WO2014203593A1 - Control system for remote-control unmanned flight vehicle - Google Patents

Control system for remote-control unmanned flight vehicle Download PDF

Info

Publication number
WO2014203593A1
WO2014203593A1 PCT/JP2014/059811 JP2014059811W WO2014203593A1 WO 2014203593 A1 WO2014203593 A1 WO 2014203593A1 JP 2014059811 W JP2014059811 W JP 2014059811W WO 2014203593 A1 WO2014203593 A1 WO 2014203593A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
flying object
control system
vehicle
remotely controlled
Prior art date
Application number
PCT/JP2014/059811
Other languages
French (fr)
Japanese (ja)
Inventor
宮原 隆和
Original Assignee
株式会社エルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルム filed Critical 株式会社エルム
Priority to JP2014561219A priority Critical patent/JPWO2014203593A1/en
Publication of WO2014203593A1 publication Critical patent/WO2014203593A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0866Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted to captive aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • B64U2201/202Remote controls using tethers for connecting to ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to a control system for a remotely operated unmanned air vehicle such as a radio-controlled helicopter used for aerial photography for reporting and disaster relief.
  • a radio-controlled helicopter that has a plurality of propellers and can change the flight direction and posture by changing the rotation speed of the propellers is widely used in such a flying object. It will never be done.
  • Such a flying body incorporates a direction sensor, an acceleration sensor, a GPS, etc., which have become high-performance and inexpensive by being used in a smartphone (high performance portable terminal device) in recent years. Compared to general radio controlled helicopters), it is possible to fly much more stably.
  • the pilot in order to fly freely in the three-dimensional space as the pilot intends, the pilot must have considerable ability.
  • a flying vehicle with a weight of several kilograms to more than 10kg is misoperated with camera equipment, it may cause considerable damage to human animals and structures. In some cases, higher skill is required for the pilot.
  • a radio signal helicopter and a ground station are provided with GPS signal receiving devices, respectively, and the position of the radio control helicopter is accurately detected using the GPS signal from the GPS satellite.
  • a control system is proposed in which a satellite communication device for transmitting and receiving control data to and from the data communication satellite is provided on each of the ground stations.
  • the coordinates of obstacles such as steel towers and power transmission lines are input together with the flight route in advance, and if the radio control helicopter gets too close to the obstacles, it is automatically avoided.
  • GPS a method in which the flying object flies autonomously by an altimeter using atmospheric pressure is also used.
  • the problem to be solved by the present invention is to provide a flying body that can be operated by a non-special pilot and can fly stably for a long time.
  • a remotely controlled unmanned air vehicle control system which has been made to solve the above problems, a) one camera on the ground, b) three reference points fixed at the bottom of the remotely controlled unmanned air vehicle; c) a flying object attitude detection unit that identifies a position and attitude of the remotely controlled unmanned aerial vehicle in the air based on the images of the three reference points photographed by the camera.
  • the flying object attitude detection unit analyzes an image captured by a camera placed on the ground, and is fixed at the bottom of the remotely operated unmanned aerial vehicle.
  • the position and posture of the remotely controlled unmanned aerial vehicle are specified by the position of the point. More specifically, the orientation of the remotely operated unmanned air vehicle based on the camera point (viewed from the camera) can be specified by the position of the center of gravity of the triangle formed by the three reference points.
  • the posture of the remotely controlled unmanned aerial vehicle can be specified by the triangular shape, and the distance from the camera to the remotely controlled unmanned aircraft can be specified by the area of the triangle.
  • four or more reference points may be fixed to the lower part of the remotely operated unmanned air vehicle. Two or more cameras may be placed on the ground. In the case of using two or more units, it is possible to specify a more accurate position and posture of the remotely controlled unmanned air vehicle by the parallax between both cameras.
  • the remotely operated unmanned aerial vehicle control system it is desirable to place a power supply unit on the ground and connect the remotely operated unmanned aircraft to the power supply unit with an electric wire. As a result, it is possible to fly for a long time, and the possibility of going out of the maneuverable range due to a maneuver error or the like becomes low, and it becomes easy for a person who is not a professional maneuver to maneuver.
  • the "camera” here means a device that can continuously capture images at time intervals that do not hinder the control of the flying object, and is a commonly used 30-frame / sec video camera.
  • a camera that captures an image with a lower frame rate (of course, one with a higher frame rate) is also included.
  • a remotely operated unmanned air vehicle such as a helicopter having a plurality of propellers can be easily operated without requiring a special operator.
  • this remotely operated unmanned flying vehicle a wired power supply flying vehicle, it is possible to fly for a long time, and also reduce the possibility of falling into an uncontrollable state due to erroneous steering. Therefore, it is possible to easily carry out photography that requires extensive preparation and equipment such as the necessity of using a crane camera.
  • the remote control unmanned air vehicle control system according to the present invention is a small unmanned air vehicle. Can be used. Furthermore, it can be used in many fields, such as wedding video aerial photography that takes place outdoors in gardens.
  • the top view (a) and front view (b) of the flying body used with the remote control unmanned air vehicle control system which is one Example of this invention.
  • the side view which shows the structure of the flying body of the said Example, and its control system.
  • the top view of the flying body which attached the rod-shaped light source arranged in parallel on the lower surface for position specification. It is a figure for demonstrating the range and resolution
  • FIG. 1 (a) is a plan view of the flying object 10 of the present embodiment
  • FIG. 1 (b) is a front view.
  • the flying object 10 of the present embodiment has four sets of propellers 1 and motors 2 attached to the X-type, but in addition (with respect to the flight direction), it is arranged in a + -type, or six sets or eight sets. There are things used.
  • the main body 3 of the flying object 10 includes a control device including a CPU, a motor controller called ESC that controls the rotation of the motor 2 (mainly a three-phase brushless motor is used) based on the output of the control device, It incorporates a power supply circuit that supplies power to the control device and the motor 2, a gyro sensor and acceleration sensor for attitude control, a GPS receiver, an altimeter, and a communication circuit that communicates with the ground via a network. . Furthermore, a direction sensor or a distance sensor using ultrasonic waves may be incorporated.
  • a pair of legs called skids 4 extend downward from both sides of the main body 3 to support the flying object 10 when landing and to protect the camera 6 suspended below the flying object 10. It is also possible to reduce the weight without providing the skid 4 on the main body 3 side, and to provide a landing and landing device that supports the aircraft on the ground.
  • the camera 6 uses a video camera, but a camera for taking a still image may be used.
  • the camera 6 is held in a device called a gimbal 5 for preventing the swing of the flying object 10 from being transmitted to the camera 6.
  • the gimbal 5 includes a two-axis type that can cancel the tilt of the front and rear and the left and right, and a three-axis type that can also cancel changes in the rotation direction. Again, the structure is not related to the essence of the present invention and will not be described in detail.
  • the gimbal 5 has a function not to transmit the swing of the flying object 10 to the camera 6 but also a function to arbitrarily change the direction of the camera 6 from the ground. Therefore, in the case of the three-axis type, the camera 6 can be directed in all directions. However, in the case of the two-axis type, the direction of the rotation direction corresponds by changing the direction of the flying object 10.
  • the shooting direction of the camera 6 may be fixed in the horizontal direction in front of the flying object 10, but in the case of the triaxial type, the camera 6 is directed in various directions. Therefore, depending on the angle, the skid 4 is captured. For this reason, when using the triaxial gimbal 5, a jumping mechanism for the skid 4 is provided, and at the time of shooting after takeoff, it is jumped to the position indicated by the broken line 4 b in FIGS. 1 (a) and 1 (b). As described above, when the skid 4 is not provided in the main body 3, this skid flip-up mechanism is also unnecessary.
  • FIG. 2 is a side view showing the configuration of the flying object 10 and its control system of the present embodiment, and the left side will be described as the front.
  • this control system power is supplied to the flying object 10 described above, its position / posture is detected, and the flying object control unit 20 for controlling its movement, and the position of the flying object 10 are detected. It is composed of one or more video cameras 30 and the like used for the above.
  • the flying object control unit 20 sends out and winds up an electric wire 11 for supplying power to the flying object 10, a drum 21 that can be rotated forward and backward, an electric wire tension detection mechanism using a tension detection arm 22 and an electric wire guide 23, A power supply unit 24 having a tension control mechanism for rotating the drum 21 forward and backward according to the degree of tension of the electric wire 11, the GPS detection signal and altitude signal from the flying object 10, and the flying object 10 photographed by the video camera 30.
  • a flight data processing unit 25 is included for analyzing the position and posture of the flying object 10 based on the image (video) and controlling the movement according to the command of the operator.
  • an imaging data processing device that receives an image or a video signal captured by the camera 6 of the flying object 10, analyzes it, and transmits it to a predetermined transmission destination is also provided.
  • the flying object control unit 20 and the video camera 30 are held at predetermined positions on the platform 40 fixed on the ground.
  • an input device 26 used by the operator for maneuvering and data input
  • a display device 27 for displaying an image or video from the ground video camera 30 and the camera 6 of the flying object 10. Is done.
  • the electric wire 11 needs to supply several hundred W of electric power used by the flying object 10.
  • aircraft motors with multiple propellers use a DC voltage of about 12 to 24 V.
  • the voltage is 16 V and the power used is 640 W, it is necessary to pass a current of 40 A. .
  • An electric wire for passing such an electric current needs to have a thickness of at least 3.5 mm 2 , and in the case of a general electric wire, the weight per unit length is 165 g / m. If the length of the electric wire 11 from the flying object control unit 20 to the flying object 10 is 30 m, the total weight becomes 4.95 kg, and more electric power is required to lift it. Further, a thick electric wire is not preferable because it receives wind strongly and greatly affects the movement of the flying object 10.
  • the supplied voltage is, for example, 160 V, higher than the voltage used by the motor 2, and the voltage is reduced by an inverter (step-down device) inside the aircraft 10,
  • the current flowing through the electric wire 11 is approximately 1/10.
  • the current flowing through the electric wire 11 is 5 A or less, an extremely thin electric wire can be used.
  • the electric wire 11 connected to the flying object 10 is not fixed (cannot be), and thus may contact various objects.
  • a high voltage as high as 160V is supplied to such an electric wire 11, it is very dangerous to surrounding livestock and the like when the outer jacket (insulating layer) is damaged.
  • the center conductor is set to a high voltage
  • the outer conductor is set to a ground potential.
  • the potential for high voltage exposure is minimized.
  • by surrounding the high voltage with the ground potential for example, even when the electric wire 11 is cut, it is highly possible that the current flows between the central conductor and the external conductor, and the possibility of causing damage to humans and the like can be reduced. it can.
  • the weight per 30 m is about 5 to 1 kg compared to the wire required for supplying low voltage (motor input voltage). It will be greatly reduced to kg.
  • This reduced weight of 4 kg means that equipment of the same weight can be additionally mounted on the flying object 10, and conversely, if not additionally mounted, the electric wire 11 can be further extended and a wide range of photography can be performed. To do.
  • the electric wire 11 is used not only as a power cable but also for communication, but 2.5D-2V has a coaxial cable structure in which an external electrode surrounds an internal electrode through which a signal flows. It is hard to receive. Further, since the impedance of the coaxial cable is controlled, adverse effects such as reflection and delay that occur when a high-frequency high-speed signal flows are less likely to occur, and stable communication is possible.
  • the flying object 10 is on the platform 40 (the position of the broken line in FIG. 2) or on the ground surface, and the electric wire 11 passes through the power supply unit 24 having the tension detection / control mechanisms 21 to 23 to the flying object control unit 20. Connected and finally connected to the flight data processing unit 25.
  • the tension detection arm 22 of the tension detection mechanism is pressurized by a spring or the like so as to pull down the wire guide 23 around the axis.
  • the tension control mechanisms 22 to 23 detect the degree of the tension, thereby detecting the tension of the electric wire 11 and rotating the drum 21 forward and backward so as to obtain an appropriate tension.
  • One or more video cameras 30 for detecting the position coordinates (position and altitude) of the flying object 10 are installed on the platform 40. In the case of a plurality of units, they may be installed on another platform or the like where the position with the platform 40 is fixed.
  • the image captured by the video camera 30 is image-processed, whereby the three-dimensional position coordinates of the air vehicle 10 relative to the position of the video camera 30 are obtained. Can be detected. At this time, it is possible to calculate the position coordinates of the flying object 10 by photographing the body 3 (three points) of the flying object 10 and performing image processing.
  • a rod-shaped light source 7 in which blue light emitting diodes are arranged on the front side of the lower surface of the flying object It is good to attach the rod-shaped light source 8 which arranged the red light emitting diode in the back side. This facilitates image processing. Furthermore, since it is a self-luminous light source, position detection becomes easy regardless of day or night. In addition, the color and shape (how to arrange) of the light emitting diodes are not related to the essence of the present invention.
  • FIG. 4 is a diagram for explaining the range and resolution taken by the video camera 30.
  • the resolution of the video camera 30 is a HD video shooting camera that is generally used nowadays. Has 1080 pixels.
  • the field of view of the video camera 30 is set wide in the front-rear direction (left-right direction in the figure), and the viewing angle in the longitudinal direction is set to 32 degrees. Since the flying object 10 is easier to steer when viewed in front, the maneuvering area is tilted 8 degrees forward.
  • the right-hand side shows the field of view in the front-rear direction
  • the left-hand side shows the field of view in the left-right direction.
  • the distance resolution per pixel obtained by dividing the visual field width by the number of pixels is shown.
  • the visual field width in the front-rear direction at an altitude of 30 mm is 17.57 mm
  • the horizontal field width is 9.88 mm
  • the distance resolution per pixel is 9.15 mm.
  • the visual field width can be expanded by widening the lens of the video camera 30.
  • FIG. 1 shows a state in which the image of the flying object 10 reflected on the video camera 30 installed upward is projected on the display device 27.
  • the upper side of the screen corresponds to the right side in FIG. 2, that is, the rear side, and the lower side is the front side and the left side.
  • the front side of FIG. corresponds to the front side of FIG.
  • the video camera 30 is installed at an angle of 8 degrees on the front side, the left and right centers coincide with the center of the display screen, but the front and rear centers (positions directly above the video camera 30) are the display screen. Is offset from the center of
  • the flying object 10 displayed on the upper side (h1) in FIG. 5 was taken vertically after taking off and was photographed in the field of view of the video camera 30.
  • the center of the flying object 10 is front, rear, left and right. It matches the center.
  • the length and interval of the rod-like light source 7 and the rod-like light source 8 provided before and after the flying object 10 are measured on this screen, they are 198 pixels and 222 pixels, respectively.
  • the center position of the flying object 10 is 224 pixels to the right and 1136 pixels in front, the calculation based on the above-mentioned length per pixel of 3.77 mm is 0.84 m and 4.28 m, respectively. It can be seen that the vehicle 10 is at altitude (h2) 12.83 m, 4.28 m ahead and 0.84 m to the right. Note that, as described above, for the sake of easy explanation, the explanation is made ignoring errors caused by the difference between polar coordinates and orthogonal coordinates.
  • the high resolution is verified.
  • the length per pixel is 1.9899 mm and the altitude is 6.77 m.
  • the difference with respect to 6.804 m is 7 cm, indicating that sufficient control is possible at low altitudes. Even at altitudes near 30 m, the error is about 2%, which is more accurate than the altitude information obtained from GPS, and is practical enough.
  • the present invention is not limited to such an example, and can be implemented with various modifications.
  • the altitude (distance) of the flying object 10 may be calculated using the principle of stereoscopic vision by using two (one pair) video cameras. it can. Thereby, the accuracy is further improved.
  • a resolution of about 20 cm can be obtained with the latest one, so that sufficient accuracy can be ensured within a short time.
  • the flying object 10 When the flying object 10 is captured by the video camera 30, the image processing mode is started and the position of the flying object 10 can be specified. Therefore, the flying object 10 is controlled by the pilot using the input device 26 or the like. As long as it is within the viewing angle of the camera 30, it can be freely moved back and forth and left and right. For example, even a person who is not a specialized pilot can easily control the robot by moving it forward and backward, left and right using the cursor keys on the keyboard, moving down using the Z key, and moving up using the X key.
  • the control is returned to the GPS mode, the flying object 10 automatically returns to the GPS coordinates measured at takeoff, Only rise and fall are valid. However, if such a change in control suddenly occurs, the operator will be frustrated, so that the change in the control mode is transmitted to the operator by sound or light from the flying object 10 or the flying object control unit 20. Is desirable.
  • a flying object having a plurality of propellers can freely change its direction during flight, so that it can fly freely, for example, front, rear, left and right when maneuvering from behind
  • the front / rear / left / right directions of the flying vehicle from the front are completely reversed, which is a major cause of misoperation.
  • a control system for an aircraft having multiple propellers that can fly for a long time provides two levels of steering, removing many restrictions for advanced users.
  • the general user is not allowed to use the rotation operation.
  • the gimbal 5 mounted on the flying object 10 is a three-axis type so that the surroundings can be freely photographed by the rotation of the camera 6.
  • the front-rear and left-right directions of the flying object 10 can be arbitrarily changed. Therefore, for example, when the aerial imaging apparatus according to the present invention is placed on the roof of a television broadcasting station's coverage vehicle or the like, the platform 40 may be a rotary type. Thereby, for example, when arriving at an accident site or the like and stopping the car, there is no need to worry about the stopping direction of the car. Regardless of the stop direction of the vehicle, the flying object 10 can be moved to the photographing position very simply by changing the direction of the platform 40 and adjusting the front-rear direction to the direction in which the target object is located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention addresses the problem of providing an unmanned flight vehicle capable of stably flying for a long time even when an expert operator is not present. As a means of solving this problem, the present invention first captures images of three or more reference points affixed to the bottom section of a remote-control unmanned flight vehicle (10) by using one camera (30) placed on the ground, and then identifies the position and orientation of the remote-control unmanned flight vehicle (10) in the air on the basis of the three reference point images. A power-supply unit (24) is placed on the ground and the remote-control unmanned flight vehicle (10) is connected to the power-supply unit (24) via a cable. As a result, it is possible to easily control the remote-control unmanned flight vehicle (10) without needing an expert operator. In addition, it is possible to fly for a long time and to reduce the likelihood of the vehicle becoming uncontrollable as a result of erroneous operation.

Description

遠隔操縦無人飛行体の制御システムRemotely controlled unmanned air vehicle control system
 本発明は、報道や災害救助等のための空撮に用いられる、ラジコン操作ヘリコプター等の遠隔操縦無人飛行体の制御システムに関する。このような飛行体で近年多く用いられるのは、複数のプロペラを持ち、同プロペラの回転速度を変えることにより、飛行方向や姿勢を変えられるラジコン操作ヘリコプターであるが、本発明の対象はそれに限られることはない。 The present invention relates to a control system for a remotely operated unmanned air vehicle such as a radio-controlled helicopter used for aerial photography for reporting and disaster relief. Recently, a radio-controlled helicopter that has a plurality of propellers and can change the flight direction and posture by changing the rotation speed of the propellers is widely used in such a flying object. It will never be done.
 近年、充電できる電池の飛躍的な性能向上や、モーターの著しい性能向上と低価格化により、複数のモーターで複数のプロペラをそれぞれ回転させ、各プロペラの回転速度を変えることにより姿勢や飛行方向を変えられる電池駆動の各種飛行体が開発され、テレビ番組の撮影等にも利用されるようになっている。 In recent years, by dramatically improving the performance of rechargeable batteries, significantly improving the performance of motors and reducing the price, multiple propellers can be rotated by multiple motors, and the rotation speed of each propeller can be changed to change the attitude and flight direction. Various battery-powered flying bodies that can be changed have been developed and used for shooting TV programs.
 このような飛行体は、近年、スマートフォン(高機能携帯端末装置)等に使われることにより高性能で安価になった方位センサや加速度センサ、GPS等を内蔵し、旧来の同様な飛行体(例えば一般的なラジコンヘリコプター)に比べて格段に安定した飛行が可能となっている。 Such a flying body incorporates a direction sensor, an acceleration sensor, a GPS, etc., which have become high-performance and inexpensive by being used in a smartphone (high performance portable terminal device) in recent years. Compared to general radio controlled helicopters), it is possible to fly much more stably.
 しかし、3次元の空間を操縦者の意図通りに自由自在に飛行させるには、操縦者に相当な能力が要求される。また、撮影機材を搭載すると数kgから10 kgを超える重量を持つ飛行体を誤操作すると、人畜や構築物等に相当な被害を与える可能性があるため、そのような場面で使用される飛行体の場合には、操縦者のスキルは更に高いものが要求されることになる。 However, in order to fly freely in the three-dimensional space as the pilot intends, the pilot must have considerable ability. In addition, if a flying vehicle with a weight of several kilograms to more than 10kg is misoperated with camera equipment, it may cause considerable damage to human animals and structures. In some cases, higher skill is required for the pilot.
 この問題点を解消するために、特許文献1では、ラジコンヘリ及び地上局にそれぞれGPS信号受信装置を設け、GPS衛星からのGPS信号を用いてラジコンヘリの位置を正確に検出するとともに、ラジコンヘリ及び地上局にそれぞれデータ通信用衛星との間で制御データなどを送受信するための衛星通信装置を設ける制御システムを提案している。このシステムでは、鉄塔や送電線などの障害物の座標をあらかじめ飛行ルートと共に入力しておき、ラジコンヘリが障害物に接近しすぎると自動的に回避させるようにしている。なお、GPSの他に、気圧を利用した高度計により飛行体が自立的に飛行する方法も利用されている。 In order to solve this problem, in Patent Document 1, a radio signal helicopter and a ground station are provided with GPS signal receiving devices, respectively, and the position of the radio control helicopter is accurately detected using the GPS signal from the GPS satellite. In addition, a control system is proposed in which a satellite communication device for transmitting and receiving control data to and from the data communication satellite is provided on each of the ground stations. In this system, the coordinates of obstacles such as steel towers and power transmission lines are input together with the flight route in advance, and if the radio control helicopter gets too close to the obstacles, it is automatically avoided. In addition to GPS, a method in which the flying object flies autonomously by an altimeter using atmospheric pressure is also used.
特開2003-127994号公報JP 2003-127994 A
 GPS信号を用いた従来の制御装置では、GPS衛星の誤差もあり、メートル単位の精度しか期待できない上に、事前作業が必要なため、例えばニュース等の取材に利用するにはリアルタイム性に欠けることになる。
 また、電池式の飛行体は長くても20分程度、一般に10分以下の飛行しかできないので、例えばゴルフの中継や、イベントの撮影に多用されるクレーンカメラを代替するニーズには応えられない。
Conventional control devices that use GPS signals have GPS satellite errors, which can only be expected to be accurate in meters, and require prior work. For example, they are not real-time for news coverage. become.
In addition, since a battery-powered aircraft can only fly for about 20 minutes at most, generally 10 minutes or less, it cannot meet the needs of replacing a crane camera frequently used for, for example, playing golf or shooting events.
 本発明が解決しようとする課題は、専門的な操縦者でなくても操縦可能であり、長時間安定した飛行が可能な飛行体を提供することである。 The problem to be solved by the present invention is to provide a flying body that can be operated by a non-special pilot and can fly stably for a long time.
 上記課題を解決するために成された本発明に係る遠隔操縦無人飛行体制御システムは、
 a) 地上に置かれた1台のカメラと、
 b) 遠隔操縦無人飛行体の下部に固定された3点の基準点と、
 c) 前記カメラで撮影された前記3点の基準点の画像に基づき、遠隔操縦無人飛行体の空中における位置及び姿勢を特定する飛行体姿勢検出部と
 を有することを特徴とする。
A remotely controlled unmanned air vehicle control system according to the present invention, which has been made to solve the above problems,
a) one camera on the ground,
b) three reference points fixed at the bottom of the remotely controlled unmanned air vehicle;
c) a flying object attitude detection unit that identifies a position and attitude of the remotely controlled unmanned aerial vehicle in the air based on the images of the three reference points photographed by the camera.
 本発明に係る遠隔操縦無人飛行体制御システムでは、飛行体姿勢検出部が、地上に置かれたカメラで撮影された画像を解析し、遠隔操縦無人飛行体の下部に固定された3点の基準点の位置により該遠隔操縦無人飛行体の位置及び姿勢を特定する。詳しく述べると、該3点の基準点で構成される三角形の重心の位置により、カメラの点を基準とする(カメラから見た)遠隔操縦無人飛行体の方位を特定することができる。そして、その三角形の形状により遠隔操縦無人飛行体の姿勢を特定することができ、三角形の面積によりカメラから遠隔操縦無人飛行体までの距離を特定することができる。なお、遠隔操縦無人飛行体の下部に固定する基準点は、もちろん4点以上でも良い。また、地上に置くカメラは2台以上でも構わない。2台以上とした場合には、両カメラの視差により、より正確な遠隔操縦無人飛行体の位置及び姿勢を特定することができる。 In the remotely operated unmanned aerial vehicle control system according to the present invention, the flying object attitude detection unit analyzes an image captured by a camera placed on the ground, and is fixed at the bottom of the remotely operated unmanned aerial vehicle. The position and posture of the remotely controlled unmanned aerial vehicle are specified by the position of the point. More specifically, the orientation of the remotely operated unmanned air vehicle based on the camera point (viewed from the camera) can be specified by the position of the center of gravity of the triangle formed by the three reference points. The posture of the remotely controlled unmanned aerial vehicle can be specified by the triangular shape, and the distance from the camera to the remotely controlled unmanned aircraft can be specified by the area of the triangle. Of course, four or more reference points may be fixed to the lower part of the remotely operated unmanned air vehicle. Two or more cameras may be placed on the ground. In the case of using two or more units, it is possible to specify a more accurate position and posture of the remotely controlled unmanned air vehicle by the parallax between both cameras.
 本発明に係る遠隔操縦無人飛行体制御システムでは、地上に電源部を置き、前記遠隔操縦無人飛行体を電線で該電源部と接続することが望ましい。これにより、長時間の飛行が可能となるとともに、操縦ミス等により操縦可能範囲外に出て行く可能性が低くなり、専門の操縦者でない者も操縦しやすくなる。 In the remotely operated unmanned aerial vehicle control system according to the present invention, it is desirable to place a power supply unit on the ground and connect the remotely operated unmanned aircraft to the power supply unit with an electric wire. As a result, it is possible to fly for a long time, and the possibility of going out of the maneuverable range due to a maneuver error or the like becomes low, and it becomes easy for a person who is not a professional maneuver to maneuver.
 なお、ここで言う「カメラ」は、飛行体の制御に支障のない程度の時間間隔で連続的に画像を撮影することのできる装置のことを意味し、一般に用いられる30フレーム/secのビデオカメラの他、それよりもフレームレートの低い画像を撮影するカメラも(もちろん、それよりも高いフレームレートのものも)含むものである。 The "camera" here means a device that can continuously capture images at time intervals that do not hinder the control of the flying object, and is a commonly used 30-frame / sec video camera In addition, a camera that captures an image with a lower frame rate (of course, one with a higher frame rate) is also included.
 本発明による遠隔操縦無人飛行体制御システムを用いることにより、専門の操縦者を必要とすることなく、複数のプロペラを持つヘリコプター等の遠隔操縦無人飛行体を簡単に操縦することができる。また、この遠隔操縦無人飛行体を、有線電源供給飛行体とすることにより、長時間の飛行が可能となるとともに、誤操縦による制御不能状態に陥る可能性も減らすことができる。従って、これまでクレーンカメラを使う必要があるなど、大掛かりな準備や機材を必要とするような撮影が安価に、簡単に実施できるようになる。また、事故現場や災害現場など、突発的な状況下であるため空撮したくとも操縦の専門家がいないと利用できないという場合でも、本発明による遠隔操縦無人飛行体制御システムでは小型無人飛行体の利用が可能になる。更に、庭園等の屋外で実施される結婚式のビデオ空撮など、多くの分野でも活用できるようになる。 By using the remotely operated unmanned air vehicle control system according to the present invention, a remotely operated unmanned air vehicle such as a helicopter having a plurality of propellers can be easily operated without requiring a special operator. Further, by making this remotely operated unmanned flying vehicle a wired power supply flying vehicle, it is possible to fly for a long time, and also reduce the possibility of falling into an uncontrollable state due to erroneous steering. Therefore, it is possible to easily carry out photography that requires extensive preparation and equipment such as the necessity of using a crane camera. Even in the case of accidents and disasters, even if you want to take an aerial shot and cannot use it unless you have a maneuvering specialist, the remote control unmanned air vehicle control system according to the present invention is a small unmanned air vehicle. Can be used. Furthermore, it can be used in many fields, such as wedding video aerial photography that takes place outdoors in gardens.
本発明の一実施例である遠隔操縦無人飛行体制御システムで用いる飛行体の平面図(a)、及び正面図(b)。The top view (a) and front view (b) of the flying body used with the remote control unmanned air vehicle control system which is one Example of this invention. 前記実施例の飛行体及びその制御システムの構成を示す側面図。The side view which shows the structure of the flying body of the said Example, and its control system. 下面に、位置特定用の2本の平行に並べた棒状光源を取り付けた飛行体の平面図。The top view of the flying body which attached the rod-shaped light source arranged in parallel on the lower surface for position specification. 地上のビデオカメラが撮影する範囲や分解能を説明するための図で、左側が左右方向、右側が前後方向である。It is a figure for demonstrating the range and resolution | decomposability which a ground video camera image | photographs, and the left side is the left-right direction, and the right side is the front-back direction. 地上に上向きに設置したビデオカメラにより撮影された飛行体の、表示装置に映し出された状態を示す図。The figure which shows the state reflected on the display apparatus of the flying object image | photographed with the video camera installed upward on the ground.
 本発明による、専門の操縦者を必要とせず、長時間飛行できる、複数のプロペラを持つ遠隔操縦無人飛行体制御システムの実施例を図を用いて説明する。
 図1(a)は本実施例の飛行体10の平面図で、図1(b)は正面図である。本実施例の飛行体10は、プロペラ1とモーター2が4セット、X型に取り付けられたものであるが、他にも(飛行方向に関して)+型に配置したものや、6セット、8セット使用したものなどがある。また、プロペラ1の回転運動の反作用による本体3の回転運動を打ち消すために、プロペラ1は時計方向と反時計方向に回転するものをそれぞれ同数使用する必要があるが、それを隣同士交互に配置したものや、2対を上下に配置する二重反転型を3対以上使用するなど、多様な構造のものがある。いずれにせよ、飛行体10の構造は本発明の本質には関係しない。
An embodiment of a remotely operated unmanned aerial vehicle control system having a plurality of propellers that can fly for a long time without requiring a special pilot will be described with reference to the drawings.
FIG. 1 (a) is a plan view of the flying object 10 of the present embodiment, and FIG. 1 (b) is a front view. The flying object 10 of the present embodiment has four sets of propellers 1 and motors 2 attached to the X-type, but in addition (with respect to the flight direction), it is arranged in a + -type, or six sets or eight sets. There are things used. Further, in order to cancel the rotational movement of the main body 3 due to the reaction of the rotational movement of the propeller 1, it is necessary to use the same number of propellers 1 that rotate clockwise and counterclockwise, but they are arranged alternately next to each other. There are various types of structures, such as those using 3 pairs or more of the double inversion type in which 2 pairs are arranged one above the other. In any case, the structure of the aircraft 10 is not relevant to the essence of the present invention.
 飛行体10の本体3には、CPUを含む制御装置と、同制御装置の出力に基づきモーター2(主に3相のブラシレスモーターが用いられる。)の回転をコントロールするESCと呼ばれるモーターコントローラと、同制御装置やモーター2に電源を供給する電源回路と、姿勢制御用のジャイロセンサや加速度センサと、GPSの受信機と、高度計と、地上とネットワークにより通信を行う通信回路とを内蔵している。更に、方位センサや、超音波を利用した距離センサを内蔵することもある。 The main body 3 of the flying object 10 includes a control device including a CPU, a motor controller called ESC that controls the rotation of the motor 2 (mainly a three-phase brushless motor is used) based on the output of the control device, It incorporates a power supply circuit that supplies power to the control device and the motor 2, a gyro sensor and acceleration sensor for attitude control, a GPS receiver, an altimeter, and a communication circuit that communicates with the ground via a network. . Furthermore, a direction sensor or a distance sensor using ultrasonic waves may be incorporated.
 本体3の両側からはスキッド4と呼ばれる脚が下方に一対延出しており、着地時に飛行体10を支えると共に、飛行体10の下部に吊り下げたカメラ6を保護する機能を持っている。なお、本体3側にはスキッド4を設けることなく軽量化し、地上に機体を支える発着装置を設けておくこともできる。カメラ6は、本実施例ではビデオカメラを用いているが、静止画撮影用のカメラを使用することもある。 A pair of legs called skids 4 extend downward from both sides of the main body 3 to support the flying object 10 when landing and to protect the camera 6 suspended below the flying object 10. It is also possible to reduce the weight without providing the skid 4 on the main body 3 side, and to provide a landing and landing device that supports the aircraft on the ground. In this embodiment, the camera 6 uses a video camera, but a camera for taking a still image may be used.
 カメラ6は、ジンバル5と呼ばれる、飛行体10の揺動をカメラ6に伝えないための装置に保持されている。ジンバル5には、前後と左右の傾きを打ち消すことのできる2軸型と、それに加えて回転方向の変化も打ち消すことのできる3軸型がある。これについても、その構造は本発明の本質には関係しないので、詳細は述べない。 The camera 6 is held in a device called a gimbal 5 for preventing the swing of the flying object 10 from being transmitted to the camera 6. The gimbal 5 includes a two-axis type that can cancel the tilt of the front and rear and the left and right, and a three-axis type that can also cancel changes in the rotation direction. Again, the structure is not related to the essence of the present invention and will not be described in detail.
 ジンバル5は、飛行体10の揺動をカメラ6に伝えない機能と共に、地上からカメラ6の方向を任意に変える機能を持つ。従って、3軸型の場合は全ての方向にカメラ6を向けることができるが、2軸型の場合は回転方向の向きは飛行体10の向きを変えることで対応する。 The gimbal 5 has a function not to transmit the swing of the flying object 10 to the camera 6 but also a function to arbitrarily change the direction of the camera 6 from the ground. Therefore, in the case of the three-axis type, the camera 6 can be directed in all directions. However, in the case of the two-axis type, the direction of the rotation direction corresponds by changing the direction of the flying object 10.
 よって、2軸型ジンバル5を用いる場合は、カメラ6の撮影方向は飛行体10の正面に水平方向に固定しておけばよいが、3軸型の場合は、カメラ6が様々な方向に向けられるため、角度によってはスキッド4が写ってしまうことになる。このため、3軸型のジンバル5を使う時は、スキッド4の跳ね上げ機構を設け、離陸後の撮影時には図1(a)、(b)の破線4bに示す位置に跳ね上げるようにする。なお、前記のように、本体3にスキッド4を設けない場合には、このスキッド跳ね上げ機構も不要となる。 Therefore, when the biaxial gimbal 5 is used, the shooting direction of the camera 6 may be fixed in the horizontal direction in front of the flying object 10, but in the case of the triaxial type, the camera 6 is directed in various directions. Therefore, depending on the angle, the skid 4 is captured. For this reason, when using the triaxial gimbal 5, a jumping mechanism for the skid 4 is provided, and at the time of shooting after takeoff, it is jumped to the position indicated by the broken line 4 b in FIGS. 1 (a) and 1 (b). As described above, when the skid 4 is not provided in the main body 3, this skid flip-up mechanism is also unnecessary.
 図2は、本実施例の飛行体10及びその制御システムの構成を示す側面図で、左側を前方として説明する。本制御システムには、上で説明した飛行体10に電力を供給し、その位置・姿勢を検出し、その動きを制御するための飛行体制御部20と、飛行体10の位置を検出するために使用する1台以上のビデオカメラ30等で構成される。飛行体制御部20には、飛行体10に電力を供給するための電線11を送り出し、巻き取るための、正逆転できるドラム21と、張力検出アーム22と電線ガイド23による電線張力検出機構と、電線11の張力の程度に応じてドラム21を正逆回転する張力制御機構を備えた電源部24と、飛行体10からのGPS検出信号や高度信号、それにビデオカメラ30により撮影される飛行体10の画像(映像)に基づいて飛行体10の位置及び姿勢を解析するとともに、操縦者の指令に応じてその動きを制御するための飛行データ処理部25が含まれる。この他に、図示しないが、飛行体10のカメラ6が撮影した画像又は映像信号を受信し、解析し、所定の送信先に送信する撮影データ処理装置も備えられている。飛行体制御部20やビデオカメラ30は、地上に固定されたプラットホーム40上の定められた位置に保持されている。飛行データ処理部25には、操縦者が操縦やデータ入力のために用いる入力装置26や、地上のビデオカメラ30や飛行体10のカメラ6からの画像又は映像を表示する表示装置27等が接続される。 FIG. 2 is a side view showing the configuration of the flying object 10 and its control system of the present embodiment, and the left side will be described as the front. In this control system, power is supplied to the flying object 10 described above, its position / posture is detected, and the flying object control unit 20 for controlling its movement, and the position of the flying object 10 are detected. It is composed of one or more video cameras 30 and the like used for the above. The flying object control unit 20 sends out and winds up an electric wire 11 for supplying power to the flying object 10, a drum 21 that can be rotated forward and backward, an electric wire tension detection mechanism using a tension detection arm 22 and an electric wire guide 23, A power supply unit 24 having a tension control mechanism for rotating the drum 21 forward and backward according to the degree of tension of the electric wire 11, the GPS detection signal and altitude signal from the flying object 10, and the flying object 10 photographed by the video camera 30. A flight data processing unit 25 is included for analyzing the position and posture of the flying object 10 based on the image (video) and controlling the movement according to the command of the operator. In addition, although not shown in the drawing, an imaging data processing device that receives an image or a video signal captured by the camera 6 of the flying object 10, analyzes it, and transmits it to a predetermined transmission destination is also provided. The flying object control unit 20 and the video camera 30 are held at predetermined positions on the platform 40 fixed on the ground. Connected to the flight data processing unit 25 are an input device 26 used by the operator for maneuvering and data input, a display device 27 for displaying an image or video from the ground video camera 30 and the camera 6 of the flying object 10. Is done.
 電線11は、飛行体10が使用する数百Wの電力を供給する必要がある。一般的に、複数のプロペラを持つ飛行体のモーターは直流で12~24 V程度の電圧を使うため、例えば電圧を16 V、使用電力を640 Wとすると、40 Aの電流を流す必要がある。このような電流を流すための電線は、少なくとも3.5 mm2の太さが必要になり、一般的な電線の場合、その単位長さ当たり重量は165 g/mとなる。飛行体制御部20から飛行体10までの電線11の長さを30 mとすると、総重量は4.95 kgにもなり、それを持ち上げるために更に大きな電力が必要になる。
 また、太い電線は風を強く受け、飛行体10の運動にも大きな影響を及ぼすため、好ましくない。
The electric wire 11 needs to supply several hundred W of electric power used by the flying object 10. In general, aircraft motors with multiple propellers use a DC voltage of about 12 to 24 V. For example, if the voltage is 16 V and the power used is 640 W, it is necessary to pass a current of 40 A. . An electric wire for passing such an electric current needs to have a thickness of at least 3.5 mm 2 , and in the case of a general electric wire, the weight per unit length is 165 g / m. If the length of the electric wire 11 from the flying object control unit 20 to the flying object 10 is 30 m, the total weight becomes 4.95 kg, and more electric power is required to lift it.
Further, a thick electric wire is not preferable because it receives wind strongly and greatly affects the movement of the flying object 10.
 そこで、本実施例の飛行体制御システムにおいては、供給する電圧を例えば160 Vと、モーター2が使用する電圧よりも高くし、飛行体10内部のインバータ(降圧器)で電圧を下げることにより、電線11に流す電流を概ね1/10にしている。この結果、電線11に流す電流は5 A以下になるため、格段に細い電線を使用できることになる。 Therefore, in the aircraft control system of the present embodiment, the supplied voltage is, for example, 160 V, higher than the voltage used by the motor 2, and the voltage is reduced by an inverter (step-down device) inside the aircraft 10, The current flowing through the electric wire 11 is approximately 1/10. As a result, since the current flowing through the electric wire 11 is 5 A or less, an extremely thin electric wire can be used.
 しかし、飛行体10と接続される電線11は、図2に示すように、固定されない(できない)ため、様々な物に接触する可能性がある。そのような電線11に160 Vもの高電圧を供給すると、外被(絶縁層)に損傷が生じた際に周囲の人畜等に対して非常に危険である。 However, as shown in FIG. 2, the electric wire 11 connected to the flying object 10 is not fixed (cannot be), and thus may contact various objects. When a high voltage as high as 160V is supplied to such an electric wire 11, it is very dangerous to surrounding livestock and the like when the outer jacket (insulating layer) is damaged.
 そこで、本実施例では、電線11には、例えば内部導体の直径が0.8 mmである2.5D-2Vを用い、中心導体を高電圧に、外部導体をグランド電位にすることにより、外被損傷時に高電圧が露出する可能性を極力低くしている。更に、グランド電位で高電圧を取り巻くことにより、例えば電線11が切断した際にも、電流は中心導体と外部導体間で流れる可能性が高く、人畜等に障害を与える可能性を低減することができる。 Therefore, in this embodiment, for the electric wire 11, for example, 2.5D-2V having an inner conductor diameter of 0.8 mm is used, the center conductor is set to a high voltage, and the outer conductor is set to a ground potential. The potential for high voltage exposure is minimized. Furthermore, by surrounding the high voltage with the ground potential, for example, even when the electric wire 11 is cut, it is highly possible that the current flows between the central conductor and the external conductor, and the possibility of causing damage to humans and the like can be reduced. it can.
 このように、高電圧を使い、2.5D-2Vのような細い線を使用すると、低電圧(モーター入力電圧)供給時に必要とした電線に比べると、30 m当りの重量が約5 kgから1 kgに大きく低下することになる。この4 kgの減量分は、同重量の機器を飛行体10に追加搭載できることになり、逆に追加搭載しない場合は更に電線11を延ばし、広範囲の撮影を行うことができるようになることを意味する。 In this way, when using a high voltage and a thin wire such as 2.5D-2V, the weight per 30 m is about 5 to 1 kg compared to the wire required for supplying low voltage (motor input voltage). It will be greatly reduced to kg. This reduced weight of 4 kg means that equipment of the same weight can be additionally mounted on the flying object 10, and conversely, if not additionally mounted, the electric wire 11 can be further extended and a wide range of photography can be performed. To do.
 また、この電線11は電源ケーブルとして用いる他、通信用にも用いているが、2.5D-2Vでは信号を流す内部電極を外部電極が取り囲む同軸ケーブル構造を有しているため、外部雑音の影響を受けにくい。また、同軸ケーブルはインピーダンスが管理されているので、高周波の高速信号を流す際に生じる反射や遅延等の悪影響も生じにくく、安定した通信が可能になる。 The electric wire 11 is used not only as a power cable but also for communication, but 2.5D-2V has a coaxial cable structure in which an external electrode surrounds an internal electrode through which a signal flows. It is hard to receive. Further, since the impedance of the coaxial cable is controlled, adverse effects such as reflection and delay that occur when a high-frequency high-speed signal flows are less likely to occur, and stable communication is possible.
 次に、本実施例の飛行体10の制御システムが行う制御について説明する。
 当初、飛行体10はプラットホーム40上(図2の破線の位置)又は地表等にあり、電線11により、張力検出・制御機構21~23を備えた電源部24を経て、飛行体制御部20に接続され、最終的には飛行データ処理部25に接続されている。
Next, control performed by the control system for the flying object 10 of the present embodiment will be described.
Initially, the flying object 10 is on the platform 40 (the position of the broken line in FIG. 2) or on the ground surface, and the electric wire 11 passes through the power supply unit 24 having the tension detection / control mechanisms 21 to 23 to the flying object control unit 20. Connected and finally connected to the flight data processing unit 25.
 張力検出機構の張力検出アーム22は、軸を中心に電線ガイド23を下側に引き下ろすようにスプリング等により加圧されている。飛行体10が上昇すると、電線11が電線ガイド23を引き上げる。張力制御機構22~23はその度合いを検出することにより、電線11の張力を検出し、適切な張力になるように、ドラム21を正逆回転して電線11を出し入れする。 The tension detection arm 22 of the tension detection mechanism is pressurized by a spring or the like so as to pull down the wire guide 23 around the axis. When the flying body 10 rises, the electric wire 11 pulls up the electric wire guide 23. The tension control mechanisms 22 to 23 detect the degree of the tension, thereby detecting the tension of the electric wire 11 and rotating the drum 21 forward and backward so as to obtain an appropriate tension.
 飛行体10の位置座標(位置や高度)を検出するためのビデオカメラ30は、プラットホーム40上に1台又は複数台設置される。複数台の場合は、プラットホーム40との位置が固定されている別のプラットホーム等に設置してもよい。本発明に係る遠隔操縦無人飛行体の制御システムでは、このビデオカメラ30が撮影した映像を画像処理することにより、飛行体10の、このビデオカメラ30の位置に対する相対的な3次元の位置座標を検出することができる。この時、飛行体10の本体3(の3点)を撮影し、画像処理することにより飛行体10の位置座標を算出することもできるが、天候や時刻、特に夜間など大きく変化する明るさの変動による誤検出を防止するために、また、飛行体10の向き(姿勢)を明確にするために、例えば図3に示すように、飛行体下面の前側に青色発光ダイオードを並べた棒状光源7を、後ろ側に赤色発光ダイオードを並べた棒状光源8を取り付けるとよい。これにより、画像処理が容易になる。更に、自発光光源であるため、昼夜に関わらず位置検出が容易になる。なお、発光ダイオードの色や形状(並べ方)は本発明の本質には関係しない。 One or more video cameras 30 for detecting the position coordinates (position and altitude) of the flying object 10 are installed on the platform 40. In the case of a plurality of units, they may be installed on another platform or the like where the position with the platform 40 is fixed. In the remote control unmanned air vehicle control system according to the present invention, the image captured by the video camera 30 is image-processed, whereby the three-dimensional position coordinates of the air vehicle 10 relative to the position of the video camera 30 are obtained. Can be detected. At this time, it is possible to calculate the position coordinates of the flying object 10 by photographing the body 3 (three points) of the flying object 10 and performing image processing. In order to prevent erroneous detection due to fluctuations and to clarify the orientation (posture) of the flying object 10, for example, as shown in FIG. 3, a rod-shaped light source 7 in which blue light emitting diodes are arranged on the front side of the lower surface of the flying object. It is good to attach the rod-shaped light source 8 which arranged the red light emitting diode in the back side. This facilitates image processing. Furthermore, since it is a self-luminous light source, position detection becomes easy regardless of day or night. In addition, the color and shape (how to arrange) of the light emitting diodes are not related to the essence of the present invention.
 図4は、ビデオカメラ30が撮影する範囲や分解能を説明するための図で、ビデオカメラ30の解像度を昨今一般的に使用されるHDビデオ撮影用のカメラとし、長手方向が1920画素数、他方が1080画素としている。図2に示す構成例において、ビデオカメラ30の視野を前後方向(図では左右方向)に広く設置し、その長手方向の視野角を32度とする。そして、飛行体10を前に見た状態の方が操縦しやすいので、その操縦領域を、前側に8度傾けている。 FIG. 4 is a diagram for explaining the range and resolution taken by the video camera 30. The resolution of the video camera 30 is a HD video shooting camera that is generally used nowadays. Has 1080 pixels. In the configuration example shown in FIG. 2, the field of view of the video camera 30 is set wide in the front-rear direction (left-right direction in the figure), and the viewing angle in the longitudinal direction is set to 32 degrees. Since the flying object 10 is easier to steer when viewed in front, the maneuvering area is tilted 8 degrees forward.
 図4は、右側が前後方向の視野を、左側が左右方向の視野を描いており、図中に高度10 m毎に記入した括弧内の数値は、/の前が視野幅を、後ろが、該視野幅を画素数で割った1画素当りの距離分解能を示す。例えば、高度30 mにおける前後方向の視野幅は17.57 m、左右方向の視野幅は9.88 mで、1画素当りの距離分解能は共に9.15 mmとなる。 In FIG. 4, the right-hand side shows the field of view in the front-rear direction, and the left-hand side shows the field of view in the left-right direction. The distance resolution per pixel obtained by dividing the visual field width by the number of pixels is shown. For example, the visual field width in the front-rear direction at an altitude of 30 mm is 17.57 mm, the horizontal field width is 9.88 mm, and the distance resolution per pixel is 9.15 mm.
 この視野幅で足りない場合は、位置測定精度を少し犠牲にすることになるが、ビデオカメラ30のレンズを広角にすることにより、視野幅を拡大することができる。 If this visual field width is insufficient, the position measurement accuracy is sacrificed a little, but the visual field width can be expanded by widening the lens of the video camera 30.
 次に、図5により、上述した条件のビデオカメラ30を1台だけ用いて、飛行体10の3次元の位置を算出する方法を説明する。この図は、上向きに設置したビデオカメラ30に映った飛行体10の画像を表示装置27に映した状態を示す図で、画面上側が図2における右側すなわち後方に対応し、下側が前方、左側が図2の手前側に対応する。前述の通り、ビデオカメラ30は前側に8度傾けて設置してあるため、左右の中心は表示画面の中心に一致しているが、前後の中心(ビデオカメラ30の直上の位置)は表示画面の中心からオフセットしている。 Next, a method for calculating the three-dimensional position of the flying object 10 using only one video camera 30 having the above-described conditions will be described with reference to FIG. This figure shows a state in which the image of the flying object 10 reflected on the video camera 30 installed upward is projected on the display device 27. The upper side of the screen corresponds to the right side in FIG. 2, that is, the rear side, and the lower side is the front side and the left side. Corresponds to the front side of FIG. As described above, since the video camera 30 is installed at an angle of 8 degrees on the front side, the left and right centers coincide with the center of the display screen, but the front and rear centers (positions directly above the video camera 30) are the display screen. Is offset from the center of
 図5の上側(h1)に表示されている飛行体10は、離陸後、垂直に上昇し、ビデオカメラ30の視野に入った状態で撮影されたもので、飛行体10の中心は前後左右の中心に一致している。この画面上で飛行体10の前後に設けた棒状光源7及び棒状光源8の長さと間隔を測定すると、それぞれ198画素と222画素になっている。
 この情報を元にビデオカメラ30から飛行体10までの距離を計算するに当たって、説明を容易にするために、両棒状光源7、8の長さを共に396 mm、両者の間隔を444 mmとして説明する。この実際の長さと、画像処理により得られた画素数から、396 mm÷198画素=2 mm/画素、444 mm÷222画素=2 mm/画素と計算され、飛行体10は1画素が2 mmに見える高度に存在していることとなる。
The flying object 10 displayed on the upper side (h1) in FIG. 5 was taken vertically after taking off and was photographed in the field of view of the video camera 30. The center of the flying object 10 is front, rear, left and right. It matches the center. When the length and interval of the rod-like light source 7 and the rod-like light source 8 provided before and after the flying object 10 are measured on this screen, they are 198 pixels and 222 pixels, respectively.
In calculating the distance from the video camera 30 to the flying object 10 based on this information, in order to facilitate the explanation, the lengths of both rod- like light sources 7 and 8 are both 396 mm and the distance between them is 444 mm. To do. From this actual length and the number of pixels obtained by image processing, 396 mm ÷ 198 pixels = 2 mm / pixel and 444 mm ÷ 222 pixels = 2 mm / pixel are calculated. It exists at an altitude that is visible.
 実際には、同一高度でも、画面の端部に飛行体10があると、ビデオカメラ30までの距離が変わるため、補正が必要になるが、説明を容易にするために飛行体10は画面の中心部にあるとし、ここでの高度h1を、式
 2 mm=h1・tan(32゜/1920画素)
を解くことによって求めると、
 h1=2 mm/tan(32/1920)=6804 mm=6.804 m
となる。すなわち、飛行体10は、ビデオカメラ30の真上で高度(h1)は6.804 mにあることが分かる。
Actually, even if the flying object 10 is at the end of the screen even at the same altitude, the distance to the video camera 30 changes and correction is necessary. However, for ease of explanation, the flying object 10 Assuming that it is in the center, the altitude h1 here is calculated using the formula 2 mm = h1 · tan (32 ° / 1920 pixels)
By solving for
h1 = 2 mm / tan (32/1920) = 6804 mm = 6.804 m
It becomes. That is, it can be seen that the flying object 10 is directly above the video camera 30 and has an altitude (h1) of 6.804 m.
 次に、飛行体10が図5の画面の下側(h2)にある場合について計算する。この場合、画像処理により得られた棒状光源7、8の長さは105画素であり、その画素数で実際の長さである396 mmを割ると、1画素当りの長さは3.77 mmとなる。
 この数値を元にそのときの高度h2を計算すると
 h2=3.77 mm/tan(32/1920)=12.83 m
となる。
Next, calculation is performed for the case where the flying object 10 is on the lower side (h2) of the screen of FIG. In this case, the length of the rod-shaped light sources 7 and 8 obtained by image processing is 105 pixels, and when the actual length is divided by 396 mm, the length per pixel is 3.77 mm. .
Based on this value and calculating the altitude h2 at that time, h2 = 3.77 mm / tan (32/1920) = 12.83 m
It becomes.
 更に、飛行体10の中心位置が224画素右に、1136画素前にあることから、上記した1画素当りの長さが3.77 mmであることを元に算出すると、それぞれ0.84 mと4.28 mとなり、飛行体10は高度(h2)12.83 mで、前に4.28 m、右に0.84 mの位置にあることが分かる。
 なお、上述したように、説明が容易なように、極座標と直交座標の違いにより生じる誤差を無視して説明している。
Furthermore, since the center position of the flying object 10 is 224 pixels to the right and 1136 pixels in front, the calculation based on the above-mentioned length per pixel of 3.77 mm is 0.84 m and 4.28 m, respectively. It can be seen that the vehicle 10 is at altitude (h2) 12.83 m, 4.28 m ahead and 0.84 m to the right.
Note that, as described above, for the sake of easy explanation, the explanation is made ignoring errors caused by the difference between polar coordinates and orthogonal coordinates.
 次に高度の分解能について検証する。
 飛行体10が更に上昇し、棒状光源7、8の画素数が50画素になると、その高度h50は
 h50=7.92mm/tan(32/1920)=26.94 m
 となる。
 この画素数が1画素だけ少なくなると、
 h49=8.08/tan(32/1920)=27.49 m
となり、1画素の違いで55 cmの高度差が生じることになる。
Next, the high resolution is verified.
When the flying object 10 further rises and the number of pixels of the rod- like light sources 7 and 8 reaches 50, the altitude h50 is h50 = 7.92 mm / tan (32/1920) = 26.94 m
It becomes.
If this number of pixels decreases by one pixel,
h49 = 8.08 / tan (32/1920) = 27.49 m
Thus, an altitude difference of 55 cm occurs due to the difference of one pixel.
 同様に、上記した高度が6.804 mの際の棒状光源の画素数198画素が1画素増えたとして計算すると、1画素当りの長さは1.9899 mmとなり、高度は6.77 mとなる。この場合、6.804 mに対する差は7 cmとなり、低高度においては十分な制御が可能であることが分かる。
 30 m付近の高度においても、その誤差は2%程度であり、GPSから得られる高度情報より精度は高く、十分実用になる。
Similarly, when the above-mentioned altitude is 6.804 m and the number of pixels of the rod-shaped light source is calculated to be increased by 198 pixels, the length per pixel is 1.9899 mm and the altitude is 6.77 m. In this case, the difference with respect to 6.804 m is 7 cm, indicating that sufficient control is possible at low altitudes.
Even at altitudes near 30 m, the error is about 2%, which is more accurate than the altitude information obtained from GPS, and is practical enough.
 ただし、デジタル化する際に生じる量子化誤差により、飛行体10の高度には常に±55 cm程度の誤差があると考えられる。
 そこで、その誤差を小さくする方法を次に述べる。上述した計算は長さに基づいて算出したが、棒状光源7、8の長さとその取付間隔により構成される四角形の面積に着目する。例えば、高い方の高度にある飛行体10の高度算出例において参照した棒状光源7、8の画素数が105画素(長さ。間隔では117画素)であったのに対して、その面積は105×117=12,285となり、その有効数字が2桁大きくなる。このため、量子化誤差などの誤差が平均化され、精度を高めることができる。
However, it is considered that there is always an error of about ± 55 cm in the altitude of the flying object 10 due to the quantization error that occurs when digitizing.
A method for reducing the error will be described below. Although the above calculation was calculated based on the length, attention is paid to the area of a quadrangle formed by the lengths of the rod- like light sources 7 and 8 and their mounting intervals. For example, the number of pixels of the rod- like light sources 7 and 8 referred to in the altitude calculation example of the flying object 10 at the higher altitude is 105 pixels (length: 117 pixels in the interval), but the area is 105 × 117 = 12,285, and the significant figure is two digits larger. For this reason, errors such as quantization errors are averaged, and accuracy can be improved.
 以上、本発明に係る遠隔操縦無人飛行体の制御システムの一つの実施例を説明したが、本発明はこのような例にとどまらず、様々な変形を加えた状態で実施することができる。
 例えば、上記ではビデオカメラ30を1台だけ用いたが、2台(1対)のビデオカメラを用いることにより、立体視の原理を利用して飛行体10の高度(距離)を算出することもできる。これにより、精度は更に向上する。
As mentioned above, although one Example of the control system of the remotely controlled unmanned air vehicle according to the present invention has been described, the present invention is not limited to such an example, and can be implemented with various modifications.
For example, although only one video camera 30 is used in the above, the altitude (distance) of the flying object 10 may be calculated using the principle of stereoscopic vision by using two (one pair) video cameras. it can. Thereby, the accuracy is further improved.
 また、例えば高精度の気圧計を使用すると、最新のものでは20 cm程度の分解能が得られるため、短時間内では十分な精度が確保できることになる。 Also, for example, if a high-precision barometer is used, a resolution of about 20 cm can be obtained with the latest one, so that sufficient accuracy can be ensured within a short time.
 次に図2を用いて実際の離陸や操縦操作について説明する。
 飛行体10は当初ビデオカメラ30に近接しているため、その映像を得ることができない。そこで、離陸時は飛行体10に内蔵するGPSの位置情報を用いて垂直に上昇する。この際に有効な手動操作は、特に特殊な操作によりフル操作可能状態にしない限り、上昇下降の制御だけで、ビデオカメラ30が飛行体10を捉えるまでの間は、前後左右への動きはできないようにしておく。
Next, actual takeoff and control operations will be described with reference to FIG.
Since the flying object 10 is initially close to the video camera 30, the image cannot be obtained. Therefore, at the time of takeoff, the vehicle ascends vertically using the GPS position information built in the flying object 10. The effective manual operation at this time is only up / down control unless the full operation is enabled by a special operation, and it cannot move back and forth and right and left until the video camera 30 captures the flying object 10. Keep it like that.
 飛行体10がビデオカメラ30に捉えられると、前記画像処理モードがスタートし、飛行体10の位置を特定することができるため、操縦者による入力装置26等を用いた操縦により、飛行体10はカメラ30の視野角内にある限り前後左右に自由に移動できるようになる。例えば、キーボードのカーソルキーにより前後左右に移動させ、Zキーにより降下、Xキーにより上昇させる等、専門の操縦者でない者でも簡単に操縦を行うことができる。 When the flying object 10 is captured by the video camera 30, the image processing mode is started and the position of the flying object 10 can be specified. Therefore, the flying object 10 is controlled by the pilot using the input device 26 or the like. As long as it is within the viewing angle of the camera 30, it can be freely moved back and forth and left and right. For example, even a person who is not a specialized pilot can easily control the robot by moving it forward and backward, left and right using the cursor keys on the keyboard, moving down using the Z key, and moving up using the X key.
 この操縦中に突風や何らかのトラブルによりビデオカメラ30が飛行体10を捉えられなくなると、制御はGPSモードに戻され、飛行体10は離陸時に測定したGPSによる座標に自動的に戻り、手動操作は上昇下降のみ有効になる。
 ただし、このような制御の変化が突然起きると操縦者は慌てることになるので、飛行体10や飛行体制御部20から音や光等により、そのような制御モードの変化を操縦者に伝えることが望ましい。
If the video camera 30 becomes unable to catch the flying object 10 due to a gust of wind or some trouble during this maneuvering, the control is returned to the GPS mode, the flying object 10 automatically returns to the GPS coordinates measured at takeoff, Only rise and fall are valid.
However, if such a change in control suddenly occurs, the operator will be frustrated, so that the change in the control mode is transmitted to the operator by sound or light from the flying object 10 or the flying object control unit 20. Is desirable.
 また、一般に複数のプロペラを持つ飛行体は、飛行中に自由に方向を変えることができ、そのことにより、自由自在に飛行できることになるが、例えば後ろから操縦する際の前後左右と、向かってくる飛行体を前側から操縦する前後左右は全く逆になるため、誤操作の大きな原因となっている。 In general, a flying object having a plurality of propellers can freely change its direction during flight, so that it can fly freely, for example, front, rear, left and right when maneuvering from behind The front / rear / left / right directions of the flying vehicle from the front are completely reversed, which is a major cause of misoperation.
 そのため、本件発明による専門の操縦者を必要とせず、長時間飛行できる、複数のプロペラを持つ飛行体の制御システムでは2段階の操縦レベルを用意し、上級者用には多くの制限を取り除くが、一般の使用者には回転操作の使用は認めず、その代りに飛行体10が搭載するジンバル5を3軸型とし、カメラ6の回転により周囲を自由に撮影できるようにする。 Therefore, it does not require a special pilot according to the present invention, and a control system for an aircraft having multiple propellers that can fly for a long time provides two levels of steering, removing many restrictions for advanced users. The general user is not allowed to use the rotation operation. Instead, the gimbal 5 mounted on the flying object 10 is a three-axis type so that the surroundings can be freely photographed by the rotation of the camera 6.
 また、図2において、プラットホーム40の方向を変えると、飛行体10における前後左右の方向を任意に変えることができる。そこで、例えばテレビ放送局の取材車等の屋根の上に本件発明による空撮装置を乗せる場合は、プラットホーム40を回転式としておくとよい。これにより、例えば事故現場等に到着し、車を停車する際、その車の停車方向を気にする必要がない。車の停車方向に関係なく、プラットホーム40の向きを変え、その前後方向を対象とするオブジェクトのある方向に合わせることにより、飛行体10を非常にシンプルに撮影位置に移動することができる。 Further, in FIG. 2, when the direction of the platform 40 is changed, the front-rear and left-right directions of the flying object 10 can be arbitrarily changed. Therefore, for example, when the aerial imaging apparatus according to the present invention is placed on the roof of a television broadcasting station's coverage vehicle or the like, the platform 40 may be a rotary type. Thereby, for example, when arriving at an accident site or the like and stopping the car, there is no need to worry about the stopping direction of the car. Regardless of the stop direction of the vehicle, the flying object 10 can be moved to the photographing position very simply by changing the direction of the platform 40 and adjusting the front-rear direction to the direction in which the target object is located.
10…飛行体
 1…プロペラ
 2…モーター
 3…本体
 4…スキッド
 5…ジンバル
 6…カメラ
 7、8…棒状光源
11…電線
20…飛行体制御部
 21…ドラム
 22…張力検出アーム
 23…電線ガイド
 24…電源部
 25…飛行データ処理部
 26…入力装置
 27…表示装置
30…ビデオカメラ
40…プラットホーム
DESCRIPTION OF SYMBOLS 10 ... Flying object 1 ... Propeller 2 ... Motor 3 ... Main body 4 ... Skid 5 ... Gimbal 6 ... Camera 7, 8 ... Rod-shaped light source 11 ... Electric wire 20 ... Aircraft control part 21 ... Drum 22 ... Tension detection arm 23 ... Electric wire guide 24 ... Power supply unit 25 ... Flight data processing unit 26 ... Input device 27 ... Display device 30 ... Video camera 40 ... Platform

Claims (8)

  1.  a) 地上に置かれた1台のカメラと、
     b) 遠隔操縦無人飛行体の下部に固定された3点の基準点と、
     c) 前記カメラで撮影された前記3点の基準点の画像に基づき、遠隔操縦無人飛行体の空中における位置及び姿勢を特定する飛行体姿勢検出部と
     を有することを特徴とする遠隔操縦無人飛行体制御システム。
    a) one camera on the ground,
    b) three reference points fixed at the bottom of the remotely controlled unmanned air vehicle;
    c) a remotely controlled unmanned flight, comprising: a flying object attitude detection unit that identifies a position and attitude of the remotely operated unmanned aerial vehicle in the air based on the images of the three reference points photographed by the camera; Body control system.
  2.  a) 地上に置かれた1台のカメラと、
     b) 遠隔操縦無人飛行体の下部に固定された、離間して配設された2本の基準棒と、
     c) 前記カメラで撮影された前記2本の基準棒の画像に基づき、遠隔操縦無人飛行体の空中における位置及び姿勢を特定する飛行体姿勢検出部と
     を有することを特徴とする遠隔操縦無人飛行体制御システム。
    a) one camera on the ground,
    b) two spaced apart reference rods fixed to the bottom of the remotely controlled unmanned air vehicle;
    c) a remotely controlled unmanned flight comprising: a flying object attitude detection unit that identifies a position and attitude of a remotely operated unmanned aerial vehicle in the air based on images of the two reference rods captured by the camera; Body control system.
  3.  更に、地上に置かれた電源部を有し、前記遠隔操縦無人飛行体が、該電源部と電線で接続されていることを特徴とする請求項1又は2に記載の遠隔操縦無人飛行体制御システム。 3. The remotely controlled unmanned aerial vehicle control according to claim 1 or 2, further comprising a power supply unit placed on the ground, wherein the remotely operated unmanned aircraft is connected to the power supply unit by an electric wire. system.
  4.  更に、地上に置かれたデータ受信部を有し、前記遠隔操縦無人飛行体で収集したデータを前記電線を通じて該データ受信部に送ることを特徴とする請求項3に記載の遠隔操縦無人飛行体制御システム。 4. The remotely controlled unmanned aerial vehicle according to claim 3, further comprising a data receiving unit placed on the ground, wherein the data collected by the remotely operated unmanned air vehicle is sent to the data receiving unit through the electric wire. Control system.
  5.  更に、前記遠隔操縦無人飛行体に備えられたGPS位置検出器と気圧高度計を有し、前記飛行体姿勢検出部が該GPS位置検出器と該気圧高度計の測定結果を付加的に用いて前記遠隔操縦無人飛行体の空中における位置及び姿勢を特定することを特徴とする請求項4に記載の遠隔操縦無人飛行体制御システム。 Further, the remote control unmanned air vehicle includes a GPS position detector and a barometric altimeter, and the flying vehicle attitude detection unit additionally uses the measurement results of the GPS position detector and the barometric altimeter. The remotely controlled unmanned aerial vehicle control system according to claim 4, wherein the position and posture of the unmanned flying vehicle in the air are specified.
  6.  更に、前記遠隔操縦無人飛行体に備えられた降圧器を有し、前記電源部より前記電線を通じて供給される電気の電圧を前記遠隔操縦無人飛行体において降圧し、使用することを特徴とする請求項3~5のいずれかに記載の遠隔操縦無人飛行体制御システム。 Further, the present invention has a step-down device provided in the remotely operated unmanned aerial vehicle, wherein the electric voltage supplied from the power source through the electric wire is stepped down and used in the remotely operated unmanned aerial vehicle. Item 6. The remotely controlled unmanned air vehicle control system according to any one of Items 3 to 5.
  7.  前記電線が同軸ケーブルである請求項3~6のいずれかに記載の遠隔操縦無人飛行体制御システム。 The remotely controlled unmanned air vehicle control system according to any one of claims 3 to 6, wherein the electric wire is a coaxial cable.
  8.  前記カメラがビデオカメラである請求項1~7のいずれかに記載の遠隔操縦無人飛行体制御システム。 The remotely operated unmanned air vehicle control system according to any one of claims 1 to 7, wherein the camera is a video camera.
PCT/JP2014/059811 2013-06-21 2014-04-03 Control system for remote-control unmanned flight vehicle WO2014203593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014561219A JPWO2014203593A1 (en) 2013-06-21 2014-04-03 Remotely controlled unmanned air vehicle control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-130171 2013-06-21
JP2013130171 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014203593A1 true WO2014203593A1 (en) 2014-12-24

Family

ID=52104337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059811 WO2014203593A1 (en) 2013-06-21 2014-04-03 Control system for remote-control unmanned flight vehicle

Country Status (2)

Country Link
JP (1) JPWO2014203593A1 (en)
WO (1) WO2014203593A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105059554A (en) * 2015-07-30 2015-11-18 珠海市双捷科技有限公司 Power system of high-power and high-voltage electric-driven wired unmanned aerial vehicle
CN105083556A (en) * 2015-09-18 2015-11-25 施中天 Remote-control rotor wing flight mine sweeping device with power supplied by external power source
CN105109676A (en) * 2015-09-18 2015-12-02 上海长语信息科技有限公司 Ultra-high-speed cleaning device for remotely piloted vehicle
US9214022B1 (en) * 2014-07-07 2015-12-15 Google Inc. Enhanced accuracy for tracking tethered airborne vehicles
CN105173107A (en) * 2015-09-18 2015-12-23 施中天 External power source power supply remote control rotor flight pesticide spraying device
CN105235905A (en) * 2015-09-18 2016-01-13 上海长语信息科技有限公司 External power-supply ground-effect craft method and equipment
JP2016132267A (en) * 2015-01-15 2016-07-25 国立大学法人 名古屋工業大学 Flight body capable of land travelling
WO2016121008A1 (en) * 2015-01-27 2016-08-04 株式会社自律制御システム研究所 Flying robot device
WO2016121072A1 (en) * 2015-01-29 2016-08-04 株式会社自律制御システム研究所 Flying robot device
JP2016165215A (en) * 2015-02-04 2016-09-08 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Systems and methods for docking and charging unmanned aerial vehicles
JP2016179742A (en) * 2015-03-24 2016-10-13 株式会社フジタ Flight body having cable
JP2016210229A (en) * 2015-04-30 2016-12-15 株式会社テクノスヤシマ Lighting system
JP2016218010A (en) * 2015-05-26 2016-12-22 株式会社リコー Flight type inspection device
WO2017031697A1 (en) * 2015-08-25 2017-03-02 深圳市大疆创新科技有限公司 Mode control system and method, and handheld pan tilt and mobile platform using same
WO2017038809A1 (en) * 2015-09-04 2017-03-09 株式会社プロドローン Flight position control device
JP2017074821A (en) * 2015-10-13 2017-04-20 独立行政法人国立高等専門学校機構 Drowning rescue device
WO2017077348A1 (en) * 2015-11-06 2017-05-11 Squarehead Technology As Uav detection
CN106882391A (en) * 2017-03-17 2017-06-23 四川建筑职业技术学院 A kind of spherical three axles joint control vector motor cabinet of unmanned plane
WO2017124840A1 (en) * 2016-01-22 2017-07-27 深圳泰山体育科技股份有限公司 Optical control method and system for aircraft
JP2017149402A (en) * 2015-10-02 2017-08-31 インサイツ インク. Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
JP2017169395A (en) * 2016-03-17 2017-09-21 株式会社空撮技研 Striped body feeding device for unmanned flying object
JP2017165363A (en) * 2016-03-18 2017-09-21 株式会社Ihiエアロスペース Landing assist device and method
CN107244414A (en) * 2017-06-27 2017-10-13 深圳市雷凌广通技术研发有限公司 A kind of multi-functional unmanned plane for wedding celebration
KR101850892B1 (en) 2016-05-02 2018-04-20 태원건설(주) A crack diagnosis device of construction vertical wall
CN108349586A (en) * 2015-11-05 2018-07-31 南良祐 Aircraft
GB2559185A (en) * 2017-01-31 2018-08-01 Aquila Aerospace Ltd Surveillance apparatus
WO2018165192A1 (en) * 2017-03-06 2018-09-13 Hoverfly Technologies, Inc. Constant tension tether management system for tethered aircraft
WO2019001662A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S System and method for positioning wind turbine components
CN109442241A (en) * 2018-10-01 2019-03-08 江苏师范大学 A kind of midair stage lighting sound device
JP2019050007A (en) * 2018-11-01 2019-03-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method and device for determining position of mobile body and computer readable medium
JP2019095963A (en) * 2017-11-21 2019-06-20 日本ニューマチック工業株式会社 System for controlling position of mobile body
JP2019144052A (en) * 2018-02-19 2019-08-29 株式会社フジタ Test object inspection device and inspection method
US10486831B2 (en) 2015-10-27 2019-11-26 Walmart Apollo, Llc Method and apparatus for an airborne drone training track
JP2019218779A (en) * 2018-06-21 2019-12-26 前田建設工業株式会社 Inspection device
JP2020006800A (en) * 2018-07-09 2020-01-16 パナソニックIpマネジメント株式会社 Control device, information processing method and mooring device
JP2020501969A (en) * 2016-12-26 2020-01-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Deformable device
KR20200031755A (en) * 2018-09-15 2020-03-25 한남대학교 산학협력단 Mechanical brake device and its application to a mechanical brake system
IT201800010924A1 (en) * 2018-12-10 2020-06-10 E Novia S P A System and method for controlling overhead cables in remotely piloted aircraft systems
WO2020140295A1 (en) * 2019-01-04 2020-07-09 深圳市大疆创新科技有限公司 Handheld gimbal control method and handheld gimbal
CN112896528A (en) * 2019-11-19 2021-06-04 通用电气公司 Aircraft propulsion system with voltage regulator
CN113682227A (en) * 2020-05-19 2021-11-23 马自达汽车株式会社 Vehicle surroundings monitoring system
JP7046405B1 (en) 2021-10-13 2022-04-04 株式会社空撮技研 Striatum feeding device for unmanned aircraft
WO2022118365A1 (en) * 2020-12-01 2022-06-09 株式会社東広ライフクリエイツ Floating advertising device
WO2023062751A1 (en) * 2021-10-13 2023-04-20 株式会社Acsl Controller and drone system
US11713118B1 (en) 2017-03-06 2023-08-01 Hoverfly Technologies. Inc. Constant tension tether management system for a tethered aircraft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161304B2 (en) * 2018-03-30 2022-10-26 大和ハウス工業株式会社 localization system
JP6803625B2 (en) * 2019-06-11 2020-12-23 株式会社東広ライフクリエイツ Floating advertising device
CN114476065B (en) * 2022-03-28 2022-11-22 黄河水利职业技术学院 Unmanned aerial vehicle remote sensing device for surveying and mapping engineering measurement

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666201U (en) * 1993-02-23 1994-09-16 株式会社椿本チエイン Non-contact power supply device for moving body on constant track
JPH0870506A (en) * 1994-08-26 1996-03-12 Ichiro Maekawa System of transporter provided with gas tank for bouyancy assistant which receives power supply from transmission line to fly by electrically driven rotary wing
JP2003042730A (en) * 2001-07-30 2003-02-13 Topcon Corp Apparatus and method for measurement of surface shape as well as surface-state mapping apparatus
JP2006051893A (en) * 2004-08-12 2006-02-23 Seiko Epson Corp Position/posture detecting system
JP2009031086A (en) * 2007-07-26 2009-02-12 Shimadzu Corp Marker image identification device and method for identifying marker image
JP2009522563A (en) * 2006-01-05 2009-06-11 インターナショナル・ビジネス・マシーンズ・コーポレーション Mobile device tracking
JP2009294048A (en) * 2008-06-04 2009-12-17 Yokohama Rubber Co Ltd:The Behavior measuring device of moving body, and behavior measuring method of moving body
JP2010096752A (en) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program
JP2011252917A (en) * 2011-07-20 2011-12-15 Japan Atomic Energy Agency Method for arranging marker in on-site operation support system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631834B1 (en) * 2006-02-24 2009-12-15 Stealth Robotics, Llc Aerial robot with dispensable conductive filament

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666201U (en) * 1993-02-23 1994-09-16 株式会社椿本チエイン Non-contact power supply device for moving body on constant track
JPH0870506A (en) * 1994-08-26 1996-03-12 Ichiro Maekawa System of transporter provided with gas tank for bouyancy assistant which receives power supply from transmission line to fly by electrically driven rotary wing
JP2003042730A (en) * 2001-07-30 2003-02-13 Topcon Corp Apparatus and method for measurement of surface shape as well as surface-state mapping apparatus
JP2006051893A (en) * 2004-08-12 2006-02-23 Seiko Epson Corp Position/posture detecting system
JP2009522563A (en) * 2006-01-05 2009-06-11 インターナショナル・ビジネス・マシーンズ・コーポレーション Mobile device tracking
JP2009031086A (en) * 2007-07-26 2009-02-12 Shimadzu Corp Marker image identification device and method for identifying marker image
JP2009294048A (en) * 2008-06-04 2009-12-17 Yokohama Rubber Co Ltd:The Behavior measuring device of moving body, and behavior measuring method of moving body
JP2010096752A (en) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program
JP2011252917A (en) * 2011-07-20 2011-12-15 Japan Atomic Energy Agency Method for arranging marker in on-site operation support system

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214022B1 (en) * 2014-07-07 2015-12-15 Google Inc. Enhanced accuracy for tracking tethered airborne vehicles
JP2016132267A (en) * 2015-01-15 2016-07-25 国立大学法人 名古屋工業大学 Flight body capable of land travelling
JPWO2016121008A1 (en) * 2015-01-27 2017-12-07 株式会社自律制御システム研究所 Flying robot
WO2016121008A1 (en) * 2015-01-27 2016-08-04 株式会社自律制御システム研究所 Flying robot device
WO2016121072A1 (en) * 2015-01-29 2016-08-04 株式会社自律制御システム研究所 Flying robot device
JPWO2016121072A1 (en) * 2015-01-29 2017-12-21 株式会社自律制御システム研究所 Flying robot
JP2016165215A (en) * 2015-02-04 2016-09-08 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Systems and methods for docking and charging unmanned aerial vehicles
JP2016179742A (en) * 2015-03-24 2016-10-13 株式会社フジタ Flight body having cable
JP2016210229A (en) * 2015-04-30 2016-12-15 株式会社テクノスヤシマ Lighting system
JP2016218010A (en) * 2015-05-26 2016-12-22 株式会社リコー Flight type inspection device
CN105059554A (en) * 2015-07-30 2015-11-18 珠海市双捷科技有限公司 Power system of high-power and high-voltage electric-driven wired unmanned aerial vehicle
CN107430407A (en) * 2015-08-25 2017-12-01 深圳市大疆灵眸科技有限公司 Schema control system and method, and use its hand-held head, moveable platform
WO2017031697A1 (en) * 2015-08-25 2017-03-02 深圳市大疆创新科技有限公司 Mode control system and method, and handheld pan tilt and mobile platform using same
CN107430407B (en) * 2015-08-25 2019-08-02 深圳市大疆灵眸科技有限公司 Schema control system and method, and hand-held holder, moveable platform using it
JPWO2017038809A1 (en) * 2015-09-04 2017-11-24 株式会社プロドローン Airborne position control device
US10246188B2 (en) 2015-09-04 2019-04-02 Prodrone Co., Ltd. Apparatus for controlling still position in air
WO2017038809A1 (en) * 2015-09-04 2017-03-09 株式会社プロドローン Flight position control device
CN105173107A (en) * 2015-09-18 2015-12-23 施中天 External power source power supply remote control rotor flight pesticide spraying device
CN105235905A (en) * 2015-09-18 2016-01-13 上海长语信息科技有限公司 External power-supply ground-effect craft method and equipment
CN105109676A (en) * 2015-09-18 2015-12-02 上海长语信息科技有限公司 Ultra-high-speed cleaning device for remotely piloted vehicle
CN105083556A (en) * 2015-09-18 2015-11-25 施中天 Remote-control rotor wing flight mine sweeping device with power supplied by external power source
US11858631B2 (en) 2015-10-02 2024-01-02 Insitu, Inc. Aerial launch and/or recovery for unmanned aircraft with submersible devices, and associated systems and methods
US10933997B2 (en) 2015-10-02 2021-03-02 Insitu, Inc. Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
JP2017149402A (en) * 2015-10-02 2017-08-31 インサイツ インク. Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
JP2017074821A (en) * 2015-10-13 2017-04-20 独立行政法人国立高等専門学校機構 Drowning rescue device
US10486831B2 (en) 2015-10-27 2019-11-26 Walmart Apollo, Llc Method and apparatus for an airborne drone training track
EP3372496A4 (en) * 2015-11-05 2019-05-08 Yang Woo Nam Flying object
AU2016348095B2 (en) * 2015-11-05 2020-10-01 Yang Woo Nam Flying object
CN108349586A (en) * 2015-11-05 2018-07-31 南良祐 Aircraft
AU2016348095C1 (en) * 2015-11-05 2021-01-14 Yang Woo Nam Flying object
WO2017077348A1 (en) * 2015-11-06 2017-05-11 Squarehead Technology As Uav detection
US10557916B2 (en) 2015-11-06 2020-02-11 Squarehead Technology As UAV detection
WO2017124840A1 (en) * 2016-01-22 2017-07-27 深圳泰山体育科技股份有限公司 Optical control method and system for aircraft
JP2017169395A (en) * 2016-03-17 2017-09-21 株式会社空撮技研 Striped body feeding device for unmanned flying object
JP2017165363A (en) * 2016-03-18 2017-09-21 株式会社Ihiエアロスペース Landing assist device and method
KR101850892B1 (en) 2016-05-02 2018-04-20 태원건설(주) A crack diagnosis device of construction vertical wall
JP2020501969A (en) * 2016-12-26 2020-01-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Deformable device
GB2559185A (en) * 2017-01-31 2018-08-01 Aquila Aerospace Ltd Surveillance apparatus
WO2018165192A1 (en) * 2017-03-06 2018-09-13 Hoverfly Technologies, Inc. Constant tension tether management system for tethered aircraft
US11713118B1 (en) 2017-03-06 2023-08-01 Hoverfly Technologies. Inc. Constant tension tether management system for a tethered aircraft
CN106882391A (en) * 2017-03-17 2017-06-23 四川建筑职业技术学院 A kind of spherical three axles joint control vector motor cabinet of unmanned plane
CN107244414B (en) * 2017-06-27 2019-11-22 中高(泰州)知识产权管理咨询有限公司 A kind of multi-functional unmanned plane for wedding celebration
CN107244414A (en) * 2017-06-27 2017-10-13 深圳市雷凌广通技术研发有限公司 A kind of multi-functional unmanned plane for wedding celebration
WO2019001662A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S System and method for positioning wind turbine components
JP2019095963A (en) * 2017-11-21 2019-06-20 日本ニューマチック工業株式会社 System for controlling position of mobile body
JP7105579B2 (en) 2018-02-19 2022-07-25 株式会社フジタ Inspection device and inspection method for inspection object
JP2019144052A (en) * 2018-02-19 2019-08-29 株式会社フジタ Test object inspection device and inspection method
JP2019218779A (en) * 2018-06-21 2019-12-26 前田建設工業株式会社 Inspection device
JP7018594B2 (en) 2018-07-09 2022-02-14 パナソニックIpマネジメント株式会社 Control device, information processing method and mooring device
JP2020006800A (en) * 2018-07-09 2020-01-16 パナソニックIpマネジメント株式会社 Control device, information processing method and mooring device
KR20200031755A (en) * 2018-09-15 2020-03-25 한남대학교 산학협력단 Mechanical brake device and its application to a mechanical brake system
KR102159524B1 (en) 2018-09-15 2020-09-24 한남대학교 산학협력단 Mechanical brake device and its application to a mechanical brake system
CN109442241A (en) * 2018-10-01 2019-03-08 江苏师范大学 A kind of midair stage lighting sound device
JP2019050007A (en) * 2018-11-01 2019-03-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method and device for determining position of mobile body and computer readable medium
IT201800010924A1 (en) * 2018-12-10 2020-06-10 E Novia S P A System and method for controlling overhead cables in remotely piloted aircraft systems
WO2020140295A1 (en) * 2019-01-04 2020-07-09 深圳市大疆创新科技有限公司 Handheld gimbal control method and handheld gimbal
CN112896528A (en) * 2019-11-19 2021-06-04 通用电气公司 Aircraft propulsion system with voltage regulator
CN113682227A (en) * 2020-05-19 2021-11-23 马自达汽车株式会社 Vehicle surroundings monitoring system
CN113682227B (en) * 2020-05-19 2023-12-01 马自达汽车株式会社 Vehicle periphery monitoring system
WO2022118365A1 (en) * 2020-12-01 2022-06-09 株式会社東広ライフクリエイツ Floating advertising device
JP7046405B1 (en) 2021-10-13 2022-04-04 株式会社空撮技研 Striatum feeding device for unmanned aircraft
WO2023062751A1 (en) * 2021-10-13 2023-04-20 株式会社Acsl Controller and drone system
JP2023058162A (en) * 2021-10-13 2023-04-25 株式会社空撮技研 Linear body delivery device of unmanned flight body

Also Published As

Publication number Publication date
JPWO2014203593A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2014203593A1 (en) Control system for remote-control unmanned flight vehicle
US11001395B2 (en) Payload mounting platform
US20220048623A1 (en) Systems and methods for uav transport and data acquisition
US9765926B2 (en) Systems and methods for payload stabilization
EP3783454B1 (en) Systems and methods for adjusting uav trajectory
JP6123032B2 (en) Assisted takeoff
JP5618840B2 (en) Aircraft flight control system
JP5775632B2 (en) Aircraft flight control system
JP6362231B2 (en) Remote live video transmission system
US20200148352A1 (en) Portable integrated uav
CN115220475A (en) System and method for UAV flight control
US11104434B2 (en) Roaming airborne explorer system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014561219

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813730

Country of ref document: EP

Kind code of ref document: A1