnetic wave detection unit 13 detects an electromagnetic wave emitted by the power transmission facility.
  • the electromagnetic wave detection unit 13 is, for example, an electromagnetic field sensor. Specifically, the electromagnetic wave detection unit 13 detects the magnetic field strength for each frequency in a predetermined band of the electromagnetic waves emitted by the power transmission equipment.
  • the predetermined band is preferably a band corresponding to the frequency of electromagnetic waves emitted from the power transmission equipment.
  • the electromagnetic wave detection unit 13 supplies electromagnetic wave information based on the detected electromagnetic wave to the control device 14.
  • the unmanned aerial vehicle 11 includes, for example, a casing 111, a drive unit 112, and a rotary wing 113.
  • the casing 111 supports the drive unit 112 and the rotary blade 113.
  • the drive unit 112 rotates the rotor blade 113.
  • the unmanned aerial vehicle 11 flies by rotating the rotor blade 113 and generating lift.
  • the rotor blade 113 is preferably formed of a non-metallic material. This is because, when the rotor blade 113 is formed of a metal material, the power transmission facility monitoring device 1 mounted on the unmanned air vehicle 11 affects the electromagnetic field distribution when detecting the electromagnetic waves generated by the electric wires 52 and the power transmission facilities. This is because it is difficult to detect with high accuracy.
  • the flight of the unmanned air vehicle 11 is controlled by the control device 14.
  • the unmanned air vehicle 11 and the control device 14 are connected so that information can be transmitted and received.
  • FIG. 3 is a diagram illustrating an example of a configuration of the power transmission facility monitoring apparatus 1 according to the first embodiment.
  • the control device 14 includes an instruction information acquisition unit 40 and a control unit 41.
  • the instruction information acquisition unit 40 acquires instruction information 71 from the terminal 30 via wireless communication.
  • the instruction information acquisition unit 40 supplies the acquired instruction information 71 to the control unit 41.
  • the control unit 41 includes, for example, an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, and a flight control unit 415 as functional units.
  • Each functional unit included in the control unit 41 is realized, for example, when a processor such as a CPU (Central Processing Unit) executes a program stored in a storage unit (not shown). These functional units may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or by cooperation of software and hardware. May be. These functional units may be distributed among a plurality of devices.
  • the image information acquisition unit 411 acquires image information 72 (ultraviolet image information 72-1 or visible light image information 72-2) from the imaging unit 12.
  • the image information acquisition unit 411 supplies the acquired image information 72 to the transmission unit 414 and the flight control unit 415.
  • the electromagnetic wave information acquisition unit 412 acquires the electromagnetic wave information 73 from the electromagnetic wave detection unit 13.
  • the electromagnetic wave information acquisition unit 412 supplies the acquired electromagnetic wave information 73 to the discharge determination unit 413, the transmission unit 414, and the flight control unit 415.
  • the discharge determination unit 413 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412.
  • the discharge determination unit 413 determines whether the electric wire 52 or the power transmission facility is discharged based on the acquired electromagnetic wave information 73. For example, when the magnetic field intensity of the frequency of the electromagnetic wave generated when the electric wire 52 or the power transmission facility is discharged among the magnetic field intensity for each frequency indicated in the electromagnetic wave information 73, the discharge determination unit 413 is higher than a predetermined threshold value. It is determined that the power transmission equipment is discharged.
  • the discharge determination unit 413 supplies the determination result 74 to the imaging unit 12. As described above, the imaging unit 12 supplies the ultraviolet image information 72-1 or the visible light image information 72-2 to the control device 14 based on the control of the control device 14.
  • the imaging unit 12 supplies the ultraviolet image information 72-1 to the control device 14 when the determination result 74 indicates that the electric wire 52 or the power transmission facility is discharged. Further, when the determination result 74 indicates that the electric wire 52 or the power transmission facility is not discharged, the imaging unit 12 supplies the visible light image information 72-2 to the control device 14.
  • the control unit 41 may be configured not to include the discharge determination unit 413.
  • the imaging unit 12 supplies image information 72 (ultraviolet image information 72-1 and visible light image information 72-2) to the control device 14 at all times or at predetermined intervals.
  • the transmission unit 414 acquires the image information 72 from the image information acquisition unit 411. In addition, the transmission unit 414 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412. The transmission unit 414 transmits one or both of the acquired image information 72 and electromagnetic wave information 73 to the collection device 32 by wireless communication.
  • Flight control unit 415 acquires instruction information 71 from instruction information acquisition unit 40.
  • the flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the instruction information 71. Specifically, the flight control unit 415 performs control for causing the unmanned air vehicle 11 to fly in the vertical direction, the front-rear direction, and the left-right direction of the unmanned air vehicle 11 indicated by the instruction information 71.
  • the flight control unit 415 acquires the image information 72 from the image information acquisition unit 411.
  • the flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the acquired image information 72.
  • the flight control unit 415 recognizes the visible light image based on the visible light image information 72-2, thereby performing unmanned flight so as to fly along the electric wire 52 captured in the visible light image. Control the flight of the body 11.
  • the unmanned aerial vehicle 11 can capture a visible light image that clearly shows the electric wire 52 and the power transmission facility.
  • the flight control unit 415 controls the flight of the unmanned air vehicle 11 so as to fly in the direction of the light generated as the electric wire 52 or the power transmission equipment is discharged based on the ultraviolet image information 72-1.
  • the unmanned aerial vehicle 11 can capture an ultraviolet image that clearly shows light generated when the electric wire 52 or the power transmission facility is discharged.
  • the flight control unit 415 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412.
  • the flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the acquired electromagnetic wave information 73. Specifically, the flight control unit 415 controls the flight of the unmanned air vehicle 11 so as to fly in the direction of the electromagnetic wave generated from the electric wire 52 among the electromagnetic waves indicated by the electromagnetic wave information 73. More specifically, the flight control unit 415 controls the flight of the unmanned air vehicle 11 so as to fly based on an electromagnetic wave that matches the characteristics of the electromagnetic wave generated from the electric wire 52 among the electromagnetic waves indicated by the electromagnetic wave information 73. Thereby, the unmanned air vehicle 11 can acquire the electromagnetic waves of the electric wire 52 and the power transmission equipment in detail.
  • the power transmission facility monitoring apparatus 1 switches one or both of the above modes to control the flight of the unmanned air vehicle 11, and the unmanned air vehicle 11 controls the power transmission facility monitoring device 1. Based on this, it is possible to fly by each mode.
  • FIG. 4 is a flowchart illustrating an example of the flight control operation of the unmanned air vehicle 11 according to the first embodiment.
  • the process shown in FIG. 4 is repeatedly executed periodically, for example.
  • the flight control unit 415 of the unmanned air vehicle 11 performs the flight of the unmanned air vehicle 11 based on the manual operation of the pilot (instruction information 71) until the electromagnetic wave detection unit 13 detects the electromagnetic wave generated by the electric wire 52 or the power transmission facility. Is controlled (steps S310 and S320).
  • the electromagnetic wave detection unit 13 detects an electromagnetic wave emitted by the electric wire 52 or the power transmission facility, a display for inquiring of the operator whether or not the unmanned air vehicle 11 is to fly automatically is displayed on the display unit included in the terminal 30.
  • the flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the manual operation of the operator (step S320).
  • the power transmission facility monitoring apparatus 1 starts imaging of the electric wire 52 and the power transmission facility by the ultraviolet imaging unit 12-1 (step S340).
  • the flight control unit 415 causes the unmanned air vehicle 11 to fly around the electric wire 52 and the power transmission equipment so that the intensity of the electromagnetic wave indicated by the electromagnetic wave information 73 becomes a predetermined intensity (step S350).
  • the flight control unit 415 performs the process of step S350 until the ultraviolet image captured and generated by the ultraviolet imaging unit 12-1 indicates that the electric wire 52 and the power transmission facility are discharged (step S360).
  • the flight control unit 415 when the ultraviolet image captured by the ultraviolet imaging unit 12-1 and the generated ultraviolet image indicates that the electric wire 52 and the power transmission facility are discharged, the electric wire 52 and the power transmission facility are discharged based on the ultraviolet image.
  • the unmanned aerial vehicle 11 is caused to fly in a direction approaching the spot that is being operated (step S370).
  • the flight control unit 415 causes the unmanned air vehicle 11 to fly such that the discharge location maintains a position where the imaging unit 12 can capture an image (step S380).
  • the flight control unit 415 extracts an area indicating discharge from the ultraviolet image, and causes the unmanned air vehicle 11 to fly such that the area is within a predetermined range and is located at the center of the image.
  • a region indicating discharge can be extracted based on a luminance difference in the ultraviolet image.
  • the flight control unit 415 moves forward with respect to the optical axis direction of the imaging unit 12 when the size of the region is less than a predetermined range, and light of the imaging unit 12 when the size of the region exceeds the predetermined range.
  • a flight operation is realized such that if the region is moved to the left in the image, it is moved horizontally to the left, and if the region is moved to the right in the image, it is moved to the right.
  • the flight control unit 415 may cause the unmanned air vehicle 11 to automatically fly based on the visible light image information 72-2.
  • the flight control unit 415 recognizes the image of the electric wire 52 shown in the visible light image, and controls the flight of the unmanned air vehicle 11 so as to fly along the electric wire 52.
  • the flight control unit 415 recognizes an image of the electric wire 52 and causes the unmanned air vehicle 11 to fly so as to maintain a position where the electric wire 52 is imaged to a predetermined size (thickness) by the imaging unit 12. .
  • FIG. 5 is a flowchart illustrating an example of the operation of the power transmission facility monitoring apparatus 1 according to the first embodiment.
  • the imaging unit 12 images the electric wire 52 and supplies the generated image information 72 to the image information acquisition unit 411 (step S510).
  • the electromagnetic wave detection unit 13 detects the electromagnetic wave generated from the electric wire 52 and supplies it to the electromagnetic wave information acquisition unit 412 (step S520).
  • the instruction information acquisition unit 40 acquires the instruction information 71 from the terminal 30 and supplies the instruction information 71 to the flight control unit 415 (step S530).
  • the image information acquisition unit 411 acquires the image information 72 from the imaging unit 12, and supplies the image information 72 to the transmission unit 414 and the flight control unit 415 (step S540).
  • the electromagnetic wave information acquisition part 412 acquires the electromagnetic wave information 73 from the electromagnetic wave detection part 13, and supplies it to the discharge determination part 413, the transmission part 414, and the flight control part 415 (step S550).
  • the discharge determination unit 413 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412 and determines whether or not the electric wire 52 or the power transmission facility is discharged (step S413).
  • the imaging unit 12 operates according to the determination of the discharge determination unit 413.
  • the transmission unit 414 transmits the acquired image information 72 and electromagnetic wave information 73 to the collection device 32 (terminal 30) (step S570).
  • the flight control unit 415 generates control information 75 indicating control of the flight of the unmanned air vehicle 11 based on at least one of the acquired instruction information 71, image information 72, and electromagnetic wave information 73. (Step S580).
  • the unmanned air vehicle 11 flies based on the acquired control information 75 (step S590).
  • the power transmission facility monitoring apparatus 1 includes the unmanned air vehicle 11, the imaging unit 12, the electromagnetic wave detection unit 13, and the control device 14.
  • the power transmission facility monitoring device 1 flies in the vicinity of the electric wire 52 and transmits information related to the power transmission facility (in this example, image information 72 and electromagnetic wave information 73) to the collection device 32.
  • the collection device 32 may include a display device and may have a function of displaying the image information 72 and the electromagnetic wave information 73 on the display device.
  • a person who confirms the collection device 32 hereinafter referred to as an inspector
  • the image information 72 is visible light image information 72-2.
  • the visible light image indicated by the visible light image information 72-2 is an image captured so that the electric wire 52 and the power transmission facility can be visually recognized.
  • the inspector can refer to the visible light image information 72-2 by using the collection device 32 and can confirm whether there is any abnormality in the color and shape of the power transmission equipment.
  • the image information 72 is the ultraviolet image information 72-1.
  • the ultraviolet image indicated by the ultraviolet image information 72-1 is an image obtained by capturing light (ultraviolet rays) generated when the electric wire 52 or the power transmission equipment is discharged. The inspector can check the ultraviolet image information 72-1 by the collection device 32, so that the location where the electric discharge is generated in the electric wire 52 and the power transmission facility can be grasped in detail.
  • the power transmission facility monitoring apparatus 1 of the first embodiment includes an ultraviolet imaging unit 12-1 and a visible light imaging unit 12-2 as the imaging unit 12.
  • the inspector can confirm the state of the electric wire 52 and the power transmission equipment in more detail by confirming the ultraviolet image information 72-1 and the visible light image information 72-2 with the collecting device 32.
  • the power transmission facility monitoring apparatus 1 may have a function of generating a composite image in which the ultraviolet image information 72-1 and the visible light image information 72-2 are superimposed.
  • the power transmission facility monitoring device 1 transmits the composite image from the transmission unit 414 to the collection device 32. The inspector can easily confirm the color and shape of the electric wire 52 and the location where the electric discharge is generated in the electric wire 52 by referring to the composite image by the collecting device 32.
  • the power transmission equipment monitoring apparatus 1 of the first embodiment includes a discharge determination unit 413. Further, when the determination result 74 of the discharge determination unit 413 indicates that the electric wire 52 and the power transmission facility are not discharged, the imaging unit 12 images the electric wire 52 and the power transmission facility with the visible light imaging unit 12-2, and the determination result 74 Indicates that the electric wire 52 and the power transmission equipment are discharged, the electric wire 52 and the power transmission equipment are imaged by the ultraviolet image information 72-1.
  • the ultraviolet image indicated by the ultraviolet image information 72-1 and the visible light image indicated by the visible light image information 72-2 the ultraviolet image can more easily grasp the location where the electric wire 52 and the power transmission equipment are discharged. can do.
  • the visible light image can easily grasp the color and shape of the electric wire 52 and the power transmission equipment. Can do. Therefore, it is preferable for the inspector to check the state of the electric wire 52 and the power transmission facility by a visible light image when the electric wire 52 and the power transmission facility are not discharged. It is preferable to check the state of the power transmission equipment. According to the power transmission equipment monitoring device 1 of the present embodiment, it is possible to provide information that can be easily confirmed by an inspector according to the state of the electric wire 52 and the power transmission equipment.
  • the flight control unit 415 is based on the electromagnetic wave information 73 when the determination result 74 of the discharge determination unit 413 indicates that the electric wire 52 or the power transmission equipment is not discharged.
  • the flight of the unmanned air vehicle 11 is controlled based on the visible light image information 72-2.
  • the inspection of the electric wire 52 and the power transmission equipment using the power transmission equipment monitoring device 1 may be performed at night. In this case, it may be difficult for the flight control unit 415 to control the flight of the unmanned air vehicle 11 based on the visible light image indicated by the visible light image information 72-2.
  • the determination result 74 of the discharge determination unit 413 indicates that the electric wire 52 or the power transmission facility is discharged, among the electromagnetic wave information 73, the ultraviolet image, and the visible light image, the ultraviolet image is more easily discharged.
  • the location may be grasped.
  • the power transmission equipment monitoring apparatus 1 controls the flight of the unmanned air vehicle 11 based on the electromagnetic wave information 73 or the visible light image information 72-2 when the discharge is not generated, and the discharge is generated. In this case, the flight of the unmanned air vehicle 11 is controlled based on the ultraviolet image information 72-1.
  • information in this example, the image information 72 and the electromagnetic wave information 73
  • Flight methods that can be acquired in more detail can be applied.
  • the rotor blade 113 of the unmanned air vehicle 11 provided in the power transmission facility monitoring device 1 of the first embodiment is formed of a non-metallic material.
  • the electromagnetic wave detection unit 13 of the unmanned air vehicle 11 is formed of a metal material, it may be difficult to accurately measure the electromagnetic wave by the electromagnetic wave detection unit 13. According to the power transmission equipment monitoring device 1 of the present embodiment, it is possible to measure electromagnetic waves with high accuracy.
  • FIG. 6 is a diagram illustrating an example of the configuration of the power transmission facility monitoring apparatus 1 according to the first modification.
  • the power transmission facility monitoring device 1 transmits the image information 72 and the electromagnetic wave information 73 to the collection device 32 has been described.
  • the power transmission facility monitoring apparatus 1 further transmits information indicating the position of the power transmission facility monitoring apparatus 1 to the collection device 32 will be described.
  • symbol is attached
  • the control device 14 included in the power transmission equipment monitoring device 1 includes a control unit 41.
  • the control unit 41 includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a flight control unit 415, and a position detection unit 416 as functional units.
  • the position detection unit 416 detects the position of the power transmission equipment monitoring device 1 and supplies position information 80 indicating the detected position to the transmission unit 414.
  • the position detection unit 416 is, for example, a method using a global navigation satellite system (Global Navigation Satellite System (s): GNSS) such as GPS (Global Positioning System) or a quasi-zenith satellite (quasi-zenith satellite):
  • GNSS global navigation satellite system
  • the position of the power transmission equipment monitoring device 1 is detected by a method using a regional satellite positioning system (RNSS) such as QZS.
  • RNSS regional satellite positioning system
  • the position detection unit 416 may have a function of complementing the position of the power transmission equipment monitoring device 1 detected by a method using GNSS or a method using RNSS with an inertial device (Inertial Navigation System: INS). Good.
  • the position information 80 includes information indicating the altitude of the power transmission equipment monitoring device 1.
  • the position detection unit 416 may acquire the altitude of the power transmission equipment monitoring device 1 using an atmospheric pressure sensor.
  • the position detection unit 416 recognizes the imaging target included in the visible light image based on the visible light image generated by the visible light imaging unit 12-2, for example, thereby increasing the altitude of the power transmission facility monitoring apparatus 1. It may be calculated.
  • the position information 80 includes information indicating the date and time when the position of the power transmission equipment monitoring device 1 is detected.
  • the power transmission equipment monitoring device 1 of the first modification includes the position detection unit 416.
  • the position detection unit 416 detects the position and height of the power transmission equipment monitoring device 1.
  • the transmission unit 414 transmits position information 80 indicating the position detected by the position detection unit 416 to the collection device 32.
  • the collection device 32 includes a storage unit, and the image information 72, the electromagnetic wave information 73, and the position information 80 acquired from the power transmission facility monitoring device 1 may be stored in association with each other.
  • the inspector checks the result of the inspection of the electric wire 52 and the power transmission facility by the power transmission facility monitoring apparatus 1 (in this example, the image information 72 and the electromagnetic wave information 73), and then the power transmission facility from which the result has been acquired.
  • the position of the monitoring device 1 can be grasped. Therefore, according to the power transmission equipment monitoring apparatus 1 of the first modification, it is possible to grasp in detail the location where the electric discharge is generated in the electric wire 52 and the power transmission equipment.
  • FIG. 7 is a diagram illustrating an example of the configuration of the power transmission facility monitoring device 1 according to the second modification.
  • the power transmission facility monitoring apparatus 1 includes a detection unit (hereinafter, sound detection unit 15) that detects the sound of the electric wires 52 and the power transmission facility, and a detection unit (hereinafter, heat detection unit 16) that detects heat.
  • sound detection unit 15 that detects the sound of the electric wires 52 and the power transmission facility
  • heat detection unit 16 that detects heat.
  • the power transmission equipment monitoring device 1 of Modification 2 includes an unmanned air vehicle 11, an imaging unit 12, an electromagnetic wave detection unit 13, a control device 14, a sound detection unit 15, and a heat detection unit 16.
  • the sound detection unit 15 collects a composite sound of a sound generated from the electric wire 52 or the power transmission facility and an environmental sound around the electric wire 52 or the power transmission facility, and sends sound information 76 indicating the collected sound to the control device 14. Supply.
  • the sound detection unit 15 is, for example, a microphone.
  • the electric wire 52 or the power transmission facility generates sound along with the discharge.
  • the sound detection unit 15 may be configured to have high directivity with respect to the frequency band corresponding to the sound generated from the electric wire 52 or the power transmission facility when the discharge is generated.
  • the heat detection unit 16 detects the temperature of the electric wire 52 and the power transmission equipment, and supplies the heat information 77 indicating the detected temperature to the control device 14.
  • the control device 14 of Modification 2 includes a control unit 41.
  • the control unit 41 includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a position detection unit 416, a sound information acquisition unit 417, and a thermal information acquisition unit 418. It is provided as a functional part.
  • the sound information acquisition unit 417 acquires the sound information 76 from the sound detection unit 15.
  • the sound information acquisition unit 417 supplies the acquired sound information 76 to the transmission unit 414.
  • the thermal information acquisition unit 418 acquires the thermal information 77 from the heat detection unit 16.
  • the thermal information acquisition unit 418 supplies the acquired thermal information 77 to the transmission unit 414.
  • the transmission unit 414 transmits the acquired sound information 76, heat information 77, image information 72, electromagnetic wave information 73, and position information 80 described above to the collection device 32.
  • the power transmission equipment monitoring device 1 according to the second modification further includes the sound detection unit 15 and the heat detection unit 16.
  • the sound detection unit 15 detects sound generated from the electric wire 52 and the power transmission equipment, and supplies sound information 76 indicating the detected sound to the control device 14.
  • the heat detection unit 16 detects the temperatures of the electric wires 52 and the power transmission equipment, and supplies heat information 77 indicating the detected temperatures to the control device 14.
  • the power transmission facility monitoring device 1 according to the second modification includes a control device 14.
  • the control device 14 includes a control unit 41, and includes a sound information acquisition unit 417 and a heat information acquisition unit 418 as functional units.
  • the transmission unit 414 transmits the sound information 76 acquired by the sound information acquisition unit 417 and the heat information 77 acquired by the heat information acquisition unit 418 to the collection device 32.
  • the electric wire 52 or the power transmission facility when a discharge is generated in the electric wire 52 or the power transmission facility, the electric wire 52 or the power transmission facility generates a sound along with the discharge.
  • the inspector can confirm whether or not a discharge has occurred in the electric wire 52 or the power transmission facility by confirming the sound information 76 received by the collection device 32.
  • the inspector can confirm whether or not a discharge has occurred in the electric wire 52 or the power transmission facility by confirming the heat information 77 received by the collection device 32. Therefore, according to the power transmission equipment monitoring device 1 of the second modification, the state of the electric wire 52 and the power transmission equipment can be grasped in detail.
  • FIG. 8 is a diagram illustrating an example of the configuration of the power transmission facility monitoring device 2 according to the second embodiment.
  • the modification 1, and the modification 2 the case where the electromagnetic wave information 73 which the power transmission equipment monitoring apparatus 1 detected was transmitted to the collection apparatus 32 was demonstrated.
  • the electromagnetic wave information 73 detected by the power transmission facility monitoring device 2 is compared with the electromagnetic wave information 73 detected in the past, and the degree of deterioration of the electric wire 52 and the power transmission facility is determined.
  • the case of transmitting to the collection device 32 will be described.
  • symbol is attached
  • the power transmission equipment monitoring device 2 includes an unmanned air vehicle 11, an imaging unit 12, an electromagnetic wave detection unit 13, a sound detection unit 15, a heat detection unit 16, and a control device 17.
  • the control device 17 includes an instruction information acquisition unit 40, a control unit 42, and a storage unit 43.
  • the control unit 42 includes a CPU, and includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a flight control unit 415, a position detection unit 416, and sound information.
  • the acquisition part 417, the thermal information acquisition part 418, the calculation part 419, and the deterioration determination part 420 are provided as the function part.
  • Each functional unit of the control unit 42 is realized by executing a program stored in the storage unit 43.
  • These functional units may be realized by hardware such as LSI, ASIC, FPGA, or may be realized by cooperation of software and hardware. These functional units may be distributed among a plurality of devices.
  • the storage unit 43 is realized by, for example, a ROM, a flash memory, a HDD (Hard Disk Drive) SD card, a RAM, a register, and the like.
  • the storage unit 43 may be a storage device such as a NAS (Network Attached Storage) that can be accessed by the collection device 32 via the network NW.
  • NAS Network Attached Storage
  • the calculation unit 419 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412, and based on the acquired electromagnetic wave information 73, the discharge charge that is the amount of charge released when a discharge occurs in the electric wire 52 or the power transmission facility. Calculate the amount. For example, the calculation unit 419 calculates the discharge charge amount based on the magnetic field strength of the electromagnetic wave indicated by the electromagnetic wave information 73 and the distance to the electric wire 52 or the power transmission facility that generates the electromagnetic wave. The calculation unit 419 supplies charge amount information 78 indicating the calculated discharge charge amount to the transmission unit 414. The transmission unit 414 transmits the charge amount information 78 acquired from the calculation unit 419 to the collection device 32.
  • FIG. 9 is a table illustrating an example of the detection information 81 according to the second embodiment.
  • position information 80 detected by the position detection unit 416 image information 72 acquired by the image information acquisition unit 411 (in this example, ultraviolet image information 72-1 and visible light image information 72-2), and electromagnetic waves
  • image information 72 acquired by the image information acquisition unit 411 in this example, ultraviolet image information 72-1 and visible light image information 72-2
  • electromagnetic waves The electromagnetic wave information 73 acquired by the information acquisition unit 412 and the charge amount information 78 calculated by the calculation unit 419 are stored in the storage unit 43 as detection information 81 in association with each other.
  • the storage unit 43 stores detection information 81 (hereinafter referred to as first detection information 81-1) at a certain timing (hereinafter referred to as first timing) and past timing (hereinafter referred to as first timing) before the first timing. 2) detection information 81 (hereinafter, second detection information 81-2) is stored.
  • the deterioration determination unit 420 is based on the first detection information 81-1 and the second detection information 81-2 out of the detection information 81 stored in the storage unit 43, and the electric wire 52 and the power transmission equipment. Determine the degree of degradation. For example, the deterioration determination unit 420 generates detection information 81 in which the position indicated by the position information 80 included in the first detection information 81-1 matches the position indicated by the position information 80 included in the second detection information 81-2. The degree of deterioration is determined by comparison. Here, when a discharge occurs in the electric wire 52 or the power transmission equipment, and the amount of discharge charge released along with the discharge is large, the degree of deterioration of the electric wire 52 or the power transmission equipment may be advanced.
  • the deterioration determination unit 420 increases the discharge charge amount indicated by the charge amount information 78 included in the first detection information 81-1 from the discharge charge amount indicated by the charge amount information 78 included in the second detection information 81-2. When it does, it determines with the electric wire 52 and power transmission equipment having deteriorated.
  • the deterioration determination unit 420 supplies deterioration determination result information 79 indicating the determination result to the transmission unit 414.
  • the transmission unit 414 transmits the deterioration determination result information 79 acquired from the deterioration determination unit 420 to the collection device 32.
  • the detection information 81 may be configured to include at least the charge amount information 78.
  • the deterioration determination unit 420 can determine the degree of deterioration of the electric wire 52 and the power transmission equipment based on the first detection information 81-1 and the second detection information 81-2, the charge Information other than the quantity information 78 may not be included.
  • the deterioration determination unit 420 compares the first detection information 81-1 acquired at the first timing with the second detection information 81-2 acquired at the second timing. However, it is not limited to this.
  • the deterioration determination unit 420 compares the first detection information 81-1 acquired at the first timing with a reference determined based on the detection information 81 acquired in the past from the first timing, The structure which determines the grade of deterioration of the electric wire 52 or power transmission equipment may be sufficient. This reference may be an average of the charge amount information 78 included in the detection information 81 acquired in the past.
  • the power transmission equipment monitoring device 2 includes the storage unit 43, the calculation unit 419, and the deterioration determination unit 420 has been described, but the present invention is not limited thereto.
  • the collection device 32 may include a storage unit 43, a calculation unit 419, and a deterioration determination unit 420.
  • the amount of discharge charge released along with the discharge of the electric wire 52 or the power transmission facility is calculated, and the charge included in the first detection information 81-1 is calculated.
  • the degree of deterioration of the power transmission equipment such as the electric wire 52 is determined. Thereby, the inspector can refer to information (for example, deterioration determination result information 79) indicating the degree of deterioration of the power transmission equipment such as the electric wire 52 and grasp the state of the power transmission equipment such as the electric wire 52 in detail.
  • FIG. 10 is a diagram illustrating an outline of the power transmission facility monitoring device 3 according to the third embodiment.
  • the power transmission equipment monitoring apparatus 3 detects the arrival direction of electromagnetic waves, and makes the unmanned air vehicle 11 fly based further on the detected arrival direction.
  • symbol is attached
  • the power transmission facility monitoring device 3 is a device mounted on the unmanned air vehicle 11.
  • the imaging unit 12, a directional antenna (electromagnetic wave detection unit) 13 ⁇ / b> A, a sound detection unit 15, The heat detection part 16, the rotation drive part 18, and the control apparatus 19 are provided.
  • the rotation drive unit 18 rotates the electromagnetic wave detection unit 13 based on the control of the control device 19.
  • the rotation drive unit 18 is, for example, a motor.
  • the directional antenna 13 ⁇ / b> A includes a main shaft that is supported vertically downward by the rotation driving unit 18, and a subshaft that generates a directional direction corresponding to a direction in which the main shaft is bent and extends.
  • the main shaft of the directional antenna 13A and the wiring provided in the rotation drive unit 18 are connected by a slip ring.
  • FIG. 11 is a diagram illustrating an example of a configuration of the power transmission facility monitoring device 3 according to the third embodiment.
  • the control device 19 includes, for example, an instruction information acquisition unit 40, a storage unit 43, and a control unit 44.
  • the control unit 44 includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a flight control unit 415, a position detection unit 416, a sound information acquisition unit 417, and a heat.
  • the information acquisition part 418, the calculation part 419, the deterioration determination part 420, the drive control part 421, and the arrival direction detection part 422 are provided.
  • the drive control unit 421 controls the operation of the rotation drive unit 18. For example, the drive control unit 421 rotates the directional antenna 13 ⁇ / b> A when the unmanned air vehicle 11 starts flying around the power transmission facility.
  • the arrival direction detection unit 422 acquires electromagnetic wave information 73 (hereinafter, including a reception signal) from the electromagnetic wave detection unit 13, and detects the arrival direction of the electromagnetic wave generated from the power transmission equipment.
  • the arrival direction detection unit 422 supplies direction information 82 indicating the detected direction to the flight control unit 415.
  • the arrival direction detection unit 422 acquires, for example, the electromagnetic wave information 73 in each direction when the rotation driving unit 18 rotates the electromagnetic wave detection unit 13 and the electromagnetic wave detection unit 13 is directed in different directions.
  • the arrival direction detection unit 422 is the direction of the electromagnetic wave detection unit 13 when acquiring the electromagnetic wave information 73 having the strongest intensity of the electromagnetic wave generated from the power transmission facility among the electromagnetic wave information 73 in each direction, that is, the electromagnetic wave generated from the power transmission facility. Detect the direction of arrival.
  • the arrival direction detection unit 422 supplies the detected arrival direction to the flight control unit 415 as direction information 82.
  • the flight control unit 415 further controls the flight of the unmanned air vehicle 11 based on the acquired direction information 82. For example, the flight control unit 415 causes the unmanned air vehicle 11 to fly in the arrival direction of the electromagnetic wave indicated by the direction information 82 and moves the unmanned air vehicle 11 in the vicinity of the power transmission equipment. Since the subsequent configuration is the same as that of the above-described embodiment and modification, the description thereof is omitted.
  • the power transmission facility monitoring device 3 of the third embodiment includes the rotation drive unit 18, the drive control unit 421, and the arrival direction detection unit 422.
  • the rotation drive unit 18 rotates the electromagnetic wave detection unit 13 based on the control of the drive control unit 421.
  • the arrival direction detection unit 422 detects the arrival direction of the electromagnetic wave generated from the power transmission facility based on the detected electromagnetic wave information 73.
  • the flight control unit 415 causes the unmanned air vehicle 11 to fly in the arrival direction detected by the arrival direction detection unit 422. Therefore, according to the power transmission facility monitoring device 3 of the present embodiment, the unmanned air vehicle 11 can be moved to the vicinity of the power transmission facility even when the operator does not control the unmanned air vehicle 11.
  • FIG. 12 is a diagram illustrating an example of an outline of the power transmission facility monitoring device 3 according to the fourth embodiment.
  • the power transmission equipment monitoring device 3 includes a patch antenna (electromagnetic wave detection unit) 13B, and the patch antenna 13B is disposed on the rotor blade 113.
  • symbol is attached
  • the patch antenna 13 ⁇ / b> B included in the power transmission facility monitoring device 3 of the fourth embodiment is disposed on the rotor blade 113.
  • the patch antenna 13B is rotated as the rotating blade 113 rotates.
  • the wiring connected to the patch antenna 13B is connected to a slip ring provided in the vicinity of the rotating shaft of the rotor blade 113.
  • a slip ring and the electrical equipment monitoring apparatus 3 main body are connected by wiring.
  • the arrival direction detection unit 422 acquires the electromagnetic wave information 73 in each direction when the rotary wing 113 rotates the patch antenna 13B and the patch antenna 13B is directed in different directions.
  • the arrival direction detection unit 422 is the direction of the patch antenna 13B when acquiring the electromagnetic wave information 73 having the strongest intensity of the electromagnetic wave generated from the power transmission facility among the electromagnetic wave information 73 in each direction, that is, the electromagnetic wave generated from the power transmission facility.
  • the direction of arrival is detected.
  • the directivity of the patch antenna 13B is assumed to be in the normal direction with respect to the surface of the patch antenna 13B.
  • the arrival direction detection unit 422 supplies the detected arrival direction to the flight control unit 415 as direction information 82.
  • the power transmission equipment monitoring apparatus 3 of 4th Embodiment does not need to be provided with the rotation drive part 18 and the drive control part 421. FIG. Since the subsequent description is the same as that of the above-described embodiment, the description is omitted.
  • the patch antenna 13B included in the power transmission facility monitoring device 3 of the fourth embodiment is disposed on the rotor blade 113.
  • the arrival direction detection unit 422 detects the arrival direction of the electromagnetic wave generated from the power transmission facility based on the electromagnetic wave information 73 detected by the patch antenna 13B rotated with the rotation of the rotary blade 113. Therefore, according to the power transmission equipment monitoring device 3 of the fourth embodiment, the unmanned air vehicle 11 can be moved to the vicinity of the power transmission equipment even when the operator does not control the unmanned air vehicle 11.
  • FIG. 13 is a diagram illustrating an example of an outline of the power transmission facility monitoring device 3 according to the fifth embodiment.
  • the power transmission facility monitoring device 3 includes a plurality of patch antennas.
  • symbol is attached
  • the power transmission facility monitoring apparatus 3 of the fifth embodiment includes two patch antennas 13B-1 and B-2.
  • the patch antenna 13B-2 is arranged with an interval that causes a significant difference in the phase of the electromagnetic wave to be detected.
  • the patch antenna 13B is arranged at a position away from the top surface of the casing 111 or in the vertical direction.
  • the patch antenna 13B-1 and the patch antenna 13B-2 are arranged in the surface direction of the top plate surface of the casing 111.
  • the arrival direction detection unit 422 acquires the electromagnetic wave information 73 from each of the plurality of patch antennas 13B.
  • the arrival direction detection unit 422 estimates the arrival direction of the electromagnetic wave generated from the power transmission facility based on the phase difference between the electromagnetic wave information 73. Since the subsequent configuration is the same as that of the above-described embodiment and modification, the description thereof is omitted.
  • the power transmission equipment monitoring device 3 of the fifth embodiment includes the plurality of patch antennas 13B and the arrival direction detection unit 422.
  • the plurality of patch antennas 13B are arranged at positions where differences occur in the detection results of the electromagnetic waves (in this example, positions separated in the surface direction of the top plate surface), and the arrival direction detection unit 422 is configured to detect the electromagnetic waves detected by the patch antenna 13B. Based on the information 73, the arrival direction of the electromagnetic wave generated from the power transmission facility is detected. Therefore, according to the power transmission equipment monitoring device 3 of the modification 3, the unmanned air vehicle 11 can be moved to the vicinity of the power transmission equipment even when the operator does not control the unmanned air vehicle 11.
  • FIG. 14 is a diagram illustrating an example of an outline of the power transmission facility monitoring device 3 according to the sixth embodiment.
  • the power transmission equipment monitoring device 3 includes three or more patch antennas 13B, and detects the arrival directions of electromagnetic waves generated from the power transmission equipment with two or more directions of accuracy.
  • the power transmission equipment monitoring apparatus 3 includes, for example, eight patch antennas 13B-3 to 13B-10.
  • the patch antenna 13B-3 to patch antenna 13B-10 are arranged on the back surface or side surface of the casing 111.
  • the patch antenna 13B-3 to the patch antenna 13B-6 are arranged with an interval that causes a significant difference in the phase of the electromagnetic wave to be detected.
  • the patch antenna 13B-3 to patch antenna 13B-10 are arranged in an array with two rows on the top and bottom.
  • the arrival direction detection unit 422 acquires the electromagnetic wave information 73 from each of the plurality of patch antennas 13B.
  • the arrival direction detection unit 422 estimates the arrival direction of the electromagnetic wave based on the phase difference between the electromagnetic wave information 73 from the adjacent patch antennas 13 ⁇ / b> B in the electromagnetic wave information 73.
  • the power transmission equipment monitoring apparatus 3 can detect the arrival direction of the electromagnetic waves generated from the power transmission equipment with higher accuracy based on the electromagnetic wave information 73 detected by the patch antenna 13B. Since the subsequent configuration is the same as that of the above-described embodiment and modification, the description thereof is omitted.
  • the directional antenna 13A may be, for example, an omnidirectional antenna (for example, a dipole antenna, a monopole antenna, and a rod antenna).
  • the power transmission facility monitoring device 3 may include a telescopic drive unit that expands and contracts the directional antenna 13A, for example.
  • the drive control unit 421 controls the operation of the telescopic drive unit. For example, when the unmanned air vehicle 11 starts to fly around the power transmission facility, the drive control unit 421 expands and contracts the directional antenna 13A to a length corresponding to the electromagnetic wave generated from the power transmission facility. Thereby, the power transmission equipment monitoring device 3 can efficiently detect electromagnetic waves generated from the power transmission equipment.
  • the power transmission facility monitoring device 3 rotates or expands or contracts the directional antenna 13A or the patch antenna 13B, or includes a plurality of patch antennas 13B is described, but the present invention is not limited thereto.
  • the power transmission facility monitoring device 3 turns the unmanned air vehicle 11 when the unmanned air vehicle 11 flies around the power transmission facility when the directivity of the antenna is limited (for example, the directivity of the patch antenna is about).
  • the directivity of the patch antenna is about
  • the direction of arrival of electromagnetic waves may be searched.
  • FIG. 15 is a diagram illustrating an example of a configuration of the terminal 30 according to the seventh embodiment.
  • various types of information detected by the power transmission equipment monitoring device are presented in a form that is easy for the operator of the unmanned air vehicle 11 to recognize.
  • symbol is attached
  • the terminal 30 of the present embodiment includes a control unit 44 and a display unit 45 in addition to the configuration described above.
  • the control unit 44 includes a CPU, and includes a reception unit 441, an image generation unit 442, and a display control unit 443 as functional units.
  • the receiving unit 441 receives the ultraviolet image information 72-1 and the visible light image from any one of the power transmission facility monitoring device 1, the power transmission facility monitoring device 2, and the power transmission facility monitoring device 3 (hereinafter simply referred to as a power transmission facility monitoring device). Information 72-2 is received.
  • the image generation unit 442 generates a discharge location image indicating a location where a power transmission facility has a discharge based on the ultraviolet image information 72-1 and the visible light image information 72-2.
  • the ultraviolet image and the visible light image are images captured in the same direction and the same angle of view, for example. Therefore, the position of the power transmission facility captured in the ultraviolet image and the position of the power transmission facility captured in the visible light image correspond to each other. Otherwise, the images may be aligned with reference to information associating the positions between the images.
  • the image generation unit 442 superimposes an image (hereinafter, discharge location image 84) that clearly indicates the location of the discharge in the visible light image information 72-2.
  • An image is generated as a composite image.
  • the display control unit 443 acquires information indicating the composite image generated by the image generation unit 442 (hereinafter, composite image information 83) and displays the information on the display unit 45.
  • the display unit 45 displays a composite image based on the control of the display control unit 443.
  • the display unit 45 may be, for example, a wearable display device such as a VR (Virtual Reality) goggle in addition to a general LCD or an organic EL display device.
  • the discharge location image includes four discharge location images 84 (discharge location image 84-1 to discharge location image 84-4 shown in the drawing) according to the location of the discharge of the power transmission equipment captured in the ultraviolet image. It is an image superimposed on a visible light image.
  • the display control unit 443 refers to the display information stored in advance in a storage unit (not shown) and superimposes it on the visible light image.
  • the display information is, for example, information in which a predetermined pixel value is assigned to pixels around the pixel that is the center position to be emphasized.
  • FIG. 16 is a diagram illustrating an example of a composite image according to the seventh embodiment. As shown in FIG.
  • a composite image is shown in which a highlighted display of an X mark is superimposed on a visible light image.
  • the highlighted display is not limited to the x mark, but may be a rectangle, a circle, an arrow, a mark for alerting, or the like.
  • superimposing may be realized by replacing the original pixel value with the highlighted pixel value, or may be realized by adding. Further, it may be realized by inverting the pixel value of a portion to be highlighted.
  • the terminal 30 includes the image generation unit 442, and identifies the location where the power transmission facility has a discharge based on the ultraviolet image information 72-1 and the visible light image information 72-2.
  • a composite image is generated by superimposing the highlighted display shown on the visible light image. The operator of the unmanned air vehicle 11 can easily grasp the discharge generated in the power transmission facility with reference to the composite image generated by the terminal 30.
  • the image generation unit 442 may be configured to generate a composite image that brightens or enlarges the highlight display when the discharge amount of the power transmission facility indicated by the ultraviolet image information 72-1 is large. Further, the image generation unit 442 may be configured to generate a composite image that darkens or reduces the highlighting when the discharge amount of the power transmission line indicated by the ultraviolet image information 72-1 is small.
  • the display control unit 443 may be configured to display a composite image by AR (Augmented Reality) technology.
  • AR Augmented Reality
  • the display control unit 443 acquires the position and orientation of the inspector with a GPS or a direction sensor built in the AR glass, and generates a three-dimensional space model centered on the inspector.
  • the display control unit 443 applies the captured image (visible light image information 72-2) to the three-dimensional space model, and converts the portion to be highlighted from two-dimensional to three-dimensional.
  • the display control unit 443 highlights a portion to be emphasized in the power transmission line visually recognized through the AR glass.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Cable Installation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A power transmission facility monitoring device according to an embodiment includes: an image capture unit; an electromagnetic wave detection unit; a transmission unit; a direction information acquisition unit; and a flying control unit. The power transmission facility monitoring device of the embodiment is mounted in an unmanned flying object. The image capture unit captures an image of a power transmission facility. The electromagnetic wave detection unit detects electromagnetic waves emitted from the power transmission facility. The transmission unit transmits at least one of image information based on an image captured by the image capture unit and electromagnetic wave information based on the electromagnetic waves detected by the electromagnetic wave detection unit to another device. The direction information acquisition unit acquires direction information that directs the unmanned flying object to fly from a terminal of an operator who operates the flying object. The flying control unit controls the flying of the unmanned flying object on the basis of the direction information acquired by the direction information acquisition unit.

Description

送電設備監視装置、送電設備監視ユニット及び送電設備監視システムPower transmission equipment monitoring device, power transmission equipment monitoring unit, and power transmission equipment monitoring system
 本発明の実施形態は、送電設備監視装置、送電設備監視ユニット及び送電設備監視システムに関する。 Embodiments of the present invention relate to a power transmission facility monitoring device, a power transmission facility monitoring unit, and a power transmission facility monitoring system.
 従来、無人飛行体が送電線の近傍を飛行し、送電線の画像を撮像することによって送電線を点検する点検方法が知られている。しかしながら、従来の方法では、撮像された画像を参照し、送電線の外観を確認することができても、送電線の状態について詳細な情報を得ることまでは困難である場合があった。 Conventionally, an inspection method is known in which an unmanned air vehicle flies in the vicinity of a transmission line and an image of the transmission line is taken to inspect the transmission line. However, in the conventional method, even if the appearance of the power transmission line can be confirmed by referring to the captured image, it may be difficult to obtain detailed information about the state of the power transmission line.
特開2005-265699号公報JP 2005-265699 A
 本発明が解決しようとする課題は、送電設備に関する情報を取得する仕組みを提供することができる送電設備監視装置及び送電設備監視ユニットを提供することである。 The problem to be solved by the present invention is to provide a power transmission equipment monitoring device and a power transmission equipment monitoring unit capable of providing a mechanism for acquiring information about power transmission equipment.
 実施形態の送電設備監視装置は、撮像部と、電磁波検出部と、送信部と、指示情報取得部と、飛行制御部と、を持つ。また、実施形態の送電設備監視装置は、無人飛行体に搭載される。撮像部は、送電設備を撮像する。電磁波検出部は、前記送電設備が発する電磁波を検出する。送信部は、前記撮像部により撮像された画像に基づく画像情報と、前記電磁波検出部により検出された前記電磁波に基づく電磁波情報とのうち、少なくとも1つを他装置に送信する。指示情報取得部は、前記無人飛行体を操縦する操縦者の端末から、前記無人飛行体の飛行を指示する指示情報を取得する。飛行制御部は、前記指示情報取得部により取得された前記指示情報に基づいて、前記無人飛行体の飛行を制御する。 The power transmission facility monitoring apparatus of the embodiment includes an imaging unit, an electromagnetic wave detection unit, a transmission unit, an instruction information acquisition unit, and a flight control unit. Moreover, the power transmission equipment monitoring apparatus of the embodiment is mounted on an unmanned aerial vehicle. The imaging unit images the power transmission facility. The electromagnetic wave detection unit detects an electromagnetic wave generated by the power transmission facility. The transmission unit transmits at least one of image information based on the image captured by the imaging unit and electromagnetic wave information based on the electromagnetic wave detected by the electromagnetic wave detection unit to another device. The instruction information acquisition unit acquires instruction information for instructing the flight of the unmanned air vehicle from a terminal of a driver who controls the unmanned air vehicle. The flight control unit controls the flight of the unmanned air vehicle based on the instruction information acquired by the instruction information acquisition unit.
第1の実施形態の送電設備監視装置と、無人飛行体との概要を示す図。The figure which shows the outline | summary of the power transmission equipment monitoring apparatus of 1st Embodiment, and an unmanned air vehicle. 第1の実施形態の送電設備監視装置の概要を示す図。The figure which shows the outline | summary of the power transmission equipment monitoring apparatus of 1st Embodiment. 第1の実施形態の送電設備監視装置の構成の一例を示す図。The figure which shows an example of a structure of the power transmission equipment monitoring apparatus of 1st Embodiment. 第1の実施形態の無人飛行体の飛行制御の動作の一例を示す流れ図。The flowchart which shows an example of operation | movement of the flight control of the unmanned air vehicle of 1st Embodiment. 第1の実施形態の送電設備監視装置の動作の一例を示す流れ図。The flowchart which shows an example of operation | movement of the power transmission equipment monitoring apparatus of 1st Embodiment. 変形例1の送電設備監視装置の構成の一例を示す図。The figure which shows an example of a structure of the power transmission equipment monitoring apparatus of the modification 1. 変形例2の送電設備監視装置の構成の一例を示す図。The figure which shows an example of a structure of the power transmission equipment monitoring apparatus of the modification 2. 第2の実施形態の送電設備監視装置の構成の一例を示す図。The figure which shows an example of a structure of the power transmission equipment monitoring apparatus of 2nd Embodiment. 第2の実施形態の検出情報の一例を示す表。The table | surface which shows an example of the detection information of 2nd Embodiment. 第3の実施形態の送電設備監視装置の概要を示す図である。It is a figure which shows the outline | summary of the power transmission equipment monitoring apparatus of 3rd Embodiment. 第3の実施形態の送電設備監視装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the power transmission equipment monitoring apparatus of 3rd Embodiment. 第4の実施形態の電設備監視装置の概要の一例を示す図である。It is a figure which shows an example of the outline | summary of the electrical equipment monitoring apparatus of 4th Embodiment. 第5の実施形態の送電設備監視装置の概要の一例を示す図である。It is a figure which shows an example of the outline | summary of the power transmission equipment monitoring apparatus of 5th Embodiment. 第6の実施形態の送電設備監視装置の概要の一例を示す図である。It is a figure which shows an example of the outline | summary of the power transmission equipment monitoring apparatus of 6th Embodiment. 第7の実施形態の端末の構成の一例を示す図である。It is a figure which shows an example of a structure of the terminal of 7th Embodiment. 第7の実施形態の合成画像の一例を示す図である。It is a figure which shows an example of the synthesized image of 7th Embodiment.
 以下、実施形態の送電設備監視装置及び送電設備監視ユニットを、図面を参照して説明する。実施形態の送電監視装置は、電線や送電設備の監視を支援する装置である。送電監視装置は、電線や送電設備の近傍を飛行する無人飛行体に搭載され、電線や送電設備に関する情報を収集する。電線や送電設備に関する情報とは、例えば、電線や送電設備が発する電磁波の情報や、電線や送電設備が撮像され、生成された画像を示す情報である。 Hereinafter, the power transmission equipment monitoring device and the power transmission equipment monitoring unit of the embodiment will be described with reference to the drawings. The power transmission monitoring device of the embodiment is a device that supports monitoring of electric wires and power transmission equipment. The power transmission monitoring device is mounted on an unmanned air vehicle flying in the vicinity of an electric wire or power transmission equipment, and collects information on the electric wire or power transmission equipment. The information on the electric wire and the power transmission facility is, for example, information on an electromagnetic wave generated by the electric wire or the power transmission facility, or information indicating an image generated by imaging the electric wire or the power transmission facility.
(第1の実施形態)
 図1は、第1の実施形態の送電設備監視装置1を搭載する無人飛行体11の使用環境を示す図である。図1に示す通り、無人飛行体11は、鉄塔51や電線52の他、変圧器、避雷器、開閉装置など(不図示)を含む送電設備の周辺で使用される。無人飛行体11とは、例えば、ドローンである。送電設備監視装置1は、無人飛行体11を操縦する操縦者の端末30から飛行を指示する情報(以下、指示情報)を取得し、取得した指示情報に基づいて無人飛行体11の飛行を制御する。操縦者は、無人飛行体11が電線52の近傍を飛行するように無人飛行体11を操縦し、端末30は、操縦に応じた無人飛行体11の指示情報を送電設備監視装置1に送信する。指示情報とは、例えば、無人飛行体11の上下方向、前後方向及び左右方向への移動の指示を示す情報である。送電設備監視装置1は、無人飛行体11が電線52の近傍を飛行することに伴って、送電設備に関する各種情報を取得する。また、送電設備監視装置1は、情報を収集する他装置(以下、収集装置32)に対し、取得した各種情報を送信する。この一例では、端末30が収集装置32としての機能を有する。端末30と、送電設備監視装置1との間の情報の送受信は、無線通信によって行われる。
(First embodiment)
FIG. 1 is a diagram illustrating a use environment of an unmanned air vehicle 11 on which the power transmission facility monitoring device 1 according to the first embodiment is mounted. As shown in FIG. 1, the unmanned air vehicle 11 is used in the vicinity of a power transmission facility including a tower 51, an electric wire 52, a transformer, a lightning arrester, a switchgear, and the like (not shown). The unmanned air vehicle 11 is, for example, a drone. The power transmission facility monitoring apparatus 1 acquires information (hereinafter referred to as instruction information) instructing flight from the terminal 30 of the operator who controls the unmanned air vehicle 11, and controls the flight of the unmanned air vehicle 11 based on the acquired instruction information. To do. The pilot maneuvers the unmanned air vehicle 11 so that the unmanned air vehicle 11 flies in the vicinity of the electric wire 52, and the terminal 30 transmits the instruction information of the unmanned air vehicle 11 according to the maneuvering to the power transmission equipment monitoring device 1. . The instruction information is information indicating an instruction for moving the unmanned air vehicle 11 in the vertical direction, the front-rear direction, and the left-right direction, for example. The power transmission facility monitoring apparatus 1 acquires various types of information related to the power transmission facility as the unmanned air vehicle 11 flies near the electric wire 52. In addition, the power transmission facility monitoring device 1 transmits the acquired various types of information to another device that collects information (hereinafter, the collection device 32). In this example, the terminal 30 has a function as the collection device 32. Transmission / reception of information between the terminal 30 and the power transmission facility monitoring apparatus 1 is performed by wireless communication.
 以下、図2を参照して、送電設備監視装置1の構成の概要について説明する。図2は、第1の実施形態の送電設備監視装置1の概要を示す図である。送電設備監視装置1は、無人飛行体11に搭載される装置であって、例えば、撮像部12と、電磁波検出部13と、制御装置14とを備える。 Hereinafter, the outline of the configuration of the power transmission equipment monitoring apparatus 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating an outline of the power transmission facility monitoring apparatus 1 according to the first embodiment. The power transmission facility monitoring device 1 is a device mounted on the unmanned air vehicle 11, and includes, for example, an imaging unit 12, an electromagnetic wave detection unit 13, and a control device 14.
 撮像部12は、送電設備を撮像し、画像を生成する。撮像部12は、例えば、紫外線撮像部12-1と、可視光撮像部12-2とを備える。紫外線撮像部12-1は、紫外線領域の光を受光することによって画像を生成する。送電設備が放電する場合、紫外線が発せられるため、紫外線撮像部12-1は、送電設備の放電を画像として検出することができる。可視光撮像部12-2は、可視光領域の光を受光することによって画像を生成する。可視光撮像部12-2により撮像された画像は、操作者に送られ、例えば、目視で無人飛行体11と送電設備との位置関係を確認するために用いられる。 The imaging unit 12 images the power transmission facility and generates an image. The imaging unit 12 includes, for example, an ultraviolet imaging unit 12-1 and a visible light imaging unit 12-2. The ultraviolet imaging unit 12-1 generates an image by receiving light in the ultraviolet region. When the power transmission facility is discharged, ultraviolet rays are emitted, so that the ultraviolet imaging unit 12-1 can detect the discharge of the power transmission facility as an image. The visible light imaging unit 12-2 generates an image by receiving light in the visible light region. The image captured by the visible light imaging unit 12-2 is sent to the operator, and is used, for example, for confirming the positional relationship between the unmanned air vehicle 11 and the power transmission equipment by visual observation.
 撮像部12と、制御装置14とは、情報を送受信可能に接続される。撮像部12は、撮像した画像を示す情報(画像情報)を常時又は所定の間隔で制御装置14に供給する。ここで、撮像部12は、紫外線撮像部12-1が生成した紫外線画像を示す情報(以下、紫外線画像情報72-1)と、可視光撮像部12-2が生成した可視光画像を示す情報(以下、可視光画像情報72-2)とを自発的に制御装置14に供給してもよいし、制御装置14からの要求に応じて供給してもよい。 The imaging unit 12 and the control device 14 are connected so that information can be transmitted and received. The imaging unit 12 supplies information (image information) indicating the captured image to the control device 14 at all times or at a predetermined interval. Here, the imaging unit 12 has information indicating the ultraviolet image generated by the ultraviolet imaging unit 12-1 (hereinafter referred to as ultraviolet image information 72-1) and information indicating the visible light image generated by the visible light imaging unit 12-2. (Hereinafter, the visible light image information 72-2) may be voluntarily supplied to the control device 14, or may be supplied in response to a request from the control device 14.
 電磁波検出部13と、制御装置14とは、情報を送受信可能に接続される。電磁波検出部13は、送電設備が発する電磁波を検出する。電磁波検出部13とは、例えば、電磁界センサである。具体的には、電磁波検出部13は、送電設備が発する電磁波の所定の帯域の周波数毎の磁界強度を検出する。所定の帯域は、送電設備から発せられる電磁波の周波数に対応した帯域であると好適である。電磁波検出部13は、検出した電磁波に基づく電磁波情報を制御装置14に供給する。 The electromagnetic wave detection unit 13 and the control device 14 are connected so that information can be transmitted and received. The electromagnetic wave detection unit 13 detects an electromagnetic wave emitted by the power transmission facility. The electromagnetic wave detection unit 13 is, for example, an electromagnetic field sensor. Specifically, the electromagnetic wave detection unit 13 detects the magnetic field strength for each frequency in a predetermined band of the electromagnetic waves emitted by the power transmission equipment. The predetermined band is preferably a band corresponding to the frequency of electromagnetic waves emitted from the power transmission equipment. The electromagnetic wave detection unit 13 supplies electromagnetic wave information based on the detected electromagnetic wave to the control device 14.
 無人飛行体11は、例えば、筐体111と、駆動部112と、回転翼113とを備える。筐体111は、駆動部112と、回転翼113とを支持する。駆動部112は、回転翼113を回転させる。回転翼113が回転し、揚力が生じることにより、無人飛行体11が飛行する。回転翼113は、例えば、非金属材料によって形成されると好適である。なぜなら、回転翼113が金属材料によって形成される場合、無人飛行体11に搭載される送電設備監視装置1が、電線52や送電設備が発する電磁波を検出する際に、電磁界分布に影響をあたえ、精度高く検出することが困難なためである。無人飛行体11の飛行は、制御装置14によって制御される。無人飛行体11と、制御装置14とは、情報を送受信可能に接続される。 The unmanned aerial vehicle 11 includes, for example, a casing 111, a drive unit 112, and a rotary wing 113. The casing 111 supports the drive unit 112 and the rotary blade 113. The drive unit 112 rotates the rotor blade 113. The unmanned aerial vehicle 11 flies by rotating the rotor blade 113 and generating lift. For example, the rotor blade 113 is preferably formed of a non-metallic material. This is because, when the rotor blade 113 is formed of a metal material, the power transmission facility monitoring device 1 mounted on the unmanned air vehicle 11 affects the electromagnetic field distribution when detecting the electromagnetic waves generated by the electric wires 52 and the power transmission facilities. This is because it is difficult to detect with high accuracy. The flight of the unmanned air vehicle 11 is controlled by the control device 14. The unmanned air vehicle 11 and the control device 14 are connected so that information can be transmitted and received.
 以下、図3を参照して制御装置14の構成について説明する。図3は、第1の実施形態の送電設備監視装置1の構成の一例を示す図である。制御装置14は、指示情報取得部40と、制御部41とを備える。指示情報取得部40は、端末30から無線通信を介して指示情報71を取得する。指示情報取得部40は、取得した指示情報71を制御部41に供給する。制御部41は、例えば、画像情報取得部411と、電磁波情報取得部412と、放電判定部413と、送信部414と、飛行制御部415とをその機能部として備える。制御部41が備える各機能部は、例えば、CPU(Central Processing Unit)などのプロセッサが記憶部(不図示)に記憶されたプログラムを実行することにより実現される。これらの機能部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。また、これらの機能部は、複数の装置に分散されてもよい。画像情報取得部411は、撮像部12から画像情報72(紫外線画像情報72-1又は可視光画像情報72-2)を取得する。画像情報取得部411は、取得した画像情報72を送信部414と、飛行制御部415とに供給する。電磁波情報取得部412は、電磁波検出部13から電磁波情報73を取得する。電磁波情報取得部412は、取得した電磁波情報73を放電判定部413と、送信部414と、飛行制御部415とに供給する。 Hereinafter, the configuration of the control device 14 will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of a configuration of the power transmission facility monitoring apparatus 1 according to the first embodiment. The control device 14 includes an instruction information acquisition unit 40 and a control unit 41. The instruction information acquisition unit 40 acquires instruction information 71 from the terminal 30 via wireless communication. The instruction information acquisition unit 40 supplies the acquired instruction information 71 to the control unit 41. The control unit 41 includes, for example, an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, and a flight control unit 415 as functional units. Each functional unit included in the control unit 41 is realized, for example, when a processor such as a CPU (Central Processing Unit) executes a program stored in a storage unit (not shown). These functional units may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or by cooperation of software and hardware. May be. These functional units may be distributed among a plurality of devices. The image information acquisition unit 411 acquires image information 72 (ultraviolet image information 72-1 or visible light image information 72-2) from the imaging unit 12. The image information acquisition unit 411 supplies the acquired image information 72 to the transmission unit 414 and the flight control unit 415. The electromagnetic wave information acquisition unit 412 acquires the electromagnetic wave information 73 from the electromagnetic wave detection unit 13. The electromagnetic wave information acquisition unit 412 supplies the acquired electromagnetic wave information 73 to the discharge determination unit 413, the transmission unit 414, and the flight control unit 415.
 放電判定部413は、電磁波情報取得部412から電磁波情報73を取得する。放電判定部413は、取得した電磁波情報73に基づいて、電線52や送電設備が放電しているか否かを判定する。放電判定部413は、例えば、電磁波情報73に示される周波数毎の磁界強度のうち、電線52や送電設備が放電する際に発生する電磁波の周波数の磁界強度が所定の閾値より高い場合、電線52や送電設備が放電していると判定する。放電判定部413は、判定結果74を撮像部12に供給する。上述したように、撮像部12は、制御装置14の制御に基づいて、紫外線画像情報72-1又は可視光画像情報72-2を制御装置14に供給する。具体的には、撮像部12は、電線52や送電設備が放電していることを判定結果74が示す場合、紫外線画像情報72-1を制御装置14に供給する。また、撮像部12は、電線52や送電設備が放電していないことを判定結果74が示す場合、可視光画像情報72-2を制御装置14に供給する。 The discharge determination unit 413 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412. The discharge determination unit 413 determines whether the electric wire 52 or the power transmission facility is discharged based on the acquired electromagnetic wave information 73. For example, when the magnetic field intensity of the frequency of the electromagnetic wave generated when the electric wire 52 or the power transmission facility is discharged among the magnetic field intensity for each frequency indicated in the electromagnetic wave information 73, the discharge determination unit 413 is higher than a predetermined threshold value. It is determined that the power transmission equipment is discharged. The discharge determination unit 413 supplies the determination result 74 to the imaging unit 12. As described above, the imaging unit 12 supplies the ultraviolet image information 72-1 or the visible light image information 72-2 to the control device 14 based on the control of the control device 14. Specifically, the imaging unit 12 supplies the ultraviolet image information 72-1 to the control device 14 when the determination result 74 indicates that the electric wire 52 or the power transmission facility is discharged. Further, when the determination result 74 indicates that the electric wire 52 or the power transmission facility is not discharged, the imaging unit 12 supplies the visible light image information 72-2 to the control device 14.
 なお、制御部41は、放電判定部413を備えていない構成であってもよい。この場合、撮像部12は、常時又は所定の間隔において画像情報72(紫外線画像情報72-1及び可視光画像情報72-2)を制御装置14に供給する。 The control unit 41 may be configured not to include the discharge determination unit 413. In this case, the imaging unit 12 supplies image information 72 (ultraviolet image information 72-1 and visible light image information 72-2) to the control device 14 at all times or at predetermined intervals.
 送信部414は、画像情報取得部411から画像情報72を取得する。また、送信部414は、電磁波情報取得部412から電磁波情報73を取得する。送信部414は、取得した画像情報72と電磁波情報73とのうち一方または双方を、無線通信によって収集装置32に送信する。 The transmission unit 414 acquires the image information 72 from the image information acquisition unit 411. In addition, the transmission unit 414 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412. The transmission unit 414 transmits one or both of the acquired image information 72 and electromagnetic wave information 73 to the collection device 32 by wireless communication.
 飛行制御部415は、指示情報取得部40から指示情報71を取得する。飛行制御部415は、指示情報71に基づいて、無人飛行体11の飛行を制御する。具体的には、飛行制御部415は、指示情報71が示す無人飛行体11の上下方向、前後方向及び左右方向に無人飛行体11を飛行させる制御を行う。 Flight control unit 415 acquires instruction information 71 from instruction information acquisition unit 40. The flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the instruction information 71. Specifically, the flight control unit 415 performs control for causing the unmanned air vehicle 11 to fly in the vertical direction, the front-rear direction, and the left-right direction of the unmanned air vehicle 11 indicated by the instruction information 71.
 [可視光画像に基づく飛行モード]
 また、飛行制御部415は、画像情報取得部411から画像情報72を取得する。飛行制御部415は、取得した画像情報72に基づいて、無人飛行体11の飛行を制御する。具体的には、飛行制御部415は、可視光画像情報72-2に基づいて、可視光画像を画像認識することによって、可視光画像に撮像される電線52に沿って飛行するように無人飛行体11の飛行を制御する。これにより、無人飛行体11は、電線52や送電設備を鮮明に示す可視光画像を撮像することができる。また、飛行制御部415は、紫外線画像情報72-1に基づいて、電線52や送電設備が放電することに伴って発生する光の方向に飛行するように無人飛行体11の飛行を制御する。これにより、無人飛行体11は、電線52や送電設備が放電することに伴って発生する光を鮮明に示す紫外線画像を撮像することができる。
[Flight mode based on visible light image]
In addition, the flight control unit 415 acquires the image information 72 from the image information acquisition unit 411. The flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the acquired image information 72. Specifically, the flight control unit 415 recognizes the visible light image based on the visible light image information 72-2, thereby performing unmanned flight so as to fly along the electric wire 52 captured in the visible light image. Control the flight of the body 11. Thereby, the unmanned aerial vehicle 11 can capture a visible light image that clearly shows the electric wire 52 and the power transmission facility. Further, the flight control unit 415 controls the flight of the unmanned air vehicle 11 so as to fly in the direction of the light generated as the electric wire 52 or the power transmission equipment is discharged based on the ultraviolet image information 72-1. Thereby, the unmanned aerial vehicle 11 can capture an ultraviolet image that clearly shows light generated when the electric wire 52 or the power transmission facility is discharged.
 [電磁波に基づく飛行モード]
 また、飛行制御部415は、電磁波情報取得部412から電磁波情報73を取得する。飛行制御部415は、取得した電磁波情報73に基づいて、無人飛行体11の飛行を制御する。具体的には、飛行制御部415は、電磁波情報73が示す電磁波のうち、電線52から発生する電磁波の方向に飛行するように無人飛行体11の飛行を制御する。より具体的には、飛行制御部415は、電磁波情報73が示す電磁波のうち、電線52から発生する電磁波の特徴と一致する電磁波に基づいて飛行するように無人飛行体11の飛行を制御する。これにより、無人飛行体11は、電線52及び送電設備の電磁波を詳細に取得することができる。
[Flight mode based on electromagnetic waves]
Further, the flight control unit 415 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412. The flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the acquired electromagnetic wave information 73. Specifically, the flight control unit 415 controls the flight of the unmanned air vehicle 11 so as to fly in the direction of the electromagnetic wave generated from the electric wire 52 among the electromagnetic waves indicated by the electromagnetic wave information 73. More specifically, the flight control unit 415 controls the flight of the unmanned air vehicle 11 so as to fly based on an electromagnetic wave that matches the characteristics of the electromagnetic wave generated from the electric wire 52 among the electromagnetic waves indicated by the electromagnetic wave information 73. Thereby, the unmanned air vehicle 11 can acquire the electromagnetic waves of the electric wire 52 and the power transmission equipment in detail.
 上述した構成によって、実施形態の送電設備監視装置1は、上記のモードのうち一方または双方を切り替えて無人飛行体11の飛行を制御し、無人飛行体11は、送電設備監視装置1の制御に基づいて、各モードによって飛行を行うことができる。 With the above-described configuration, the power transmission facility monitoring apparatus 1 according to the embodiment switches one or both of the above modes to control the flight of the unmanned air vehicle 11, and the unmanned air vehicle 11 controls the power transmission facility monitoring device 1. Based on this, it is possible to fly by each mode.
 [飛行モードの遷移]
 以下、図4を参照して無人飛行体11の飛行モードの遷移について説明する。図4は、第1の実施形態の無人飛行体11の飛行制御の動作の一例を示す流れ図である。図4に示す処理は、例えば、周期的に繰り返し実行される。無人飛行体11の飛行制御部415は、電磁波検出部13が電線52や送電設備が発する電磁波を検出するまでの間、操縦者の手動操縦(指示情報71)に基づいて無人飛行体11の飛行を制御する(ステップS310、S320)。電磁波検出部13が電線52や送電設備が発する電磁波を検出した場合、端末30が備える表示部には、無人飛行体11を自動飛行させるか否かを操縦者に問い合わせる表示が表示される。操縦者が無人飛行体11を自動飛行させない場合、飛行制御部415は、操縦者の手動操縦に基づいて無人飛行体11の飛行を制御する(ステップS320)。
[Flight mode transition]
Hereinafter, the transition of the flight mode of the unmanned air vehicle 11 will be described with reference to FIG. FIG. 4 is a flowchart illustrating an example of the flight control operation of the unmanned air vehicle 11 according to the first embodiment. The process shown in FIG. 4 is repeatedly executed periodically, for example. The flight control unit 415 of the unmanned air vehicle 11 performs the flight of the unmanned air vehicle 11 based on the manual operation of the pilot (instruction information 71) until the electromagnetic wave detection unit 13 detects the electromagnetic wave generated by the electric wire 52 or the power transmission facility. Is controlled (steps S310 and S320). When the electromagnetic wave detection unit 13 detects an electromagnetic wave emitted by the electric wire 52 or the power transmission facility, a display for inquiring of the operator whether or not the unmanned air vehicle 11 is to fly automatically is displayed on the display unit included in the terminal 30. When the driver does not automatically fly the unmanned air vehicle 11, the flight control unit 415 controls the flight of the unmanned air vehicle 11 based on the manual operation of the operator (step S320).
 一方、操縦者が無人飛行体11を自動飛行させる場合、送電設備監視装置1は、紫外線撮像部12-1による電線52や送電設備の撮像を開始する(ステップS340)。また、飛行制御部415は、無人飛行体11を、電磁波情報73が示す電磁波の強度が所定強度となる状態を維持するように、電線52や送電設備の周辺を飛行させる(ステップS350)。飛行制御部415は、紫外線撮像部12-1が撮像し、生成する紫外線画像が、電線52や送電設備が放電していることを示すまでの間、ステップS350の処理を行う(ステップS360)。飛行制御部415は、紫外線撮像部12-1が撮像し、生成する紫外線画像が、電線52や送電設備が放電していることを示す場合、紫外線画像に基づいて、電線52や送電設備が放電している箇所に近づく方向に無人飛行体11を飛行させる(ステップS370)。また、飛行制御部415は、放電箇所が撮像部12によって撮像可能な位置を維持するように無人飛行体11を飛行させる(ステップS380)。例えば、飛行制御部415は、紫外線画像から放電を示す領域を抽出し、その領域が所定範囲内の大きさで且つ画像の中央に位置するように、無人飛行体11を飛行させる。放電を示す領域は、紫外線画像における輝度差に基づいて抽出することができる。飛行制御部415は、例えば、領域の大きさが所定範囲未満である場合は、撮像部12の光軸方向に関して前進、領域の大きさが所定範囲を超えるである場合は、撮像部12の光軸方向に関して後退、領域が画像の中で左に寄っていれば左に横移動、領域が画像の中で右に寄っていれば右に横移動するといった飛行動作を実現する。 On the other hand, when the operator causes the unmanned air vehicle 11 to fly automatically, the power transmission facility monitoring apparatus 1 starts imaging of the electric wire 52 and the power transmission facility by the ultraviolet imaging unit 12-1 (step S340). In addition, the flight control unit 415 causes the unmanned air vehicle 11 to fly around the electric wire 52 and the power transmission equipment so that the intensity of the electromagnetic wave indicated by the electromagnetic wave information 73 becomes a predetermined intensity (step S350). The flight control unit 415 performs the process of step S350 until the ultraviolet image captured and generated by the ultraviolet imaging unit 12-1 indicates that the electric wire 52 and the power transmission facility are discharged (step S360). The flight control unit 415, when the ultraviolet image captured by the ultraviolet imaging unit 12-1 and the generated ultraviolet image indicates that the electric wire 52 and the power transmission facility are discharged, the electric wire 52 and the power transmission facility are discharged based on the ultraviolet image. The unmanned aerial vehicle 11 is caused to fly in a direction approaching the spot that is being operated (step S370). In addition, the flight control unit 415 causes the unmanned air vehicle 11 to fly such that the discharge location maintains a position where the imaging unit 12 can capture an image (step S380). For example, the flight control unit 415 extracts an area indicating discharge from the ultraviolet image, and causes the unmanned air vehicle 11 to fly such that the area is within a predetermined range and is located at the center of the image. A region indicating discharge can be extracted based on a luminance difference in the ultraviolet image. For example, the flight control unit 415 moves forward with respect to the optical axis direction of the imaging unit 12 when the size of the region is less than a predetermined range, and light of the imaging unit 12 when the size of the region exceeds the predetermined range. Retreating in the axial direction, a flight operation is realized such that if the region is moved to the left in the image, it is moved horizontally to the left, and if the region is moved to the right in the image, it is moved to the right.
 なお、上述では、飛行制御部415が電磁波情報73に基づいて無人飛行体11を自動飛行させる場合について説明したが、これに限られない。飛行制御部415は、可視光画像情報72-2に基づいて無人飛行体11を自動飛行させてもよい。この場合、飛行制御部415は、例えば、可視光画像に示される電線52を画像認識し、電線52に沿って飛行するように無人飛行体11の飛行を制御する。具体的には、飛行制御部415は、電線52を画像認識し、電線52が撮像部12によって所定の大きさ(太さ)に撮像される位置を維持するように無人飛行体11を飛行させる。 In the above description, the case where the flight control unit 415 causes the unmanned air vehicle 11 to automatically fly based on the electromagnetic wave information 73 has been described, but the present invention is not limited thereto. The flight control unit 415 may cause the unmanned air vehicle 11 to automatically fly based on the visible light image information 72-2. In this case, for example, the flight control unit 415 recognizes the image of the electric wire 52 shown in the visible light image, and controls the flight of the unmanned air vehicle 11 so as to fly along the electric wire 52. Specifically, the flight control unit 415 recognizes an image of the electric wire 52 and causes the unmanned air vehicle 11 to fly so as to maintain a position where the electric wire 52 is imaged to a predetermined size (thickness) by the imaging unit 12. .
 以下、図5を参照し、送電設備監視装置1の動作について説明する。図5は、第1の実施形態の送電設備監視装置1の動作の一例を示す流れ図である。
 撮像部12は、電線52を撮像し、生成した画像情報72を画像情報取得部411に供給する(ステップS510)。電磁波検出部13は、電線52から発生する電磁波を検出し、電磁波情報取得部412に供給する(ステップS520)。指示情報取得部40は、端末30から指示情報71を取得し、飛行制御部415に供給する(ステップS530)。画像情報取得部411は、撮像部12から画像情報72を取得し、送信部414と、飛行制御部415とに供給する(ステップS540)。電磁波情報取得部412は、電磁波検出部13から電磁波情報73を取得し、放電判定部413と、送信部414と、飛行制御部415とに供給する(ステップS550)。放電判定部413は、電磁波情報取得部412から電磁波情報73を取得し、電線52や送電設備が放電しているか否かを判定する(ステップS413)。ここで、撮像部12は、放電判定部413の判定に応じて動作する。送信部414は、取得した画像情報72と、電磁波情報73とを収集装置32(端末30)に送信する(ステップS570)。飛行制御部415は、取得した指示情報71、画像情報72及び電磁波情報73のうち、少なくとも1つに基づいて、無人飛行体11の飛行の制御を示す制御情報75を生成し、無人飛行体11に供給する(ステップS580)。無人飛行体11は、取得した制御情報75に基づいて飛行する(ステップS590)。
Hereinafter, the operation of the power transmission equipment monitoring apparatus 1 will be described with reference to FIG. FIG. 5 is a flowchart illustrating an example of the operation of the power transmission facility monitoring apparatus 1 according to the first embodiment.
The imaging unit 12 images the electric wire 52 and supplies the generated image information 72 to the image information acquisition unit 411 (step S510). The electromagnetic wave detection unit 13 detects the electromagnetic wave generated from the electric wire 52 and supplies it to the electromagnetic wave information acquisition unit 412 (step S520). The instruction information acquisition unit 40 acquires the instruction information 71 from the terminal 30 and supplies the instruction information 71 to the flight control unit 415 (step S530). The image information acquisition unit 411 acquires the image information 72 from the imaging unit 12, and supplies the image information 72 to the transmission unit 414 and the flight control unit 415 (step S540). The electromagnetic wave information acquisition part 412 acquires the electromagnetic wave information 73 from the electromagnetic wave detection part 13, and supplies it to the discharge determination part 413, the transmission part 414, and the flight control part 415 (step S550). The discharge determination unit 413 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412 and determines whether or not the electric wire 52 or the power transmission facility is discharged (step S413). Here, the imaging unit 12 operates according to the determination of the discharge determination unit 413. The transmission unit 414 transmits the acquired image information 72 and electromagnetic wave information 73 to the collection device 32 (terminal 30) (step S570). The flight control unit 415 generates control information 75 indicating control of the flight of the unmanned air vehicle 11 based on at least one of the acquired instruction information 71, image information 72, and electromagnetic wave information 73. (Step S580). The unmanned air vehicle 11 flies based on the acquired control information 75 (step S590).
 以上説明したように、第1の実施形態の送電設備監視装置1は、無人飛行体11と、撮像部12と、電磁波検出部13と、制御装置14とを備える。送電設備監視装置1は、電線52の近傍を飛行し、送電設備に関する情報(この一例では、画像情報72及び電磁波情報73)を収集装置32に送信する。ここで、収集装置32は、表示装置を備え、画像情報72及び電磁波情報73を表示装置に表示する機能を有する場合がある。この場合、収集装置32を確認する者(以下、点検者)は、収集装置32によって画像情報72及び電磁波情報73を確認することにより、送電設備の状態を把握することができる。撮像部12が紫外線撮像部12-1である場合、画像情報72とは、可視光画像情報72-2である。可視光画像情報72-2が示す可視光画像は、電線52及び送電設備が視認可能に撮像された画像である。点検者は、収集装置32によって可視光画像情報72-2を参照し、送電設備の色や形状に異常がないかを確認することができる。また、撮像部12が紫外線画像情報72-1である場合、画像情報72とは、紫外線画像情報72-1である。紫外線画像情報72-1が示す紫外線画像は、電線52や送電設備が放電することに伴って発生する光(紫外線)が撮像された画像である。点検者は、収集装置32によって紫外線画像情報72-1を確認することにより、電線52及び送電設備において放電が発生している箇所を詳細に把握することができる。 As described above, the power transmission facility monitoring apparatus 1 according to the first embodiment includes the unmanned air vehicle 11, the imaging unit 12, the electromagnetic wave detection unit 13, and the control device 14. The power transmission facility monitoring device 1 flies in the vicinity of the electric wire 52 and transmits information related to the power transmission facility (in this example, image information 72 and electromagnetic wave information 73) to the collection device 32. Here, the collection device 32 may include a display device and may have a function of displaying the image information 72 and the electromagnetic wave information 73 on the display device. In this case, a person who confirms the collection device 32 (hereinafter referred to as an inspector) can grasp the state of the power transmission facility by confirming the image information 72 and the electromagnetic wave information 73 with the collection device 32. When the imaging unit 12 is the ultraviolet imaging unit 12-1, the image information 72 is visible light image information 72-2. The visible light image indicated by the visible light image information 72-2 is an image captured so that the electric wire 52 and the power transmission facility can be visually recognized. The inspector can refer to the visible light image information 72-2 by using the collection device 32 and can confirm whether there is any abnormality in the color and shape of the power transmission equipment. When the imaging unit 12 is the ultraviolet image information 72-1, the image information 72 is the ultraviolet image information 72-1. The ultraviolet image indicated by the ultraviolet image information 72-1 is an image obtained by capturing light (ultraviolet rays) generated when the electric wire 52 or the power transmission equipment is discharged. The inspector can check the ultraviolet image information 72-1 by the collection device 32, so that the location where the electric discharge is generated in the electric wire 52 and the power transmission facility can be grasped in detail.
 また、第1の実施形態の送電設備監視装置1は、撮像部12として、紫外線撮像部12-1と、可視光撮像部12-2とを備える。点検者は、収集装置32によって紫外線画像情報72-1及び可視光画像情報72-2を確認することにより、電線52及び送電設備の状態をより詳細に確認することができる。 Further, the power transmission facility monitoring apparatus 1 of the first embodiment includes an ultraviolet imaging unit 12-1 and a visible light imaging unit 12-2 as the imaging unit 12. The inspector can confirm the state of the electric wire 52 and the power transmission equipment in more detail by confirming the ultraviolet image information 72-1 and the visible light image information 72-2 with the collecting device 32.
 なお、送電設備監視装置1は、紫外線画像情報72-1と、可視光画像情報72-2とを重ね合わせた合成画像を生成する機能を備えていてもよい。この場合、送電設備監視装置1は、送信部414から収集装置32に合成画像を送信する。点検者は、収集装置32によって合成画像を参照することにより、電線52の色や形状と、電線52において放電が発生している箇所とを簡便に確認することができる。 Note that the power transmission facility monitoring apparatus 1 may have a function of generating a composite image in which the ultraviolet image information 72-1 and the visible light image information 72-2 are superimposed. In this case, the power transmission facility monitoring device 1 transmits the composite image from the transmission unit 414 to the collection device 32. The inspector can easily confirm the color and shape of the electric wire 52 and the location where the electric discharge is generated in the electric wire 52 by referring to the composite image by the collecting device 32.
 また、第1の実施形態の送電設備監視装置1は、放電判定部413を備える。また、撮像部12は、放電判定部413の判定結果74が電線52や送電設備が放電していないこと示す場合、可視光撮像部12-2によって電線52及び送電設備を撮像し、判定結果74が電線52や送電設備が放電していることを示す場合、紫外線画像情報72-1によって電線52及び送電設備を撮像する。ここで、紫外線画像情報72-1が示す紫外線画像と、可視光画像情報72-2が示す可視光画像とでは、紫外線画像の方が電線52や送電設備が放電している箇所を容易に把握することができる。また、紫外線画像情報72-1が示す紫外線画像と、可視光画像情報72-2が示す可視光画像とでは、可視光画像の方が電線52や送電設備の色や形状を容易に把握することができる。したがって、点検者は、電線52や送電設備が放電していない場合、可視光画像によって電線52や送電設備の状態を確認することが好ましく、放電している場合には、紫外線画像によって電線52や送電設備の状態を確認することが好ましい。本実施形態の送電設備監視装置1によれば、電線52及び送電設備の状態に応じて、点検者が確認しやすい情報を提供することができる。 Moreover, the power transmission equipment monitoring apparatus 1 of the first embodiment includes a discharge determination unit 413. Further, when the determination result 74 of the discharge determination unit 413 indicates that the electric wire 52 and the power transmission facility are not discharged, the imaging unit 12 images the electric wire 52 and the power transmission facility with the visible light imaging unit 12-2, and the determination result 74 Indicates that the electric wire 52 and the power transmission equipment are discharged, the electric wire 52 and the power transmission equipment are imaged by the ultraviolet image information 72-1. Here, in the ultraviolet image indicated by the ultraviolet image information 72-1 and the visible light image indicated by the visible light image information 72-2, the ultraviolet image can more easily grasp the location where the electric wire 52 and the power transmission equipment are discharged. can do. In addition, in the ultraviolet image indicated by the ultraviolet image information 72-1 and the visible light image indicated by the visible light image information 72-2, the visible light image can easily grasp the color and shape of the electric wire 52 and the power transmission equipment. Can do. Therefore, it is preferable for the inspector to check the state of the electric wire 52 and the power transmission facility by a visible light image when the electric wire 52 and the power transmission facility are not discharged. It is preferable to check the state of the power transmission equipment. According to the power transmission equipment monitoring device 1 of the present embodiment, it is possible to provide information that can be easily confirmed by an inspector according to the state of the electric wire 52 and the power transmission equipment.
 また、第1の実施形態の送電設備監視装置1において、飛行制御部415は、放電判定部413の判定結果74が電線52や送電設備が放電していないことを示す場合、電磁波情報73に基づいて、無人飛行体11の飛行を制御し、判定結果74が電線52や送電設備が放電していることを示す場合、可視光画像情報72-2に基づいて無人飛行体11の飛行を制御する。ここで、送電設備監視装置1を用いた電線52及び送電設備の点検が夜間に行われる場合がある。この場合、飛行制御部415が可視光画像情報72-2が示す可視光画像に基づいて、無人飛行体11の飛行を制御することが困難である場合がある。また、放電判定部413の判定結果74が電線52や送電設備が放電していることを示す場合、電磁波情報73と、紫外線画像と、可視光画像とのうち、紫外線画像がより容易に放電の箇所を把握できる場合がある。本実施形態の送電設備監視装置1は、放電が発生していない場合、電磁波情報73又は可視光画像情報72-2に基づいて、無人飛行体11の飛行を制御し、放電が発生している場合、紫外線画像情報72-1に基づいて無人飛行体11の飛行を制御する。したがって、本実施形態の送電設備監視装置1によれば、電線52及び送電設備の状態に応じて、電線52や送電設備の状態を示す情報(この一例では、画像情報72及び電磁波情報73)をより詳細に取得できる飛行方法を適応することができる。 Moreover, in the power transmission equipment monitoring apparatus 1 of the first embodiment, the flight control unit 415 is based on the electromagnetic wave information 73 when the determination result 74 of the discharge determination unit 413 indicates that the electric wire 52 or the power transmission equipment is not discharged. When the flight of the unmanned air vehicle 11 is controlled and the determination result 74 indicates that the electric wire 52 or the power transmission facility is discharged, the flight of the unmanned air vehicle 11 is controlled based on the visible light image information 72-2. . Here, the inspection of the electric wire 52 and the power transmission equipment using the power transmission equipment monitoring device 1 may be performed at night. In this case, it may be difficult for the flight control unit 415 to control the flight of the unmanned air vehicle 11 based on the visible light image indicated by the visible light image information 72-2. In addition, when the determination result 74 of the discharge determination unit 413 indicates that the electric wire 52 or the power transmission facility is discharged, among the electromagnetic wave information 73, the ultraviolet image, and the visible light image, the ultraviolet image is more easily discharged. The location may be grasped. The power transmission equipment monitoring apparatus 1 according to the present embodiment controls the flight of the unmanned air vehicle 11 based on the electromagnetic wave information 73 or the visible light image information 72-2 when the discharge is not generated, and the discharge is generated. In this case, the flight of the unmanned air vehicle 11 is controlled based on the ultraviolet image information 72-1. Therefore, according to the power transmission equipment monitoring apparatus 1 of the present embodiment, information (in this example, the image information 72 and the electromagnetic wave information 73) indicating the state of the electric wire 52 and the power transmission equipment according to the state of the electric wire 52 and the power transmission equipment. Flight methods that can be acquired in more detail can be applied.
 また、第1の実施形態の送電設備監視装置1が備える無人飛行体11の回転翼113は、非金属材料によって形成される。ここで、無人飛行体11の電磁波検出部13が金属材料で形成される場合、電磁波検出部13による電磁波の計測を精度高く行うことが困難である場合がある。本実施形態の送電設備監視装置1によれば、電磁波の計測を精度高く行うことができる。 Moreover, the rotor blade 113 of the unmanned air vehicle 11 provided in the power transmission facility monitoring device 1 of the first embodiment is formed of a non-metallic material. Here, when the electromagnetic wave detection unit 13 of the unmanned air vehicle 11 is formed of a metal material, it may be difficult to accurately measure the electromagnetic wave by the electromagnetic wave detection unit 13. According to the power transmission equipment monitoring device 1 of the present embodiment, it is possible to measure electromagnetic waves with high accuracy.
[変形例1]
 以下、図を参照して第1の実施形態の一つ目の変形例である変形例1について説明する。図6は、変形例1の送電設備監視装置1の構成の一例を示す図である。第1の実施形態では、送電設備監視装置1が収集装置32に画像情報72と、電磁波情報73とを送信する場合について説明した。変形例1では送電設備監視装置1が収集装置32に送電設備監視装置1の位置を示す情報を更に送信する場合について説明する。なお、上述した実施形態と同様の構成については、同一の符号を付して説明を省略する。
[Modification 1]
Hereinafter, Modification 1 which is a first modification of the first embodiment will be described with reference to the drawings. FIG. 6 is a diagram illustrating an example of the configuration of the power transmission facility monitoring apparatus 1 according to the first modification. In the first embodiment, the case where the power transmission facility monitoring device 1 transmits the image information 72 and the electromagnetic wave information 73 to the collection device 32 has been described. In the first modification, a case where the power transmission facility monitoring apparatus 1 further transmits information indicating the position of the power transmission facility monitoring apparatus 1 to the collection device 32 will be described. In addition, about the structure similar to embodiment mentioned above, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図6に示す通り、変形例1の送電設備監視装置1が備える制御装置14は、制御部41を備える。制御部41は、画像情報取得部411と、電磁波情報取得部412と、放電判定部413と、送信部414と、飛行制御部415と、位置検出部416とをその機能部として備える。位置検出部416は、送電設備監視装置1の位置を検出し、検出した位置を示す位置情報80を送信部414に供給する。ここで、位置検出部416は、例えば、GPS(Global Positioning System)などの全地球航法衛星システム(Global Navigation Satellite System(s):GNSS)を利用した方法や、準天頂衛星(quasi-zenith satellites:QZS)などの地域的衛星測位システム(Regional Navigation Satellite System:RNSS)を利用した方法によって送電設備監視装置1の位置を検出する。ここで、位置検出部416は、GNSSを利用した方法やRNSSを利用した方法によって検出した送電設備監視装置1の位置を、慣性装置(Inertial Navigation System:INS)によって補完する機能を有してもよい。また、位置情報80には、送電設備監視装置1の高度を示す情報が含まれる。位置検出部416は、例えば、気圧センサによって送電設備監視装置1の高度を取得してもよい。また、位置検出部416は、例えば、可視光撮像部12-2が生成する可視光画像に基づいて、可視光画像に含まれる撮像対象を画像認識することにより、送電設備監視装置1の高度を算出してもよい。また、位置情報80には、送電設備監視装置1の位置を検出した日時を示す情報が含まれる。 As shown in FIG. 6, the control device 14 included in the power transmission equipment monitoring device 1 according to the first modification includes a control unit 41. The control unit 41 includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a flight control unit 415, and a position detection unit 416 as functional units. The position detection unit 416 detects the position of the power transmission equipment monitoring device 1 and supplies position information 80 indicating the detected position to the transmission unit 414. Here, the position detection unit 416 is, for example, a method using a global navigation satellite system (Global Navigation Satellite System (s): GNSS) such as GPS (Global Positioning System) or a quasi-zenith satellite (quasi-zenith satellite): The position of the power transmission equipment monitoring device 1 is detected by a method using a regional satellite positioning system (RNSS) such as QZS. Here, the position detection unit 416 may have a function of complementing the position of the power transmission equipment monitoring device 1 detected by a method using GNSS or a method using RNSS with an inertial device (Inertial Navigation System: INS). Good. The position information 80 includes information indicating the altitude of the power transmission equipment monitoring device 1. For example, the position detection unit 416 may acquire the altitude of the power transmission equipment monitoring device 1 using an atmospheric pressure sensor. In addition, the position detection unit 416 recognizes the imaging target included in the visible light image based on the visible light image generated by the visible light imaging unit 12-2, for example, thereby increasing the altitude of the power transmission facility monitoring apparatus 1. It may be calculated. The position information 80 includes information indicating the date and time when the position of the power transmission equipment monitoring device 1 is detected.
 以上説明したように、変形例1の送電設備監視装置1は、位置検出部416を備える。位置検出部416は、送電設備監視装置1の位置や高さを検出する。送信部414は、位置検出部416が検出した位置を示す位置情報80を収集装置32に送信する。ここで、収集装置32が記憶部を備えており、送電設備監視装置1から取得した画像情報72と、電磁波情報73と、位置情報80とを対応付けて記憶する場合がある。この場合、点検者は、送電設備監視装置1による電線52や送電設備の点検した結果(この一例では、画像情報72及び電磁波情報73)を後で確認する際に、結果が取得された送電設備監視装置1の位置を把握することができる。したがって、変形例1の送電設備監視装置1によれば、電線52及び送電設備において放電が発生している箇所を詳細に把握することができる。 As described above, the power transmission equipment monitoring device 1 of the first modification includes the position detection unit 416. The position detection unit 416 detects the position and height of the power transmission equipment monitoring device 1. The transmission unit 414 transmits position information 80 indicating the position detected by the position detection unit 416 to the collection device 32. Here, the collection device 32 includes a storage unit, and the image information 72, the electromagnetic wave information 73, and the position information 80 acquired from the power transmission facility monitoring device 1 may be stored in association with each other. In this case, the inspector checks the result of the inspection of the electric wire 52 and the power transmission facility by the power transmission facility monitoring apparatus 1 (in this example, the image information 72 and the electromagnetic wave information 73), and then the power transmission facility from which the result has been acquired. The position of the monitoring device 1 can be grasped. Therefore, according to the power transmission equipment monitoring apparatus 1 of the first modification, it is possible to grasp in detail the location where the electric discharge is generated in the electric wire 52 and the power transmission equipment.
[変形例2]
 以下、図を参照して第1の実施形態の二つ目の変形例である変形例2について説明する。図7は、変形例2の送電設備監視装置1の構成の一例を示す図である。第1の実施形態では、送電設備監視装置1が撮像部12と、電磁波検出部13とを備える場合について説明した。変形例2では送電設備監視装置1が電線52及び送電設備の音を検出する検出部(以下、音検出部15)と及び熱を検出する検出部(以下、熱検出部16)とを備える場合について説明する。なお、上述した第1の実施形態と変形例1同様の構成については、同一の符号を付して説明を省略する。
[Modification 2]
Hereinafter, Modification 2 which is a second modification of the first embodiment will be described with reference to the drawings. FIG. 7 is a diagram illustrating an example of the configuration of the power transmission facility monitoring device 1 according to the second modification. In the first embodiment, the case where the power transmission facility monitoring device 1 includes the imaging unit 12 and the electromagnetic wave detection unit 13 has been described. In the second modification, the power transmission facility monitoring apparatus 1 includes a detection unit (hereinafter, sound detection unit 15) that detects the sound of the electric wires 52 and the power transmission facility, and a detection unit (hereinafter, heat detection unit 16) that detects heat. Will be described. In addition, about the structure similar to 1st Embodiment mentioned above and the modification 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図7に示す通り、変形例2の送電設備監視装置1は、無人飛行体11と、撮像部12と、電磁波検出部13と、制御装置14と、音検出部15と、熱検出部16とを備える。音検出部15は、電線52や送電設備から発生する音と、電線52や送電設備の周囲の環境音との複合音を集音し、集音した音を示す音情報76を制御装置14に供給する。音検出部15とは、例えば、マイクロフォンである。ここで、電線52や送電設備において放電が発生している場合、電線52や送電設備は、放電に伴って音を発生する。音検出部15は、放電が発生している場合に電線52や送電設備から発生する音に応じた周波数帯域に対して指向性が高い構成であってもよい。熱検出部16は、電線52や送電設備の温度を検出し、検出した温度を示す熱情報77を制御装置14に供給する。 As shown in FIG. 7, the power transmission equipment monitoring device 1 of Modification 2 includes an unmanned air vehicle 11, an imaging unit 12, an electromagnetic wave detection unit 13, a control device 14, a sound detection unit 15, and a heat detection unit 16. Is provided. The sound detection unit 15 collects a composite sound of a sound generated from the electric wire 52 or the power transmission facility and an environmental sound around the electric wire 52 or the power transmission facility, and sends sound information 76 indicating the collected sound to the control device 14. Supply. The sound detection unit 15 is, for example, a microphone. Here, when electric discharge is generated in the electric wire 52 or the power transmission facility, the electric wire 52 or the power transmission facility generates sound along with the discharge. The sound detection unit 15 may be configured to have high directivity with respect to the frequency band corresponding to the sound generated from the electric wire 52 or the power transmission facility when the discharge is generated. The heat detection unit 16 detects the temperature of the electric wire 52 and the power transmission equipment, and supplies the heat information 77 indicating the detected temperature to the control device 14.
 図7に示す通り、変形例2の制御装置14は、制御部41を備える。制御部41は、画像情報取得部411と、電磁波情報取得部412と、放電判定部413と、送信部414と、位置検出部416と、音情報取得部417と、熱情報取得部418とをその機能部として備える。音情報取得部417は、音検出部15から音情報76を取得する。音情報取得部417は、取得した音情報76を送信部414に供給する。熱情報取得部418は、熱検出部16から熱情報77を取得する。熱情報取得部418は、取得した熱情報77を送信部414に供給する。送信部414は、取得した音情報76と、熱情報77と、上述した画像情報72と、電磁波情報73と、位置情報80とを収集装置32送信する。 As shown in FIG. 7, the control device 14 of Modification 2 includes a control unit 41. The control unit 41 includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a position detection unit 416, a sound information acquisition unit 417, and a thermal information acquisition unit 418. It is provided as a functional part. The sound information acquisition unit 417 acquires the sound information 76 from the sound detection unit 15. The sound information acquisition unit 417 supplies the acquired sound information 76 to the transmission unit 414. The thermal information acquisition unit 418 acquires the thermal information 77 from the heat detection unit 16. The thermal information acquisition unit 418 supplies the acquired thermal information 77 to the transmission unit 414. The transmission unit 414 transmits the acquired sound information 76, heat information 77, image information 72, electromagnetic wave information 73, and position information 80 described above to the collection device 32.
 以上説明したように、変形例2の送電設備監視装置1は、音検出部15と、熱検出部16とを更に備える。音検出部15は、電線52や送電設備から発生する音を検出し、検出した音を示す音情報76を制御装置14に供給する。また、熱検出部16は、電線52や送電設備の温度を検出し、検出した温度を示す熱情報77を制御装置14に供給する。また、変形例2の送電設備監視装置1は、制御装置14を備える。制御装置14は、制御部41を備えており、音情報取得部417と、熱情報取得部418とをその機能部として備える。送信部414は、音情報取得部417が取得する音情報76と、熱情報取得部418が取得する熱情報77を収集装置32に送信する。上述したように、電線52や送電設備において放電が発生している場合、電線52や送電設備は、放電に伴って音を発生する。点検者は、収集装置32が受信する音情報76を確認することによって、電線52や送電設備において放電が発生しているか否かを確認することができる。また、電線52や送電設備において発生する放電は、放電に伴って熱を発生する。点検者は、収集装置32が受信する熱情報77を確認することによって、電線52や送電設備において放電が発生しているか否かを確認することができる。したがって、変形例2の送電設備監視装置1によれば、電線52及び送電設備の状態を詳細に把握することができる。 As described above, the power transmission equipment monitoring device 1 according to the second modification further includes the sound detection unit 15 and the heat detection unit 16. The sound detection unit 15 detects sound generated from the electric wire 52 and the power transmission equipment, and supplies sound information 76 indicating the detected sound to the control device 14. In addition, the heat detection unit 16 detects the temperatures of the electric wires 52 and the power transmission equipment, and supplies heat information 77 indicating the detected temperatures to the control device 14. In addition, the power transmission facility monitoring device 1 according to the second modification includes a control device 14. The control device 14 includes a control unit 41, and includes a sound information acquisition unit 417 and a heat information acquisition unit 418 as functional units. The transmission unit 414 transmits the sound information 76 acquired by the sound information acquisition unit 417 and the heat information 77 acquired by the heat information acquisition unit 418 to the collection device 32. As described above, when a discharge is generated in the electric wire 52 or the power transmission facility, the electric wire 52 or the power transmission facility generates a sound along with the discharge. The inspector can confirm whether or not a discharge has occurred in the electric wire 52 or the power transmission facility by confirming the sound information 76 received by the collection device 32. Moreover, the electric discharge which generate | occur | produces in the electric wire 52 or power transmission equipment generate | occur | produces heat with discharge. The inspector can confirm whether or not a discharge has occurred in the electric wire 52 or the power transmission facility by confirming the heat information 77 received by the collection device 32. Therefore, according to the power transmission equipment monitoring device 1 of the second modification, the state of the electric wire 52 and the power transmission equipment can be grasped in detail.
(第2の実施形態)
 以下、図を参照して第2の実施形態の送電設備監視装置2について説明する。図8は、第2の実施形態の送電設備監視装置2の構成の一例を示す図である。第1の実施形態、変形例1、及び変形例2では、送電設備監視装置1が検出した電磁波情報73を収集装置32に送信する場合について説明した。第2の実施形態では、送電設備監視装置2が検出した電磁波情報73と、過去に検出した電磁波情報73とを比較し、電線52や送電設備の劣化の程度を意判定し、判定した結果を収集装置32に送信する場合について説明する。なお、上述した実施形態、及び変形例と同様の構成については、同一の符号を付して説明を省略する。
(Second Embodiment)
Hereinafter, the power transmission equipment monitoring device 2 according to the second embodiment will be described with reference to the drawings. FIG. 8 is a diagram illustrating an example of the configuration of the power transmission facility monitoring device 2 according to the second embodiment. In 1st Embodiment, the modification 1, and the modification 2, the case where the electromagnetic wave information 73 which the power transmission equipment monitoring apparatus 1 detected was transmitted to the collection apparatus 32 was demonstrated. In the second embodiment, the electromagnetic wave information 73 detected by the power transmission facility monitoring device 2 is compared with the electromagnetic wave information 73 detected in the past, and the degree of deterioration of the electric wire 52 and the power transmission facility is determined. The case of transmitting to the collection device 32 will be described. In addition, about the structure similar to embodiment mentioned above and a modification, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図8に示す通り、送電設備監視装置2は、無人飛行体11と、撮像部12と、電磁波検出部13と、音検出部15と、熱検出部16と、制御装置17とを備える。制御装置17は、指示情報取得部40と、制御部42と、記憶部43とを備える。制御部42は、CPUを備えており、画像情報取得部411と、電磁波情報取得部412と、放電判定部413と、送信部414と、飛行制御部415と、位置検出部416と、音情報取得部417と、熱情報取得部418と、算出部419と、劣化判定部420とをその機能部として備える。制御部42の各機能部は、記憶部43に記憶されたプログラムを実行することにより実現される。これらの機能部は、LSI、ASIC、FPGA等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。また、これらの機能部は、複数の装置に分散されてもよい。記憶部43は、例えば、ROM、フラッシュメモリ、HDD(Hard Disk Drive)SDカード、RAM、レジスタ等によって実現される。また、記憶部43は、収集装置32がネットワークNWを介してアクセス可能なNAS(Network Attached Storage)などの記憶装置であってもよい。 As shown in FIG. 8, the power transmission equipment monitoring device 2 includes an unmanned air vehicle 11, an imaging unit 12, an electromagnetic wave detection unit 13, a sound detection unit 15, a heat detection unit 16, and a control device 17. The control device 17 includes an instruction information acquisition unit 40, a control unit 42, and a storage unit 43. The control unit 42 includes a CPU, and includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a flight control unit 415, a position detection unit 416, and sound information. The acquisition part 417, the thermal information acquisition part 418, the calculation part 419, and the deterioration determination part 420 are provided as the function part. Each functional unit of the control unit 42 is realized by executing a program stored in the storage unit 43. These functional units may be realized by hardware such as LSI, ASIC, FPGA, or may be realized by cooperation of software and hardware. These functional units may be distributed among a plurality of devices. The storage unit 43 is realized by, for example, a ROM, a flash memory, a HDD (Hard Disk Drive) SD card, a RAM, a register, and the like. The storage unit 43 may be a storage device such as a NAS (Network Attached Storage) that can be accessed by the collection device 32 via the network NW.
 算出部419は、電磁波情報取得部412から電磁波情報73を取得し、取得した電磁波情報73に基づいて、電線52や送電設備において放電が発生することに伴って放出される電荷量である放電電荷量を算出する。算出部419は、例えば、電磁波情報73が示す電磁波の磁界強度と、電磁波を発生する電線52又は送電設備との距離とに基づいて、放電電荷量を算出する。算出部419は、算出した放電電荷量を示す電荷量情報78を送信部414に供給する。送信部414は、算出部419から取得した電荷量情報78を収集装置32に送信する。 The calculation unit 419 acquires the electromagnetic wave information 73 from the electromagnetic wave information acquisition unit 412, and based on the acquired electromagnetic wave information 73, the discharge charge that is the amount of charge released when a discharge occurs in the electric wire 52 or the power transmission facility. Calculate the amount. For example, the calculation unit 419 calculates the discharge charge amount based on the magnetic field strength of the electromagnetic wave indicated by the electromagnetic wave information 73 and the distance to the electric wire 52 or the power transmission facility that generates the electromagnetic wave. The calculation unit 419 supplies charge amount information 78 indicating the calculated discharge charge amount to the transmission unit 414. The transmission unit 414 transmits the charge amount information 78 acquired from the calculation unit 419 to the collection device 32.
 以下、図9を参照して、検出情報81の詳細について説明する。図9は、第2の実施形態の検出情報81の一例を示す表である。この一例では、位置検出部416が検出する位置情報80と、画像情報取得部411が取得する画像情報72(この一例では、紫外線画像情報72-1、可視光画像情報72-2)と、電磁波情報取得部412が取得する電磁波情報73と、算出部419が算出する電荷量情報78とが、対応付けられて検出情報81として記憶部43に記憶される。ここで、記憶部43には、あるタイミング(以下、第1のタイミング)の検出情報81(以下、第1検出情報81-1)と、第1のタイミングよりも前の過去のタイミング(以下第2のタイミング)の検出情報81(以下、第2検出情報81-2)とが記憶される。 Hereinafter, the details of the detection information 81 will be described with reference to FIG. FIG. 9 is a table illustrating an example of the detection information 81 according to the second embodiment. In this example, position information 80 detected by the position detection unit 416, image information 72 acquired by the image information acquisition unit 411 (in this example, ultraviolet image information 72-1 and visible light image information 72-2), and electromagnetic waves The electromagnetic wave information 73 acquired by the information acquisition unit 412 and the charge amount information 78 calculated by the calculation unit 419 are stored in the storage unit 43 as detection information 81 in association with each other. Here, the storage unit 43 stores detection information 81 (hereinafter referred to as first detection information 81-1) at a certain timing (hereinafter referred to as first timing) and past timing (hereinafter referred to as first timing) before the first timing. 2) detection information 81 (hereinafter, second detection information 81-2) is stored.
 図8に戻り、劣化判定部420は、記憶部43に記憶される検出情報81のうち、第1検出情報81-1と、第2検出情報81-2とに基づき、電線52や送電設備の劣化の程度を判定する。劣化判定部420は、例えば、第1検出情報81-1に含まれる位置情報80が示す位置と、第2検出情報81-2に含まれる位置情報80が示す位置とが一致する検出情報81を比較し、劣化の程度を判定する。ここで、電線52や送電設備において放電が発生する場合であって、放電に伴って放出される放電電荷量が多い場合、電線52や送電設備の劣化の程度が進んでいる場合がある。したがって、劣化判定部420は、第2検出情報81-2に含まれる電荷量情報78が示す放電電荷量から、第1検出情報81-1に含まれる電荷量情報78が示す放電電荷量が増加する場合、電線52や送電設備が劣化していると判定する。劣化判定部420は、判定した結果を示す劣化判定結果情報79を送信部414に供給する。送信部414は、劣化判定部420から取得した劣化判定結果情報79を収集装置32に送信する。 Returning to FIG. 8, the deterioration determination unit 420 is based on the first detection information 81-1 and the second detection information 81-2 out of the detection information 81 stored in the storage unit 43, and the electric wire 52 and the power transmission equipment. Determine the degree of degradation. For example, the deterioration determination unit 420 generates detection information 81 in which the position indicated by the position information 80 included in the first detection information 81-1 matches the position indicated by the position information 80 included in the second detection information 81-2. The degree of deterioration is determined by comparison. Here, when a discharge occurs in the electric wire 52 or the power transmission equipment, and the amount of discharge charge released along with the discharge is large, the degree of deterioration of the electric wire 52 or the power transmission equipment may be advanced. Therefore, the deterioration determination unit 420 increases the discharge charge amount indicated by the charge amount information 78 included in the first detection information 81-1 from the discharge charge amount indicated by the charge amount information 78 included in the second detection information 81-2. When it does, it determines with the electric wire 52 and power transmission equipment having deteriorated. The deterioration determination unit 420 supplies deterioration determination result information 79 indicating the determination result to the transmission unit 414. The transmission unit 414 transmits the deterioration determination result information 79 acquired from the deterioration determination unit 420 to the collection device 32.
 なお、上述では、検出情報81には、位置情報80と、画像情報72と、電磁波情報73と、電荷量情報78とが対応付けて記憶される場合について説明したが、これに限られない。例えば、検出情報81は、電荷量情報78を少なくとも含む構成であってもよい。具体的には、劣化判定部420が第1検出情報81-1と、第2検出情報81-2とに基づいて電線52や送電設備の劣化の程度を判定することが可能であれば、電荷量情報78以外の情報が含まれていなくてもよい。 In the above description, the case where the position information 80, the image information 72, the electromagnetic wave information 73, and the charge amount information 78 are stored in association with each other in the detection information 81 has been described. However, the present invention is not limited to this. For example, the detection information 81 may be configured to include at least the charge amount information 78. Specifically, if the deterioration determination unit 420 can determine the degree of deterioration of the electric wire 52 and the power transmission equipment based on the first detection information 81-1 and the second detection information 81-2, the charge Information other than the quantity information 78 may not be included.
 また、上述では、劣化判定部420が第1のタイミングに取得された第1検出情報81-1と、第2のタイミングに取得された第2検出情報81-2とを比較する場合について説明したが、これに限られない。例えば、劣化判定部420は、第1のタイミングに取得された第1検出情報81-1と、第1のタイミングより過去に取得された検出情報81に基づいて定められた基準とを比較し、電線52や送電設備の劣化の程度を判定する構成であってもよい。この基準とは、過去に取得された検出情報81に含まれる電荷量情報78の平均であってもよい。 In the above description, the case where the deterioration determination unit 420 compares the first detection information 81-1 acquired at the first timing with the second detection information 81-2 acquired at the second timing has been described. However, it is not limited to this. For example, the deterioration determination unit 420 compares the first detection information 81-1 acquired at the first timing with a reference determined based on the detection information 81 acquired in the past from the first timing, The structure which determines the grade of deterioration of the electric wire 52 or power transmission equipment may be sufficient. This reference may be an average of the charge amount information 78 included in the detection information 81 acquired in the past.
 また、上述では、送電設備監視装置2が記憶部43、算出部419及び劣化判定部420を備える場合について説明したが、これに限られない。例えば、収集装置32が記憶部43、算出部419及び劣化判定部420を備える構成であってもよい。 In the above description, the case where the power transmission equipment monitoring device 2 includes the storage unit 43, the calculation unit 419, and the deterioration determination unit 420 has been described, but the present invention is not limited thereto. For example, the collection device 32 may include a storage unit 43, a calculation unit 419, and a deterioration determination unit 420.
 以上説明した少なくとも一つの実施形態によれば、電磁波情報73に基づいて、電線52や送電設備の放電に伴って放出される放電電荷量を算出し、第1検出情報81-1に含まれる電荷量情報78と、第2検出情報81-2に含まれる電荷量情報78とに基づいて、電線52などの送電設備の劣化の程度を判定する。これにより、点検者が、電線52などの送電設備の劣化の程度を示す情報(例えば、劣化判定結果情報79)を参照し、電線52などの送電設備の状態を詳細に把握することができる。 According to at least one embodiment described above, based on the electromagnetic wave information 73, the amount of discharge charge released along with the discharge of the electric wire 52 or the power transmission facility is calculated, and the charge included in the first detection information 81-1 is calculated. Based on the quantity information 78 and the charge quantity information 78 included in the second detection information 81-2, the degree of deterioration of the power transmission equipment such as the electric wire 52 is determined. Thereby, the inspector can refer to information (for example, deterioration determination result information 79) indicating the degree of deterioration of the power transmission equipment such as the electric wire 52 and grasp the state of the power transmission equipment such as the electric wire 52 in detail.
(第3の実施形態)
 以下、図を参照して第3の実施形態の送電設備監視装置3について説明する。図10は、第3の実施形態の送電設備監視装置3の概要を示す図である。第3の実施形態では、送電設備監視装置3は、電磁波の到来方向を検出し、検出した到来方向に更に基づいて無人飛行体11を飛行させる。なお、上述した第1または第2の実施形態、或いは変形例と同様の構成については、同一の符号を付して説明を省略する。
(Third embodiment)
Hereinafter, the power transmission equipment monitoring device 3 according to the third embodiment will be described with reference to the drawings. FIG. 10 is a diagram illustrating an outline of the power transmission facility monitoring device 3 according to the third embodiment. In 3rd Embodiment, the power transmission equipment monitoring apparatus 3 detects the arrival direction of electromagnetic waves, and makes the unmanned air vehicle 11 fly based further on the detected arrival direction. In addition, about the structure similar to the 1st or 2nd embodiment mentioned above or a modification, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図10に示す通り、送電設備監視装置3は、無人飛行体11に搭載される装置であって、例えば、撮像部12と、指向性アンテナ(電磁波検出部)13Aと、音検出部15と、熱検出部16と、回転駆動部18と、制御装置19とを備える。回転駆動部18は、制御装置19の制御に基づいて電磁波検出部13を回転させる。回転駆動部18は、例えば、モータである。指向性アンテナ13Aは、回転駆動部18によって鉛直下向きに支持されるメインシャフトと、メインシャフトから折れ曲がり延在方向に応じた指向方向を生成するサブシャフトとを有する。指向性アンテナ13Aのメインシャフトと、回転駆動部18内に設けられた配線との間は、スリップリングによって接続される。 As shown in FIG. 10, the power transmission facility monitoring device 3 is a device mounted on the unmanned air vehicle 11. For example, the imaging unit 12, a directional antenna (electromagnetic wave detection unit) 13 </ b> A, a sound detection unit 15, The heat detection part 16, the rotation drive part 18, and the control apparatus 19 are provided. The rotation drive unit 18 rotates the electromagnetic wave detection unit 13 based on the control of the control device 19. The rotation drive unit 18 is, for example, a motor. The directional antenna 13 </ b> A includes a main shaft that is supported vertically downward by the rotation driving unit 18, and a subshaft that generates a directional direction corresponding to a direction in which the main shaft is bent and extends. The main shaft of the directional antenna 13A and the wiring provided in the rotation drive unit 18 are connected by a slip ring.
 図11は、第3の実施形態の送電設備監視装置3の構成の一例を示す図である。
図11に示す通り、制御装置19は、例えば、指示情報取得部40と、記憶部43と、制御部44とを備える。制御部44は、画像情報取得部411と、電磁波情報取得部412と、放電判定部413と、送信部414と、飛行制御部415と、位置検出部416と、音情報取得部417と、熱情報取得部418と、算出部419と、劣化判定部420と、駆動制御部421と、到来方向検出部422とを備える。
 駆動制御部421は、回転駆動部18の動作を制御する。駆動制御部421は、例えば、無人飛行体11が送電設備の周辺において飛行を開始する際に、指向性アンテナ13Aを回転させる。
FIG. 11 is a diagram illustrating an example of a configuration of the power transmission facility monitoring device 3 according to the third embodiment.
As illustrated in FIG. 11, the control device 19 includes, for example, an instruction information acquisition unit 40, a storage unit 43, and a control unit 44. The control unit 44 includes an image information acquisition unit 411, an electromagnetic wave information acquisition unit 412, a discharge determination unit 413, a transmission unit 414, a flight control unit 415, a position detection unit 416, a sound information acquisition unit 417, and a heat. The information acquisition part 418, the calculation part 419, the deterioration determination part 420, the drive control part 421, and the arrival direction detection part 422 are provided.
The drive control unit 421 controls the operation of the rotation drive unit 18. For example, the drive control unit 421 rotates the directional antenna 13 </ b> A when the unmanned air vehicle 11 starts flying around the power transmission facility.
 到来方向検出部422は、電磁波検出部13から電磁波情報73(以下、受信信号を含むものとする)を取得し、送電設備から発生する電磁波の到来方向を検出する。到来方向検出部422は、検出した方向を示す方向情報82を飛行制御部415に供給する。到来方向検出部422は、例えば、回転駆動部18が電磁波検出部13を回転させ、電磁波検出部13が異なる方向に向けられた際の各方向における電磁波情報73をそれぞれ取得する。到来方向検出部422は、各方向における電磁波情報73のうち、送電設備から発生する電磁波の強度が最も強い電磁波情報73を取得した際の電磁波検出部13の方向、つまり、送電設備から発生する電磁波の到来方向を検出する。到来方向検出部422は、検出した到来方向を方向情報82として飛行制御部415に供給する。 The arrival direction detection unit 422 acquires electromagnetic wave information 73 (hereinafter, including a reception signal) from the electromagnetic wave detection unit 13, and detects the arrival direction of the electromagnetic wave generated from the power transmission equipment. The arrival direction detection unit 422 supplies direction information 82 indicating the detected direction to the flight control unit 415. The arrival direction detection unit 422 acquires, for example, the electromagnetic wave information 73 in each direction when the rotation driving unit 18 rotates the electromagnetic wave detection unit 13 and the electromagnetic wave detection unit 13 is directed in different directions. The arrival direction detection unit 422 is the direction of the electromagnetic wave detection unit 13 when acquiring the electromagnetic wave information 73 having the strongest intensity of the electromagnetic wave generated from the power transmission facility among the electromagnetic wave information 73 in each direction, that is, the electromagnetic wave generated from the power transmission facility. Detect the direction of arrival. The arrival direction detection unit 422 supplies the detected arrival direction to the flight control unit 415 as direction information 82.
 飛行制御部415は、取得した方向情報82に更に基づいて、無人飛行体11の飛行を制御する。飛行制御部415は、例えば、方向情報82が示す電磁波の到来方向に無人飛行体11を飛行させ、送電設備の近傍に無人飛行体11を移動させる。
 以降の構成については上述した実施形態、及び変形例と同様であるため、説明を省略する。
The flight control unit 415 further controls the flight of the unmanned air vehicle 11 based on the acquired direction information 82. For example, the flight control unit 415 causes the unmanned air vehicle 11 to fly in the arrival direction of the electromagnetic wave indicated by the direction information 82 and moves the unmanned air vehicle 11 in the vicinity of the power transmission equipment.
Since the subsequent configuration is the same as that of the above-described embodiment and modification, the description thereof is omitted.
 以上説明したように、第3の実施形態の送電設備監視装置3は、回転駆動部18と、駆動制御部421と、到来方向検出部422とを備える。回転駆動部18は、駆動制御部421の制御に基づいて電磁波検出部13を回転させる。到来方向検出部422は、検出された電磁波情報73に基づいて、送電設備から発生する電磁波の到来方向を検出する。飛行制御部415は、到来方向検出部422により検出された到来方向に無人飛行体11を飛行させる。したがって、本実施形態の送電設備監視装置3によれば、操縦者が無人飛行体11を操縦しない場合であっても、無人飛行体11を送電設備の近傍に移動させることができる。 As described above, the power transmission facility monitoring device 3 of the third embodiment includes the rotation drive unit 18, the drive control unit 421, and the arrival direction detection unit 422. The rotation drive unit 18 rotates the electromagnetic wave detection unit 13 based on the control of the drive control unit 421. The arrival direction detection unit 422 detects the arrival direction of the electromagnetic wave generated from the power transmission facility based on the detected electromagnetic wave information 73. The flight control unit 415 causes the unmanned air vehicle 11 to fly in the arrival direction detected by the arrival direction detection unit 422. Therefore, according to the power transmission facility monitoring device 3 of the present embodiment, the unmanned air vehicle 11 can be moved to the vicinity of the power transmission facility even when the operator does not control the unmanned air vehicle 11.
(第4の実施形態)
 以下、図を参照して第4の実施形態について説明する。図12は、第4の実施形態の送電設備監視装置3の概要の一例を示す図である。第4の実施形態では、送電設備監視装置3がパッチアンテナ(電磁波検出部)13Bを備え、パッチアンテナ13Bは回転翼113に配置される。なお、上述した実施形態、及び変形例と同様の構成については、同一の符号を付して説明を省略する。
(Fourth embodiment)
Hereinafter, a fourth embodiment will be described with reference to the drawings. FIG. 12 is a diagram illustrating an example of an outline of the power transmission facility monitoring device 3 according to the fourth embodiment. In the fourth embodiment, the power transmission equipment monitoring device 3 includes a patch antenna (electromagnetic wave detection unit) 13B, and the patch antenna 13B is disposed on the rotor blade 113. In addition, about the structure similar to embodiment mentioned above and a modification, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図12に示す通り、第4の実施形態の送電設備監視装置3が備えるパッチアンテナ13Bは、回転翼113に配置される。パッチアンテナ13Bは、回転翼113が回転することに伴って回転される。パッチアンテナ13Bに接続された配線は、回転翼113の回転軸付近に設けられたスリップリングに接続される。そして、スリップリングと電設備監視装置3本体との間が配線で接続される。到来方向検出部422は、回転翼113がパッチアンテナ13Bを回転させ、パッチアンテナ13Bが異なる方向に向けられた際の各方向における電磁波情報73をそれぞれ取得する。到来方向検出部422は、各方向における電磁波情報73のうち、送電設備から発生する電磁波の強度が最も強い電磁波情報73を取得した際のパッチアンテナ13Bの方向、つまり、送電設備から発生する電磁波の到来方向を検出する。なお、パッチアンテナ13Bの指向性は、パッチアンテナ13Bの面に対する法線方向に向いているものとする。到来方向検出部422は、検出した到来方向を方向情報82として飛行制御部415に供給する。
 なお、第4の実施形態の送電設備監視装置3は、回転駆動部18、及び駆動制御部421を備えていなくてもよい。
 以降の説明は、上述した実施形態と同様であるため、説明を省略する。
As shown in FIG. 12, the patch antenna 13 </ b> B included in the power transmission facility monitoring device 3 of the fourth embodiment is disposed on the rotor blade 113. The patch antenna 13B is rotated as the rotating blade 113 rotates. The wiring connected to the patch antenna 13B is connected to a slip ring provided in the vicinity of the rotating shaft of the rotor blade 113. And a slip ring and the electrical equipment monitoring apparatus 3 main body are connected by wiring. The arrival direction detection unit 422 acquires the electromagnetic wave information 73 in each direction when the rotary wing 113 rotates the patch antenna 13B and the patch antenna 13B is directed in different directions. The arrival direction detection unit 422 is the direction of the patch antenna 13B when acquiring the electromagnetic wave information 73 having the strongest intensity of the electromagnetic wave generated from the power transmission facility among the electromagnetic wave information 73 in each direction, that is, the electromagnetic wave generated from the power transmission facility. The direction of arrival is detected. The directivity of the patch antenna 13B is assumed to be in the normal direction with respect to the surface of the patch antenna 13B. The arrival direction detection unit 422 supplies the detected arrival direction to the flight control unit 415 as direction information 82.
In addition, the power transmission equipment monitoring apparatus 3 of 4th Embodiment does not need to be provided with the rotation drive part 18 and the drive control part 421. FIG.
Since the subsequent description is the same as that of the above-described embodiment, the description is omitted.
 以上説明したように、第4の実施形態の送電設備監視装置3が備えるパッチアンテナ13Bは、回転翼113に配置される。これにより、到来方向検出部422は、回転翼113の回転に伴って回転されるパッチアンテナ13Bが検出した電磁波情報73に基づいて、送電設備から発生する電磁波の到来方向を検出する。したがって、第4の実施形態の送電設備監視装置3によれば、操縦者が無人飛行体11を操縦しない場合であっても、無人飛行体11を送電設備の近傍に移動させることができる。 As described above, the patch antenna 13B included in the power transmission facility monitoring device 3 of the fourth embodiment is disposed on the rotor blade 113. Thereby, the arrival direction detection unit 422 detects the arrival direction of the electromagnetic wave generated from the power transmission facility based on the electromagnetic wave information 73 detected by the patch antenna 13B rotated with the rotation of the rotary blade 113. Therefore, according to the power transmission equipment monitoring device 3 of the fourth embodiment, the unmanned air vehicle 11 can be moved to the vicinity of the power transmission equipment even when the operator does not control the unmanned air vehicle 11.
(第5の実施形態)
 以下、図を参照して第5の実施形態について説明する。図13は、第5の実施形態の送電設備監視装置3の概要の一例を示す図である。第5および第6の実施形態では、送電設備監視装置3が、複数のパッチアンテナを備える。なお、上述した実施形態、及び変形例と同様の構成については、同一の符号を付して説明を省略する。
(Fifth embodiment)
Hereinafter, the fifth embodiment will be described with reference to the drawings. FIG. 13 is a diagram illustrating an example of an outline of the power transmission facility monitoring device 3 according to the fifth embodiment. In the fifth and sixth embodiments, the power transmission facility monitoring device 3 includes a plurality of patch antennas. In addition, about the structure similar to embodiment mentioned above and a modification, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図13に示す通り、第5の実施形態の送電設備監視装置3は、二つのパッチアンテナ13B-1およびB-2を備える。ここで、パッチアンテナ13B-2とは、検出する電磁波の位相に有意な差が生じる程度の間隔をもって配置される。具体的には、パッチアンテナ13Bは、筐体111の天板面の面方向、又は上下方向に離れた位置に配置される。この一例では、パッチアンテナ13B-1、及びパッチアンテナ13B-2が筐体111の天板面の面方向に配置される。 As shown in FIG. 13, the power transmission facility monitoring apparatus 3 of the fifth embodiment includes two patch antennas 13B-1 and B-2. Here, the patch antenna 13B-2 is arranged with an interval that causes a significant difference in the phase of the electromagnetic wave to be detected. Specifically, the patch antenna 13B is arranged at a position away from the top surface of the casing 111 or in the vertical direction. In this example, the patch antenna 13B-1 and the patch antenna 13B-2 are arranged in the surface direction of the top plate surface of the casing 111.
 到来方向検出部422は、複数のパッチアンテナ13Bからそれぞれ電磁波情報73を取得する。到来方向検出部422は、電磁波情報73の間の位相差に基づいて、送電設備から発生する電磁波の到来方向を推定する。
 以降の構成については上述した実施形態、及び変形例と同様であるため、説明を省略する。
The arrival direction detection unit 422 acquires the electromagnetic wave information 73 from each of the plurality of patch antennas 13B. The arrival direction detection unit 422 estimates the arrival direction of the electromagnetic wave generated from the power transmission facility based on the phase difference between the electromagnetic wave information 73.
Since the subsequent configuration is the same as that of the above-described embodiment and modification, the description thereof is omitted.
 以上説明したように、第5の実施形態の送電設備監視装置3は、複数のパッチアンテナ13Bと、到来方向検出部422とを備える。複数のパッチアンテナ13Bは、電磁波の検出結果に差が生じる位置(この一例では、天板面の面方向に離れた位置)に配置され、到来方向検出部422は、パッチアンテナ13Bが検出した電磁波情報73に基づいて、送電設備から発生する電磁波の到来方向を検出する。したがって、変形例3の送電設備監視装置3によれば、操縦者が無人飛行体11を操縦しない場合であっても、無人飛行体11を送電設備の近傍に移動させることができる。 As described above, the power transmission equipment monitoring device 3 of the fifth embodiment includes the plurality of patch antennas 13B and the arrival direction detection unit 422. The plurality of patch antennas 13B are arranged at positions where differences occur in the detection results of the electromagnetic waves (in this example, positions separated in the surface direction of the top plate surface), and the arrival direction detection unit 422 is configured to detect the electromagnetic waves detected by the patch antenna 13B. Based on the information 73, the arrival direction of the electromagnetic wave generated from the power transmission facility is detected. Therefore, according to the power transmission equipment monitoring device 3 of the modification 3, the unmanned air vehicle 11 can be moved to the vicinity of the power transmission equipment even when the operator does not control the unmanned air vehicle 11.
(第6の実施形態)
 以下、図を参照して第6の実施形態について説明する。図14は、第6の実施形態の送電設備監視装置3の概要の一例を示す図である。
 第6の実施形態では、送電設備監視装置3が、3つ以上のパッチアンテナ13Bを備え、送電設備から発生する電磁波の到来方向を2方向以上の精度で検出する。
(Sixth embodiment)
The sixth embodiment will be described below with reference to the drawings. FIG. 14 is a diagram illustrating an example of an outline of the power transmission facility monitoring device 3 according to the sixth embodiment.
In the sixth embodiment, the power transmission equipment monitoring device 3 includes three or more patch antennas 13B, and detects the arrival directions of electromagnetic waves generated from the power transmission equipment with two or more directions of accuracy.
 図14に示す通り、送電設備監視装置3は、例えば、8つのパッチアンテナ13B-3~パッチアンテナ13B-10を備える。この一例では、パッチアンテナ13B-3~パッチアンテナ13B-10は、筐体111の背面または側面に配置される。ここで、パッチアンテナ13B-3~パッチアンテナ13B-6は、検出する電磁波の位相に有意な差が生じる程度の間隔をもって配置される。例えば、パッチアンテナ13B-3~パッチアンテナ13B-10は、上下2行で、アレイ状に配置される。 As shown in FIG. 14, the power transmission equipment monitoring apparatus 3 includes, for example, eight patch antennas 13B-3 to 13B-10. In this example, the patch antenna 13B-3 to patch antenna 13B-10 are arranged on the back surface or side surface of the casing 111. Here, the patch antenna 13B-3 to the patch antenna 13B-6 are arranged with an interval that causes a significant difference in the phase of the electromagnetic wave to be detected. For example, the patch antenna 13B-3 to patch antenna 13B-10 are arranged in an array with two rows on the top and bottom.
 到来方向検出部422は、複数のパッチアンテナ13Bからそれぞれ電磁波情報73を取得する。到来方向検出部422は、電磁波情報73のうち隣あうパッチアンテナ13Bからの電磁波情報73の間の位相差に基づいて、電磁波の到来方向を推定する。
 これにより、送電設備監視装置3は、パッチアンテナ13Bが検出した電磁波情報73に基づいて、送電設備から発生する電磁波の到来方向をより精度高く検出することができる。
 以降の構成については上述した実施形態、及び変形例と同様であるため、説明を省略する。
The arrival direction detection unit 422 acquires the electromagnetic wave information 73 from each of the plurality of patch antennas 13B. The arrival direction detection unit 422 estimates the arrival direction of the electromagnetic wave based on the phase difference between the electromagnetic wave information 73 from the adjacent patch antennas 13 </ b> B in the electromagnetic wave information 73.
Thereby, the power transmission equipment monitoring apparatus 3 can detect the arrival direction of the electromagnetic waves generated from the power transmission equipment with higher accuracy based on the electromagnetic wave information 73 detected by the patch antenna 13B.
Since the subsequent configuration is the same as that of the above-described embodiment and modification, the description thereof is omitted.
 なお、指向性アンテナ13Aが回転しない場合において、指向性アンテナ13Aは、例えば、全方向性アンテナ(例えば、ダイポールアンテナ、モノポールアンテナ、及びロッドアンテナ等)であってもよい。指向性アンテナ13Aがロッドアンテナである場合、送電設備監視装置3は、例えば、指向性アンテナ13Aを伸縮させる伸縮駆動部を備える構成であってもよい。この場合、駆動制御部421は、伸縮駆動部の動作を制御する。駆動制御部421は、例えば、無人飛行体11が送電設備の周辺において飛行を開始する際に、送電設備から発生する電磁波に応じた長さに指向性アンテナ13Aを伸縮させる。これにより、送電設備監視装置3は、送電設備から発生する電磁波を効率的に検出することができる。 When the directional antenna 13A does not rotate, the directional antenna 13A may be, for example, an omnidirectional antenna (for example, a dipole antenna, a monopole antenna, and a rod antenna). When the directional antenna 13A is a rod antenna, the power transmission facility monitoring device 3 may include a telescopic drive unit that expands and contracts the directional antenna 13A, for example. In this case, the drive control unit 421 controls the operation of the telescopic drive unit. For example, when the unmanned air vehicle 11 starts to fly around the power transmission facility, the drive control unit 421 expands and contracts the directional antenna 13A to a length corresponding to the electromagnetic wave generated from the power transmission facility. Thereby, the power transmission equipment monitoring device 3 can efficiently detect electromagnetic waves generated from the power transmission equipment.
 また、上述では、送電設備監視装置3が指向性アンテナ13Aやパッチアンテナ13Bを回転、又は伸縮する、もしくは複数のパッチアンテナ13Bを備える場合について説明したが、これに限られない。送電設備監視装置3は、アンテナの指向性に制限がある場合(例えばパッチアンテナの指向性程度である場合)、無人飛行体11が送電設備の周辺において飛行する際に、無人飛行体11を旋回、搖動させ、機械駆動式のアンテナ装置と同様に、電磁波の到来方向を探索するようにしてもよい。 In the above description, the case where the power transmission facility monitoring device 3 rotates or expands or contracts the directional antenna 13A or the patch antenna 13B, or includes a plurality of patch antennas 13B is described, but the present invention is not limited thereto. The power transmission facility monitoring device 3 turns the unmanned air vehicle 11 when the unmanned air vehicle 11 flies around the power transmission facility when the directivity of the antenna is limited (for example, the directivity of the patch antenna is about). As in the case of the mechanically driven antenna device, the direction of arrival of electromagnetic waves may be searched.
(第7の実施形態)
 以下、図を参照して第7の実施形態の端末30について説明する。図15は、第7の実施形態の端末30の構成の一例を示す図である。第7の実施形態では、送電設備監視装置が検出した各種情報を、無人飛行体11の操縦者にとって認識しやすい形で提示する。なお、上述した実施形態と同様の構成については、同一の符号を付して説明を省略する。
(Seventh embodiment)
Hereinafter, the terminal 30 of the seventh embodiment will be described with reference to the drawings. FIG. 15 is a diagram illustrating an example of a configuration of the terminal 30 according to the seventh embodiment. In the seventh embodiment, various types of information detected by the power transmission equipment monitoring device are presented in a form that is easy for the operator of the unmanned air vehicle 11 to recognize. In addition, about the structure similar to embodiment mentioned above, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図15に示す通り、本実施形態の端末30は、上述した構成の他、制御部44と、表示部45とを備える。制御部44は、CPUを備えており、受信部441と、画像生成部442と、表示制御部443とをその機能部として備える。
 受信部441は、送電設備監視装置1、送電設備監視装置2、及び送電設備監視装置3のいずれか(以下、単に送電設備監視装置と記載する)から紫外線画像情報72-1、及び可視光画像情報72-2を受信する。
As shown in FIG. 15, the terminal 30 of the present embodiment includes a control unit 44 and a display unit 45 in addition to the configuration described above. The control unit 44 includes a CPU, and includes a reception unit 441, an image generation unit 442, and a display control unit 443 as functional units.
The receiving unit 441 receives the ultraviolet image information 72-1 and the visible light image from any one of the power transmission facility monitoring device 1, the power transmission facility monitoring device 2, and the power transmission facility monitoring device 3 (hereinafter simply referred to as a power transmission facility monitoring device). Information 72-2 is received.
 画像生成部442は、紫外線画像情報72-1と、可視光画像情報72-2とに基づいて、送電設備に放電が生じている箇所を示す放電箇所画像を生成する。ここで、紫外線画像と、可視光画像とは、例えば、同一の方向、及び同一の画角によって撮像された画像である。したがって、紫外線画像に撮像される送電設備の位置と、可視光画像に撮像される送電設備の位置とは、互いに対応する。そうでない場合、画像間の位置同士を対応付ける情報を参照し、画像同士の位置合わせを行ってもよい。画像生成部442は、紫外線画像情報72-1に送電設備の放電が撮像された場合、可視光画像情報72-2に当該放電の箇所を明示する画像(以下、放電箇所画像84)を重畳した画像を合成画像として生成する。 The image generation unit 442 generates a discharge location image indicating a location where a power transmission facility has a discharge based on the ultraviolet image information 72-1 and the visible light image information 72-2. Here, the ultraviolet image and the visible light image are images captured in the same direction and the same angle of view, for example. Therefore, the position of the power transmission facility captured in the ultraviolet image and the position of the power transmission facility captured in the visible light image correspond to each other. Otherwise, the images may be aligned with reference to information associating the positions between the images. When the discharge of the power transmission facility is imaged in the ultraviolet image information 72-1, the image generation unit 442 superimposes an image (hereinafter, discharge location image 84) that clearly indicates the location of the discharge in the visible light image information 72-2. An image is generated as a composite image.
 表示制御部443は、画像生成部442が生成した合成画像を示す情報(以下、合成画像情報83)を取得し、表示部45に表示する。表示部45は、表示制御部443の制御に基づいて合成画像を表示する。表示部45は、例えば、一般的なLCDや有機EL表示装置の他、VR(Virtual Reality)ゴーグル等の装着型の表示装置であってもよい。 The display control unit 443 acquires information indicating the composite image generated by the image generation unit 442 (hereinafter, composite image information 83) and displays the information on the display unit 45. The display unit 45 displays a composite image based on the control of the display control unit 443. The display unit 45 may be, for example, a wearable display device such as a VR (Virtual Reality) goggle in addition to a general LCD or an organic EL display device.
 以下、図16を参照して、合成画像について説明する。この一例では、放電箇所画像は、紫外線画像に撮像される送電設備の放電の箇所に応じて、放電箇所画像84が4つ(図示する放電箇所画像84-1~放電箇所画像84-4)が可視光画像に重畳された画像である。表示制御部443は、記憶部(不図示)に予め記憶させておいた表示用情報を参照し、可視光画像に重畳する。表示用情報は、例えば、強調したい中心位置となる画素の周囲の画素に、所定の画素値を割り当てた情報である。
 図16は、第7の実施形態の合成画像の一例を示す図である。
 図16に示す通り、この一例では、×印の強調表示を可視光画像に重畳させた合成画像を示している。なお、強調表示は×印に限らず、矩形、円、矢印、注意喚起のためのマークなどであってもよい。ここで、重畳させるとは、強調表示の画素値で元の画素値を置き換えることで実現されてもよいし、加算することで実現されてもよい。また、強調表示したい箇所の画素値を反転させるなどして実現されてもよい。
Hereinafter, the composite image will be described with reference to FIG. In this example, the discharge location image includes four discharge location images 84 (discharge location image 84-1 to discharge location image 84-4 shown in the drawing) according to the location of the discharge of the power transmission equipment captured in the ultraviolet image. It is an image superimposed on a visible light image. The display control unit 443 refers to the display information stored in advance in a storage unit (not shown) and superimposes it on the visible light image. The display information is, for example, information in which a predetermined pixel value is assigned to pixels around the pixel that is the center position to be emphasized.
FIG. 16 is a diagram illustrating an example of a composite image according to the seventh embodiment.
As shown in FIG. 16, in this example, a composite image is shown in which a highlighted display of an X mark is superimposed on a visible light image. The highlighted display is not limited to the x mark, but may be a rectangle, a circle, an arrow, a mark for alerting, or the like. Here, superimposing may be realized by replacing the original pixel value with the highlighted pixel value, or may be realized by adding. Further, it may be realized by inverting the pixel value of a portion to be highlighted.
 以上説明したように、本実施形態の端末30は、画像生成部442を備え、紫外線画像情報72-1、及び可視光画像情報72-2に基づいて、送電設備に放電が生じている箇所を示す強調表示を可視光画像に重畳させた合成画像を生成する。
 無人飛行体11の操縦者は、端末30が生成する合成画像を参照し、平易に送電設備に生じている放電を把握することができる。
As described above, the terminal 30 according to the present embodiment includes the image generation unit 442, and identifies the location where the power transmission facility has a discharge based on the ultraviolet image information 72-1 and the visible light image information 72-2. A composite image is generated by superimposing the highlighted display shown on the visible light image.
The operator of the unmanned air vehicle 11 can easily grasp the discharge generated in the power transmission facility with reference to the composite image generated by the terminal 30.
 なお、画像生成部442は、紫外線画像情報72-1が示す送電設備の放電量が多い場合、強調表示を明るく、或いは大きくする合成画像を生成する構成であってもよい。また、画像生成部442は、紫外線画像情報72-1が示す送電線の放電量が少ない場合、強調表示を暗く、或いは小さくする合成画像を生成する構成であってもよい。 Note that the image generation unit 442 may be configured to generate a composite image that brightens or enlarges the highlight display when the discharge amount of the power transmission facility indicated by the ultraviolet image information 72-1 is large. Further, the image generation unit 442 may be configured to generate a composite image that darkens or reduces the highlighting when the discharge amount of the power transmission line indicated by the ultraviolet image information 72-1 is small.
 また、表示制御部443は、AR(Augmented Reality)技術によって合成画像を表示する構成であってもよい。表示制御部443は、例えば、点検者の位置と向きを、ARグラスに内蔵されたGPSや方位センサで取得し、点検者を中心とした三次元空間モデルを生成する。表示制御部443は、撮像された画像(可視光画像情報72-2)を三次元空間モデルに当てはめ、強調表示すべき箇所を二次元から三次元に変換する。表示制御部443は、点検者が送電線を点検する際に、ARグラスを介して視認する送電線のうち、強調すべき箇所に強調表示をする。 Further, the display control unit 443 may be configured to display a composite image by AR (Augmented Reality) technology. For example, the display control unit 443 acquires the position and orientation of the inspector with a GPS or a direction sensor built in the AR glass, and generates a three-dimensional space model centered on the inspector. The display control unit 443 applies the captured image (visible light image information 72-2) to the three-dimensional space model, and converts the portion to be highlighted from two-dimensional to three-dimensional. When the inspector inspects the power transmission line, the display control unit 443 highlights a portion to be emphasized in the power transmission line visually recognized through the AR glass.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (17)

  1.  無人飛行体に搭載される送電設備監視装置であって、
     送電設備を撮像する撮像部と、
     前記送電設備が発する電磁波を検出する電磁波検出部と、
     前記撮像部により撮像された画像に基づく画像情報と、前記電磁波検出部により検出された前記電磁波に基づく電磁波情報とのうち、少なくとも1つを他装置に送信する送信部と、
     前記無人飛行体を操縦する操縦者の端末から、前記無人飛行体の飛行を指示する指示情報を取得する指示情報取得部と、
     前記指示情報取得部により取得された前記指示情報に基づいて、前記無人飛行体の飛行を制御する飛行制御部と、
     を備える送電設備監視装置。
    A power transmission equipment monitoring device mounted on an unmanned air vehicle,
    An imaging unit for imaging a power transmission facility;
    An electromagnetic wave detection unit for detecting an electromagnetic wave emitted by the power transmission facility;
    A transmission unit that transmits at least one of the image information based on the image captured by the imaging unit and the electromagnetic wave information based on the electromagnetic wave detected by the electromagnetic wave detection unit to another device;
    An instruction information acquisition unit for acquiring instruction information for instructing the flight of the unmanned air vehicle, from a terminal of a pilot maneuvering the unmanned air vehicle;
    Based on the instruction information acquired by the instruction information acquisition unit, a flight control unit that controls the flight of the unmanned air vehicle,
    A power transmission facility monitoring apparatus comprising:
  2.  前記飛行制御部は、更に、前記電磁波情報に基づいて、前記無人飛行体の飛行を制御する、
     請求項1に記載の送電設備監視装置。
    The flight control unit further controls the flight of the unmanned air vehicle based on the electromagnetic wave information.
    The power transmission equipment monitoring apparatus according to claim 1.
  3.  前記飛行制御部は、
     前記電磁波検出部により検出された前記電磁波の強度が所定強度となる位置を維持するように、前記送電設備の周辺を前記無人飛行体に飛行させる、
     請求項2に記載の送電設備監視装置。
    The flight control unit
    Flying around the unmanned aerial vehicle around the power transmission equipment so as to maintain a position where the intensity of the electromagnetic wave detected by the electromagnetic wave detection unit is a predetermined intensity,
    The power transmission equipment monitoring apparatus according to claim 2.
  4.  前記撮像部は、
     前記送電設備の紫外線画像を撮像する紫外線撮像部と、前記送電設備の可視光画像を撮像する可視光撮像部とを備える、
     請求項1から3のいずれか一項に記載の送電設備監視装置。
    The imaging unit
    An ultraviolet imaging unit that captures an ultraviolet image of the power transmission facility; and a visible light imaging unit that captures a visible light image of the power transmission facility.
    The power transmission equipment monitoring apparatus according to any one of claims 1 to 3.
  5.  前記電磁波情報に基づいて、前記送電設備が放電しているか否かを判定する放電判定部を更に備え、
     前記撮像部は、
     前記放電判定部による判定結果が、前記送電設備が放電していないことを示す場合、前記可視光撮像部によって前記送電設備を撮像し、前記判定結果が前記送電設備が放電していることを示す場合、前記紫外線撮像部によって前記送電設備を撮像する、
     請求項4に記載の送電設備監視装置。
    Based on the electromagnetic wave information, further comprising a discharge determination unit for determining whether or not the power transmission equipment is discharged,
    The imaging unit
    When the determination result by the discharge determination unit indicates that the power transmission facility is not discharged, the visible light imaging unit images the power transmission facility, and the determination result indicates that the power transmission facility is discharged. In this case, the power transmission facility is imaged by the ultraviolet imaging unit.
    The power transmission equipment monitoring apparatus according to claim 4.
  6.  前記飛行制御部は、
     前記紫外線撮像部により撮像された画像に基づいて、前記送電設備に放電が生じている箇所を前記紫外線撮像部が撮像可能な位置を維持するように、前記無人飛行体の飛行を制御する
     請求項5に記載の送電設備監視装置。
    The flight control unit
    The flight of the unmanned aerial vehicle is controlled based on an image captured by the ultraviolet imaging unit so that the ultraviolet imaging unit maintains a position where the ultraviolet imaging unit can capture an area where discharge is generated in the power transmission facility. 5. The power transmission equipment monitoring device according to 5.
  7.  前記送電設備から発生する音を検出する音検出部と、前記送電設備の熱を検出する熱検出部とのうち、少なくとも1つを更に備え、
     前記送信部は、
     前記音検出部により検出された前記音を示す音情報、前記熱検出部により検出された前記熱を示す熱情報を送信する
     請求項1から6のいずれか一項に記載の送電設備監視装置。
    It further comprises at least one of a sound detection unit that detects sound generated from the power transmission facility and a heat detection unit that detects heat of the power transmission facility,
    The transmitter is
    The power transmission equipment monitoring apparatus according to any one of claims 1 to 6, wherein sound information indicating the sound detected by the sound detection unit and heat information indicating the heat detected by the heat detection unit are transmitted.
  8.  自装置の位置を検出する位置検出部を更に備え、
     前記送信部は、
     前記画像情報と、前記電磁波情報とのうち、少なくとも1つと、前記位置検出部が検出する前記位置を示す位置情報とを対応付けて送信する
     請求項1から7のいずれか一項に記載の送電設備監視装置。
    It further includes a position detection unit that detects the position of the own device,
    The transmitter is
    The power transmission according to any one of claims 1 to 7, wherein at least one of the image information and the electromagnetic wave information is transmitted in association with position information indicating the position detected by the position detection unit. Equipment monitoring device.
  9.  前記電磁波情報に基づいて、前記送電設備が放電する放電電荷量を算出する算出部と、
     前記電磁波検出部が第1のタイミングで検出した前記電磁波情報に基づく前記放電電荷量と、前記電磁波検出部が前記第1のタイミングよりも前の第2のタイミングで検出した前記電磁波情報に基づく前記放電電荷量とを比較し、前記送電設備の劣化の程度を判定する劣化判定部と
     を更に備える請求項1から8のうちいずれか一項に記載の送電設備監視装置。
    Based on the electromagnetic wave information, a calculation unit for calculating a discharge charge amount discharged by the power transmission equipment,
    The discharge charge amount based on the electromagnetic wave information detected at the first timing by the electromagnetic wave detection unit, and the electromagnetic wave information detected at the second timing before the first timing by the electromagnetic wave detection unit. The power transmission facility monitoring apparatus according to any one of claims 1 to 8, further comprising: a deterioration determination unit that compares a discharge charge amount and determines a degree of deterioration of the power transmission facility.
  10.  前記電磁波検出部が検出する複数の方向の前記電磁波の強度に基づいて、前記電磁波の到来方向を検出する到来方向検出部を更に備え、
     前記飛行制御部は、更に、
     前記到来方向検出部により検出された前記到来方向に基づいて、前記無人飛行体の飛行を制御する
     請求項1から9のうちいずれか一項に記載の送電設備監視装置。
    Based on the intensity of the electromagnetic wave in a plurality of directions detected by the electromagnetic wave detection unit, further comprising an arrival direction detection unit that detects the arrival direction of the electromagnetic wave,
    The flight control unit further includes:
    The power transmission facility monitoring apparatus according to any one of claims 1 to 9, wherein a flight of the unmanned air vehicle is controlled based on the arrival direction detected by the arrival direction detection unit.
  11.  前記電磁波検出部を回転させる回転駆動部を更に備え、
     前記到来方向検出部は、
     前記回転駆動部が前記電磁波検出部を回転させることに応じて、前記電磁波検出部が異なる方向において検出した前記電磁波の強度に基づいて、前記到来方向を検出する
     請求項10に記載の送電設備監視装置。
    A rotation drive unit that rotates the electromagnetic wave detection unit;
    The arrival direction detector
    The power transmission facility monitoring according to claim 10, wherein the direction of arrival is detected based on the intensity of the electromagnetic wave detected in a different direction by the electromagnetic wave detection unit in response to the rotation driving unit rotating the electromagnetic wave detection unit. apparatus.
  12.  前記電磁波検出部を伸縮させる伸縮駆動部を更に備え、
     前記到来方向検出部は、
     前記伸縮駆動部が前記電磁波検出部を伸縮させることに応じて、前記電磁波検出部が異なる長さにおいて検出した前記電磁波の強度に基づいて、前記到来方向を検出する
     請求項10から11のうちいずれか一項に記載の送電設備監視装置。
    It further comprises a telescopic drive unit that expands and contracts the electromagnetic wave detection unit,
    The arrival direction detector
    The direction of arrival is detected based on the intensity of the electromagnetic wave detected by the electromagnetic wave detection unit at a different length in response to the expansion / contraction driving unit extending or contracting the electromagnetic wave detection unit. The power transmission equipment monitoring device according to claim 1.
  13.  前記電磁波検出部は、前記無人飛行体の回転翼上に配置される
     請求項10に記載の送電設備監視装置。
    The power transmission facility monitoring apparatus according to claim 10, wherein the electromagnetic wave detection unit is disposed on a rotor wing of the unmanned air vehicle.
  14.  複数の前記電磁波検出部を備え、
     前記到来方向検出部は、
     複数の前記電磁波検出部のうちの第1の電磁波検出部が検出する前記電磁波の強度と、前記第1の電磁波検出部以外の電磁波検出部が検出する前記電磁波の強度とに基づいて、前記到来方向を検出する
     請求項10から13のうちいずれかに記載の送電設備監視装置。
    A plurality of the electromagnetic wave detectors;
    The arrival direction detector
    Based on the intensity of the electromagnetic wave detected by a first electromagnetic wave detection unit among the plurality of electromagnetic wave detection units and the intensity of the electromagnetic wave detected by an electromagnetic wave detection unit other than the first electromagnetic wave detection unit The power transmission facility monitoring apparatus according to any one of claims 10 to 13, which detects a direction.
  15.  前記電磁波検出部は、パッチアンテナである
     請求項14に記載の送電設備監視装置。
    The power transmission equipment monitoring apparatus according to claim 14, wherein the electromagnetic wave detection unit is a patch antenna.
  16.  請求項1から15のうちいずれか一項に記載の送電設備監視装置と、
     前記無人飛行体と、を備え、
     前記無人飛行体は、非金属材料によって形成された回転翼を有する、
     送電設備監視ユニット。
    The power transmission equipment monitoring device according to any one of claims 1 to 15,
    The unmanned air vehicle,
    The unmanned air vehicle has a rotating wing formed of a non-metallic material.
    Transmission equipment monitoring unit.
  17.  請求項1から15のうちいずれか一項に記載の送電設備監視装置と、
     前記無人飛行体と、
     端末と、を備える送電設備監視システムであって、
     前記送信部は、
     前記送電設備の紫外線画像を撮像する紫外線撮像部が撮像した前記紫外線画像と、前記送電設備の可視光画像を撮像する可視光撮像部が撮像した前記可視光画像とを、前記端末に送信し、
     前記端末は、
     前記紫外線画像と、前記可視光画像とに基づいて、前記送電設備に放電が生じている箇所を示す放電箇所画像を生成する画像生成部と、
     画像を表示する表示部と、
     前記画像生成部により生成された画像を前記表示部に表示させる表示制御部と、
     を備える送電設備監視システム。
    The power transmission equipment monitoring device according to any one of claims 1 to 15,
    The unmanned air vehicle,
    A power transmission facility monitoring system comprising a terminal,
    The transmitter is
    The ultraviolet image captured by an ultraviolet imaging unit that captures an ultraviolet image of the power transmission facility, and the visible light image captured by a visible light imaging unit that captures a visible light image of the power transmission facility are transmitted to the terminal,
    The terminal
    Based on the ultraviolet image and the visible light image, an image generation unit that generates a discharge location image indicating a location where discharge occurs in the power transmission facility,
    A display for displaying an image;
    A display control unit that causes the display unit to display an image generated by the image generation unit;
    A power transmission facility monitoring system comprising:
PCT/JP2017/018641 2017-01-25 2017-05-18 Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system WO2018138942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018541230A JPWO2018138942A1 (en) 2017-01-25 2017-05-18 Power transmission equipment monitoring device, power transmission equipment monitoring unit, and power transmission equipment monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017011358 2017-01-25
JP2017-011358 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018138942A1 true WO2018138942A1 (en) 2018-08-02

Family

ID=62978787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018641 WO2018138942A1 (en) 2017-01-25 2017-05-18 Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system

Country Status (2)

Country Link
JP (1) JPWO2018138942A1 (en)
WO (1) WO2018138942A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073096A (en) * 2017-10-13 2019-05-16 アルパイン株式会社 Overhead line image capturing system and overhead line image capturing method
CN109936080A (en) * 2019-03-28 2019-06-25 郑州大学 A kind of method of unmanned plane inspection transmission line of electricity
CN110887462A (en) * 2019-11-28 2020-03-17 深圳供电局有限公司 Unmanned aerial vehicle inspection method and system and power transmission line inspection method and system
JP2020078209A (en) * 2018-11-09 2020-05-21 中国電力株式会社 Inspection system, inspection support method, and inspection support program
WO2020195336A1 (en) * 2019-03-28 2020-10-01 パナソニック株式会社 Radio wave environment measurement device
CN112436432A (en) * 2020-12-01 2021-03-02 湖南宇尚电力建设有限公司 Maintenance method of ultra-high altitude high-voltage cable
CN112650098A (en) * 2020-11-26 2021-04-13 国网河北省电力有限公司武安市供电分公司 Unmanned aerial vehicle flight monitoring electric wire netting construction system
WO2021181578A1 (en) * 2020-03-11 2021-09-16 日本電気株式会社 Display control device, display control method, and program
WO2022202030A1 (en) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 Energization state detection device and energization state detection method
WO2024004162A1 (en) * 2022-06-30 2024-01-04 株式会社Acsl Unmanned aerial vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117415A (en) * 1996-10-09 1998-05-06 Mitsubishi Electric Corp Automatic inspection device for overhead line
JP2005265699A (en) * 2004-03-19 2005-09-29 Chugoku Electric Power Co Inc:The System and method for inspecting power transmission line using unmanned flying body
JP2013120488A (en) * 2011-12-07 2013-06-17 Chugoku Electric Power Co Inc:The Overhead transmission line contact prevention system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117415A (en) * 1996-10-09 1998-05-06 Mitsubishi Electric Corp Automatic inspection device for overhead line
JP2005265699A (en) * 2004-03-19 2005-09-29 Chugoku Electric Power Co Inc:The System and method for inspecting power transmission line using unmanned flying body
JP2013120488A (en) * 2011-12-07 2013-06-17 Chugoku Electric Power Co Inc:The Overhead transmission line contact prevention system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11490005B2 (en) 2017-10-13 2022-11-01 Alpine Electronics, Inc. Overhead line image capturing system and overhead line image capturing method
JP2019073096A (en) * 2017-10-13 2019-05-16 アルパイン株式会社 Overhead line image capturing system and overhead line image capturing method
JP2020078209A (en) * 2018-11-09 2020-05-21 中国電力株式会社 Inspection system, inspection support method, and inspection support program
JP7187998B2 (en) 2018-11-09 2022-12-13 中国電力株式会社 Inspection system, inspection support method and inspection support program
JP7136327B2 (en) 2019-03-28 2022-09-13 パナソニックホールディングス株式会社 Radio environment measuring device
CN109936080A (en) * 2019-03-28 2019-06-25 郑州大学 A kind of method of unmanned plane inspection transmission line of electricity
CN109936080B (en) * 2019-03-28 2020-05-22 郑州大学 Method for inspecting power transmission line by unmanned aerial vehicle
WO2020195336A1 (en) * 2019-03-28 2020-10-01 パナソニック株式会社 Radio wave environment measurement device
JPWO2020195336A1 (en) * 2019-03-28 2021-12-23 パナソニック株式会社 Radio environment measuring device
CN110887462A (en) * 2019-11-28 2020-03-17 深圳供电局有限公司 Unmanned aerial vehicle inspection method and system and power transmission line inspection method and system
WO2021181578A1 (en) * 2020-03-11 2021-09-16 日本電気株式会社 Display control device, display control method, and program
CN112650098B (en) * 2020-11-26 2022-01-28 国网河北省电力有限公司武安市供电分公司 Unmanned aerial vehicle flight monitoring electric wire netting construction system
CN112650098A (en) * 2020-11-26 2021-04-13 国网河北省电力有限公司武安市供电分公司 Unmanned aerial vehicle flight monitoring electric wire netting construction system
CN112436432B (en) * 2020-12-01 2022-11-01 国网安徽省电力有限公司池州供电公司 Method for maintaining ultrahigh-altitude high-voltage cable
CN112436432A (en) * 2020-12-01 2021-03-02 湖南宇尚电力建设有限公司 Maintenance method of ultra-high altitude high-voltage cable
WO2022202030A1 (en) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 Energization state detection device and energization state detection method
WO2024004162A1 (en) * 2022-06-30 2024-01-04 株式会社Acsl Unmanned aerial vehicle

Also Published As

Publication number Publication date
JPWO2018138942A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018138942A1 (en) Power transmission facility monitoring device, power transmission facility monitoring unit, and power transmission facility monitoring system
JP6609833B2 (en) Method and system for controlling the flight of an unmanned aerial vehicle
US9759200B2 (en) Wind tower and wind farm inspections via unmanned aircraft systems
WO2014203593A1 (en) Control system for remote-control unmanned flight vehicle
JPWO2017073310A1 (en) Image photographing system for shape measurement of structure, remote control device, on-board control device, program and recording medium
JP2005265699A (en) System and method for inspecting power transmission line using unmanned flying body
KR101634937B1 (en) System for automatic vision inspection, method using the same
WO2017161563A1 (en) Control method and apparatus for aircraft
WO2021241534A1 (en) Aerial photography system and method
JP2017201757A (en) Image acquisition system, image acquisition method, and image processing method
EP2881320B1 (en) Rotating window and radome for surveillance pod
JP2005265710A (en) Transmission line inspection system using unpiloted plane and method using it
JP2011095112A (en) Three-dimensional position measuring apparatus, mapping system of flying object, and computer program
JP2016080698A (en) Image generation device
JP7391053B2 (en) Information processing device, information processing method and program
JP2006270404A (en) Device and method for controlling photographing and photographing control program
JP6482855B2 (en) Monitoring system
CN104537795A (en) Method for recognizing and positioning forest underground fire based on unmanned aerial vehicle
JP6482856B2 (en) Monitoring system
JP2005289127A (en) Posture and position controlling system and posture and position controlling device for flying device
JP2017167870A (en) Flying object monitoring system, and flying object monitoring apparatus
JP2020071210A (en) Method, device, and program for acquiring result of measuring illuminance and illuminance measuring system
JP2009069020A (en) Radar device
JP6738059B2 (en) Display device, search system, display method, and program
JP2017169076A (en) Flight object monitoring system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541230

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893692

Country of ref document: EP

Kind code of ref document: A1