WO2018135444A1 - 油冷式スクリュ圧縮機 - Google Patents

油冷式スクリュ圧縮機 Download PDF

Info

Publication number
WO2018135444A1
WO2018135444A1 PCT/JP2018/000855 JP2018000855W WO2018135444A1 WO 2018135444 A1 WO2018135444 A1 WO 2018135444A1 JP 2018000855 W JP2018000855 W JP 2018000855W WO 2018135444 A1 WO2018135444 A1 WO 2018135444A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
bearing portion
oil
side bearing
space
Prior art date
Application number
PCT/JP2018/000855
Other languages
English (en)
French (fr)
Inventor
貴徳 今城
透 野口
広宣 坂口
孝二 田中
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201880007143.1A priority Critical patent/CN110168226B/zh
Publication of WO2018135444A1 publication Critical patent/WO2018135444A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to an oil-cooled screw compressor.
  • oil agitation loss is an important problem, and among the oil agitation loss, the agitation loss in the bearing portion of the screw rotor is the main factor.
  • the bearing portion of the compressor is cooled and lubricated by oil and has a structure through which oil always passes.
  • the bearing portion on the discharge side is usually cooled and lubricated by the oil that seals the shaft seal portion, it is difficult to adjust the amount of oil. Therefore, in the bearing part on the discharge side, unlike the oil bath state assumed by the bearing manufacturer, the oil level on the upstream side of the bearing part rises due to the resistance to the oil flow by the bearing part. The contact area with the bearing portion increases, and the oil agitation loss increases.
  • Patent Document 1 discloses an oil discharge structure of a bearing portion of an oil-cooled screw compressor.
  • an annular space is provided in the outer ring restraining sleeve of the bearing portion, thereby preventing oil agitation loss due to accumulation of oil in the space on the downstream side of the bearing portion.
  • an object of the present invention is to provide an oil-cooled screw compressor that can reduce oil agitation loss on the upstream side of the bearing portion.
  • One aspect of the present invention is a pair of screw rotors in which an oil-cooled screw compressor rotates in an engaged state to compress gas,
  • a casing for accommodating the pair of screw rotors;
  • a discharge-side bearing portion that supports a discharge-side rotor shaft of the screw rotor;
  • a shaft seal portion for sealing the discharge-side rotor shaft;
  • a first space provided between the shaft sealing portion and the discharge-side bearing portion;
  • a second space provided between an axial end of the discharge side bearing portion and the casing;
  • a communication passage formed in the casing and communicating with the first space and the second space is provided.
  • the aspect further includes the following configuration.
  • the contact lower end of the portion of the communication passage in contact with the discharge side bearing portion is between the lowermost end of the inner ring transfer surface of the discharge side bearing portion and the lower end of the outer ring transfer surface of the discharge side bearing portion. positioned.
  • the lower end of the portion of the communication passage that is in contact with the discharge-side bearing portion is disposed between the lowermost end of the inner ring transfer surface and the lowermost end of the outer ring transfer surface of the discharge-side bearing portion.
  • the oil surface position in one space can be maintained at a height at which the rolling elements bathe, and excess oil can be moved to the second space by the communication passage while supplying the required amount of oil to the bearing portion. .
  • the lower end of the contact is located between the lowermost end of the orbital circle at the center of the rolling element of the discharge side bearing portion and the lowermost end of the outer ring transfer surface of the discharge side bearing portion. is doing.
  • the lower end of the contact of the communication passage is disposed between the lowermost end of the orbital circle at the center of the rolling element of the discharge-side bearing portion and the lowermost end of the outer ring transfer surface.
  • the oil level position can be further maintained between the center position of the rolling elements and the outer ring transfer surface, and excess oil is supplied to the second space by the communication passage while supplying a necessary and smaller amount of oil to the bearing portion. Can be moved.
  • the discharge port for discharging the compressed gas compressed by the pair of screw rotors is disposed below or laterally with respect to a straight line connecting the axis of the discharge side rotor shaft,
  • the communication passage is a surface perpendicular to the direction of the gas acting force acting on the discharge side rotor shaft by the compressed gas, and passes through the axis of the discharge side rotor shaft, and the discharge port with respect to the gas acting force surface On the side.
  • the discharge-side rotor shaft receives a force from the compressed gas.
  • the communication passage on the discharge port side with respect to the gas action force surface, that is, on the opposite side of the direction of the gas action force received from the compressed gas, the support force of the discharge side bearing portion by the casing is reduced. And a communication passage can be provided.
  • the communication passage is provided in a predetermined range on the opposite side of the direction of the gas acting force received from the compressed gas, so that the communication without reducing the supporting force of the discharge side bearing portion by the casing.
  • a passage can be provided.
  • the communication passage extends in a straight line and has a longitudinal axis parallel to the discharge-side rotor shaft.
  • the connecting passage when the connecting passage is manufactured by machining, the connecting passage can be manufactured by one machining from the outside of the casing. Can do. Even when the communication passage is made of cast metal, it has a simple structure, so it can be manufactured by simply modifying a part of the bearing holding hole mold without considering the mold removal direction. Further, the manufacturability and the manufacturing cost of the communication passage can be advantageous.
  • a plurality of communication passages are provided.
  • the oil level position is increased by providing a plurality of communication passages. It can be prevented from rising.
  • a second aspect of the present invention includes a pair of screw rotors that rotate in an engaged state and compress gas.
  • a casing for accommodating the pair of screw rotors;
  • a suction side bearing portion that supports a suction side rotor shaft of the screw rotor;
  • a third space provided between the axial end of the suction side bearing portion and the casing;
  • a second communication passage formed in the casing and communicating the third space and the suction space is provided.
  • the second aspect preferably further comprises the following configuration.
  • the lower end of the contact portion of the second communication passage that is in contact with the suction side bearing portion is the lowermost end of the inner ring transfer surface of the suction side bearing portion and the lowermost end of the outer ring transfer surface of the suction side bearing portion. Located between.
  • the lower end of the contact is located between the lowermost end of the orbital circle at the center of the rolling element of the suction side bearing portion and the lowermost end of the outer ring transfer surface of the suction side bearing portion. is doing.
  • the contact lower end of the second communication passage is arranged between the lowermost end of the orbital circle at the center of the rolling element of the suction side bearing portion and the lowermost end of the outer ring transfer surface, whereby the third The oil surface position of the space can be maintained between the center position of the rolling elements and the outer ring transfer surface, and excess oil can be removed by the second communication passage while supplying a necessary and smaller amount of oil to the bearing portion. It can be moved to the suction space.
  • the discharge port for discharging the compressed gas compressed by the pair of screw rotors is disposed below or laterally with respect to a straight line connecting the axis of the suction side rotor shaft,
  • the second communication passage is a surface perpendicular to the direction of the gas acting force acting on the suction side rotor shaft by the compressed gas, and passes through the axial center of the suction side rotor shaft and the gas acting force surface. It is provided on the discharge port side.
  • the suction-side rotor shaft receives a force from the compressed gas.
  • the second communication passage on the discharge port side with respect to the gas acting force surface, that is, on the opposite side of the direction of the gas acting force received from the compressed gas, the supporting force of the suction side bearing portion by the casing is reduced. Without this, the second communication passage can be provided.
  • the second communication passage includes a first inclined line that passes through the axis and forms an angle of 45 degrees downward with respect to an anti-gas action force line extending in a direction opposite to the gas action force with respect to the axis. , And a second inclined line having an angle of 45 degrees upward with respect to the anti-gas acting force line.
  • the second communication passage by providing the second communication passage in a predetermined range opposite to the direction of the gas acting force received from the compressed gas, the supporting force of the suction side bearing portion by the casing is not reduced.
  • a second communication passage can be provided.
  • the second communication passage extends linearly and has a longitudinal axis parallel to the suction-side rotor shaft.
  • the second connecting passage when the second connecting passage is manufactured by machining, the second connecting passage can be manufactured by one machining from the outside of the casing. Can be advantageous. Even if the second communication passage is made of cast metal, it has a simple structure, so it can be made by simply modifying a part of the bearing holding hole mold without considering the mold removal direction. Thus, the manufacturability and manufacturing cost of the second communication passage can be advantageous.
  • a plurality of the second communication passages are provided.
  • the oil level position is determined by providing a plurality of second communication passages. It is possible to prevent a large rise.
  • a third aspect of the present invention comprises a pair of screw rotors that rotate in mesh and compress gas.
  • a casing for accommodating the pair of screw rotors;
  • a discharge-side bearing portion that supports a discharge-side rotor shaft of the screw rotor;
  • a shaft seal portion for sealing the discharge-side rotor shaft;
  • a first space provided between the shaft sealing portion and the discharge-side bearing portion;
  • a second space provided between an axial end of the discharge side bearing portion and the casing;
  • a suction side bearing portion that supports a suction side rotor shaft of the screw rotor;
  • a third space provided between the axial end of the suction side bearing portion and the casing;
  • the communication passage and the second communication passage are provided at positions overlapping each other when
  • the communication passage and the second communication passage are provided at positions overlapping each other when viewed from the axial direction of the screw rotor, both the supporting forces of the discharge side bearing portion and the suction side bearing portion by the casing are shared.
  • the communication passage and the second communication passage can be provided without being lowered.
  • an oil-cooled screw compressor that can reduce oil agitation loss on the upstream side of the bearing can be provided.
  • FIG. 2 is a partial sectional view taken along line II-II in FIG.
  • FIG. 3 is a partial sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a partial cross-sectional view along IV-IV in FIG. 1.
  • the fragmentary sectional view of the discharge side bearing part of the screw compressor concerning a 2nd embodiment of the present invention.
  • the fragmentary sectional view of the discharge side bearing part of the screw compressor concerning a 3rd embodiment of the present invention.
  • the fragmentary sectional view of the discharge side bearing part of a screw compressor which shows the modification of a communicating path.
  • FIG. 10 is a partial cross-sectional view taken along line XX in FIG. 9.
  • FIG. 1 is a partial plan view of a plane of an oil-cooled screw compressor 2 according to the first embodiment of the present invention.
  • 2 is a partial cross-sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a partial cross-sectional view taken along line III-III in FIG. 1
  • FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG. It is sectional drawing.
  • the screw compressor 2 of this embodiment includes a male and female pair of male rotors 8 (screw rotors) that mesh with each other in a compression chamber 6 formed by a casing 4 made of a casting.
  • a female rotor 9 (screw rotor) is rotatably accommodated.
  • the male rotor 8 includes a male rotor body 8a that compresses air, and a suction-side rotor shaft 8b and a discharge-side rotor shaft 8c that support the male rotor body 8a.
  • the female rotor 9 includes a female rotor body 9a that meshes with the male rotor body 8a to compress air, and a suction-side rotor shaft 9b and a discharge-side rotor shaft 9c that support the female rotor body 9a.
  • the air sucked from the suction space 48 and compressed by the male rotor main body 8a and the female rotor main body 9a is discharged from the discharge port 49 and supplied to the next facility or the like through the discharge port 50.
  • a bearing chamber 10 is formed together with the compression chamber 6.
  • a shaft seal portion (discharge-side shaft seal portion) 14 is disposed to isolate the compression chamber 6 from the bearing chamber 10.
  • the bearing chamber 10 accommodates a discharge-side bearing portion 16 that rotatably supports the discharge-side rotor shafts 8c and 9c.
  • the discharge-side bearing portion 16 includes a ring-shaped inner ring 18, a ring-shaped outer ring 20, and a spherical or columnar rolling element 22 disposed therebetween.
  • the inside of the bearing chamber 10 is partitioned into a bearing upstream space (first space) 24 and a bearing downstream space (second space) 26 by the discharge-side bearing portion 16.
  • the first space 24 is defined by the shaft seal portion 14, the discharge side bearing portion 16, and the casing 4.
  • the suction side rotor shaft 8b of the male rotor 8 extends to the outside of the casing 4 and is connected to a motor or the like (not shown). Accordingly, a shaft sealing portion (not shown) is also provided at a portion where the suction side rotor shaft 8 b of the male rotor 8 passes through the casing 4.
  • end portions of the discharge-side rotor shafts 8 c and 9 c are accommodated in the casing 4.
  • a bearing inner ring restrainer 28 and a bearing outer ring restrainer 30 for receiving a thrust load are provided at the ends of the discharge-side rotor shafts 8c and 9c.
  • the bearing inner ring restraint 28 is in contact with the inner ring 18 of the discharge side bearing portion 16, and the bearing outer ring restraint 30 is in contact with the outer ring 20 of the discharge side bearing portion 16 to restrict axial movement of the inner ring 18 and the outer ring 20.
  • the second space 26 is defined by the discharge-side bearing portion 16, the casing 4, and the bearing outer ring retainer 30.
  • a rotor oil supply port 32 for supplying oil to the screw rotors 8 and 9 is provided below the casing 4.
  • the rotor refueling port 32 is provided through the casing 4 and communicates with a lower (high pressure side) portion in the compression chamber 6 after the air is trapped and compressed by the male rotor main body 8a and the female rotor main body 9a. ing.
  • the oil supplied through the rotor oil supply port 32 cools the air in the middle of compression and seals the gap to improve the compression performance.
  • the casing 4 is provided with a shaft seal oil supply port 34.
  • the shaft seal oil filler 34 is provided through the casing 4 in the same manner as the rotor oil filler 32.
  • the shaft seal oil supply port 34 communicates with a first space 24 provided between the shaft seal portion 14 and the discharge side bearing portion 16 in order to supply oil to the shaft seal portion 14 and the discharge side bearing portion 16.
  • the screw compressor 2 of the present embodiment drains the oil accumulated in the first space 24, and therefore the first space 24 and the axial end of the discharge-side bearing portion 16.
  • communication passages 44 a and 44 b communicating with the second space 26 provided between the portion and the casing 4 and the bearing outer ring retainer 30.
  • the communication passages 44a and 44b are formed by providing a cutout in the casing 4, each extending linearly and having a longitudinal axis parallel to the discharge-side rotor shafts 8c and 9c. Note that a notch 30 a is also formed in the bearing outer ring retainer 30 so that the communication passages 44 a and 44 b communicate the first space 24 and the second space 26.
  • the communication passages 44a, 44b In the cross section perpendicular to the axial direction of the discharge-side rotor shafts 8c, 9c, the communication passages 44a, 44b have an arc shape.
  • the contact lower ends 44a1 and 44b1 of the portions of the communication passages 44a and 44b that are in contact with the discharge-side bearing portion 16 have the lowermost end 18a of the inner ring transfer surface of the inner ring 18 of the discharge-side bearing portion 16 in the vertical direction. And the lowermost end 20a of the outer ring transfer surface of the outer ring 20 of the discharge side bearing portion 16. More specifically, the contact lower ends 44a1 and 44b1 are located between the lowermost end 22a1 of the orbital circle 22a at the center of the rolling element 22 of the discharge side bearing portion 16 and the lowermost end 20a of the outer ring transfer surface of the discharge side bearing portion 16. positioned.
  • the discharge-side rotor shafts 8c and 9c act in directions away from each other due to the force received from the compressed gas. This force, that is, the gas acting force is received by the discharge side bearing portion 16, and the discharge side bearing portion 16 is held by the casing 4.
  • the discharge-side rotor shafts 8c and 9c are arranged side by side in the horizontal direction.
  • the line connecting the shaft centers 8c1 and 9c1 of the discharge-side rotor shafts 8c and 9c makes an angle of 0 degrees with respect to the horizontal line S.
  • the discharge port 49 exists below the line connecting the shaft centers 8c1 and 9c1 of the discharge-side rotor shafts 8c and 9c.
  • the gas acting force F1 on the discharge-side rotor shaft 8c side is on an axis center line L1 passing through the shaft center 8c1 of the discharge-side rotor shaft 8c and the shaft center 9c1 of the discharge-side rotor shaft 9c, and the shaft center 8c1.
  • a line L1a extending through the axis 9c1 on the opposite side is directed in a direction inclined by an angle ⁇ 1 in a direction opposite to the compressed gas discharge direction (vertically downward).
  • the angle ⁇ 1 is about 60 degrees.
  • the gas acting force F2 on the discharge-side rotor shaft 9c side is compressed gas discharge with respect to a line L1b extending on the shaft center line L1 and passing through the shaft center 9c1 on the opposite side to the shaft center 8c1.
  • the direction (vertically below) is directed in a direction inclined by an angle ⁇ 2 in the opposite direction.
  • the angle ⁇ 2 is about 60 degrees.
  • the communication passage 44a is a surface perpendicular to the direction of the gas action force F1, is below the gas action force surface S1 passing through the axis 8c1, and is opposite to the direction of the gas action force F1 (on the discharge port 49 side). Is provided.
  • the communication passage 44a passes through the axis 8c1 and forms a first inclined line F1′a and an antigas action force line F1 ′ that form an angle of 45 degrees downward with respect to the antigas action force line F1 ′. Is provided in a range sandwiched between the second inclined line F1′b and an angle of 45 degrees upward.
  • an anti-gas action force line F1 'passing through the axis 8c1 and extending in the opposite direction to the gas action force F1 and the axis 8c1 is referred to as an anti-gas action force line F1'.
  • the communication passage 44b is a surface perpendicular to the direction of the gas action force F2, is below the gas action force surface S2 passing through the axis 9c2, and is opposite to the direction of the gas action force F2 (on the discharge port 49 side). Is provided.
  • the communication passage 44b passes through the axis 9c1 and forms a first inclined line F2′a and an antigas action force line F2 ′ that form an angle of 45 degrees downward with respect to the antigas action force line F2 ′. Is provided in a range sandwiched between the second inclined line F2′b and an angle of 45 degrees upward.
  • an anti-gas action force line F2 'passing through the axis 9c1 and extending in the opposite direction to the gas action force F2 and the axis 9c1 is referred to as an anti-gas action force line F2'.
  • the screw compressor 2 of the present embodiment drains the oil accumulated in the second space 26, so that one end of the screw compressor communicates with the second space 26.
  • a passage 46 is provided.
  • the other end of the oil discharge passage 46 communicates with the tooth groove portion 8e after the male rotor body 8a and the female rotor body 9a of the compression chamber 6 are closed (the tooth groove portion of the female rotor body 9a is not shown).
  • the oil discharged from the second space 26 is supplied to the tooth groove portions 8e of the male rotor main body 8a and the female rotor main body 9a.
  • the oil discharge destination of the oil discharge passage 46 is provided closer to the suction end surfaces 8 f and 9 f (right side in the drawing) of the male rotor main body 8 a and the female rotor main body 9 a than the rotor oil supply port 32.
  • the suction end faces 8f and 9f are end faces provided on the suction side of the male rotor main body 8a and the female rotor main body 9a.
  • the male rotor body 8a and the female rotor body 9a are connected to the suction side rotor shafts 8b and 9b at the suction end faces 8f and 9f, respectively.
  • the discharge-side rotor shafts 8c and 9c receive a force from the compressed gas.
  • the casing 4 The communication passages 44a and 44b can be provided without reducing the supporting force of the discharge-side bearing portion 16 due to the above.
  • the communication passages 44a and 44b pass through a predetermined range opposite to the direction of the gas acting forces F1 and F2 received from the compressed gas, that is, the shaft centers 8c1 and 9c1, and the antigas acting force lines F1 ′ and F2 ′.
  • the first inclined lines F1′a and F2′a that form an angle of 45 ° downward with respect to the second and the second inclined lines F1 that form an angle of 45 ° with respect to the anti-gas acting force lines F1 ′ and F2 ′. It is provided in a range sandwiched between 'b and F2'b.
  • the communication passages 44a and 44b extend linearly and have a longitudinal axis parallel to the discharge-side rotor shafts 8c and 9c.
  • the connecting passages 44a and 44b can be manufactured by a single machining from the outside of the casing 4, so that the manufacturability and manufacturing cost of the connecting passages 44a and 44b can be advantageous.
  • the communication passages 44a and 44b are made of cast metal, since the structure is simple, it is possible to manufacture by simply remodeling a part of the bearing holding hole mold without considering the mold drawing direction. It is possible, and the manufacturability and manufacturing cost of the communication passages 44a and 44b can be advantageous.
  • FIG. 5 is a partial cross-sectional view of the discharge-side bearing portion 16 of the screw compressor 2 according to the second embodiment of the present invention.
  • the discharge-side rotor shafts 8c and 9c are arranged side by side in the vertical direction. That is, in the present embodiment, a line connecting the shaft centers 8c1 and 9c1 of the discharge-side rotor shafts 8c and 9c forms an angle of 90 degrees with respect to the horizontal line. Therefore, the present embodiment is different from the first embodiment in which the discharge-side rotor shafts 8c and 9c are arranged side by side in the horizontal direction, and the arrangement of the discharge-side rotor shafts 8c and 9c. The configuration is substantially the same as in the first embodiment.
  • the contact lower ends 44a1 and 44b1 of the portions of the communication passages 44a and 44b that are in contact with the discharge-side bearing portion 16 have the lowermost end 18a of the inner ring transfer surface of the inner ring 18 of the discharge-side bearing portion 16 in the vertical direction. And the lowermost end 20a of the outer ring transfer surface of the outer ring 20 of the discharge side bearing portion 16.
  • the contact lower ends 44a1 and 44b1 are located between the lowermost end 22a1 of the orbital circle 22a at the center of the rolling element 22 of the discharge side bearing portion 16 and the lowermost end 20a of the outer ring transfer surface of the discharge side bearing portion 16. positioned.
  • the discharge-side rotor shafts 8c and 9c act in directions away from each other due to the force received from the compressed gas.
  • This force that is, the gas acting forces F ⁇ b> 1 and F ⁇ b> 2 are received by the discharge side bearing portion 16, and the discharge side bearing portion 16 is held by the casing 4.
  • the discharge port 49 exists on the right side of the line connecting the shaft centers 8c1 and 9c1 of the discharge-side rotor shafts 8c and 9c.
  • the gas acting force F1 on the discharge-side rotor shaft 8c side is on an axis center line L1 passing through the shaft center 8c1 of the discharge-side rotor shaft 8c and the shaft center 9c1 of the discharge-side rotor shaft 9c, and the shaft center 8c1.
  • the line L1a extending through the axis 9c1 on the opposite side passes through the direction inclined by the angle ⁇ 3 in the direction opposite to the compressed gas discharge direction (rightward).
  • the angle ⁇ 3 is about 60 degrees.
  • the gas acting force F2 on the discharge-side rotor shaft 9c side is compressed gas discharge with respect to a line L1b extending on the shaft center line L1 and passing through the shaft center 9c1 on the opposite side to the shaft center 8c1. It is directed in a direction inclined by an angle ⁇ 4 in a direction opposite to the direction (right side).
  • the angle ⁇ 4 is about 60 degrees.
  • the communication passage 44a is a surface perpendicular to the direction of the gas acting force F1 and passes through the axis 8c1 and is opposite to the direction of the gas acting force F1 of the gas acting force surface S1 (on the right side, on the discharge port 49 side). ).
  • the communication passage 44b is a surface perpendicular to the direction of the gas acting force F2, and passes through the shaft center 9c1 and is opposite to the direction of the gas acting force F2 of the gas acting force surface S2 (on the right side, the discharge port 49 side). ).
  • the discharge-side rotor shafts 8c and 9c are adapted to receive a force from the compressed gas.
  • the communication passages 44a and 44b can be provided without reducing the supporting force of the discharge-side bearing portion 16 by the casing 4.
  • FIG. 6 is a partial cross-sectional view of the discharge-side bearing portion 16 of the screw compressor 2 according to the third embodiment of the present invention.
  • the discharge-side rotor shafts 8c and 9c are arranged obliquely in the vertical direction. That is, in the present embodiment, the line connecting the shaft centers 8c1 and 9c1 of the discharge-side rotor shafts 8c and 9c makes an angle of 45 degrees with respect to the horizontal line S.
  • this embodiment includes the first embodiment in which the discharge-side rotor shafts 8c and 9c are arranged in a horizontal direction and the second embodiment in which the discharge-side rotor shafts 8c and 9c are arranged in a vertical direction,
  • the arrangement differs in the way of arranging the discharge-side rotor shafts, and the configuration of the other parts is substantially the same as in the first embodiment disassembly.
  • the contact lower ends 44a1 and 44b1 of the portions of the communication passages 44a and 44b that are in contact with the discharge-side bearing portion 16 have the lowermost end 18a of the inner ring transfer surface of the inner ring 18 of the discharge-side bearing portion 16 in the vertical direction. And the lowermost end 20a of the outer ring transfer surface of the outer ring 20 of the discharge side bearing portion 16.
  • the contact lower ends 44a1 and 44b1 are located between the lowermost end 22a1 of the orbital circle 22a at the center of the rolling element 22 of the discharge side bearing portion 16 and the lowermost end 20a of the outer ring transfer surface of the discharge side bearing portion 16. positioned.
  • the discharge-side rotor shafts 8c and 9c act in directions away from each other due to the force received from the compressed gas.
  • This force that is, the gas acting forces F ⁇ b> 1 and F ⁇ b> 2 are received by the discharge side bearing portion 16, and the discharge side bearing portion 16 is held by the casing 4.
  • the discharge port 49 exists on the lower right side of the line connecting the shaft centers 8c1 and 9c1 of the discharge-side rotor shafts 8c and 9c. ing.
  • the gas acting force F1 on the discharge-side rotor shaft 8c side is on an axis center line L1 passing through the shaft center 8c1 of the discharge-side rotor shaft 8c and the shaft center 9c1 of the discharge-side rotor shaft 9c, and the shaft center 8c1.
  • the line L1a that passes through the axis 9c1 on the opposite side passes through the direction inclined by the angle ⁇ 5 in the direction opposite to the compressed gas discharge direction (lower right).
  • the angle ⁇ 5 is about 60 degrees.
  • the gas acting force F2 on the discharge-side rotor shaft 9c side is compressed gas discharge with respect to a line L1b extending on the shaft center line L1 and passing through the shaft center 9c1 on the opposite side to the shaft center 8c1. It faces the direction inclined by an angle ⁇ 6 in the opposite direction to the direction (lower right).
  • the angle ⁇ 6 is about 60 degrees.
  • the communication passage 44a is a surface perpendicular to the direction of the gas acting force F1 and is located on the lower right side of the gas acting force surface S1 passing through the axis 8c1 and in the direction opposite to the direction of the gas acting force F1 (on the discharge port 49 side ).
  • the communication passage 44a passes through the axial center 8c1 and is inclined with respect to the first inclined line L5a and the anti-gas action force line F1 ′ that form an angle of 45 degrees downward with respect to the anti-gas action force line F1 ′. And a second slope line L5b that forms an angle of 45 degrees upward.
  • an anti-gas action force line F1 'passing through the axis 8c1 and extending in the opposite direction to the gas action force F1 and the axis 8c1 is referred to as an anti-gas action force line F1'.
  • the communication passage 44b is a surface perpendicular to the direction of the gas action force F2, is below the gas action force surface S2 passing through the axis 9c2, and is opposite to the direction of the gas action force F2 (on the discharge port 49 side). Is provided.
  • the communication passage 44b passes through the shaft center 9c1 and is inclined with respect to the first inclined line L6a and the anti-gas action force line F2 ′ that form an angle of 45 degrees downward with respect to the anti-gas action force line F2 ′. And a second inclined line L6b that forms an angle of 45 degrees upward.
  • an anti-gas action force line F2 'passing through the axis 9c1 and extending in the opposite direction to the gas action force F2 and the axis 9c1 is referred to as an anti-gas action force line F2'.
  • the discharge-side rotor shafts 8c and 9c are adapted to receive a force from the compressed gas.
  • the communication passages 44a and 44b are provided on the side opposite to the direction of the gas acting forces F1 and F2 received from the compressed gas.
  • the communication passages 44a and 44b can be provided without reducing the supporting force of the discharge-side bearing portion 16 by the casing 4.
  • the communication passages 44a and 44b pass through a predetermined range opposite to the direction of the gas acting forces F1 and F2 received from the compressed gas, that is, through the shaft centers 8c1 and 9c1 and to the antigas acting force lines F1 ′ and F2 ′.
  • the second inclined lines L5b and L6b that form an angle of 45 degrees upward It is provided in the range to be sandwiched.
  • the communication passages 44a and 44b in the cross section perpendicular to the axial direction of the discharge-side rotor shafts 8c and 9c, have an arc shape.
  • the size of the communication passage is not particularly limited, and may be larger or smaller than the communication passage shown in the first to third embodiments.
  • a plurality of communication passages 44a may be provided. In this case, the contact lower end 44a1 of the portion in contact with the discharge side bearing portion 16 of the at least one communication passage 44a has the lowermost end 18a of the inner ring transfer surface of the inner ring 18 of the discharge side bearing portion 16 and the discharge side bearing portion in the vertical direction.
  • the outer ring 20 is positioned between the lowermost ends 20a of the outer ring transfer surfaces of the sixteen outer rings 20.
  • the contact lower end 44a1 of the at least one communication passage 44a has the lowermost end 22a1 of the track circle 22a at the center of the rolling element 22 of the discharge side bearing portion 16 and the outer ring transfer surface of the discharge side bearing portion 16. More preferably, it is located between the lowermost end 20a.
  • the amount of movement of oil from the first space 24 to the second space 26 can be adjusted, and as a result, the position of the oil surface can be adjusted to an appropriate position.
  • FIG. 9 is a plan partial sectional view of the oil-cooled screw compressor 2 when a communication passage is provided on the suction side.
  • 10 is a partial cross-sectional view taken along line XX of FIG.
  • Another embodiment is different from the first to third embodiments in that a communication passage is provided on the suction side, and the other configurations are the same as those of the first to third embodiments. For this reason, in the description of this modification, the same reference numerals are given to the same portions as those in the above-described embodiment, and detailed descriptions thereof are omitted.
  • a suction side bearing chamber 11 is formed in the casing 4 together with the compression chamber 6 and the bearing chamber 10.
  • a suction side shaft sealing portion 39 is disposed between the suction side rotor shafts 8 b and 9 b and the casing 4, and isolates the compression chamber 6 from the suction side bearing chamber 11.
  • the suction side bearing chamber 11 accommodates a suction side bearing portion 35 that rotatably supports the suction side rotor shafts 8b and 9b.
  • the suction-side bearing portion 35 includes a ring-shaped inner ring, a ring-shaped outer ring, and a spherical or cylindrical rolling element disposed therebetween. Then, the suction side bearing portion 35 divides the inside of the suction side bearing chamber 11 into a third space 38 provided between the axial end portion of the suction side bearing portion 35 and the casing 4 and a suction side shaft sealing portion 39. It has been.
  • the suction-side rotor shaft 8b of the male rotor 8 extends to the outside of the casing 4, and is connected to a motor or the like (not shown).
  • the end of the suction side rotor shaft 9 b of the female rotor 9 is accommodated in the casing 4.
  • a bearing inner ring restrainer 41 for receiving a thrust load is provided at the end of the suction side rotor shaft 9b. The bearing inner ring restraint 41 is in contact with the inner ring of the suction side bearing portion 35 and restricts the movement of the inner ring in the axial direction.
  • the casing 4 is provided with a fuel filler port 40. Similar to the shaft-sealed oil supply port 34, the oil supply port 40 is provided so as to penetrate the casing 4. The oil supply port 40 communicates with the third space 38 in order to supply oil to the suction side bearing portion 35.
  • the screw compressor 2 includes second communication passages 44 c and 44 d that connect the third space 38 and the suction space 48 in order to drain the oil accumulated in the third space 38.
  • the second communication passages 44c and 44d are formed by providing a cutout in the casing 4, each extending linearly and having a longitudinal axis parallel to the suction-side rotor shafts 8b and 9b. Yes. In the cross section perpendicular to the axial direction of the suction-side rotor shafts 8b and 9b, the second communication passages 44c and 44d have an arc shape.
  • the arrangement of the communication passages 44a and 44b described in FIGS. 4 to 8 can be similarly applied to the second communication passages 44c and 44d provided on the suction side. That is, by replacing the discharge side rotor shafts 8c and 9c shown in FIGS. 4 to 8 with the suction side rotor shafts 8b and 9b, the suction side second communication passages 44c and 44d can be similarly explained.
  • the contact lower ends 44a1 and 44b1 of the portions of the second communication passages 44c and 44d that are in contact with the suction side bearing portion 35 are located between the lowermost end 18a of the inner ring transfer surface of the suction side bearing portion 35 and the lowermost end 20a of the outer ring transfer surface.
  • the oil level position of the third space 38 can be maintained at a height at which the rolling elements 22 bathe, and the second communication passage is supplied to the suction-side bearing portion 35 while supplying the required amount of oil. Excess oil can be moved to the suction space 48 by 44c and 44d.
  • the suction side rotor shafts 8b and 9b are adapted to receive force from the compressed gas.
  • the second communication passages 44c and 44d can be provided without reducing the supporting force of the suction side bearing portion 35 by the casing 4.
  • the second communication passages 44c and 44d pass through a predetermined range on the opposite side to the direction of the gas acting forces F1 and F2 received from the compressed gas, that is, through the shaft centers 8c1 and 9c1, and the antigas acting force lines F1 ′, First inclination lines F1′a and F2′a that form an angle of 45 degrees downward with respect to F2 ′, and a second inclination that forms an angle of 45 degrees with respect to the anti-gas action force lines F1 ′ and F2 ′. It is provided in a range sandwiched between the lines F1′b and F2′b. By providing the second communication passages 44c and 44d in this range, the second communication passages 44c and 44d can be provided without reducing the support force of the suction side bearing portion 35 by the casing 4.
  • the second communication passages 44c and 44d extend linearly and have a longitudinal axis parallel to the suction side rotor shafts 8b and 9b.
  • the second connecting passages 44c and 44d can be manufactured by one machining from the outside of the casing 4, so that the manufacturability and manufacturing cost of the second connecting passages 44c and 44d are advantageous. can do.
  • the second communication passages 44c and 44d are made of cast metal, since the structure is simple, it is only necessary to modify a part of the bearing holding hole mold without considering the mold drawing direction. Manufacture is possible, and the manufacturability and manufacturing cost of the second communication passages 44c and 44d can be advantageous.
  • the suction-side rotor shafts 8b and 9b are adapted to receive a force from the compressed gas.
  • the second communication passages 44c and 44d are provided on the side opposite to the direction of the gas acting forces F1 and F2 received from the compressed gas.
  • the second communication passages 44c and 44d can be provided without reducing the supporting force of the suction side bearing portion 35 by the casing 4.
  • the suction-side rotor shafts 8b and 9b are adapted to receive a force from the compressed gas.
  • the second communication passages 44c and 44d are disposed on the opposite side of the direction of the gas acting forces F1 and F2 received from the compressed gas. By providing, the second communication passages 44c and 44d can be provided without reducing the supporting force of the suction side bearing portion 35 by the casing 4.
  • the second communication passages 44c and 44d pass through a predetermined range opposite to the direction of the gas acting forces F1 and F2 received from the compressed gas, that is, pass through the shaft centers 8c1 and 9c1, and antigas acting force lines F1 ′ and F2 First inclined lines L5a and L6a which form an angle of 45 degrees downward with respect to ', and second inclined lines L5b and L6b which form an angle of 45 degrees upward with respect to the anti-gas action force lines F1' and F2 '; , Are provided in a range between.
  • the second communication passages 44c and 44d can be provided without reducing the support force of the suction side bearing portion 35 by the casing 4.
  • the communication passages 44a and 44b are provided on the discharge side.
  • the second communication passages 44c and 44d are shown on the suction side.
  • the communication passages 44a and 44b may be provided only on the discharge side, the second communication passages 44c and 44d may be provided only on the suction side, or the communication passages may be provided on both the discharge side and the suction side. Good.
  • the communication passages 44a and 44b and the second communication passages 44c and 44d are provided at positions overlapping each other when viewed from the axial direction of the screw rotors 8 and 9. It is preferable.
  • the communication passages 44 a and 44 b and the second communication passages 44 c and 44 d can be provided without reducing both the supporting forces of the discharge side bearing portion 16 and the suction side bearing portion 35 by the casing 4.
  • the communication passages 44a and 44b and the second communication passages 44c and 44d are provided at positions overlapping each other when viewed from the axial direction of the screw rotors 8 and 9. , 44d need only partially overlap each other when viewed from the axial direction of the screw rotors 8,9.
  • the second communication passages 44c and 44d in the cross section perpendicular to the axial direction of the suction side rotor shafts 8b and 9b, have an arc shape, but as shown in FIG. You may have.
  • the size of the second communication passage is not particularly limited, and may be larger or smaller than the second communication passage shown in another embodiment.
  • a plurality of second communication passages 44c may be provided. In this case, the contact lower end 44a1 of the portion in contact with the suction side bearing portion 35 of at least one second communication passage 44c is in the vertical direction with the lowest end 18a of the inner ring transfer surface of the inner ring 18 of the suction side bearing portion 35 and the suction side.
  • the bearing portion 35 is located between the outermost ring transfer surface of the outer ring 20 and the lowermost end 20a. More specifically, the contact lower end 44a1 of at least one second communication passage 44c is connected to the lowermost end 22a1 of the track circle 22a at the center of the rolling element 22 of the suction side bearing portion 35 and the outer ring transfer of the suction side bearing portion 35. More preferably, it is located between the lowermost end 20a of the surface.
  • the amount of movement of oil from the third space 38 to the suction space 48 can be adjusted, and as a result, the position of the oil surface can be adjusted to an appropriate position. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

噛み合い状態で回転してガスを圧縮する一対のスクリュロータ(8、9)と、一対のスクリュロータ(8、9)を収容するケーシング(4)と、スクリュロータ(8、9)の吐出側ロータ軸(8c、9c)を支持する吐出側軸受部(16)と、吐出側ロータ軸(8c、9c)を軸封する軸封部(14)と、軸封部(14)と吐出側軸受部(16)との間に設けられる第1空間(24)と、吐出側軸受部(16)の軸方向端部とケーシング(4)との間に設けられる第2空間(26)と、ケーシング(4)に形成され、第1空間(24)と第2空間(26)とを連通する連絡通路(44a、44b)と、を備えていることを特徴とする。

Description

油冷式スクリュ圧縮機
 本発明は、油冷式スクリュ圧縮機に関する。
 油冷式スクリュ圧縮機では、油の撹拌ロスが重要な問題となっており、油の撹拌ロスの内、スクリュロータの軸受部における撹拌ロスはその主要因である。圧縮機の軸受部は、油により冷却及び潤滑され、常に油が通過する構造となっている。そして、特に吐出側の軸受部は、通常、軸封部をシールした油によって冷却及び潤滑が行われるため、油量の調節は困難である。したがって、吐出側の軸受部では、軸受メーカーが想定している油浴状態とは異なり、軸受部による油の流れへの抵抗により、軸受部上流側の油面が上昇し、その結果、油と軸受部との接触面積が増大し、油の撹拌ロスが増加する。
 特許文献1には、油冷式スクリュ圧縮機の軸受部の排油構造が開示されている。この油冷式スクリュ圧縮機では、軸受部の外輪抑えスリーブに環状空間を設けることで、油が軸受部下流側の空間に溜まることによる油の撹拌ロスを防止している。
特開平10-288175号公報
 ここで、特許文献1の油冷式スクリュ圧縮機では、軸受部下流側の油の溜まりは考慮されているが、軸受部上流側の油面位置や軸受部を通過する油量については、考慮されていない。
 そこで本発明では、軸受部上流側における油の撹拌ロスを低減できる、油冷式スクリュ圧縮機を提供することを目的とする。
 本発明の一態様は、油冷式スクリュ圧縮機が、噛み合い状態で回転してガスを圧縮する一対のスクリュロータと、
 前記一対のスクリュロータを収容するケーシングと、
 前記スクリュロータの吐出側ロータ軸を支持する吐出側軸受部と、
 前記吐出側ロータ軸を軸封する軸封部と、
 前記軸封部と前記吐出側軸受部との間に設けられる第1空間と、
 前記吐出側軸受部の軸方向端部と前記ケーシングとの間に設けられる第2空間と、
 前記ケーシングに形成され、前記第1空間と前記第2空間とを連通する連絡通路と、を備えていることを特徴とする。
 前記構成によれば、第1空間と第2空間とを連通する連絡通路を備えているので、第1空間である吐出側軸受部上流側の余分な油が第2空間に移動することにより、吐出側軸受部上流側における油の撹拌ロスを低減できる。
 前記態様は、さらに、次のような構成を備えるのが好ましい。
(1)前記連絡通路の前記吐出側軸受部に接する部分の接触下端は、前記吐出側軸受部の内輪転送面の最下端と、前記吐出側軸受部の外輪転送面の最下端との間に位置している。
 前記構成(1)によれば、連絡通路の吐出側軸受部に接する部分の下端を吐出側軸受部の内輪転送面の最下端と外輪転送面の最下端との間に配置することによって、第1空間の油面位置を転動体が油浴する高さに保持することができ、必要な油量を軸受部に供給しながら、連絡通路によって余分な油を第2空間に移動させることができる。
(2)前記構成(1)において、前記接触下端は、前記吐出側軸受部の転動体の中心の軌道円の最下端と、前記吐出側軸受部の外輪転送面の最下端との間に位置している。
 前記構成(2)によれば、連絡通路の接触下端を吐出側軸受部の転動体の中心の軌道円の最下端と外輪転送面の最下端との間に配置することによって、第1空間の油面位置をより転動体の中心位置から外輪転送面までの間に保持することができ、必要かつより少量の油量を軸受部に供給しながら、連絡通路によって余分な油を第2空間に移動させることができる。
(3)前記吐出側ロータ軸の軸方向に垂直な断面において、
 前記一対のスクリュロータにより圧縮された圧縮ガスを排出する吐出ポートは、前記吐出側ロータ軸の軸心を結ぶ直線に対して下方又は側方に配置され、
 前記連絡通路は、圧縮ガスによって前記吐出側ロータ軸に作用するガス作用力の方向に垂直な面であって、前記吐出側ロータ軸の軸心を通る、ガス作用力面に対して前記吐出ポート側に設けられている。
 前記構成(3)によれば、吐出側ロータ軸は、圧縮ガスから力を受けるようになっている。ここで、連絡通路を、ガス作用力面に対して吐出ポート側、すなわち、圧縮ガスから受けるガス作用力の方向の反対側に設けることによって、ケーシングによる吐出側軸受部の支持力を低下させることなく、連絡通路を設けることができる。
(4)前記構成(3)において、前記吐出側ロータ軸の軸方向に垂直な断面において、
 前記吐出側ロータ軸の軸心を結ぶ直線と水平線とのなす角度は、0度以上45度以下であり、
 前記連絡通路は、前記軸心を通り、前記軸心に対して前記ガス作用力と反対の方向に延びる反ガス作用力線に対して下方に45度の角度をなす第1傾斜線と、前記反ガス作用力線に対して上方に45度の角度をなす第2傾斜線と、によって挟まれる範囲に設けられている。
 前記構成(4)によれば、連絡通路を、圧縮ガスから受けるガス作用力の方向の反対側の所定の範囲に設けることによって、ケーシングによる吐出側軸受部の支持力を低下させることなく、連絡通路を設けることができる。
(5)前記連絡通路は、直線状に延びており、前記吐出側ロータ軸と平行である長手方向軸を有している。
 前記構成(5)によれば、連絡通路を機械加工で製作する場合、ケーシングの外部方向から1度の機械加工で製作することができるので、連絡通路の製作性及び製造コストを有利とすることができる。また、連絡通路を鋳物で製作する場合であっても、簡単な構造であるため、鋳型の抜き方向を考慮することなく、軸受保持穴の型の一部を改造するだけで製作が可能であり、連絡通路の製作性及び製造コストを有利とすることができる。
(6)前記連絡通路を複数備えている。
 前記構成(6)によれば、第1空間から第2空間への油の移動量が十分でなく、油面が上昇するような場合でも、連絡通路を複数備えることによって、油面位置が大きく上昇することを防止できる。
 本発明の第2態様は、噛み合い状態で回転してガスを圧縮する一対のスクリュロータと、
 前記一対のスクリュロータを収容するケーシングと、
 前記スクリュロータの吸込側ロータ軸を支持する吸込側軸受部と、
 前記吸込側軸受部の軸方向端部と前記ケーシングとの間に設けられる第3空間と、
 前記スクリュロータがガスを吸い込む吸込空間と、
 前記ケーシングに形成され、前記第3空間と前記吸込空間とを連通する第2連絡通路と、を備えていることを特徴とする。
 前記構成によれば、第3空間と吸込空間とを連通する第2連絡通路を備えているので、第3空間である吸込側軸受部上流側の余分な油が吸込空間に移動することにより、吸込側軸受部上流側における油の撹拌ロスを低減できる。
 前記第2態様は、さらに、次のような構成を備えるのが好ましい。
(7)前記第2連絡通路の前記吸込側軸受部に接する部分の接触下端は、前記吸込側軸受部の内輪転送面の最下端と、前記吸込側軸受部の外輪転送面の最下端との間に位置している。
 前記構成(7)によれば、第2連絡通路の吸込側軸受部に接する部分の下端を吸込側軸受部の内輪転送面の最下端と外輪転送面の最下端との間に配置することによって、第3空間の油面位置を転動体が油浴する高さに保持することができ、必要な油量を軸受部に供給しながら、第2連絡通路によって余分な油を吸込空間に移動させることができる。
(8)前記構成(7)において、前記接触下端は、前記吸込側軸受部の転動体の中心の軌道円の最下端と、前記吸込側軸受部の外輪転送面の最下端との間に位置している。
 前記構成(8)によれば、第2連絡通路の接触下端を吸込側軸受部の転動体の中心の軌道円の最下端と外輪転送面の最下端との間に配置することによって、第3空間の油面位置をより転動体の中心位置から外輪転送面までの間に保持することができ、必要かつより少量の油量を軸受部に供給しながら、第2連絡通路によって余分な油を吸込空間に移動させることができる。
(9)前記吸込側ロータ軸の軸方向に垂直な断面において、
 前記一対のスクリュロータにより圧縮された圧縮ガスを排出する吐出ポートは、前記吸込側ロータ軸の軸心を結ぶ直線に対して下方又は側方に配置され、
 前記第2連絡通路は、圧縮ガスによって前記吸込側ロータ軸に作用するガス作用力の方向に垂直な面であって、前記吸込側ロータ軸の軸心を通る、ガス作用力面に対して前記吐出ポート側に設けられている。
 前記構成(9)によれば、吸込側ロータ軸は、圧縮ガスから力を受けるようになっている。ここで、第2連絡通路を、ガス作用力面に対して吐出ポート側、すなわち、圧縮ガスから受けるガス作用力の方向の反対側に設けることによって、ケーシングによる吸込側軸受部の支持力を低下させることなく、第2連絡通路を設けることができる。
(10)前記構成(9)において、前記吸込側ロータ軸の軸方向に垂直な断面において、
 前記吸込側ロータ軸の軸心を結ぶ直線と水平線とのなす角度は、0度以上45度以下であり、
 前記第2連絡通路は、前記軸心を通り、前記軸心に対して前記ガス作用力と反対の方向に延びる反ガス作用力線に対して下方に45度の角度をなす第1傾斜線と、前記反ガス作用力線に対して上方に45度の角度をなす第2傾斜線と、によって挟まれる範囲に設けられている。
 前記構成(10)によれば、第2連絡通路を、圧縮ガスから受けるガス作用力の方向の反対側の所定の範囲に設けることによって、ケーシングによる吸込側軸受部の支持力を低下させることなく、第2連絡通路を設けることができる。
(11)前記第2連絡通路は、直線状に延びており、前記吸込側ロータ軸と平行である長手方向軸を有している。
 前記構成(11)によれば、第2連絡通路を機械加工で製作する場合、ケーシングの外部方向から1度の機械加工で製作することができるので、第2連絡通路の製作性及び製造コストを有利とすることができる。また、第2連絡通路を鋳物で製作する場合であっても、簡単な構造であるため、鋳型の抜き方向を考慮することなく、軸受保持穴の型の一部を改造するだけで製作が可能であり、第2連絡通路の製作性及び製造コストを有利とすることができる。
(12)前記第2連絡通路を複数備えている。
 前記構成(12)によれば、第3空間から吸込空間への油の移動量が十分でなく、油面が上昇するような場合でも、第2連絡通路を複数備えることによって、油面位置が大きく上昇することを防止できる。
 本発明の第3態様は、噛み合い状態で回転してガスを圧縮する一対のスクリュロータと、
 前記一対のスクリュロータを収容するケーシングと、
 前記スクリュロータの吐出側ロータ軸を支持する吐出側軸受部と、
 前記吐出側ロータ軸を軸封する軸封部と、
 前記軸封部と前記吐出側軸受部との間に設けられる第1空間と、
 前記吐出側軸受部の軸方向端部と前記ケーシングとの間に設けられる第2空間と、
 前記ケーシングに形成され、前記第1空間と前記第2空間とを連通する連絡通路と、
 前記スクリュロータの吸込側ロータ軸を支持する吸込側軸受部と、
 前記吸込側軸受部の軸方向端部と前記ケーシングとの間に設けられる第3空間と、
 前記スクリュロータがガスを吸い込む吸込空間と、
 前記ケーシングに形成され、前記第3空間と前記吸込空間とを連通する第2連絡通路と、を備え、
 前記連絡通路と前記第2連絡通路とは、前記スクリュロータの軸方向から見て重なる位置に設けられていることを特徴とする。
 前記構成によれば、連絡通路と第2連絡通路とは、スクリュロータの軸方向から見て重なる位置に設けられているので、ケーシングによる吐出側軸受部及び吸込側軸受部の支持力を両方共低下させることなく、連絡通路及び第2連絡通路を設けることができる。
 本発明によると、軸受部上流側における油の撹拌ロスを低減できる、油冷式スクリュ圧縮機を提供できる。
本発明の第1実施形態に係る油冷式スクリュ圧縮機の平面部分断面図。 図1のII-II線に沿った部分断面図。 図1のIII-III線に沿った部分断面図。 図1のIV-IVに沿った部分断面図。 本発明の第2実施形態に係るスクリュ圧縮機の吐出側軸受部の部分断面図。 本発明の第3実施形態に係るスクリュ圧縮機の吐出側軸受部の部分断面図。 連絡通路の変形例を示す、スクリュ圧縮機の吐出側軸受部の部分断面図。 連絡通路の変形例を示す、スクリュ圧縮機の吐出側軸受部の部分断面図。 吸込側に連絡通路が設けられる場合の油冷式スクリュ圧縮機の平面部分断面図。 図9のX-X線に沿った部分断面図。
 以下、添付図面を参照して本発明の実施形態を説明する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る油冷式スクリュ圧縮機2の平面部分断面図である。図2は、図1のII-II線に沿った部分断面図、図3は、図1のIII-III線に沿った部分断面図、図4は図1のIV-IV線に沿った部分断面図である。
 図1~図4に示されるように、本実施形態のスクリュ圧縮機2は、鋳物からなるケーシング4が形成する圧縮室6の中に、雌雄一対の互いに噛合する雄ロータ8(スクリュロータ)および雌ロータ9(スクリュロータ)を回転可能に収容している。雄ロータ8は、空気を圧縮する雄ロータ本体8aと、雄ロータ本体8aを支持する吸込側ロータ軸8b及び吐出側ロータ軸8cとを備える。同様に、雌ロータ9は、雄ロータ本体8aと噛合して空気を圧縮する雌ロータ本体9aと、雌ロータ本体9aを支持する吸込側ロータ軸9b及び吐出側ロータ軸9cとを備える。また、吸込空間48から吸い込まれ、雄ロータ本体8aと雌ロータ本体9aにより圧縮された空気は、吐出ポート49から排出され、吐出口50を通じて、次の設備等に供給される。
 ケーシング4内には、圧縮室6と共に軸受室10が形成されている。吐出側ロータ軸8c、9cとケーシング4との間には、軸封部(吐出側軸封部)14が配設されており、圧縮室6と軸受室10との間を隔離している。
 軸受室10には、吐出側ロータ軸8c、9cを回転自在に支持する吐出側軸受部16が収容されている。図4に示されるように、吐出側軸受部16は、リング状の内輪18と、リング状の外輪20と、それらの間に配置された球状または円柱状の転動体22とを備える。図1及び図2に示されるように、吐出側軸受部16によって軸受室10内が、軸受上流空間(第1空間)24と軸受下流空間(第2空間)26とに仕切られている。第1空間24は、軸封部14、吐出側軸受部16及びケーシング4によって画定されている。
 図1に示されるように、本実施形態のスクリュ圧縮機2は、雄ロータ8の吸込側ロータ軸8bがケーシング4の外側に延伸し、不図示のモータ等に接続されている。従って、雄ロータ8の吸込側ロータ軸8bがケーシング4を貫通する部分にも軸封部(図示せず)が設けられている。一方、吐出側ロータ軸8c、9cの端部はケーシング4内に収容されている。吐出側ロータ軸8c、9cの端部には、スラスト荷重を受け止めるための軸受内輪抑え28及び軸受外輪抑え30が設けられている。軸受内輪抑え28は、吐出側軸受部16の内輪18と当接し、軸受外輪抑え30は、吐出側軸受部16の外輪20と当接し、内輪18及び外輪20の軸方向の移動をそれぞれ制限している。第2空間26は、吐出側軸受部16、ケーシング4及び軸受外輪抑え30によって画定されている。
 図2に示されるように、ケーシング4の下方には、スクリュロータ8、9に油を供給するためのロータ給油口32が設けられている。ロータ給油口32は、ケーシング4を貫通して設けられており、雄ロータ本体8a及び雌ロータ本体9aによって空気を閉じ込めて圧縮した後の圧縮室6内の下側(高圧側)部分と連通している。ロータ給油口32を通じて供給される油によって、圧縮途中の空気を冷却すると共に隙間をシールし、圧縮性能を向上させている。
 また、ケーシング4には、軸封給油口34が設けられている。軸封給油口34は、ロータ給油口32と同様にケーシング4を貫通して設けられている。軸封給油口34は、軸封部14及び吐出側軸受部16に油を供給するため、軸封部14と吐出側軸受部16との間に設けられる第1空間24と連通している。軸封給油口34を通じて軸封部14に油が供給されることで、圧縮空気を軸封部14でシールし、圧縮空気が軸封部14から漏れ出すことを抑止している。また、軸封給油口34を通じて吐出側軸受部16に油が供給されることで吐出側軸受部16を冷却すると共に潤滑し、軸受の損傷を防止している。
 図1及び図2に示されるように、本実施形態のスクリュ圧縮機2は、第1空間24に溜まった油を排油するため、第1空間24と、吐出側軸受部16の軸方向端部とケーシング4及び軸受外輪抑え30との間に設けられる第2空間26とを連通する連絡通路44a、44bを備えている。連絡通路44a、44bは、ケーシング4に切欠きを設けることによって形成されており、それぞれ、直線状に延びており、吐出側ロータ軸8c、9cと平行である長手方向軸を有している。なお、連絡通路44a、44bが第1空間24と第2空間26とを連通するために、軸受外輪抑え30にも切欠き30aが形成されている。吐出側ロータ軸8c、9cの軸方向に垂直な断面において、連絡通路44a、44bは円弧形状を有している。
 図4に示されるように、連絡通路44a、44bの吐出側軸受部16に接する部分の接触下端44a1、44b1は、上下方向において、吐出側軸受部16の内輪18の内輪転送面の最下端18aと、吐出側軸受部16の外輪20の外輪転送面の最下端20aとの間に位置している。さらに詳細には、接触下端44a1、44b1は、吐出側軸受部16の転動体22の中心の軌道円22aの最下端22a1と、吐出側軸受部16の外輪転送面の最下端20aとの間に位置している。
 吐出側ロータ軸8c、9cは、圧縮ガスから受ける力によって、お互いに離れる方向に力が働く。この力、すなわちガス作用力は、吐出側軸受部16で受け、吐出側軸受部16は、ケーシング4で保持されるようになっている。
 吐出側ロータ軸8c、9cは、水平方向に並んで配置される。本実施形態では、水平線Sに対し、吐出側ロータ軸8c、9cの軸心8c1、9c1を結ぶ線が0度の角度をなしている。本実施形態では、吐出側ロータ軸8c、9cの軸心8c1、9c1を結ぶ線よりも下側に吐出ポート49が存在している。この場合、吐出側ロータ軸8c側のガス作用力F1は、吐出側ロータ軸8cの軸心8c1と吐出側ロータ軸9cの軸心9c1とを通る軸中心線L1上であって、軸心8c1を通って軸心9c1に対して反対側に延びる線L1aに対して、圧縮ガス吐出方向(鉛直下方)とは反対方向へ角度θ1だけ傾斜した方向を向いている。ここで、角度θ1は、60度程度である。
 同様に、吐出側ロータ軸9c側のガス作用力F2は、軸中心線L1上であって、軸心9c1を通って軸心8c1に対して反対側に延びる線L1bに対して、圧縮ガス吐出方向(鉛直下方)とは反対方向へ角度θ2だけ傾斜した方向を向いている。ここで、角度θ2は、60度程度である。
 連絡通路44aは、ガス作用力F1の方向に垂直な面であって、軸心8c1を通る、ガス作用力面S1の下方であり、ガス作用力F1の方向と反対方向(吐出ポート49側)に設けられている。
 より詳細には、連絡通路44aは、軸心8c1を通り、反ガス作用力線F1’に対して下方に45度の角度をなす第1傾斜線F1’aと、反ガス作用力線F1’に対して上方に45度の角度をなす第2傾斜線F1’bと、によって挟まれる範囲に設けられている。なおここで、軸心8c1を通り、ガス作用力F1と軸心8c1に対して反対の方向に延びる反ガス作用力線を反ガス作用力線F1’とする。
 連絡通路44bは、ガス作用力F2の方向に垂直な面であって、軸心9c2を通る、ガス作用力面S2の下方であり、ガス作用力F2の方向と反対方向(吐出ポート49側)に設けられている。
 より詳細には、連絡通路44bは、軸心9c1を通り、反ガス作用力線F2’に対して下方に45度の角度をなす第1傾斜線F2’aと、反ガス作用力線F2’に対して上方に45度の角度をなす第2傾斜線F2’bと、によって挟まれる範囲に設けられている。なおここで、軸心9c1を通り、ガス作用力F2と軸心9c1に対して反対の方向に延びる反ガス作用力線を反ガス作用力線F2’とする。
 さらに、図1及び図2に破線で示されるように、本実施形態のスクリュ圧縮機2は、第2空間26に溜まった油を排油するため、一端が第2空間26に連通した排油通路46を備えている。排油通路46の他端は、圧縮室6の雄ロータ本体8aと雌ロータ本体9aの閉じ込み後の歯溝部8e(雌ロータ本体9aの歯溝部は図示されていない)に連通しており、第2空間26から排油された油は、雄ロータ本体8aと雌ロータ本体9aの歯溝部8eに供給される。
 さらに図2に示されるように、排油通路46の排油先は、ロータ給油口32よりも雄ロータ本体8aと雌ロータ本体9aの吸込端面8f、9f側(図において右側)に設けられている。吸込端面8f、9fとは、雄ロータ本体8aと雌ロータ本体9aの吸込側に設けられた端面である。雄ロータ本体8a及び雌ロータ本体9aは、吸込端面8f、9fにおいて、吸込側ロータ軸8b、9bとそれぞれ接続されている。
 前記構成のスクリュ圧縮機2によれば、次のような効果を発揮できる。
(1)第1空間24と第2空間26とを連通する連絡通路44a、44bを備えているので、第1空間24である吐出側軸受部上流側の余分な油が第2空間26に移動することにより、吐出側軸受部上流側における油の撹拌ロスを低減できる。
(2)連絡通路44a、44bの吐出側軸受部16に接する部分の接触下端44a1、44b1を吐出側軸受部16の内輪転送面の最下端18aと外輪転送面の最下端20aとの間に配置することによって、第1空間24の油面位置を転動体22が油浴する高さに保持することができ、必要な油量を吐出側軸受部16に供給しながら、連絡通路44a、44bによって余分な油を第2空間26に移動させることができる。
(3)連絡通路44a、44bの接触下端44a1、44b1を吐出側軸受部16の転動体22の中心の軌道円の最下端22a1と外輪転送面の最下端20aとの間に配置することによって、第1空間24の油面位置を転動体22の中心位置から外輪転送面までの間に保持することができ、必要かつより少量の油量を吐出側軸受部16に供給しながら、連絡通路44によって余分な油を第2空間26に移動させることができる。
(4)吐出側ロータ軸8c、9cは、圧縮ガスから力を受けるようになっている。ここで、連絡通路44a、44bを、ガス作用力面S1、S2の下方、すなわち、圧縮ガスから受けるガス作用力F1、F2の方向の反対側(吐出ポート49側)に設けることによって、ケーシング4による吐出側軸受部16の支持力を低下させることなく、連絡通路44a、44bを設けることができる。
(5)連絡通路44a、44bは、圧縮ガスから受けるガス作用力F1、F2の方向の反対側の所定の範囲、すなわち、軸心8c1、9c1を通り、反ガス作用力線F1’、F2’に対して下方に45度の角度をなす第1傾斜線F1’a、F2’aと、反ガス作用力線F1’、F2’に対して上方に45度の角度をなす第2傾斜線F1’b、F2’bと、によって挟まれる範囲に設けられている。連絡通路44a、44bをこの範囲に設けることによって、ケーシング4による吐出側軸受部16の支持力を低下させることなく、連絡通路44a、44bを設けることができる。
(6)連絡通路44a、44bは、直線状に延びており、吐出側ロータ軸8c、9cと平行である長手方向軸を有している。連絡通路44a、44bを機械加工で製作する場合、ケーシング4の外部方向から1度の機械加工で製作することができるので、連絡通路44a、44bの製作性及び製造コストを有利とすることができる。また、連絡通路44a、44bを鋳物で製作する場合であっても、簡単な構造であるため、鋳型の抜き方向を考慮することなく、軸受保持穴の型の一部を改造するだけで製作が可能であり、連絡通路44a、44bの製作性及び製造コストを有利とすることができる。
(7)ロータ給油口32よりも吸込端面8f、9f側の圧縮室6は、軸受室10より圧力が低いため、ロータ給油口32よりも吸込端面8f、9f側に排油先を設けることで、排油通路46において高圧から低圧への流れが形成され、排油不良を防止できる。換言すると、仮に排油先がロータ給油口32の位置より吐出端面8d、9d側の場合、排油先の圧力が高くなり排油が困難になる。従って、本構成によって、第2空間26からの排油が困難となることを防止している。
(第2実施形態)
 図5は、本発明の第2実施形態に係るスクリュ圧縮機2の吐出側軸受部16の部分断面図である。本実施形態のスクリュ圧縮機2は、吐出側ロータ軸8c、9cが上下方向に並んで配置されている。すなわち、本実施形態では、水平線に対して、吐出側ロータ軸8c、9cの軸心8c1、9c1を結ぶ線が90度の角度をなしている。したがって、本実施形態は、吐出側ロータ軸8c、9cが水平方向に並んで配置される第1実施形態と、吐出側ロータ軸8c、9cの並び方の点で異なっており、それ以外の部分の構成は、第1実施形態と実質的に同様である。
 図5に示されるように、連絡通路44a、44bの吐出側軸受部16に接する部分の接触下端44a1、44b1は、上下方向において、吐出側軸受部16の内輪18の内輪転送面の最下端18aと、吐出側軸受部16の外輪20の外輪転送面の最下端20aとの間に位置している。
 より詳細には、接触下端44a1、44b1は、吐出側軸受部16の転動体22の中心の軌道円22aの最下端22a1と、吐出側軸受部16の外輪転送面の最下端20aとの間に位置している。
 吐出側ロータ軸8c、9cは、圧縮ガスから受ける力によって、お互いに離れる方向に力が働く。この力、すなわちガス作用力F1、F2は、吐出側軸受部16で受け、吐出側軸受部16は、ケーシング4で保持されるようになっている。
 吐出側ロータ軸8c、9cが上下方向に並んで配置される本実施形態では、吐出側ロータ軸8c、9cの軸心8c1、9c1を結ぶ線よりも右側に吐出ポート49が存在している。この場合、吐出側ロータ軸8c側のガス作用力F1は、吐出側ロータ軸8cの軸心8c1と吐出側ロータ軸9cの軸心9c1とを通る軸中心線L1上であって、軸心8c1を通って軸心9c1に対して反対側に延びる線L1aに対して、圧縮ガス吐出方向(右方)とは反対方向へ角度θ3だけ傾斜した方向を向いている。ここで、角度θ3は、60度程度である。
 同様に、吐出側ロータ軸9c側のガス作用力F2は、軸中心線L1上であって、軸心9c1を通って軸心8c1に対して反対側に延びる線L1bに対して、圧縮ガス吐出方向(右方)とは反対方向へ角度θ4だけ傾斜した方向を向いている。ここで、角度θ4は、60度程度である。
 連絡通路44aは、ガス作用力F1の方向に垂直な面であって、軸心8c1を通る、ガス作用力面S1のガス作用力F1の方向と反対方向(右方であり、吐出ポート49側)に設けられている。
 連絡通路44bは、ガス作用力F2の方向に垂直な面であって、軸心9c1を通る、ガス作用力面S2のガス作用力F2の方向と反対方向(右方であり、吐出ポート49側)に設けられている。
 吐出側ロータ軸8c、9cは、圧縮ガスから力を受けるようになっている。ここで、吐出側ロータ軸8c、9cが上下方向に並んで配置されている場合でも、連絡通路44a、44bを、圧縮ガスから受けるガス作用力F1、F2の方向の反対側に設けることによって、ケーシング4による吐出側軸受部16の支持力を低下させることなく、連絡通路44a、44bを設けることができる。
(第3実施形態)
 図6は、本発明の第3実施形態に係るスクリュ圧縮機2の吐出側軸受部16の部分断面図である。本実施形態のスクリュ圧縮機2は、吐出側ロータ軸8c、9cが上下方向に斜めに並んで配置されている。すなわち、本実施形態では、水平線Sに対して、吐出側ロータ軸8c、9cの軸心8c1、9c1を結ぶ線が45度の角度をなしている。したがって、本実施形態は、吐出側ロータ軸8c、9cが水平方向に並んで配置される第1実施形態及び吐出側ロータ軸8c、9cが上下方向に並んで配置される第2実施形態と、吐出側ロータ軸の並び方の点で異なっており、それ以外の部分の構成は、第1実施解体と実質的に同様である。
 図6に示されるように、連絡通路44a、44bの吐出側軸受部16に接する部分の接触下端44a1、44b1は、上下方向において、吐出側軸受部16の内輪18の内輪転送面の最下端18aと、吐出側軸受部16の外輪20の外輪転送面の最下端20aとの間に位置している。
 より詳細には、接触下端44a1、44b1は、吐出側軸受部16の転動体22の中心の軌道円22aの最下端22a1と、吐出側軸受部16の外輪転送面の最下端20aとの間に位置している。
 吐出側ロータ軸8c、9cは、圧縮ガスから受ける力によって、お互いに離れる方向に力が働く。この力、すなわちガス作用力F1、F2は、吐出側軸受部16で受け、吐出側軸受部16は、ケーシング4で保持されるようになっている。
 吐出側ロータ軸8c、9cが上下方向斜めに並んで配置される本実施形態では、吐出側ロータ軸8c、9cの軸心8c1、9c1を結ぶ線よりも右下側に吐出ポート49が存在している。この場合、吐出側ロータ軸8c側のガス作用力F1は、吐出側ロータ軸8cの軸心8c1と吐出側ロータ軸9cの軸心9c1とを通る軸中心線L1上であって、軸心8c1を通って軸心9c1に対して反対側に延びる線L1aに対して、圧縮ガス吐出方向(右下方)とは反対方向へ角度θ5だけ傾斜した方向を向いている。ここで、角度θ5は、60度程度である。
 同様に、吐出側ロータ軸9c側のガス作用力F2は、軸中心線L1上であって、軸心9c1を通って軸心8c1に対して反対側に延びる線L1bに対して、圧縮ガス吐出方向(右下方)とは反対方向へ角度θ6だけ傾斜した方向を向いている。ここで、角度θ6は、60度程度である。
 連絡通路44aは、ガス作用力F1の方向に垂直な面であって、軸心8c1を通る、ガス作用力面S1の右下方であり、ガス作用力F1の方向と反対方向(吐出ポート49側)に設けられている。
 より詳細には、連絡通路44aは、軸心8c1を通り、反ガス作用力線F1’に対して下方に45度の角度をなす第1傾斜線L5aと、反ガス作用力線F1’に対して上方に45度の角度をなす第2傾斜線L5bと、によって挟まれる範囲に設けられている。なおここで、軸心8c1を通り、ガス作用力F1と軸心8c1に対して反対の方向に延びる反ガス作用力線を反ガス作用力線F1’とする。
 連絡通路44bは、ガス作用力F2の方向に垂直な面であって、軸心9c2を通る、ガス作用力面S2の下方であり、ガス作用力F2の方向と反対方向(吐出ポート49側)に設けられている。
 より詳細には、連絡通路44bは、軸心9c1を通り、反ガス作用力線F2’に対して下方に45度の角度をなす第1傾斜線L6aと、反ガス作用力線F2’に対して上方に45度の角度をなす第2傾斜線L6bと、によって挟まれる範囲に設けられている。なおここで、軸心9c1を通り、ガス作用力F2と軸心9c1に対して反対の方向に延びる反ガス作用力線を反ガス作用力線F2’とする。
 吐出側ロータ軸8c、9cは、圧縮ガスから力を受けるようになっている。ここで、吐出側ロータ軸8c、9cが上下方向に斜めに並んで配置されている場合でも、連絡通路44a、44bを、圧縮ガスから受けるガス作用力F1、F2の方向の反対側に設けることによって、ケーシング4による吐出側軸受部16の支持力を低下させることなく、連絡通路44a、44bを設けることができる。
 さらに、連絡通路44a、44bは、圧縮ガスから受けるガス作用力F1、F2の方向の反対側の所定の範囲、すなわち、軸心8c1、9c1を通り、反ガス作用力線F1’、F2’に対して下方に45度の角度をなす第1傾斜線L5a、L6aと、反ガス作用力線F1’、F2’に対して上方に45度の角度をなす第2傾斜線L5b、L6bと、によって挟まれる範囲に設けられている。連絡通路44a、44bをこの範囲に設けることによって、ケーシング4による吐出側軸受部16の支持力を低下させることなく、連絡通路44a、44bを設けることができる。
(変形例)
 第1~第3実施形態では、吐出側ロータ軸8c、9cの軸方向に垂直な断面において、連絡通路44a、44bは、円弧形状を有しているが、図7に示されるように、矩形を有していてもよい。また、連絡通路の大きさは特に限定されず、第1実施形態~第3実施形態に示される連絡通路より大きくても、小さくてもよい。また、図8に示されるように、複数の連絡通路44aが設けられてもよい。この場合、少なくとも1つの連絡通路44aの吐出側軸受部16に接する部分の接触下端44a1が、上下方向において、吐出側軸受部16の内輪18の内輪転送面の最下端18aと、吐出側軸受部16の外輪20の外輪転送面の最下端20aとの間に位置しているのが好ましい。また、より詳細には、少なくとも1つの連絡通路44aの接触下端44a1が、吐出側軸受部16の転動体22の中心の軌道円22aの最下端22a1と、吐出側軸受部16の外輪転送面の最下端20aとの間に位置しているのがより好ましい。
 連絡通路の大きさを調整することによって、第1空間24から第2空間26への油の移動量を調整することができ、その結果、油面の位置を適切な位置に調整することができる。
 また、複数の連絡通路を設けることによって、第1空間24から第2空間26への油の移動量が足りず油面が上昇した場合に、他の連絡通路からの油の移動量が増加することになり、その結果、油面の位置が大きく上昇することを防止できる。
(別の実施形態)
 第1~第3実施形態では、吐出側について連絡通路44a、44bを設けることが示されているが、吸込側について、同様の連絡通路が設けられてもよい。図9は、吸込側に連絡通路が設けられる場合の油冷式スクリュ圧縮機2の平面部分断面図である。図10は、図9のX-X線に沿った部分断面図である。別の実施形態は、吸込側に連絡通路が設けられる点で第1~第3実施形態と異なっており、その他の構成は第1~第3実施形態と同じである。このため、この変形例の説明においては、上記実施形態と同じ部分には同じ符号を付し、それらの内容については詳しい説明を省略する。
 図9及び図10に示されるように、ケーシング4内には、圧縮室6、軸受室10と共に、吸込側軸受室11が形成されている。吸込側ロータ軸8b、9bとケーシング4との間には、吸込側軸封部39が配設されており、圧縮室6と吸込側軸受室11との間を隔離している。吸込側軸受室11には、吸込側ロータ軸8b、9bを回転自在に支持する吸込側軸受部35が収容されている。吸込側軸受部35は、吐出側軸受部16と同様、リング状の内輪と、リング状の外輪と、それらの間に配置された球状または円柱状の転動体とを備える。そして、吸込側軸受部35によって吸込側軸受室11内が、吸込側軸受部35の軸方向端部とケーシング4との間に設けられる第3空間38と、吸込側軸封部39とに仕切られている。
 スクリュ圧縮機2は、雄ロータ8の吸込側ロータ軸8bがケーシング4の外側に延伸し、不図示のモータ等に接続されている。一方、雌ロータ9の吸込側ロータ軸9bの端部は、ケーシング4内に収容されている。吸込側ロータ軸9bの端部には、スラスト荷重を受け止めるための軸受内輪抑え41が設けられている。軸受内輪抑え41は、吸込側軸受部35の内輪と当接し、内輪の軸方向の移動を制限している。
 また、ケーシング4には、給油口40が設けられている。給油口40は、軸封給油口34と同様にケーシング4を貫通して設けられている。給油口40は、吸込側軸受部35に油を供給するため、第3空間38と連通している。
 スクリュ圧縮機2は、第3空間38に溜まった油を排油するため、第3空間38と、吸込空間48とを連通する第2連絡通路44c、44dを備えている。第2連絡通路44c、44dは、ケーシング4に切欠きを設けることによって形成されており、それぞれ、直線状に延びており、吸込側ロータ軸8b、9bと平行である長手方向軸を有している。吸込側ロータ軸8b、9bの軸方向に垂直な断面において、第2連絡通路44c、44dは円弧形状を有している。
 そして、図4~図8で述べられた連絡通路44a、44bの配置については、吸込側に設けられた第2連絡通路44c、44dにも同様に適用できる。すなわち、図4~図8において示された吐出側ロータ軸8c、9cを吸込側ロータ軸8b、9bに置き換えることで、吸込側の第2連絡通路44c、44dについて、同様に説明できる。
 図4に示されるように、吸込側ロータ軸8b、9bが水平方向に並んで配置されるスクリュ圧縮機2によれば、次のような効果を発揮できる。
(1)第3空間38と吸込空間48とを連通する第2連絡通路44c、44dを備えているので、第3空間38である吸込側軸受部35上流側の余分な油が吸込空間48に移動することにより、吸込側軸受部35上流側における油の撹拌ロスを低減できる。
(2)第2連絡通路44c、44dの吸込側軸受部35に接する部分の接触下端44a1、44b1を吸込側軸受部35の内輪転送面の最下端18aと外輪転送面の最下端20aとの間に配置することによって、第3空間38の油面位置を転動体22が油浴する高さに保持することができ、必要な油量を吸込側軸受部35に供給しながら、第2連絡通路44c、44dによって余分な油を吸込空間48に移動させることができる。
(3)第2連絡通路44c、44dの接触下端44a1、44b1を吸込側軸受部35の転動体22の中心の軌道円の最下端22a1と外輪転送面の最下端20aとの間に配置することによって、第3空間38の油面位置を転動体22の中心位置から外輪転送面までの間に保持することができ、必要かつより少量の油量を吸込側軸受部35に供給しながら、第2連絡通路44c、44dによって余分な油を吸込空間48に移動させることができる。
(4)吸込側ロータ軸8b、9bは、圧縮ガスから力を受けるようになっている。ここで、第2連絡通路44c、44dを、ガス作用力面S1、S2の下方、すなわち、圧縮ガスから受けるガス作用力F1、F2の方向の反対側(吐出ポート49側)に設けることによって、ケーシング4による吸込側軸受部35の支持力を低下させることなく、第2連絡通路44c、44dを設けることができる。
(5)第2連絡通路44c、44dは、圧縮ガスから受けるガス作用力F1、F2の方向の反対側の所定の範囲、すなわち、軸心8c1、9c1を通り、反ガス作用力線F1’、F2’に対して下方に45度の角度をなす第1傾斜線F1’a、F2’aと、反ガス作用力線F1’、F2’に対して上方に45度の角度をなす第2傾斜線F1’b、F2’bと、によって挟まれる範囲に設けられている。第2連絡通路44c、44dをこの範囲に設けることによって、ケーシング4による吸込側軸受部35の支持力を低下させることなく、第2連絡通路44c、44dを設けることができる。
(6)第2連絡通路44c、44dは、直線状に延びており、吸込側ロータ軸8b、9bと平行である長手方向軸を有している。第2連絡通路44c、44dを機械加工で製作する場合、ケーシング4の外部方向から1度の機械加工で製作することができるので、第2連絡通路44c、44dの製作性及び製造コストを有利とすることができる。また、第2連絡通路44c、44dを鋳物で製作する場合であっても、簡単な構造であるため、鋳型の抜き方向を考慮することなく、軸受保持穴の型の一部を改造するだけで製作が可能であり、第2連絡通路44c、44dの製作性及び製造コストを有利とすることができる。
 図5に示されるように、吸込側ロータ軸8b、9bが上下方向に並んで配置されるスクリュ圧縮機2によれば、次のような効果を発揮できる。
 吸込側ロータ軸8b、9bは、圧縮ガスから力を受けるようになっている。ここで、吸込側ロータ軸8b、9bが上下方向に並んで配置されている場合でも、第2連絡通路44c、44dを、圧縮ガスから受けるガス作用力F1、F2の方向の反対側に設けることによって、ケーシング4による吸込側軸受部35の支持力を低下させることなく、第2連絡通路44c、44dを設けることができる。
 図6に示されるように、吸込側ロータ軸8b、9bが上下方向に斜めに並んで配置されるスクリュ圧縮機2によれば、次のような効果を発揮できる。
 吸込側ロータ軸8b、9bは、圧縮ガスから力を受けるようになっている。ここで、吸込側ロータ軸8b、9bが上下方向に斜めに並んで配置されている場合でも、第2連絡通路44c、44dを、圧縮ガスから受けるガス作用力F1、F2の方向の反対側に設けることによって、ケーシング4による吸込側軸受部35の支持力を低下させることなく、第2連絡通路44c、44dを設けることができる。
 さらに、第2連絡通路44c、44dは、圧縮ガスから受けるガス作用力F1、F2の方向の反対側の所定の範囲、すなわち、軸心8c1、9c1を通り、反ガス作用力線F1’、F2’に対して下方に45度の角度をなす第1傾斜線L5a、L6aと、反ガス作用力線F1’、F2’に対して上方に45度の角度をなす第2傾斜線L5b、L6bと、によって挟まれる範囲に設けられている。第2連絡通路44c、44dをこの範囲に設けることによって、ケーシング4による吸込側軸受部35の支持力を低下させることなく、第2連絡通路44c、44dを設けることができる。
 第1~第3実施形態では、吐出側について連絡通路44a、44bを設けることが示されているが、別の実施形態では、吸込側について第2連絡通路44c、44dを設けることが示されている。本発明では、吐出側のみ連絡通路44a、44bを設けてもよく、吸込側のみ第2連絡通路44c、44dを設けてもよく、また、吐出側及び吸込側の両方に連絡通路を設けてもよい。そして、吐出側及び吸込側の両方に連絡通路を設ける場合には、連絡通路44a、44bと第2連絡通路44c、44dとは、スクリュロータ8、9の軸方向から見て重なる位置に設けられていることが好ましい。本構成によれば、ケーシング4による吐出側軸受部16及び吸込側軸受部35の支持力を両方共低下させることなく、連絡通路44a、44b及び第2連絡通路44c、44dを設けることができる。なお、連絡通路44a、44bと第2連絡通路44c、44dとが、スクリュロータ8、9の軸方向から見て重なる位置に設けられているとは、連絡通路44a、44bと第2連絡通路44c、44dとが、スクリュロータ8、9の軸方向から見て一部が重なっていればよい。
(別の実施形態の変形例)
 別の実施形態では、吸込側ロータ軸8b、9bの軸方向に垂直な断面において、第2連絡通路44c、44dは、円弧形状を有しているが、図7に示されるように、矩形を有していてもよい。また、第2連絡通路の大きさは特に限定されず、別の実施形態に示される第2連絡通路より大きくても、小さくてもよい。また、図8に示されるように、複数の第2連絡通路44cが設けられてもよい。この場合、少なくとも1つの第2連絡通路44cの吸込側軸受部35に接する部分の接触下端44a1が、上下方向において、吸込側軸受部35の内輪18の内輪転送面の最下端18aと、吸込側軸受部35の外輪20の外輪転送面の最下端20aとの間に位置しているのが好ましい。また、より詳細には、少なくとも1つの第2連絡通路44cの接触下端44a1が、吸込側軸受部35の転動体22の中心の軌道円22aの最下端22a1と、吸込側軸受部35の外輪転送面の最下端20aとの間に位置しているのがより好ましい。
 第2連絡通路の大きさを調整することによって、第3空間38から吸込空間48への油の移動量を調整することができ、その結果、油面の位置を適切な位置に調整することができる。
 また、複数の第2連絡通路を設けることによって、第3空間38から吸込空間48への油の移動量が足りず油面が上昇した場合に、他の第2連絡通路からの油の移動量が増加することになり、その結果、油面の位置が大きく上昇することを防止できる。
 本発明は、上記実施形態で説明した構成には限定されず、特許請求の範囲に記載した内容を逸脱することなく、当業者が考え得る各種変形例を含むことができる。
  2 油冷式スクリュ圧縮機 
  4 ケーシング 
  6 圧縮室 
  8 雄ロータ(スクリュロータ) 
  8a 雄ロータ本体 
  8b 吸込側ロータ軸 
  8c 吐出側ロータ軸 
  8d 吐出端面 
  8e 歯溝部 
  8f 吸込端面 
  9 雌ロータ(スクリュロータ) 
  9a 雌ロータ本体 
  9b 吸込側ロータ軸 
  9c 吐出側ロータ軸 
  9d 吐出端面 
  9f 吸込端面 
  10 軸受室 
  11 吸込側軸受室 
  14 軸封部 
  16 吐出側軸受部 
  18 内輪 
  18a 内輪転送面の最下端 
  20 外輪 
  20a 外輪転送面の最下端 
  22 転動体 
  22a 軌道円 
  22a1 最下端 
  24 軸受上流空間(第1空間) 
  26 軸受下流空間(第2空間) 
  28 軸受内輪抑え 
  30 軸受外輪抑え 
  32 ロータ給油口 
  34 軸封給油口 
  35 吸込側軸受部 
  38 第3空間 
  39 吸込側軸封部 
  40 給油口 
  41 軸受内輪抑え 
  44a 連絡通路 
  44b 連絡通路 
  44c 第2連絡通路 
  44d 第2連絡通路 
  46 排油通路 
  48 吸込空間 
  49 吐出ポート 
  50 吐出口 

Claims (15)

  1.  噛み合い状態で回転してガスを圧縮する一対のスクリュロータと、
     前記一対のスクリュロータを収容するケーシングと、
     前記スクリュロータの吐出側ロータ軸を支持する吐出側軸受部と、
     前記吐出側ロータ軸を軸封する軸封部と、
     前記軸封部と前記吐出側軸受部との間に設けられる第1空間と、
     前記吐出側軸受部の軸方向端部と前記ケーシングとの間に設けられる第2空間と、
     前記ケーシングに形成され、前記第1空間と前記第2空間とを連通する連絡通路と、を備えていることを特徴とする、油冷式スクリュ圧縮機。
  2.  前記連絡通路の前記吐出側軸受部に接する部分の接触下端は、前記吐出側軸受部の内輪転送面の最下端と、前記吐出側軸受部の外輪転送面の最下端との間に位置している、請求項1記載の油冷式スクリュ圧縮機。
  3.  前記接触下端は、前記吐出側軸受部の転動体の中心の軌道円の最下端と、前記吐出側軸受部の外輪転送面の最下端との間に位置している、請求項2記載の油冷式スクリュ圧縮機。
  4.  前記吐出側ロータ軸の軸方向に垂直な断面において、
     前記一対のスクリュロータにより圧縮された圧縮ガスを排出する吐出ポートは、前記吐出側ロータ軸の軸心を結ぶ直線に対して下方又は側方に配置され、
     前記連絡通路は、圧縮ガスによって前記吐出側ロータ軸に作用するガス作用力の方向に垂直な面であって、前記吐出側ロータ軸の軸心を通る、ガス作用力面に対して前記吐出ポート側に設けられている、請求項1記載の油冷式スクリュ圧縮機。
  5.  前記吐出側ロータ軸の軸方向に垂直な断面において、
     前記吐出側ロータ軸の軸心を結ぶ直線と水平線とのなす角度は、0度以上45度以下であり、
     前記連絡通路は、前記軸心を通り、前記軸心に対して前記ガス作用力と反対の方向に延びる反ガス作用力線に対して下方に45度の角度をなす第1傾斜線と、前記反ガス作用力線に対して上方に45度の角度をなす第2傾斜線と、によって挟まれる範囲に設けられている、請求項4記載の油冷式スクリュ圧縮機。
  6.  前記連絡通路は、直線状に延びており、前記吐出側ロータ軸と平行である長手方向軸を有している、請求項1~5のいずれか1つに記載の油冷式スクリュ圧縮機。
  7.  前記連絡通路を複数備えている、請求項1~3のいずれか1つに記載の油冷式スクリュ圧縮機。
  8.  噛み合い状態で回転してガスを圧縮する一対のスクリュロータと、
     前記一対のスクリュロータを収容するケーシングと、
     前記スクリュロータの吸込側ロータ軸を支持する吸込側軸受部と、
     前記吸込側軸受部の軸方向端部と前記ケーシングとの間に設けられる第3空間と、
     前記スクリュロータがガスを吸い込む吸込空間と、
     前記ケーシングに形成され、前記第3空間と前記吸込空間とを連通する第2連絡通路と、を備えていることを特徴とする、油冷式スクリュ圧縮機。
  9.  前記第2連絡通路の前記吸込側軸受部に接する部分の接触下端は、前記吸込側軸受部の内輪転送面の最下端と、前記吸込側軸受部の外輪転送面の最下端との間に位置している、請求項8記載の油冷式スクリュ圧縮機。
  10.  前記接触下端は、前記吸込側軸受部の転動体の中心の軌道円の最下端と、前記吸込側軸受部の外輪転送面の最下端との間に位置している、請求項9記載の油冷式スクリュ圧縮機。
  11.  前記吸込側ロータ軸の軸方向に垂直な断面において、
     前記一対のスクリュロータにより圧縮された圧縮ガスを排出する吐出ポートは、前記吸込側ロータ軸の軸心を結ぶ直線に対して下方又は側方に配置され、
     前記第2連絡通路は、圧縮ガスによって前記吸込側ロータ軸に作用するガス作用力の方向に垂直な面であって、前記吸込側ロータ軸の軸心を通る、ガス作用力面に対して前記吐出ポート側に設けられている、請求項8記載の油冷式スクリュ圧縮機。
  12.  前記吸込側ロータ軸の軸方向に垂直な断面において、
     前記吸込側ロータ軸の軸心を結ぶ直線と水平線とのなす角度は、0度以上45度以下であり、
     前記第2連絡通路は、前記軸心を通り、前記軸心に対して前記ガス作用力と反対の方向に延びる反ガス作用力線に対して下方に45度の角度をなす第1傾斜線と、前記反ガス作用力線に対して上方に45度の角度をなす第2傾斜線と、によって挟まれる範囲に設けられている、請求項11記載の油冷式スクリュ圧縮機。
  13.  前記第2連絡通路は、直線状に延びており、前記吸込側ロータ軸と平行である長手方向軸を有している、請求項8~12のいずれか1つに記載の油冷式スクリュ圧縮機。
  14.  前記第2連絡通路を複数備えている、請求項8~10のいずれか1つに記載の油冷式スクリュ圧縮機。
  15.  噛み合い状態で回転してガスを圧縮する一対のスクリュロータと、
     前記一対のスクリュロータを収容するケーシングと、
     前記スクリュロータの吐出側ロータ軸を支持する吐出側軸受部と、
     前記吐出側ロータ軸を軸封する軸封部と、
     前記軸封部と前記吐出側軸受部との間に設けられる第1空間と、
     前記吐出側軸受部の軸方向端部と前記ケーシングとの間に設けられる第2空間と、
     前記ケーシングに形成され、前記第1空間と前記第2空間とを連通する連絡通路と、
     前記スクリュロータの吸込側ロータ軸を支持する吸込側軸受部と、
     前記吸込側軸受部の軸方向端部と前記ケーシングとの間に設けられる第3空間と、
     前記スクリュロータがガスを吸い込む吸込空間と、
     前記ケーシングに形成され、前記第3空間と前記吸込空間とを連通する第2連絡通路と、を備え、
     前記連絡通路と前記第2連絡通路とは、前記スクリュロータの軸方向から見て重なる位置に設けられていることを特徴とする、油冷式スクリュ圧縮機。
PCT/JP2018/000855 2017-01-17 2018-01-15 油冷式スクリュ圧縮機 WO2018135444A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880007143.1A CN110168226B (zh) 2017-01-17 2018-01-15 油冷式螺杆压缩机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-005888 2017-01-17
JP2017005888 2017-01-17
JP2017185307 2017-09-26
JP2017-185307 2017-09-26

Publications (1)

Publication Number Publication Date
WO2018135444A1 true WO2018135444A1 (ja) 2018-07-26

Family

ID=62909198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000855 WO2018135444A1 (ja) 2017-01-17 2018-01-15 油冷式スクリュ圧縮機

Country Status (3)

Country Link
JP (1) JP7098333B2 (ja)
CN (1) CN110168226B (ja)
WO (1) WO2018135444A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144781A (ja) * 2004-10-21 2006-06-08 Hitachi Industrial Equipment Systems Co Ltd 空気圧縮機の潤滑装置及びこれを備えた空気圧縮機
JP2007126993A (ja) * 2005-11-01 2007-05-24 Toyota Industries Corp 真空ポンプ
JP2011001937A (ja) * 2009-06-22 2011-01-06 Kobe Steel Ltd スクリュ圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546136B2 (ja) 2004-04-22 2010-09-15 株式会社神戸製鋼所 スクリュ冷凍装置
CN102356240B (zh) * 2009-03-16 2015-03-11 大金工业株式会社 螺杆式压缩机
JP5844980B2 (ja) * 2011-02-15 2016-01-20 株式会社神戸製鋼所 2段スクリュ圧縮式冷凍装置
JP5950870B2 (ja) * 2013-06-20 2016-07-13 株式会社神戸製鋼所 油冷式スクリュ圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144781A (ja) * 2004-10-21 2006-06-08 Hitachi Industrial Equipment Systems Co Ltd 空気圧縮機の潤滑装置及びこれを備えた空気圧縮機
JP2007126993A (ja) * 2005-11-01 2007-05-24 Toyota Industries Corp 真空ポンプ
JP2011001937A (ja) * 2009-06-22 2011-01-06 Kobe Steel Ltd スクリュ圧縮機

Also Published As

Publication number Publication date
JP7098333B2 (ja) 2022-07-11
CN110168226B (zh) 2021-07-23
JP2019052633A (ja) 2019-04-04
CN110168226A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
JP6304663B2 (ja) スクロール圧縮機
KR100916554B1 (ko) 올덤 커플링을 위한 클리어런스를 가진 스크롤 압축기
JPS5828433B2 (ja) 旋回機械用継手部材
JP4897867B2 (ja) 多シリンダロータリ圧縮機及びその製造方法
US20130089451A1 (en) Scroll compressor with supporting member in axial direction
JP6664879B2 (ja) 開放型圧縮機
KR100862198B1 (ko) 오일 주입 피팅부를 가진 수평 스크롤 압축기
JP7002033B2 (ja) 2シリンダ型密閉圧縮機
CN104271957A (zh) 具有滑块的涡旋压缩机
JP2008138578A (ja) スクロール圧縮機
KR101523435B1 (ko) 로터리 압축기
KR100729539B1 (ko) 스크롤기계용 원뿔형 허브 베어링
WO2018135444A1 (ja) 油冷式スクリュ圧縮機
JP2010249047A (ja) スクリュー圧縮機
KR102081341B1 (ko) 스크롤 압축기
EP3534005B1 (en) Scroll compressor and method for producing same
JP4696240B2 (ja) スクロール圧縮機
KR102451435B1 (ko) 펌프 밀봉
US10738774B2 (en) Reciprocating type compressor
TWI638106B (zh) 無油螺旋壓縮機
JP2006241993A (ja) スクロール型圧縮機
JP2017031821A (ja) 油冷式スクリュ圧縮機
JP2015001197A (ja) 回転式圧縮機
EP3533970B1 (en) Scroll compressor
EP4212726A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741003

Country of ref document: EP

Kind code of ref document: A1