WO2018133397A1 - 压力触控传感器、显示装置及其驱动方法 - Google Patents

压力触控传感器、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2018133397A1
WO2018133397A1 PCT/CN2017/097112 CN2017097112W WO2018133397A1 WO 2018133397 A1 WO2018133397 A1 WO 2018133397A1 CN 2017097112 W CN2017097112 W CN 2017097112W WO 2018133397 A1 WO2018133397 A1 WO 2018133397A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
touch sensor
pressure touch
light emitting
display panel
Prior art date
Application number
PCT/CN2017/097112
Other languages
English (en)
French (fr)
Inventor
郭玉珍
董学
王海生
吴俊纬
刘英明
许睿
贾亚楠
赵利军
秦云科
顾品超
李昌峰
丁小梁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/756,966 priority Critical patent/US10564757B2/en
Publication of WO2018133397A1 publication Critical patent/WO2018133397A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pressure touch sensor, a display device, and a driving method thereof.
  • a pressure touch sensor based on a piezoelectric effect is generally used to implement multi-touch and pressure sensing functions.
  • the pressure touch sensor includes a driving electrode and a sensing electrode, and a piezoelectric material layer between the driving electrode and the sensing electrode; wherein the piezoelectric material layer is an insulator.
  • the bending may also cause an electrical signal to be generated, so that when the flexible display device is bent, it is easy to cause misidentification of the pressure sensing.
  • a pressure touch sensor comprising: a driving electrode, a sensing electrode, and a piezoelectric material layer and a piezoresistive material layer disposed therebetween.
  • the pressure touch sensor has a structure in which a driving electrode, a piezoresistive material layer, a piezoelectric material layer, and an induction electrode are sequentially stacked.
  • the pressure touch sensor has a structure in which a driving electrode, a piezoelectric material layer, a piezoresistive material layer, and a sensing electrode are sequentially stacked.
  • the pressure touch sensor has a structure in which a plurality of piezoelectric material layers and a piezoresistive material layer are alternately stacked.
  • the pressure touch sensor has a structure in which a driving electrode, a piezoelectric material layer, a piezoresistive material layer, a piezoelectric material layer, and a sensing electrode are sequentially stacked.
  • the driving touch electrodes of the pressure touch sensor are multiple, and the driving electrodes extend in a first direction; the sensing electrodes in the pressure touch sensor are multiple, and the sensing electrodes are Extending in a second direction; the first direction intersects the second direction.
  • the orthographic projection of the layer of piezoelectric material and the layer of piezoresistive material completely overlaps in a direction perpendicular to the layer of piezoelectric material.
  • the material of the piezoelectric material layer comprises a piezoelectric ceramic material and/or an organic piezoelectric material; further, the piezoelectric ceramic material comprises at least one of zinc oxide, aluminum nitride, and lead zirconate titanate.
  • the organic piezoelectric material comprises a polyvinylidene fluoride.
  • the second aspect provides a display device, including a display panel, further comprising the pressure touch sensor of the first aspect, wherein the pressure touch sensor is disposed on the display panel.
  • the pressure touch sensor is integrated in the display panel.
  • the display panel is a flexible OLED display panel.
  • the flexible OLED display panel comprises a flexible substrate, a light emitting device disposed on the flexible substrate, and the pressure touch sensor is disposed on a side of the flexible substrate adjacent to the light emitting device.
  • the flexible OLED display panel comprises a flexible substrate, a light emitting device disposed on the flexible substrate; and the pressure touch sensor is disposed on a side of the flexible substrate away from the light emitting device .
  • the flexible OLED display panel comprises a flexible substrate, a light emitting device disposed on the flexible substrate, and a thin film transistor disposed between the flexible substrate and the light emitting device;
  • a pressure touch sensor is disposed between the flexible substrate and the thin film transistor.
  • the flexible OLED display panel comprises a flexible substrate, a light emitting device disposed on the flexible substrate, and a thin film transistor disposed between the flexible substrate and the light emitting device;
  • the light emitting device includes an anode, a functional layer of an organic material, and a cathode;
  • the pressure touch sensor is disposed between the thin film transistor and the anode;
  • the thin film transistor, the pressure sensor, and the anode are stacked, the anode
  • the drain of the thin film transistor is electrically connected through a via.
  • the flexible OLED display panel comprises a flexible substrate, a light emitting device disposed on the flexible substrate, and a package film and a package cover plate for packaging the light emitting device; A sensor is disposed between the package film and the package cover.
  • the piezoelectric material layer and the piezoresistive material layer are disposed on the display area of the flexible OLED display panel and cover the display area; the pressure touch sensor is transparent.
  • the piezoelectric material layer and the piezoresistive material layer are disposed in a non-light emitting region of the display region, and are a grid structure; the driving electrode and the sensing electrode are both transparent electrodes.
  • a third aspect of the invention provides a driving method of a display device according to the second aspect, comprising: applying a driving signal to a driving electrode row by row during a touch phase, and the sensing electrode receives a touch sensing signal according to the sensing electrode The change of the signal and the driving electrode of the applied driving signal determine the touch position; in the pressure sensing phase, the piezoelectric material layer of the force receiving region generates an electrical signal, and the resistance of the piezoresistive material layer of the stressed region decreases. And inputting a constant voltage signal to the driving electrode, so that the sensing electrode receives the voltage signal, and determining a pressure value at the touch position according to the voltage signal.
  • FIG. 1 is a schematic structural diagram 1 of a pressure touch sensor according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram 1 of a working principle of a pressure touch sensor according to an embodiment of the present disclosure
  • FIG. 3 is a second schematic diagram of the working principle of a pressure touch sensor according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram 2 of a pressure touch sensor according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another pressure touch sensor according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram 1 of a display panel according to an embodiment of the present disclosure.
  • FIG. 7 is a second schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 3 of a display panel according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 4 of a display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 5 of a display panel according to an embodiment of the present disclosure.
  • FIG. 11 is a top plan view of a display panel according to an embodiment of the present disclosure.
  • Figure 12 is a cross-sectional view taken along line AA' of Figure 11;
  • FIG. 13 is a top plan view 2 of a display panel according to an embodiment of the present disclosure.
  • Figure 14 is a cross-sectional view taken along line BB' of Figure 13;
  • FIG. 15 is a schematic flowchart diagram of a display panel driving method according to an embodiment of the present disclosure.
  • FIG. 16 is a timing diagram of driving a display panel according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a pressure touch sensor 100, as shown in FIG. 1, comprising: a driving electrode 110, a sensing electrode 120, and a piezoelectric material layer 130 and a piezoresistive material layer 140 disposed therebetween.
  • the working principle of the pressure touch sensor 100 is:
  • the upper and lower surfaces of the stress region of the piezoelectric material layer 130 are concentrated with positive and negative charges to generate an electrical signal, and the degree of charge accumulation is related to the magnitude of the force, and the piezoresistive material layer 140 is subjected to
  • the force region resistance is reduced, similar to forming a conductive path in the stressed region, such that in the stressed region, the piezoresistive material layer 140 can be considered as part of the electrode in contact therewith, the electrical signal can be conducted to the piezoresistive material
  • the layer 140 is in contact with the electrode, and the resistance of the conductive path is related to the magnitude of the pressure. Based on this, the magnitude of the pressure can be obtained according to the above two electrical effects.
  • the greater the applied pressure the more the amount of charge accumulated on the upper and lower surfaces of the stressed region of the piezoelectric material layer 130, and the smaller the resistance of the conductive path formed by the piezoresistive material layer 140 in the stressed region.
  • the pressure touch sensor 100 when the pressure touch sensor 100 is bent, due to the bending effect, although the piezoelectric material layer 130 is deformed to accumulate positive and negative charges on the upper and lower surfaces, respectively, the upper and lower portions of the piezoresistive material layer 140 are respectively subjected to Tensile force and pressure (the pressure touch sensor 100 is subjected to a centripetal force when bent, the centripet force is expressed as a tensile force in the upper portion of the piezoresistive material layer 140, and a pressure is generated in the lower portion of the piezoresistive material layer 140), and the overall resistance Without being lowered, the conductive path does not open, so the electrical signal generated by the piezoelectric material layer 130 is not conducted to the electrode.
  • the touch position when the pressure touch sensor 100 is a mutual capacitive sensor, the touch position may be determined according to a change in capacitance between the driving electrode 110 and the sensing electrode 120; when the pressure touch sensor 100 is In the self-capacitance sensor, the touch position is determined according to the capacitance between the driving electrode 110 and the ground, and the capacitance between the sensing electrode 120 and the ground, respectively.
  • the piezoelectric material layer 130 can be equivalent to a voltage source and a A parallel equivalent circuit of the capacitor, and the piezoresistive material layer 140 forms a conductive path in the force receiving region, and in the force receiving region, the piezoresistive material layer 140 can be regarded as a part of the electrode in contact therewith, and thus can be based on the touch position The change in capacitance determines the touch position.
  • the piezoelectric material layer 130 functions as an insulating dielectric layer (even if the force is strong, the piezoelectric material layer 130 can be equivalent to a parallel equivalent circuit of a voltage source and a capacitor), and The piezoresistive material layer 140 can be used as an insulating dielectric layer, and therefore, the touch position can still be determined based on the change in the touch position capacitance.
  • the touch sensitivity is large, and when the touch force is small, the detection range of the touch capacitance change can be relaxed on the processing of the electrical signal, so that the capacitance change caused by the piezoresistive material layer 140 is within the allowable value. Just fine.
  • the upper and lower positions of the driving electrode 110 and the sensing electrode 120 are not limited, and the driving electrode 110 may be on the upper side or the sensing electrode 120 may be on the upper side (FIG. 1-3 only the driving electrode 110 is on the upper side).
  • the sensing electrode 120 is illustrated below.
  • the relative positions of the piezoelectric material layer 130 and the piezoresistive material layer 140 are not limited, and may be arbitrarily combined (FIG. 1-3 only the piezoresistive material layer 140 is above, and the piezoelectric material layer 130 is shown below) .
  • the piezoelectric material layer 130 and the piezoresistive material layer 140 should be stacked, that is, the piezoelectric material layer 130 and the piezoresistive material layer 140 should have an overlapping area.
  • the embodiment of the present disclosure provides a pressure touch sensor 100.
  • a piezoresistive material layer 140 on the basis of the piezoelectric material layer 130, on the one hand, in the touch mode, regardless of the force and the small force, the effect is not affected.
  • the driving touch sensor 100 has a plurality of driving electrodes 110 , and the driving electrodes 110 extend in a first direction; the sensing electrodes in the pressure touch sensor 100 120 is plural, and the sensing extends in a second direction; the first direction intersects the second direction.
  • the driving electrode 110 and the sensing electrode 120 may both be strip electrodes. Alternatively, the driving electrode 110 and the sensing electrode 120 are each electrically connected by a plurality of diamond-shaped sub-electrodes. Alternatively, the driving electrode 110 and the sensing electrode 120 are each electrically connected by a plurality of cross-shaped sub-electrodes. Alternatively, the driving electrode 110 and the sensing electrode 120 are each electrically connected by a plurality of snowflake-shaped sub-electrodes.
  • the touch position can be determined by the drive electrode 110 and the sensing electrode 120 disposed in a crossover manner.
  • the driving electrode 110 and the sensing electrode 120 are disposed in a crossover manner, when the pressure touch sensor 100 is applied to the display device, the touch position can be recognized based on the mutual capacitive manner, and multi-touch can be realized.
  • the orthogonal projection of the piezoelectric material layer 130 and the piezoresistive material layer 140 completely overlaps in the direction perpendicular to the piezoelectric material layer 130.
  • the material of the piezoresistive material layer 140 is not limited, as long as it can change its resistance under the action of pressure, and it has certain flexibility, for example, it can be a quantum channel composition (QTC). , silicone rubber, etc.
  • QTC quantum channel composition
  • the embodiment of the present disclosure completely overlaps the piezoelectric material layer 130 and the piezoresistive material layer 140, so that the touch sensor and the pressure sensing effect of the pressure sensor can be better.
  • the material of the piezoelectric material layer 130 includes a piezoelectric ceramic material and/or an organic piezoelectric material;
  • the piezoelectric ceramic material may be selected from at least one of zinc oxide (ZnO), aluminum nitride (AlN), and lead zirconate titanate; and the organic piezoelectric material may be polyvinylidene fluoride (PVDF).
  • FIG. 5 shows a schematic diagram of another pressure touch sensor of the present disclosure having an alternating stack structure of piezoelectric material/piezoresistive material layer/piezoelectric material layer. As shown in FIG.
  • the pressure touch sensor 100' includes a driving electrode 110, a sensing electrode 120, and a piezoresistive material layer 140, a piezoelectric material layer 130, and a piezoresistive material layer 140' disposed therebetween.
  • the material of the piezoresistive material layer 140' may be the same as or different from the material of the piezoresistive material layer 140.
  • the driving electrode 110 and the sensing electrode 120 correspond to the piezoelectric material layers 140 and 140', respectively, and the piezoelectric material layer 130 is between the two piezoelectric material layers to prevent bending.
  • the pressure-induced charge of the piezoelectric material layer is detected by the electrode, thereby generating a bending interference signal, and the piezoelectric material layer is in direct contact with the electrode, and the induced charge generated by the pressure does not need to be directly detected by the electrode beyond the layer of the piezoresistive material.
  • the pressure signal amount is increased relative to the basic structure of the four stacks, and the pressure sensing sensitivity can be improved.
  • the embodiment of the present disclosure further provides a display device including a display panel and the pressure touch sensor 100 or the pressure touch sensor 100'.
  • the pressure touch sensor 100 will be described as an example.
  • the display device of the embodiment of the present disclosure includes a display panel, and further includes the pressure touch sensor 100, and the pressure touch sensor 100 is disposed on the display panel.
  • the pressure touch sensor 100 is disposed on the display panel, that is, the pressure touch sensor 100 may be integrated inside the display panel or may be disposed on the outer surface of the display panel.
  • the type of the display panel is not limited, and may be, for example, a liquid crystal display panel or an OLED (Organic Light-Emitting Diode) display panel.
  • the pressure touch sensor 100 can be integrated into the liquid crystal display panel when the display panel is a liquid crystal display panel. Based on this, the pressure touch sensor 100 can be integrated on the array substrate of the liquid crystal display panel, or can be integrated on the counter substrate of the liquid crystal display panel.
  • the pressure touch sensor 100 can also be disposed on the outer surface of the light exit side of the liquid crystal display panel.
  • the pressure touch sensor 100 can be integrated in the OLED display panel.
  • the embodiment of the present disclosure provides a display device. Based on the pressure touch sensor 100, on the one hand, the driving electrode 110 and the sensing electrode 120 are disposed to intersect each other, thereby realizing recognition of the touch position. On the other hand, when the display device is bent At the time of folding, since the pressure sensing is generally not performed at this time, and the upper and lower portions of the piezoresistive material layer 140 are respectively subjected to tensile force and pressure, the overall resistance of the piezoresistive material layer 140 is not lowered, and therefore, the electrical signal generated by the piezoelectric material layer 130 is not It will be transmitted to the electrodes, thus avoiding misidentification of pressure sensing due to bending.
  • the pressure touch sensor 100 is integrated in the display panel.
  • the pressure touch sensor 100 is integrated in the display panel, that is, the pressure touch sensor The 100 is formed inside the display panel, so that the pressure touch sensor 100 can be formed on the same production line in the process of preparing the display panel, thereby simplifying the process.
  • the display panel is preferably a flexible OLED display panel.
  • the embodiments of the present disclosure provide several specific structures for integrating the pressure touch sensor 100 into the flexible OLED display panel:
  • the flexible OLED display panel includes a flexible substrate 210 and a light emitting device 230 disposed on the flexible substrate 210 .
  • the pressure touch sensor 100 is disposed on the flexible substrate 210 adjacent to the light emitting device 230 .
  • the light emitting device 230 includes an anode 231, an organic material functional layer 232, and a cathode 233.
  • the organic material functional layer 232 may include a light emitting layer, an electron transport layer, and a hole transport layer; on the basis of this, in order to improve the efficiency of electron and hole injection into the light emitting layer, the organic material functional layer 232 may further include a cathode 233.
  • the flexible OLED display panel includes a flexible substrate 210, a light emitting device 230 disposed on the flexible substrate 210, and a film disposed between the flexible substrate 210 and the light emitting device 230.
  • the transistor 220 can be disposed between the flexible substrate 210 and the thin film transistor 220.
  • the anode 231 is generally disposed close to the thin film transistor 220.
  • the flexible OLED display panel includes a flexible substrate 210, a light emitting device 230 disposed on the flexible substrate 210, and a film disposed between the flexible substrate 210 and the light emitting device 230.
  • the transistor 220 is disposed between the thin film transistor 220 and the anode 231 of the light emitting device 230.
  • the sensing electrode 120 is disposed between the piezoelectric material layer 130 and the thin film transistor 220.
  • the driving electrode 110 is disposed.
  • An insulating layer 240 is disposed between the piezoresistive material layer 140 and the light emitting device 230, and between the driving electrode 110 and the light emitting device 230; the thin film transistor 220, the pressure sensor 100, and the anode 231 are stacked, and the anode 231 The drain 221 of the thin film transistor 220 is electrically connected through the via 222.
  • FIG. 8 is a cross-sectional view taken at a gap between the two driving electrodes 110, and therefore, the driving electrode 110 does not appear in FIG.
  • the pressure touch sensor 100 is disposed on a side of the flexible substrate 210 away from the light emitting device 230.
  • the flexible OLED display panel may further include a protection structure disposed on a side of the pressure touch sensor 100 away from the flexible substrate 210 to protect the electrodes in the bare pressure touch sensor 100.
  • the problem can be avoided by providing the insulating layer 240.
  • the flexible OLED display panel is a PMOLED (Passive Matrix Organic Light Emitting Diode) display panel, that is, the flexible OLED display panel does not include the thin film transistor 220, the relative positions of the anode 231 and the cathode 233 are not limited.
  • the flexible OLED display panel is a bottom emission type display panel; when the light is emitted from a side away from the flexible substrate 210, the flexible OLED display panel is a top emission.
  • the display panel is a double-sided light-emitting display panel when light is emitted from one side of the flexible substrate 210 and away from the side of the flexible substrate 210.
  • the flexible OLED display panel is an AMOLED (Active Matrix Organic Light Emitting Diode) display panel, that is, the flexible OLED display panel includes the thin film transistor 220, since the anode 231 is generally disposed close to the thin film transistor 220, according to the anode 231 and
  • the transparent OLED display panel can still be divided into a bottom emission, a top emission, and a double-sided illumination type display panel.
  • the setting of the pressure touch sensor 100 needs to ensure that the normal display of the flexible OLED display panel is not affected.
  • the piezoelectric material can be made transparent by setting the pressure touch sensor 100, or only the driving electrode 110 and the sensing electrode 120 are made transparent.
  • Layer 130 and piezoresistive material layer 140 are disposed in the non-emissive regions to ensure that normal display of the flexible OLED display panel is not affected.
  • the flexible OLED display panel comprises a flexible substrate 210, a light emitting device 230 disposed on the flexible substrate 210, and a package film 234 and a package cover 300 for packaging the light emitting device 230; the pressure touch sensor 100 It is disposed between the package film 234 and the package cover 300.
  • the type of the flexible OLED display panel is not limited, and it may be a flexible AMOLED display panel or a flexible PMOLED display panel.
  • the flexible OLED display panel may further include a thin film transistor 220 disposed on a side of the light emitting device 230 adjacent to the flexible substrate 210.
  • the pressure touch sensor 100 is disposed between the package film 234 and the package cover 300 to prevent the anode 231 and the cathode 233 from shielding the capacitance signal generated by the pressure touch sensor 100, resulting in a small signal sensing amount.
  • the problem that the signal is not easy to detect, on the one hand, can improve the detection accuracy, and on the other hand, it does not need to adopt an additional design to solve the problem that the signal is not easy to detect.
  • the embodiment of the present disclosure provides two specific structures for placing the pressure touch sensor 100 between the package film 234 and the package cover 300:
  • the piezoelectric material layer 130 and the piezoresistive material layer 140 are disposed on the display area 200 of the flexible OLED display panel and cover the display area 200.
  • the pressure touch sensor 100 is transparent, that is, the materials of the driving electrode 110, the sensing electrode 120, the piezoelectric material layer 130, and the piezoresistive material layer 140 are all transparent materials.
  • the embodiment of the present disclosure covers the display area 200 by the piezoelectric material layer 130 and the piezoresistive material layer 140, so that the piezoelectric material layer 130 and the piezoresistive material layer 140 can cover the entire touch position at a certain touch point, thereby Make the detection more accurate. Moreover, the piezoelectric material layer 130 and the piezoresistive material layer 140 are disposed in a whole layer, and the process is simpler.
  • the second structure as shown in FIG. 13 and FIG. 14 , the piezoelectric material layer 130 and the piezoresistive material layer 140 are disposed in the non-light emitting region of the display region 200 and have a mesh structure; the driving electrode 110 and the sensing electrode 120 are both Transparent electrode.
  • the insulating layer 240 may be disposed at a portion where the sensing electrode 120 and the driving electrode 110 intersect, and where the piezoelectric material layer 130 and the piezoresistive material layer 140 are not disposed.
  • the material of the driving electrode 110 and the sensing electrode 120 may be ITO (Indium Tin Oxides), or may be an organic conductor PEDOT (3,4-ethylenedioxythiophene, 3,4-ethylenedioxythiophene monomer polymer).
  • the non-light-emitting area of the display area 200 that is, the part between the sub-pixels in the display area 200, for example, a portion blocked by the black matrix.
  • the material of the piezoelectric material layer 130 and the piezoresistive material layer 140 may be a transparent material or an opaque material, which is not specifically limited herein.
  • the piezoelectric material layer 130 and the piezoresistive material layer 140 are disposed in a grid structure, and are also applicable to the case where the pressure touch sensor 100 is integrated into the flexible OLED display panel.
  • the piezoelectric material layer 130 and the piezoresistive material layer 140 may not be limited to be a transparent layer, and the piezoelectric material layer 130 and the piezoresistive material may be made.
  • Layer 140 has a wider range of material options.
  • An embodiment of the present disclosure provides a driving method of the display device as described above, as shown in FIG.
  • a driving signal is applied to the driving electrode 110 row by row, and the sensing electrode 120 receives the touch sensing signal according to the change of the signal on the sensing electrode 120 and the applied driving signal.
  • the driving electrode 110 determines a touch position.
  • the touch signal (change in charge amount) further includes a pressure sensitive signal (pressure sensitive charge) generated by the pressure, which enhances the sensing signal received by the sensing electrode 120, but does not affect the judgment of the touch position.
  • the piezoelectric material layer 130 of the force receiving region in the pressure sensing phase 02, the piezoelectric material layer 130 of the force receiving region generates an electrical signal, and the piezoresistive material layer 140 of the stressed region is reduced in resistance, and a constant voltage signal is input to the driving electrode 110, so that the sensing electrode 120 Receiving a voltage signal, and determining a pressure value at the touch position according to the voltage signal.
  • the pressure sensing phase 02 is located after the touch phase 01.
  • the duration of the touch phase 01 and the pressure sensing phase 02 is appropriately adjusted according to the processing function of the IC chip, and is not specifically limited herein.
  • the duration of the touch phase 01 can be 11.7 ms.
  • the duration of the pressure sensing phase 02 can be 5 ms.
  • the touch position is determined by applying a driving signal on the driving electrode 110 and receiving the sensing signal through the sensing electrode 120. At this time, regardless of the force, the capacitance is not affected. Varying the recognition of the touch position; on the other hand, in the pressure sensing phase 02, when pressure is applied to the display device, the upper and lower surfaces of the piezoelectric material layer 130 generate positive and negative charges, and the resistance of the piezoresistive material layer 140 decreases.
  • inputting a constant voltage signal to the driving electrode 110 causes the sensing electrode 120 to receive a voltage signal, and determining a pressure value at the touch position according to the voltage signal; wherein, when the display device is bent, although the pressure is The upper and lower surfaces of the electrical material layer 130 generate positive and negative charges, but since the touch operation is not performed on the display device at this time, and the upper and lower portions of the piezoresistive material layer 140 are respectively subjected to tensile force and pressure, the overall resistance of the piezoresistive material layer 140 is not lowered, therefore, The sensing electrode 120 does not receive a voltage signal, thereby avoiding misidentification of pressure sensing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种压力触控传感器(100)、显示装置及其驱动方法。该压力触控传感器(100)包括:驱动电极(110)、感应电极(120)、以及设置于二者之间的压电材料层(130)和压阻材料层(140)。

Description

压力触控传感器、显示装置及其驱动方法
交叉引用
本公开要求2017年1月17日提交的、发明名称为“一种压力触控传感器、显示装置及其驱动方法”的中国专利申请No.201710035076.1的优先权权益,该中国专利申请的全部内容通过引用结合在此。
技术领域
本公开涉及显示技术领域,尤其涉及一种压力触控传感器、显示装置及其驱动方法。
背景技术
随着信息技术的发展,移动终端的功能越来越丰富,各种新技术和新功能的应用也以不同的方式呈现,而压力触控(3D-Touch)技术,可以对按压力度进行感知,从而基于不同的力度可实现不同的功能,增加用户体验。
目前,一般采用基于压电效应的压力触控传感器,来实现多点触控以及压力感应功能。该压力触控传感器包括驱动电极和感应电极,以及位于驱动电极和感应电极之间的压电材料层;其中,压电材料层为绝缘体。
当对所述压力触控传感器施加压力时,沿压力的施加方向,压电材料层的两端分别聚集正电荷和负电荷,根据正电荷和负电荷产生的电信号,判断施加的压力的大小;其中,虽然压电材料层的两端分别聚集正电荷和负电荷,但压电材料层仍为绝缘体。
然而,当所述压力触控传感器应用于柔性显示装置时,由于弯折也会导致电信号的产生,这样,在柔性显示装置弯折时,容易对压力感应造成误识别。
发明内容
本公开的实施例采用如下技术方案:
第一方面,提供一种压力触控传感器,包括:驱动电极、感应电极、以及设置于二者之间的压电材料层和压阻材料层。
可选的,所述压力触控传感器具有驱动电极、压阻材料层、压电材料层、感应电极依次层叠的结构。
或者,可选的,所述压力触控传感器具有驱动电极、压电材料层、压阻材料层、感应电极依次层叠的结构。
可选的,所述压力触控传感器具有多个压电材料层和压阻材料层交替层叠的结构。
可选的,所述压力触控传感器具有驱动电极、压电材料层、压阻材料层、压电材料层、感应电极依次层叠的结构。
可选的,所述压力触控传感器中的驱动电极为多个,且所述驱动电极均沿第一方向延伸;所述压力触控传感器中的感应电极为多个,且所述感应电极均沿第二方向延伸;所述第一方向与所述第二方向交叉。
可选的,沿垂直所述压电材料层的方向,所述压电材料层和所述压阻材料层的正投影完全重叠。
可选的,所述压电材料层的材料包括压电陶瓷材料和/或有机压电材料;进一步的,所述压电陶瓷材料包括氧化锌、氮化铝、锆钛酸铅中的至少一种;所述有机压电材料包括偏聚氟乙烯。
第二方面,提供一种显示装置,包括显示面板,还包括第一方面所述的压力触控传感器,所述压力触控传感器设置于所述显示面板上。
可选的,所述压力触控传感器集成于所述显示面板中。
进一步的,所述显示面板为柔性OLED显示面板。
进一步可选的,所述柔性OLED显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件;所述压力触控传感器设置于所述柔性衬底靠近所述发光器件的一侧。
或者,可选的,所述柔性OLED显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件;所述压力触控传感器设置于所述柔性衬底远离所述发光器件的一侧。
或者,可选的,所述柔性OLED显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件、以及设置于所述柔性衬底与所述发光器件之间的薄膜晶体管;所述压力触控传感器设置于所述柔性衬底与所述薄膜晶体管之间。
或者,可选的,所述柔性OLED显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件、以及设置于所述柔性衬底与所述发光器件之间的薄膜晶体管;所述发光器件包括阳极、有机材料功能层以及阴极;所述压力触控传感器设置于所述薄膜晶体管与所述阳极之间;所述薄膜晶体管、所述压力传感器以及所述阳极层叠设置,所述阳极与所述薄膜晶体管的漏极通过过孔电连接。
或者,可选的,所述柔性OLED显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件、以及用于封装所述发光器件的封装薄膜和封装盖板;所述压力触控传感器设置于所述封装薄膜和所述封装盖板之间。
进一步可选的,压电材料层和压阻材料层设置于所述柔性OLED显示面板的显示区,且覆盖所述显示区;所述压力触控传感器呈透明。
或者,可选的,所述压电材料层和所述压阻材料层设置于所述显示区的非发光区,且为网格结构;驱动电极和感应电极均为透明电极。
第三方面,提供一种如第二方面所述的显示装置的驱动方法,包括:在触控阶段,向驱动电极逐行施加驱动信号,感应电极接收触控感应信号,根据所述感应电极上信号的变化、以及所施加驱动信号的所述驱动电极,确定触控位置;在压力感应阶段,受力区域的压电材料层产生电信号,且受力区域的压阻材料层电阻减小,向驱动电极输入恒定电压信号,使所述感应电极接收电压信号,根据所述电压信号,确定所述触控位置处的压力值。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种压力触控传感器的结构示意图一;
图2为本公开实施例提供的一种压力触控传感器的工作原理示意图一;
图3为本公开实施例提供的一种压力触控传感器的工作原理示意图二;
图4为本公开实施例提供的一种压力触控传感器的结构示意图二;
图5为本公开实施例提供的另一种压力触控传感器的结构示意图;
图6为本公开实施例提供的一种显示面板的结构示意图一;
图7为本公开实施例提供的一种显示面板的结构示意图二;
图8为本公开实施例提供的一种显示面板的结构示意图三;
图9为本公开实施例提供的一种显示面板的结构示意图四;
图10为本公开实施例提供的一种显示面板的结构示意图五;
图11为本公开实施例提供的一种显示面板的俯视示意图一;
图12为图11的AA′向剖视示意图;
图13为本公开实施例提供的一种显示面板的俯视示意图二;
图14为图13的BB′向剖视示意图;
图15为本公开实施例提供的一种显示面板驱动方法的流程示意图;
图16为本公开实施例提供的一种驱动显示面板的时序示意图。
附图说明:
01-触控阶段;02-压力感应阶段;100,100’-压电触控传感器;110-驱动电极;120-感应电极;130-压电材料层;140,140’-压阻材料层;200-显示区;210-柔性衬底;220-薄膜晶体管;221-漏极;222-过孔;230-发光器件;231-阳极;232-有机材料功能层;233-阴极;234-封装薄膜;240-绝缘层;300-封装盖板。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种压力触控传感器100,如图1所示,包括:驱动电极110、感应电极120、以及设置于二者之间的压电材料层130和压阻材料层140。
此处,压力触控传感器100的工作原理为:
在压力感应模式下,如图2所示,压电材料层130的受力区域上下表面聚集正负电荷,产生电信号,且电荷聚集程度与力的大小相关,而压阻材料层140在受力区域电阻减小,类似于在受力区域形成一个导电通道,从而在受力区域,可将压阻材料层140看作与其接触的电极的一部分,所述电信号可传导至与压阻材料层140接触的电极上,且导电通道的电阻与压力大小相关,基于此,根据上述两种电效应,可以得到压力的大小。
其中,施加的压力越大,压电材料层130的受力区域上下表面聚集的电荷量越多,压阻材料层140在受力区域形成的导电通道的电阻越小。
如图3所示,当压力触控传感器100发生弯折时,由于弯折的作用,虽然压电材料层130发生形变在上下表面分别聚集正负电荷,但压阻材料层140上下部分分别受拉力和压力(压力触控传感器100发生弯折时会受到向心力的作用,该向心力在压阻材料层140的上部分表现为拉力,在压阻材料层140的下部分表现为压力),总体电阻不会降低,导电通道不会打开,因此压电材料层130产生的电信号不会传导至电极。
在触控模式下,当所述压力触控传感器100为互容式传感器时,可以根据驱动电极110和感应电极120之间电容的变化,确定触控位置;当所述压力触控传感器100为自容式传感器时,分别根据驱动电极110与地之间的电容、感应电极120与地之间的电容的变化,确定触控位置。
当触控力度较大时,由于压电材料层130可等效为一个电压源与一个 电容器的并联等效电路,且压阻材料层140在受力区域形成一个导电通道,在受力区域,可将压阻材料层140看作与其接触的电极的一部分,因此,可基于触控位置电容的变化,确定触控位置。
当触控力度较小时,由于压电材料层130起到绝缘介质层的作用(即使有力的作用,压电材料层130也可以等效为一个电压源和一个电容器的并联等效电路),且压阻材料层140可被当作绝缘介质层使用,因此,仍然可基于触控位置电容的变化,确定触控位置。
其中,相对于触控力度较大,当触控力度较小时,可在电信号的处理上,放宽触控电容变化的检测范围,使得压阻材料层140所导致的电容变化在允许值之内即可。
需要说明的是,第一,不对驱动电极110和感应电极120的上下位置进行限定,可以是驱动电极110在上,也可以是感应电极120在上(图1-3仅以驱动电极110在上,感应电极120在下进行示意)。
基于此,对于压电材料层130和压阻材料层140的相对位置也不做限定,可以任意组合(图1-3仅以压阻材料层140在上,压电材料层130在下进行示意)。
第二,本领域技术人员应该知道,压电材料层130和压阻材料层140应该是层叠设置的,即,压电材料层130和压阻材料层140应具有交叠面积。
本公开实施例提供一种压力触控传感器100,通过在压电材料层130的基础上,增加压阻材料层140,一方面,在触控模式下,不管作用力大与小,都不影响基于电容变化对触控位置的识别;另一方面,在压力感应模式下,即使压力触控传感器100发生弯折,而导致压电材料层130上下表面分别聚集正负电荷,但由于压阻材料层140上下部分分别受到拉力和压力,使得压阻材料层140总体电阻不会降低,因此,压电材料层130产生的电信号也不会传导至电极上,从而可避免由于弯折而导致对压力感应的误识别。
可选的,如图4所示,所述压力触控传感器100中的驱动电极110为多个,且所述驱动电极110均沿第一方向延伸;所述压力触控传感器100中的感应电极120为多个,且所述感应均沿第二方向延伸;所述第一方向与所述第二方向交叉。
其中,驱动电极110和感应电极120可以均为条形电极。或者,驱动电极110和感应电极120均由多个菱形子电极电连接而成。或者,驱动电极110和感应电极120均由多个十字形子电极电连接而成。或者,驱动电极110和感应电极120均由多个雪花形子电极电连接而成。
上述仅为示例,只要通过交叉设置的驱动电极110和感应电极120,可以确定触控位置即可。
本公开实施例通过使驱动电极110和感应电极120交叉设置,当压力触控传感器100应用于显示装置中时,可基于互容方式实现对触控位置的识别,且可实现多点触控。
可选的,沿垂直压电材料层130的方向,压电材料层130和压阻材料层140的正投影完全重叠。
需要说明的是,不对所述压阻材料层140的材料进行限定,只要其能在压力的作用下电阻发生变化,其具有一定的柔韧性即可,例如,可以是量子通道合成物(QTC)、硅橡胶等。
本公开实施例使压电材料层130和压阻材料层140完全重叠,可以使所述压力传感器的触控、压力感应效果更好。
考虑到压电陶瓷材料和有机压电材料的压电性能较好,且具有一定的柔韧性,因此,优选的,压电材料层130的材料包括压电陶瓷材料和/或有机压电材料;所述压电陶瓷材料可以选自氧化锌(ZnO)、氮化铝(AlN)、锆钛酸铅中的至少一种;所述有机压电材料可以为偏聚氟乙烯(PVDF)。
需要指出的是,以上仅是以压力触控传感器的最基本的四叠层结构为例进行说明的,但是位于驱动电极和感应电极之间的压电材料层和压阻材料层不限于各自一层,可以为若干压电材料层或压阻材料层的多叠层结构。图5显示了本公开的具有压电材料层/压阻材料层/压电材料层交替叠层结构的另一种压力触控传感器的示意图。如图5所示,压力触控传感器100’包括:驱动电极110、感应电极120、以及设置于二者之间的压阻材料层140、压电材料层130和压阻材料层140’。压阻材料层140’的材料可以与压阻材料层140的材料相同或不同。
在图5所示的结构中,驱动电极110、感应电极120分别对应压电材料层140和140’,而两层压电材料层之间为压阻材料层130,可以防止弯 折情况下,压电材料层的压力感应电荷被电极检测,从而产生弯折干扰信号,而压电材料层与电极直接接触,压力产生的感应电荷不需要越过压阻材料层而直接被电极探测,压力信号量相对于四叠层的基本结构增大,可以提升压力感测灵敏度。
本公开实施例还提供一种显示装置,包括显示面板和上述压力触控传感器100或压力触控传感器100’,以下以压力触控传感器100为例进行说明。
本公开实施例的显示装置,包括显示面板,还包括上述压力触控传感器100,所述压力触控传感器100设置于所述显示面板上。
需要说明的是,第一,压力触控传感器100设置于显示面板上,即为:压力触控传感器100可集成于显示面板内部,也可设置在显示面板的外侧表面。
第二,不对显示面板的类型进行限定,例如可以是液晶显示面板,也可以是有OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板。
其中,当所述显示面板为液晶显示面板时,所述压力触控传感器100可集成于液晶显示面板中。基于此,所述压力触控传感器100可集成于液晶显示面板的阵列基板上,也可集成于液晶显示面板的对盒基板上。
当然,所述压力触控传感器100也可设置在液晶显示面板出光侧的外侧表面。
当所述显示面板为OLED显示面板时,所述压力触控传感器100可集成于OLED显示面板中。
本公开实施例提供一种显示装置,基于所述压力触控传感器100,一方面,通过驱动电极110和感应电极120交叉设置,可实现对触控位置的识别,另一方面,当显示装置弯折时,由于此时一般不进行压力感应,且压阻材料层140上下部分分别受拉力和压力,使得压阻材料层140总体电阻不会降低,因此,压电材料层130产生的电信号不会传到电极上,从而可避免由于弯折而导致对压力感应的误识别。
可选的,所述压力触控传感器100集成于所述显示面板中。
压力触控传感器100集成于显示面板中,即,压力触控传感器 100制作在显示面板的内部,这样可在制备显示面板的过程中,在相同的产线,将压力触控传感器100制作形成,因而可简化工艺。
进一步的,考虑到OLED显示面板具有视角范围大、画质均匀、反应速度快、且易于制作成柔性等优点,因此,优选的,所述显示面板为柔性OLED显示面板。
基于此,本公开实施例提供几种将压力触控传感器100集成于柔性OLED显示面板中的具体结构:
第一种结构,如图6所示,所述柔性OLED显示面板包括柔性衬底210、设置于柔性衬底210上的发光器件230;压力触控传感器100设置于柔性衬底210靠近发光器件230的一侧。
其中,发光器件230包括阳极231、有机材料功能层232以及阴极233。有机材料功能层232可以包括发光层、电子传输层和空穴传输层;在此基础上,为了能够提高电子和空穴注入发光层的效率,有机材料功能层232进一步还可以包括设置在阴极233与电子传输层之间的电子注入层,以及设置在空穴传输层与阳极231之间的空穴注入层。
第二种结构,如图7所示,所述柔性OLED显示面板包括柔性衬底210、设置于柔性衬底210上的发光器件230、以及设置于柔性衬底210与发光器件230之间的薄膜晶体管220;所述压力触控传感器100可设置于柔性衬底210与薄膜晶体管220之间。
其中,考虑到薄膜晶体管220的漏极221需与阳极231电连接,因此,阳极231一般靠近薄膜晶体管220设置。
第三种结构,如图8所示,所述柔性OLED显示面板包括柔性衬底210、设置于柔性衬底210上的发光器件230、以及设置于柔性衬底210与发光器件230之间的薄膜晶体管220;压力触控传感器100设置于薄膜晶体管220与发光器件230的阳极231之间,其中,感应电极120设置在压电材料层130与所述薄膜晶体管220之间,所述驱动电极110设置在压阻材料层140和所述发光器件230之间,且所述驱动电极110与所述发光器件230之间设置有绝缘层240;薄膜晶体管220、压力传感器100以及阳极231层叠设置,阳极231与薄膜晶体管220的漏极221通过过孔222电连接。
需要说明的是,过孔222穿过压电材料层130和压阻材料层140,且不与驱动电极110和感应电极120接触。图8所示为在两个驱动电极110之间的空隙处取的剖视图,因此,驱动电极110在图8中不出现。
第四种结构,如图9和10所示,压力触控传感器100设置于柔性衬底210远离发光器件230的一侧。
在此基础上,所述柔性OLED显示面板还可以包括设置在压力触控传感器100远离柔性衬底210一侧的保护结构,以保护裸露压力触控传感器100中的电极。
需要说明的是,第一,对于第一、第二和第三种结构,为了避免压力触控传感器100与柔性OLED显示面板的电极结构发生短路,可通过设置绝缘层240来避免该问题。
第二,当柔性OLED显示面板为PMOLED(Passive matrix organic light emitting diode,被动式有机发光二极管)显示面板,即柔性OLED显示面板不包括薄膜晶体管220时,不对阳极231和阴极233的相对位置进行限定。基于此,当光从柔性衬底210一侧出射时,所述柔性OLED显示面板为底发光型显示面板;当光从远离柔性衬底210一侧出射时,所述柔性OLED显示面板为顶发光型显示面板;当光同时从柔性衬底210一侧出射、远离柔性衬底210一侧出射时,所述柔性OLED显示面板为双面发光型显示面板。
当柔性OLED显示面板为AMOLED(Active matrix organic light emitting diode,主动式有机发光二极管)显示面板,即柔性OLED显示面板包括薄膜晶体管220时,由于阳极231一般靠近薄膜晶体管220设置,因此根据阳极231和阴极233的透光与不透光,所述柔性OLED显示面板仍然可分为底发光、顶发光、双面发光型显示面板。
第三,根据柔性OLED显示面板发光方向的不同,压力触控传感器100的设置需能保证不影响柔性OLED显示面板的正常显示。
其中,当压力触控传感器100设置在柔性OLED显示面板的出光侧时,可通过将压力触控传感器100设置为透明,或仅将驱动电极110和感应电极120设为透明,而将压电材料层130和压阻材料层140设置在非发光区来保证不影响柔性OLED显示面板的正常显示。
当然,不管压电材料层130和压阻材料层140如何设置,需兼容压力触控传感器100的正常使用。
可选的,所述柔性OLED显示面板包括柔性衬底210、设置于柔性衬底210上的发光器件230、以及用于封装发光器件230的封装薄膜234和封装盖板300;压力触控传感器100设置于封装薄膜234和封装盖板300之间。
需要说明的是,不对所述柔性OLED显示面板的类型进行限定,其既可以是柔性AMOLED显示面板,也可以是柔性PMOLED显示面板。其中,当所述柔性OLED显示面板为柔性AMOLED显示面板时,所述柔性OLED显示面板还可以包括设置在发光器件230靠近柔性衬底210一侧的薄膜晶体管220。
本公开实施例将压力触控传感器100设置于封装薄膜234和封装盖板300之间,可以避免阳极231和阴极233对压力触控传感器100产生的电容信号造成屏蔽,导致信号感应量较小,信号不易检测的问题,因而,一方面可提高检测精度,另一方面无需采用额外设计来解决信号不易检测的问题。
基于上述,本公开实施例提供两种将压力触控传感器100设置于封装薄膜234和封装盖板300之间的具体结构:
第一种结构,如图11和图12所示,压电材料层130和压阻材料层140设置于所述柔性OLED显示面板的显示区200,且覆盖显示区200。
其中,压力触控传感器100呈透明,即驱动电极110、感应电极120、压电材料层130和压阻材料层140的材料均为透明材料。
本公开实施例通过将压电材料层130和压阻材料层140覆盖显示区200,使在某一触控点处,压电材料层130和压阻材料层140可覆盖整个触控位置,从而使检测更为准确。而且将压电材料层130和压阻材料层140整层设置,工艺更简单。
第二种结构,如图13和图14所示,压电材料层130和压阻材料层140设置于显示区200的非发光区,且为网格结构;驱动电极110和感应电极120均为透明电极。
其中,为了避免感应电极120与驱动电极110短路,可在感应电极120与驱动电极110交叉部分,且不设置压电材料层130和压阻材料层140的区域设置绝缘层240。
此外,驱动电极110和感应电极120的材料可以是ITO(Indium Tin Oxides,铟锡金属氧化物),也可以是有机导体PEDOT(3,4-ethylenedioxythiophene,3,4-乙烯二氧噻吩单体的聚合物)。
需要说明的是,第一,所述显示区200的非发光区,即显示区200中子像素之间的部分,例如被黑矩阵遮挡的部分。
第二,压电材料层130和压阻材料层140的材料可以是透明材料,也可以是不透明材料,在此不作具体限定。
第三,压电材料层130和压阻材料层140设置为网格结构,也可适用于将压力触控传感器100集成于柔性OLED显示面板中的情况。
本公开实施例通过将压电材料层130和压阻材料层140设置为网格结构,可不限制压电材料层130和压阻材料层140为透明层,使压电材料层130和压阻材料层140的材料选择范围更宽。
本公开实施例提供一种如上述显示装置的驱动方法,如图15所示,包括:
S10、如图16所示,在触控阶段01,向驱动电极110逐行施加驱动信号,感应电极120接收触控感应信号,根据所述感应电极120上信号的变化、以及所施加驱动信号的所述驱动电极110,确定触控位置。
需要说明的是,当触控力度较大时,由于在受力区域,压阻材料层140电阻变小以及等效电压源的存在,感应电极120接收到的感应信号不仅包括由于手指触控产生的触控信号(电荷量变化),还包括由于压力产生的压感信号(压感电荷),会使感应电极120接收到的感应信号增强,但其不会影响触控位置的判断。
S20、在压力感应阶段02,受力区域的压电材料层130产生电信号,且受力区域的压阻材料层140电阻减小,向驱动电极110输入恒定电压信号,使所述感应电极120接收电压信号,根据所述电压信号,确定所述触控位置处的压力值。
其中,压力感应阶段02位于触控阶段01之后。
需要说明的是,触控阶段01和压力感应阶段02所用的时长根据IC芯片处理功能进行适当调整,在此不做具体限定。例如,触控阶段01所用的时长可以为11.7ms,在此基础上,压力感应阶段02所用的时长可以为5ms。
本公开实施例在触控阶段01,通过在驱动电极110上施加驱动信号,通过感应电极120接收的感应信号,确定触控位置,此时,不管作用力大与小,都不影响基于电容的变化对触控位置的识别;另一方面,在压力感应阶段02,当向所述显示装置施加压力时,压电材料层130的上下表面产生正负电荷、压阻材料层140的电阻减小,此时,向驱动电极110输入恒定电压信号使所述感应电极120接收电压信号,并根据此电压信号确定触控位置处的压力值;其中,当所述显示装置发生弯折时,虽然压电材料层130上下表面产生正负电荷,但是由于此时不对显示装置进行触控操作,且压阻材料层140上下部分分别受拉力和压力,压阻材料层140总体电阻不会降低,因此,感应电极120接收不到电压信号,从而可避免对压力感应的误识别。
以上所述,仅为本公开的一些具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种压力触控传感器,包括:驱动电极、感应电极、以及设置于二者之间的压电材料层和压阻材料层。
  2. 根据权利要求1所述的压力触控传感器,其中,所述压力触控传感器具有驱动电极、压阻材料层、压电材料层、感应电极依次层叠的结构。
  3. 根据权利要求1所述的压力触控传感器,其中,所述压力触控传感器具有驱动电极、压电材料层、压阻材料层、感应电极依次层叠的结构。
  4. 根据权利要求1所述的压力触控传感器,其中,所述压力触控传感器具有多个压电材料层和压阻材料层交替层叠的结构。
  5. 根据权利要求4所述的压力触控传感器,其中,所述压力触控传感器具有驱动电极、压电材料层、压阻材料层、压电材料层、感应电极依次层叠的结构。
  6. 根据权利要求1所述的压力触控传感器,其中,所述压力触控传感器中的驱动电极为多个,且所述驱动电极均沿第一方向延伸;所述压力触控传感器中的感应电极为多个,且所述感应电极均沿第二方向延伸;所述第一方向与所述第二方向交叉。
  7. 根据权利要求1所述的压力触控传感器,其中,沿垂直所述压电材料层的方向,所述压电材料层和所述压阻材料层的正投影完全重叠。
  8. 根据权利要求1所述的压力触控传感器,其中,所述压电材料层的材料包括压电陶瓷材料和/或有机压电材料。
  9. 根据权利要求8所述的压力触控传感器,其中,所述压电陶瓷材料包括氧化锌、氮化铝、锆钛酸铅中的至少一种;所述有机压电材料包括偏聚氟乙烯。
  10. 一种显示装置,包括显示面板,还包括权利要求1-9任一项所述的压力触控传感器,所述压力触控传感器设置于所述显示面板上。
  11. 根据权利要求10所述的显示装置,其中,所述压力触控传感器集成于所述显示面板中。
  12. 根据权利要求11所述的显示装置,其中,所述显示面板为柔性有机发光二极管显示面板。
  13. 根据权利要求12所述的显示装置,其中,所述柔性有机发光二极管显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件;
    所述压力触控传感器设置于所述柔性衬底靠近所述发光器件的一侧。
  14. 根据权利要求12所述的显示装置,其中,所述柔性有机发光二极管显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件;
    所述压力触控传感器设置于所述柔性衬底远离所述发光器件的一侧。
  15. 根据权利要求12所述的显示装置,其中,所述柔性有机发光二极管显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件、以及设置于所述柔性衬底与所述发光器件之间的薄膜晶体管;
    所述压力触控传感器设置于所述柔性衬底与所述薄膜晶体管之间。
  16. 根据权利要求12所述的显示装置,其中,所述柔性有机发光二极管显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件、以及设置于所述柔性衬底与所述发光器件之间的薄膜晶体管;所述发光器件包括阳极、有机材料功能层以及阴极;
    所述压力触控传感器设置于所述薄膜晶体管与所述阳极之间;所述薄膜晶体管、所述压力传感器以及所述阳极层叠设置,所述阳极与所述薄膜晶体管的漏极通过过孔电连接。
  17. 根据权利要求12所述的显示装置,其中,所述柔性有机发光二极管显示面板包括柔性衬底、设置于所述柔性衬底上的发光器件、以及用于封装所述发光器件的封装薄膜和封装盖板;
    所述压力触控传感器设置于所述封装薄膜和所述封装盖板之间。
  18. 根据权利要求17所述的显示装置,其中,压电材料层和压阻材料层设置于所述柔性有机发光二极管显示面板的显示区,且覆盖所述显示区;
    所述压力触控传感器呈透明。
  19. 根据权利要求17所述的显示装置,其中,所述压电材料层 和所述压阻材料层设置于所述显示区的非发光区,且为网格结构;
    驱动电极和感应电极均为透明电极。
  20. 一种如权利要求10-19任一项所述显示装置的驱动方法,包括:
    在触控阶段,向驱动电极逐行施加驱动信号,感应电极接收触控感应信号,根据所述感应电极上信号的变化、以及所施加驱动信号的所述驱动电极,确定触控位置;
    在压力感应阶段,受力区域的压电材料层产生电信号,且受力区域的压阻材料层电阻减小,向驱动电极输入恒定电压信号,使所述感应电极接收电压信号,根据所述电压信号,确定所述触控位置处的压力值。
PCT/CN2017/097112 2017-01-17 2017-08-11 压力触控传感器、显示装置及其驱动方法 WO2018133397A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/756,966 US10564757B2 (en) 2017-01-17 2017-08-11 Force touch sensor, display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710035076.1 2017-01-17
CN201710035076.1A CN106814912B (zh) 2017-01-17 2017-01-17 一种压力触控传感器、显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2018133397A1 true WO2018133397A1 (zh) 2018-07-26

Family

ID=59111394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097112 WO2018133397A1 (zh) 2017-01-17 2017-08-11 压力触控传感器、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10564757B2 (zh)
CN (1) CN106814912B (zh)
WO (1) WO2018133397A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814912B (zh) * 2017-01-17 2021-01-26 京东方科技集团股份有限公司 一种压力触控传感器、显示装置及其驱动方法
CN107195665B (zh) 2017-06-23 2019-12-03 京东方科技集团股份有限公司 一种阵列基板、其制作方法、显示面板及显示装置
CN107275346B (zh) * 2017-06-30 2019-11-22 厦门天马微电子有限公司 显示面板和显示装置
CN107247530B (zh) * 2017-07-04 2020-11-27 京东方科技集团股份有限公司 一种触控结构、触控显示装置
CN107168587B (zh) * 2017-07-13 2019-08-27 京东方科技集团股份有限公司 一种压阻检测基板、显示面板及显示装置
CN108319394B (zh) * 2018-02-06 2022-04-19 京东方科技集团股份有限公司 触控面板及其驱动方法、触控装置
CN108664165B (zh) * 2018-05-08 2021-06-11 业成科技(成都)有限公司 显示面板及应用该显示面板的电子装置
CN208140284U (zh) * 2018-05-25 2018-11-23 北京京东方技术开发有限公司 一种压力感应器件
GB2574589B (en) 2018-06-06 2020-12-23 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
KR102521628B1 (ko) * 2018-06-26 2023-04-17 삼성디스플레이 주식회사 표시 장치
KR102535004B1 (ko) * 2018-07-27 2023-05-22 삼성디스플레이 주식회사 압력 센서를 포함하는 표시 장치
US10866675B2 (en) * 2019-01-29 2020-12-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Force touch display device and force touch control method
KR20200100223A (ko) * 2019-02-15 2020-08-26 삼성디스플레이 주식회사 입력감지회로 및 이를 포함하는 표시장치
GB2582171B (en) * 2019-03-13 2022-10-12 Cambridge Touch Tech Ltd Force sensing touch panel
CN112120702A (zh) * 2020-09-24 2020-12-25 浙江清华柔性电子技术研究院 柔性足底压力检测装置、鞋
CN112284577B (zh) * 2020-09-27 2022-09-27 西安交通大学 一种压电压阻复合式触觉传感器及制备方法
CN114489362A (zh) * 2020-10-26 2022-05-13 欣兴电子股份有限公司 触控显示装置及其制作方法
TWI744051B (zh) * 2020-10-26 2021-10-21 欣興電子股份有限公司 觸控顯示裝置及其製作方法
CN113113426A (zh) * 2021-03-19 2021-07-13 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN114596694B (zh) * 2022-03-30 2023-11-03 东南大学 用于感知隧道渗水的双模式压力传感监测报警装置
US20240072800A1 (en) * 2022-08-31 2024-02-29 Interlink Electronics, Inc. Sensing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558370A (zh) * 2007-03-01 2009-10-14 夏普株式会社 显示面板用基板、显示面板、显示装置、和显示面板用基板的制造方法
CN103454799A (zh) * 2013-08-30 2013-12-18 合肥京东方光电科技有限公司 真空对盒装置及对盒方法和生产设备
CN105549245A (zh) * 2016-01-20 2016-05-04 昆山龙腾光电有限公司 彩膜基板及触控显示装置
KR101649986B1 (ko) * 2016-02-23 2016-08-30 주식회사 하이딥 디스플레이 모듈을 포함하는 터치 압력 검출 가능한 터치 입력 장치
CN106814912A (zh) * 2017-01-17 2017-06-09 京东方科技集团股份有限公司 一种压力触控传感器、显示装置及其驱动方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019942B4 (de) * 2006-04-28 2016-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kraftmessvorrichtung zur Messung der Kraft bei Festkörperaktoren, Verfahren zur Messung einer Kraft sowie Verwendung der Kraftmessvorrichtung
US8686951B2 (en) * 2009-03-18 2014-04-01 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
US8159854B2 (en) * 2009-06-30 2012-04-17 International Business Machines Corporation Piezo-effect transistor device and applications
US8247947B2 (en) 2009-12-07 2012-08-21 International Business Machines Corporation Coupling piezoelectric material generated stresses to devices formed in integrated circuits
US9904393B2 (en) * 2010-06-11 2018-02-27 3M Innovative Properties Company Positional touch sensor with force measurement
WO2014053886A1 (en) * 2012-10-05 2014-04-10 Nokia Corporation An apparatus and associated methods
US9970831B2 (en) * 2014-02-10 2018-05-15 Texas Instruments Incorporated Piezoelectric thin-film sensor
CN105224126B (zh) 2015-09-17 2017-02-01 京东方科技集团股份有限公司 触摸屏及其压力触控检测方法
US10282046B2 (en) * 2015-12-23 2019-05-07 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
CN205788139U (zh) * 2016-06-03 2016-12-07 京东方科技集团股份有限公司 一种显示面板及显示装置
TWI630521B (zh) * 2016-08-12 2018-07-21 鴻海精密工業股份有限公司 內嵌式觸控顯示裝置
KR102564349B1 (ko) * 2016-09-30 2023-08-04 엘지디스플레이 주식회사 유기 발광 표시 장치
KR20180055941A (ko) * 2016-11-16 2018-05-28 삼성디스플레이 주식회사 통합 센서를 갖는 플렉서블 표시장치 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558370A (zh) * 2007-03-01 2009-10-14 夏普株式会社 显示面板用基板、显示面板、显示装置、和显示面板用基板的制造方法
CN103454799A (zh) * 2013-08-30 2013-12-18 合肥京东方光电科技有限公司 真空对盒装置及对盒方法和生产设备
CN105549245A (zh) * 2016-01-20 2016-05-04 昆山龙腾光电有限公司 彩膜基板及触控显示装置
KR101649986B1 (ko) * 2016-02-23 2016-08-30 주식회사 하이딥 디스플레이 모듈을 포함하는 터치 압력 검출 가능한 터치 입력 장치
CN106814912A (zh) * 2017-01-17 2017-06-09 京东方科技集团股份有限公司 一种压力触控传感器、显示装置及其驱动方法

Also Published As

Publication number Publication date
US10564757B2 (en) 2020-02-18
CN106814912B (zh) 2021-01-26
CN106814912A (zh) 2017-06-09
US20190087046A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
WO2018133397A1 (zh) 压力触控传感器、显示装置及其驱动方法
US11372450B2 (en) Flexible display device including touch sensor
US11997876B2 (en) Display device
US11374065B2 (en) Flexible display panel and display apparatus
KR102269919B1 (ko) 터치 센서를 포함하는 표시 장치
CN106997248B (zh) 显示装置及其驱动方法
TWI643109B (zh) Touch sensor and display device with touch sensor
KR101939479B1 (ko) 표시 장치
US10423260B2 (en) Display device with input function
KR20160087981A (ko) 표시 장치
US11402955B2 (en) Electronic device
JP2017215854A (ja) 表示装置
TWM620449U (zh) 指紋辨識感測器
JP6836963B2 (ja) 表示装置
TWI773388B (zh) 指紋辨識感測器
US11861127B2 (en) Electronic device
KR20180069341A (ko) 터치 스크린을 구비한 표시 장치
TWI643116B (zh) 利用顯示器周邊電極與顯示電極之觸控顯示裝置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892158

Country of ref document: EP

Kind code of ref document: A1