WO2018131856A1 - 청소기 및 그 제어방법 - Google Patents

청소기 및 그 제어방법 Download PDF

Info

Publication number
WO2018131856A1
WO2018131856A1 PCT/KR2018/000361 KR2018000361W WO2018131856A1 WO 2018131856 A1 WO2018131856 A1 WO 2018131856A1 KR 2018000361 W KR2018000361 W KR 2018000361W WO 2018131856 A1 WO2018131856 A1 WO 2018131856A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaner
driving
main body
grids
sensor
Prior art date
Application number
PCT/KR2018/000361
Other languages
English (en)
French (fr)
Inventor
박현웅
김민욱
백관용
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP18738571.1A priority Critical patent/EP3569125B1/en
Priority to US16/477,363 priority patent/US11324371B2/en
Publication of WO2018131856A1 publication Critical patent/WO2018131856A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/281Parameters or conditions being sensed the amount or condition of incoming dirt or dust
    • A47L9/2815Parameters or conditions being sensed the amount or condition of incoming dirt or dust using optical detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Definitions

  • the present invention relates to a cleaner and a control method thereof, and more particularly, to a cleaner capable of recognizing an obstacle and performing autonomous driving and a control method thereof.
  • robots have been developed for industrial use and have been a part of factory automation. Recently, the application of robots has been further expanded, medical robots, aerospace robots, and the like have been developed, and home robots that can be used in general homes have also been made.
  • a representative example of the home robot is a robot cleaner, which is a kind of home appliance that cleans by suctioning dust or foreign matter while driving around a certain area by itself.
  • a robot cleaner generally includes a rechargeable battery, and includes an obstacle sensor that can avoid obstacles while driving, so that the robot cleaner can run and clean itself.
  • the robot cleaner When the robot cleaner performs autonomous driving in the cleaning area, the robot cleaner may encounter various obstacles existing in the cleaning area. Therefore, in order to avoid such obstacles while performing autonomous driving and cleaning operations, the robot cleaner may detect information related to the obstacle. What is needed is a device or method that can.
  • the robot cleaner may detect information related to the obstacle and acquire map information related to the cleaning area of the robot cleaner.
  • the map information may include a feature map and a grid map, and a dual grid map is widely used.
  • the general method of recognizing a location using a grid map is as follows.
  • the cleaners that perform autonomous driving on the grid map are estimated to be located, and all range scan data that can be obtained from the estimated positions are simulated.
  • the general cleaner finds the data most similar to the area scan data actually collected by the autonomous robot by using the range scan sensor among all the simulated area scan data, and autonomously moves the estimated position where the data is created. Recognize the current position of the robot.
  • Korean Patent Laid-Open Publication No. 10-2016-0038437 acquires an image of a surrounding and uses a feature distribution detected in the image to determine the position of a cleaner. A method of detection is disclosed.
  • the driving route of the cleaner is set by the conventional method, it is not determined whether sufficient information for detecting the position is provided for each grid of the cleaning area while driving to the destination. Therefore, when driving in the conventional manner, the user enters an area where information for identifying the position of the cleaner is not sufficiently obtained, and thus, the position of the cleaner is lost or an error occurs in the detected position.
  • the present invention has been made in an effort to provide a cleaner and a control method thereof that perform autonomous driving to move to a destination while avoiding the partial area when the map information corresponding to the partial area of the cleaning area is incorrect. .
  • the cleaner for performing autonomous driving includes a main body, a driving unit for moving the main body, the main body while driving the cleaning area, the information related to the surrounding environment of the main body
  • a map information corresponding to the cleaning area is generated based on a sensor configured to obtain a signal and information obtained by the sensor, a travel cost value is set for each of the plurality of grids included in the map information, and a set travel cost value
  • it comprises a control unit for setting the travel path of the main body.
  • control unit may determine the accuracy of information related to the surrounding environment corresponding to the plurality of grids, and calculate the driving cost value based on the accuracy determined for each of the plurality of grids. It features.
  • the sensing unit may include a camera sensor, and the information related to the surrounding environment may include an image around the main body obtained by the camera sensor.
  • the controller detects a plurality of features for each of the plurality of grids from the image, and determines accuracy of each of the plurality of grids based on the detected features.
  • the controller assigns a score to a feature detected for each of the plurality of grids according to a predetermined rule, and determines a driving cost value assigned to each of the plurality of grids based on the assigned score. It is done.
  • the control unit may determine a driving cost value assigned to each of the plurality of grids based on at least one of brightness of the image and the number and distribution of features detected from the image.
  • the controller is characterized in that for controlling the drive unit to avoid a region of the cleaning area while the cleaner moves to the destination.
  • the amount of information related to the surrounding environment of the main body obtained in the one region may be smaller than the amount of preset reference information.
  • the controller may determine the amount of information related to the surrounding environment of the main body based on the number of features extracted from the image.
  • the information related to the surrounding environment of the main body may include an image of a ceiling of the cleaning area.
  • the cleaner can avoid a dangerous area in which information related to the surrounding environment cannot be sufficiently obtained, the running stability of the cleaner can be improved.
  • the present invention by using the information collected when the cleaner generates map information, it is possible to improve the avoidance performance of the obstacle without adding a separate sensor.
  • FIG. 1 is a perspective view showing an example of a cleaner according to the present invention.
  • FIG. 2 is a plan view of the cleaner shown in FIG. 1.
  • FIG. 3 is a side view of the cleaner shown in FIG. 1.
  • FIG. 4 is a block diagram illustrating components of a cleaner according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating an embodiment of a cleaner that runs using only map information.
  • FIG. 6 is a conceptual diagram illustrating an embodiment of a cleaner driving by using a Voronoi diagram.
  • FIG. 7 is a conceptual diagram illustrating a driving method of a cleaner according to the present invention.
  • FIG. 8 is a flowchart illustrating a control method of a cleaner according to the present invention.
  • FIG. 1 is a perspective view showing an example of a robot cleaner 100 according to the present invention
  • FIG. 2 is a plan view of the robot cleaner 100 shown in FIG. 1
  • FIG. 3 is a robot cleaner 100 shown in FIG. 1. Side view.
  • a mobile robot, a robot cleaner, and a cleaner performing autonomous driving may be used as the same meaning.
  • the robot cleaner 100 performs a function of cleaning a floor while driving a certain area by itself.
  • the cleaning of the floor here includes suctioning dust (including foreign matter) from the floor or mopping the floor.
  • the robot cleaner 100 includes a cleaner body 110, a suction unit 120, a sensing unit 130, and a dust bin 140.
  • the cleaner body 110 includes a controller (not shown) for controlling the robot cleaner 100 and a wheel unit 111 for driving the robot cleaner 100.
  • the robot cleaner 100 may be moved back, forth, left, and right by the wheel unit 111.
  • the wheel unit 111 includes a main wheel 111a and a sub wheel 111b.
  • the main wheels 111a are provided at both sides of the cleaner body 110, and are configured to be rotatable in one direction or the other direction according to a control signal of the controller.
  • Each main wheel 111a may be configured to be driven independently of each other.
  • each main wheel 111a may be driven by different motors.
  • the sub wheel 111b supports the cleaner body 110 together with the main wheel 111a and is configured to assist the robot cleaner 100 by the main wheel 111a.
  • the sub wheel 111b may also be provided in the suction unit 120 described later.
  • the robot cleaner 100 is made to autonomously run the floor.
  • the cleaner body 110 is equipped with a battery (not shown) for supplying power to the robot cleaner (100).
  • the battery may be configured to be chargeable, and may be detachably attached to the bottom of the cleaner body 110.
  • the suction unit 120 is disposed in a form protruding from one side of the cleaner body 110, and is configured to suck air containing dust.
  • the one side may be a side in which the cleaner body 110 travels in the forward direction F, that is, the front side of the cleaner body 110.
  • the suction unit 120 protrudes in both the front and left and right sides from one side of the cleaner body 110.
  • the front end portion of the suction unit 120 is disposed at a position spaced forward from one side of the cleaner body 110, the left and right both ends of the suction unit 120 are spaced apart from one side of the cleaner body 110 to both left and right sides, respectively. Is placed in a closed position.
  • the vacuum cleaner body 110 is formed in a circular shape, and both rear ends of the suction unit 120 protrude from the cleaner body 110 to left and right sides, respectively, the vacuum cleaner body 110 and the suction unit 120 may be empty. Spaces, ie gaps can be formed.
  • the empty space is a space between the left and right ends of the cleaner body 110 and the left and right ends of the suction unit 120, and has a shape recessed into the robot cleaner 100.
  • the cover member 129 may be disposed to cover at least a portion of the empty space.
  • the cover member 129 may be provided in the cleaner body 110 or the suction unit 120.
  • the cover member 129 is formed to protrude on both sides of the rear end portion of the suction unit 120 to cover the outer circumferential surface of the cleaner body 110.
  • the cover member 129 is disposed to fill at least a part of the empty space, that is, the empty space between the cleaner body 110 and the suction unit 120. Therefore, the obstacle may be prevented from being caught in the empty space, or a structure may be easily separated from the obstacle even if the obstacle is jammed in the empty space.
  • the cover member 129 protruding from the suction unit 120 may be supported on an outer circumferential surface of the cleaner body 110. If the cover member 129 protrudes from the cleaner body 110, the cover member 129 may be supported on the rear portion of the suction unit 120. According to the above structure, when the suction unit 120 receives an impact by hitting an obstacle, a part of the shock may be transmitted to the cleaner main body 110 to distribute the impact.
  • the suction unit 120 may be detachably coupled to the cleaner body 110.
  • the mop module (not shown) may be detachably coupled to the cleaner body 110 in place of the separated suction unit 120. Therefore, the user may mount the suction unit 120 on the cleaner main body 110 to remove dust from the floor, and may install a mop module on the cleaner main body 110 to clean the floor.
  • the mounting may be guided by the cover member 129 described above. That is, since the cover member 129 is disposed to cover the outer circumferential surface of the cleaner body 110, the relative position of the suction unit 120 with respect to the cleaner body 110 may be determined.
  • the sensing unit 130 is disposed on the cleaner body 110. As shown, the sensing unit 130 may be disposed on one side of the cleaner body 110 in which the suction unit 120 is located, that is, in front of the cleaner body 110.
  • the sensing unit 130 may be disposed to overlap the suction unit 120 in the vertical direction of the cleaner body 110.
  • the sensing unit 130 is disposed above the suction unit 120 to detect an obstacle or a feature in front of the suction unit 120 which is located in the front of the robot cleaner 100 so as not to hit the obstacle.
  • the sensing unit 130 is configured to additionally perform other sensing functions in addition to the sensing function. This will be described in detail later.
  • the vacuum cleaner body 110 is provided with a dust container accommodating part 113, and the dust container accommodating part 113 is detachably coupled to a dust container 140 which separates and collects dust in sucked air.
  • the dust container accommodating part 113 may be formed at the other side of the cleaner body 110, that is, at the rear of the cleaner body 110.
  • a part of the dust container 140 is accommodated in the dust container accommodating part 113, but the other part of the dust container 140 protrudes toward the rear of the cleaner body 110 (that is, the reverse direction R opposite to the forward direction F). Can be formed.
  • the dust container 140 has an inlet 140a through which air containing dust flows in and an outlet 140b through which air separated from dust is discharged, and when the dust container 140 is mounted in the dust container receiving portion 113, the inlet ( The 140a and the outlet 140b are configured to communicate with the first opening 110a and the second opening 110b respectively formed on the inner wall of the dust container accommodation portion 113.
  • the intake flow path inside the cleaner body 110 corresponds to a flow path from the inlet port (not shown) communicating with the communicating portion 120b "to the first opening 110a, and the exhaust flow path is the second opening 110b to the exhaust port ( It corresponds to the flow path up to 112).
  • the air containing the dust introduced through the suction unit 120 is introduced into the dust container 140 through the intake passage in the cleaner body 110, the filter or cyclone of the dust container 140 As it passes, air and dust are separated from each other.
  • the dust is collected in the dust container 140, the air is discharged from the dust container 140 and finally discharged to the outside through the exhaust port 112 through the exhaust flow path inside the cleaner body (110).
  • FIG. 4 an embodiment related to the components of the robot cleaner 100 will be described.
  • Robot cleaner 100 or a mobile robot according to an embodiment of the present invention, the communication unit 1100, the input unit 1200, the driving unit 1300, the sensing unit 1400, the output unit 1500, the power supply unit 1600, At least one of the memory 1700 and the controller 1800 or a combination thereof may be included.
  • FIG. 4 the components shown in FIG. 4 are not essential, and thus, a robot cleaner having more or fewer components may be implemented. Hereinafter, each component will be described.
  • the power supply unit 1600 includes a battery that can be charged by an external commercial power supply and supplies power to the mobile robot.
  • the power supply unit 1600 may supply driving power to each of the components included in the mobile robot, thereby supplying operation power required for the mobile robot to travel or perform a specific function.
  • the controller 1800 may detect the remaining power of the battery, and if the remaining power is insufficient to control to move to the charging station connected to the external commercial power, the battery can be charged by receiving a charging current from the charging stand.
  • the battery may be connected to the battery detector so that the battery remaining amount and the charging state may be transmitted to the controller 1800.
  • the output unit 1500 may display the remaining battery level on the screen by a controller.
  • the battery may be located at the bottom of the center of the robot cleaner, or may be located at either the left or the right. In the latter case, the mobile robot may further comprise a counterweight to eliminate the weight bias of the battery.
  • the driving unit 1300 is provided with a motor, by driving the motor, it is possible to rotate or move the main body by rotating the left and right main wheels in both directions.
  • the driving unit 1300 may advance the main body of the mobile robot in front, rear, left, and right directions, curve the vehicle, or rotate it in place.
  • the input unit 1200 receives various control commands for the robot cleaner from the user.
  • the input unit 1200 may include one or more buttons.
  • the input unit 1200 may include a confirmation button, a setting button, and the like.
  • the confirmation button is a button for receiving a command for confirming detection information, obstacle information, location information, map information from the user
  • the setting button is a button for receiving a command for setting the information from the user.
  • the input unit 1200 may cancel a previous user input and input a reset button for receiving user input again, a delete button for deleting a preset user input, a button for setting or changing an operation mode, and a command for returning to the charging station. It may include a button for receiving input.
  • the input unit 1200 may be installed on the upper part of the mobile robot using a hard key, a soft key, a touch pad, or the like.
  • the input unit 1200 may have a form of a touch screen together with the output unit 1500.
  • the output unit 1500 may be installed on the upper portion of the mobile robot.
  • the installation location or installation form may vary.
  • the output unit 1500 may display a battery state or a driving method on a screen.
  • the output unit 1500 may output state information inside the mobile robot detected by the sensing unit 1400, for example, current states of components included in the mobile robot.
  • the output unit 1500 may display external state information, obstacle information, location information, map information, etc. detected by the sensing unit 1400 on the screen.
  • the output unit 1500 may be any one of a light emitting diode (LED), a liquid crystal display (LCD), a plasma display panel, and an organic light emitting diode (OLED). It can be formed as an element of.
  • the output unit 1500 may further include sound output means for audibly outputting an operation process or an operation result of the mobile robot performed by the controller 1800.
  • the output unit 1500 may output a warning sound to the outside according to the warning signal generated by the controller 1800.
  • the sound output means may be a means for outputting a sound such as a beeper and a speaker
  • the output unit 1500 uses sound or message data having a predetermined pattern stored in the memory 1700. It can be output to the outside through the output means.
  • the mobile robot may output the environmental information about the driving area on the screen or output the sound through the output unit 1500.
  • the mobile robot may transmit map information or environment information to the terminal device through the communication unit 1100 such that the terminal device outputs a screen or sound to be output through the output unit 1500.
  • the communication unit 1100 is connected to the terminal device and / or other devices located in a specific area (in the present specification, to be mixed with the term “home appliance”) in one of wired, wireless, and satellite communication methods. To transmit and receive signals and data.
  • the communication unit 1100 may transmit / receive data with other devices located in a specific area.
  • any other device may be any device that can transmit and receive data by connecting to a network.
  • the other device may be a device such as an air conditioner, a heating device, an air purifier, a lamp, a TV, a car, and the like.
  • the other device may be a device for controlling a door, a window, a water valve, a gas valve, or the like.
  • the other device may be a sensor that senses temperature, humidity, barometric pressure, gas, and the like.
  • the memory 1700 stores a control program for controlling or driving the robot cleaner and data corresponding thereto.
  • the memory 1700 may store audio information, image information, obstacle information, location information, map information, and the like.
  • the memory 1700 may store information related to a driving pattern.
  • the memory 1700 mainly uses a nonvolatile memory.
  • the non-volatile memory (NVM, NVRAM) is a storage device that can maintain the stored information even if power is not supplied.
  • NVM non-volatile memory
  • ROM read only memory
  • flash memory a storage device that can maintain the stored information even if power is not supplied.
  • Storage devices eg, hard disks, diskette drives, magnetic tapes), optical disk drives, magnetic RAMs, PRAMs, and the like.
  • the sensing unit 1400 may include at least one of an external signal sensor, a front sensor, a cliff sensor, a lower camera sensor, and an upper camera sensor.
  • the external signal detection sensor may detect an external signal of the mobile robot.
  • the external signal detection sensor may be, for example, an infrared ray sensor, an ultrasonic sensor, an RF sensor, or the like.
  • the mobile robot can check the position and direction of the charging station by receiving a guide signal generated by the charging station using an external signal detection sensor.
  • the charging station may transmit a guide signal indicating the direction and distance so that the mobile robot can return. That is, the mobile robot may receive a signal transmitted from the charging station to determine the current position and set the direction of movement to return to the charging station.
  • the front sensor may be installed at a predetermined interval in front of the mobile robot, specifically, along the side outer peripheral surface of the mobile robot.
  • the front sensor is located on at least one side of the mobile robot to detect an obstacle in front of the mobile robot, the front sensor detects an object in the moving direction of the mobile robot, in particular obstacles to detect the detection information to the controller 1800. I can deliver it. That is, the front sensor may detect protrusions, household appliances, furniture, walls, wall edges, and the like existing on the moving path of the mobile robot and transmit the information to the controller 1800.
  • the front sensing sensor may be, for example, an infrared sensor, an ultrasonic sensor, an RF sensor, a geomagnetic sensor, or the like, and the mobile robot may use one type of sensor as the front sensing sensor or two or more types of sensors together as needed. have.
  • the ultrasonic sensor may generally be mainly used to detect a long distance obstacle.
  • the ultrasonic sensor includes a transmitter and a receiver, and the controller 1800 determines whether the obstacle is present by whether the ultrasonic wave radiated through the transmitter is reflected by an obstacle or the like and received the receiver, and determines the ultrasonic radiation time and the ultrasonic reception time.
  • the distance to the obstacle can be calculated using the
  • the controller 1800 may detect the information related to the size of the obstacle by comparing the ultrasound emitted from the transmitter and the ultrasound received from the receiver. For example, the controller 1800 may determine that the larger the obstacle is, the more ultrasonic waves are received in the receiver.
  • a plurality (eg, five) ultrasonic sensors may be installed along the outer circumferential surface on the front side of the mobile robot. At this time, preferably, the ultrasonic sensor may be installed on the front of the mobile robot alternately the transmitter and the receiver.
  • the transmitter may be disposed to be spaced apart from the center of the front of the main body to the left and right, and one or more transmitters may be disposed between the receivers to form a reception area of the ultrasonic signal reflected from an obstacle or the like.
  • This arrangement allows the receiving area to be extended while reducing the number of sensors.
  • the transmission angle of the ultrasonic waves may maintain an angle within a range that does not affect the different signals so as to prevent crosstalk.
  • the reception sensitivity of the receivers may be set differently.
  • the ultrasonic sensor may be installed upward by a predetermined angle so that the ultrasonic wave transmitted from the ultrasonic sensor is output upward, and may further include a predetermined blocking member to prevent the ultrasonic wave from being radiated downward.
  • the front sensor may use two or more types of sensors together, and accordingly, the front sensor may use any one type of sensor, such as an infrared sensor, an ultrasonic sensor, or an RF sensor. .
  • the front sensing sensor may include an infrared sensor as another type of sensor in addition to the ultrasonic sensor.
  • the infrared sensor may be installed on the outer circumferential surface of the mobile robot together with the ultrasonic sensor.
  • the infrared sensor may also detect obstacles present in the front or side and transmit the obstacle information to the controller 1800. That is, the infrared sensor detects protrusions on the moving path of the mobile robot, household appliances, furniture, walls, wall edges, and the like, and transmits the information to the controller 1800. Therefore, the mobile robot can move the main body within a specific area without colliding with an obstacle.
  • the cliff detection sensor (or the cliff sensor) may mainly detect various obstacles on the floor supporting the main body of the mobile robot by using various types of optical sensors.
  • the cliff detection sensor is installed on the back of the mobile robot on the floor, of course, may be installed in a different position according to the type of mobile robot.
  • the cliff detection sensor is located on the back of the mobile robot and is used to detect obstacles on the floor.
  • the cliff detection sensor is an infrared sensor, an ultrasonic sensor, an RF sensor, and a PSD (Position) including a light emitting unit and a light receiving unit, as the obstacle detection sensor. Sensitive Detector) sensor or the like.
  • one of the cliff detection sensors may be installed at the front of the mobile robot, and the other two cliff detection sensors may be installed at the rear.
  • the cliff detection sensor may be a PSD sensor, but may be configured of a plurality of different types of sensors.
  • the PSD sensor uses a semiconductor surface resistance to detect the short and long distance positions of incident light with one p-n junction.
  • the PSD sensor includes a one-dimensional PSD sensor that detects light in only one axis direction and a two-dimensional PSD sensor that can detect a light position on a plane, and both may have a pin photodiode structure.
  • the PSD sensor is a type of infrared sensor, and uses infrared rays to measure distance by measuring the angle of the infrared rays reflected from the obstacle after transmitting the infrared rays. That is, the PSD sensor calculates the distance to the obstacle by using a triangulation method.
  • the PSD sensor includes a light emitting part for emitting infrared rays to an obstacle and a light receiving part for receiving infrared rays reflected from the obstacle, and is generally configured in a module form.
  • a stable measurement value can be obtained regardless of the difference in reflectance and color of the obstacle.
  • the controller 1800 may measure a cliff and analyze the depth of the cliff by measuring an infrared angle between the infrared light emitted by the cliff detection sensor and the reflected signal received by the obstacle.
  • the controller 1800 may determine whether or not the passage of the cliff according to the ground condition of the cliff detected using the cliff detection sensor, and may determine whether the cliff passes. For example, the controller 1800 determines whether the cliff exists and the depth of the cliff through the cliff detection sensor, and then passes the cliff only when the reflection signal is detected by the cliff detection sensor.
  • the controller 1800 may determine the lifting phenomenon of the mobile robot using the cliff detection sensor.
  • the lower camera sensor is provided on the rear surface of the mobile robot, and acquires image information on the lower side, that is, the bottom surface (or the surface to be cleaned) during the movement.
  • the lower camera sensor is also called an optical flow sensor in other words.
  • the lower camera sensor converts a lower image input from an image sensor provided in the sensor to generate image data of a predetermined format.
  • the generated image data may be stored in the memory 1700.
  • one or more light sources may be installed adjacent to the image sensor.
  • the one or more light sources irradiate light to a predetermined area of the bottom surface photographed by the image sensor. That is, when the mobile robot moves a specific area along the bottom surface, if the bottom surface is flat, a constant distance is maintained between the image sensor and the bottom surface. On the other hand, when the mobile robot moves the bottom surface of the non-uniform surface, the robot moves away by a certain distance due to irregularities and obstacles on the bottom surface.
  • the one or more light sources may be controlled by the controller 1800 to adjust the amount of light to be irradiated.
  • the light source may be a light emitting device capable of adjusting light quantity, for example, a light emitting diode (LED) or the like.
  • the controller 1800 may detect the position of the mobile robot regardless of the sliding of the mobile robot.
  • the controller 1800 may calculate the moving distance and the moving direction by comparing and analyzing the image data photographed by the lower camera sensor according to time, and may calculate the position of the mobile robot based on this.
  • the controller 1800 can correct the sliding against the position of the mobile robot calculated by other means.
  • the upper camera sensor is installed to face upward or forward of the mobile robot can take a picture around the mobile robot.
  • the camera sensors may be formed on the top or side surfaces of the mobile robot at a predetermined distance or at an angle.
  • the memory of the robot cleaner may store map information related to the cleaning area.
  • the controller of the robot cleaner may generate the map information using the information sensed by the sensor while the robot cleaner performs the cleaning operation or the driving operation in the cleaning area, and may store the generated map information in the memory.
  • the map information may be formed of a plurality of grids 501. That is, the controller may set information related to at least one of terrain, obstacles, brightness, and floor material for each unit area corresponding to the grid 501. In addition, the controller may set coordinate information for each grid 501.
  • the control unit of the conventional robot cleaner controls the driving unit to move the main body of the cleaner to the destination using only the coordinate information set as described above. That is, the traveling path of the cleaner is set as the shortest path to move from the current position 510 of the main body to the destination 520.
  • the dangerous area may mean an area in which the cleaner is difficult to drive normally, or may mean an area in which the sensor cannot sufficiently acquire information related to the surrounding environment of the cleaner.
  • the controller since the controller sets a path that can minimize only the cost of the movement without considering the entry into the dangerous area where the position cannot be recognized, the cleaner is moved during the movement. There is a high probability of losing your position.
  • FIG. 6 illustrates an embodiment of a cleaner traveling by using a Voronoi diagram.
  • the controller using the Voronoi diagram generates a plurality of polygons 610 on the map based on the information of the obstacle 620 and generates a movement path based on the generated polygons.
  • the controller 1800 selects any one of the plurality of obstacles 620 on a plane corresponding to the cleaning area, generates a vertical bisector based on the selected obstacle, and generates the generated bisector. Generates a plurality of polygons from the bisectors.
  • the driving route setting method using the Voronoi diagram has a problem that only the obstacle information of the map is used and the danger zone cannot be determined on the movement route.
  • map information corresponding to a cleaning area is generated based on information obtained by the sensor 1400 of the controller 1800 of the mobile robot or the robot cleaner 100 performing autonomous driving according to the present invention.
  • the driving cost value may be set for each of the grids 701 included in the map information.
  • the controller 1800 may set a driving route of the main body based on the driving cost value set as described above.
  • the sensor 1400 may acquire information related to the surrounding environment of the main body of the cleaner 100 while driving the cleaning area.
  • the controller 1800 may determine the accuracy of information related to the surrounding environment corresponding to each of the plurality of grids 701.
  • the controller 1800 may calculate a running cost value to be set for each of the grids 701 based on the accuracy determined for each of the grids 701.
  • the controller 1800 may assign a score to a detected feature for each of the plurality of grids according to a predetermined rule, and determine a driving cost value assigned to each of the plurality of grids based on the assigned score. have.
  • the information related to the surrounding environment of the main body may be an image around the main body obtained by the camera sensor.
  • the controller 1800 may determine a driving cost value assigned to each of the plurality of grids based on at least one of brightness of the image and the number and distribution of features detected from the image.
  • the controller 1800 may control the driving unit to avoid a region of the cleaning region while the cleaner 100 moves to a destination.
  • the amount of information related to the surrounding environment of the main body obtained in the one area is smaller than the amount of preset reference information.
  • the controller 1800 may determine the amount of information related to the surrounding environment of the main body based on the number of features extracted from the image.
  • controller 1800 of the cleaner 100 may control the driving unit to avoid the dangerous area 702 while moving from the current location 710 to the destination 720.
  • the dangerous area 702 may include an area under the furniture where a ceiling image cannot be obtained.
  • the hazardous area 702 may comprise a dark place where sufficient light is not supplied to acquire the image.
  • the cleaner 1800 when the dangerous area 702 is present on the shortest path for moving from the current location 710 of the cleaner 100 to the destination 720, the cleaner 1800 may operate.
  • the driving route of 100 may be set not to pass through the danger zone 702.
  • the controller 1800 of the present invention sets the driving route of the cleaner 100 based on the driving cost set for each grid 701 of the map information. It is not unavoidable.
  • the controller 1800 may control the first travel path. You can also select.
  • the controller 1800 may set the driving route such that the driving cost set in each of the plurality of grids 702 corresponding to the driving route is included in a specific driving cost range according to the remaining capacity of the battery.
  • the controller 1800 may include the cleaner 100 in a specific driving cost range such that the driving costs set in the plurality of grids corresponding to the driving path are included in the specific driving cost range.
  • the driving unit may be controlled to pass only the lattice in which the running cost value is included.
  • the controller 1800 may set the driving path to move to the shortest path regardless of the driving cost set in the grid.
  • the controller 1800 of the present invention may determine the positional accuracy of each grid of the cleaning area by using data acquired in the existing Simulaneous Localization And Mapping (SLAM) system but not used when generating map information.
  • SLAM Simulaneous Localization And Mapping
  • the controller 1800 may create a map while driving using the SLAM (S801).
  • the controller 1800 may set a running cost for each of a plurality of grids included in the created map, based on the information obtained by the SLAM (S802).
  • the information obtained by the SLAM may include a ceiling image.
  • the controller 1800 may set a driving path of the cleaner 100 using the driving cost set for each grid (S803).
  • the cleaner can avoid a dangerous area in which information related to the surrounding environment cannot be sufficiently obtained, the running stability of the cleaner can be improved.
  • the present invention by using the information collected when the cleaner generates map information, it is possible to improve the avoidance performance of the obstacle without adding a separate sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

본 발명의 해결 과제를 달성하기 위하여, 본 발명의 일 실시 예에 따르는 자율주행을 수행하는 청소기는 본체, 상기 본체를 이동시키는 구동부, 상기 본체가 청소영역을 주행하는 중에, 상기 본체의 주변 환경과 관련된 정보를 획득하는 감지부 및 상기 감지부에서 획득된 정보에 근거하여, 상기 청소영역에 대응되는 맵 정보를 생성하고, 상기 맵 정보에 포함된 복수의 격자마다 주행비용 값을 설정하며, 설정된 주행비용 값에 근거하여, 상기 본체의 주행 경로를 설정하는 제어부를 포함하는 것을 특징으로 한다.

Description

청소기 및 그 제어방법
본 발명은 청소기 및 그 제어 방법에 관한 것으로서, 보다 상세하게는 장애물을 인식할 수 있고, 자율 주행을 수행하는 청소기 및 그 제어 방법에 관한 것이다.
일반적으로 로봇은 산업용으로 개발되어 공장 자동화의 일 부분을 담당하여 왔다. 최근에는 로봇을 응용한 분야가 더욱 확대되어, 의료용 로봇, 우주 항공 로봇 등이 개발되고, 일반 가정에서 사용할 수 있는 가정용 로봇도 만들어지고 있다.
상기 가정용 로봇의 대표적인 예는 로봇 청소기로서, 일정 영역을 스스로 주행하면서 주변의 먼지 또는 이물질을 흡입하여 청소하는 가전기기의 일종이다. 이러한 로봇 청소기는 일반적으로 충전 가능한 배터리를 구비하고, 주행 중 장애물을 피할 수 있는 장애물 센서를 구비하여 스스로 주행하며 청소할 수 있다.
최근에는, 로봇 청소기가 청소 영역을 단순히 자율적으로 주행하여 청소를 수행하는 것에서 벗어나 로봇 청소기를 헬스 케어, 스마트홈, 원격제어 등 다양한 분야에 활용하기 위한 연구가 활발하게 이루어지고 있다.
로봇 청소기가 청소 영역에서 자율 주행을 수행하는 경우, 로봇 청소기는 청소 영역에 존재하는 다양한 장애물을 만날 수 있으므로, 자율 주행 및 청소 작업을 수행하면서도 이러한 장애물을 회피하기 위해서는, 장애물과 관련된 정보를 감지할 수 있는 장치 또는 방법이 필요하다.
또한, 로봇 청소기는 장애물과 관련된 정보를 감지함과 동시에, 로봇 청소기의 청소영역과 관련된 맵 정보를 획득할 수 있다. 맵 정보는 형상 지도(Feature Map)과 격자 지도(Grid Map)을 포함할 수 있으며, 이중 격자 지도(Grid Map)가 널리 사용된다.
격자 지도(Grid Map)를 사용하여 위치를 인식하는 일반적인 방법은 다음과 같다. 격자 지도(Grid Map) 상에서 자율 주행을 수행하는 청소기가 위치할 만한 위치들을 추정하고, 추정 위치에서 획득할 수 있는 모든 영역 스캔 데이터(Range Scan Data)를 시뮬레이션한다.
이후, 일반적인 청소기는 시뮬레이션 된 모든 영역 스캔 데이터 중 자율 이동 로봇이 영역 스캔 센서(Range Scan Data)를 이용하여 실제로 수집한 영역 스캔 데이터와 가장 유사한 데이터를 찾아내고, 그 데이터가 만들어진 추정 위치를 자율 이동 로봇의 현재 위치로 인식한다.
이와 관련하여, 이와 관련하여, 한국공개특허 10-2016-0038437호(공개일자, 2016년 04월 07일)에서는 주변의 영상을 획득하고, 영상에서 검출된 특징분포를 이용하여, 청소기의 위치를 검출하는 방법이 개시되어 있다.
다만, 이와 같은 방법에 의하면, 특정 위치에서 주변 환경과 관련된 정보를 얼마나 획득할 수 있는지 고려하지 않는 문제점이 있다.
즉, 기존의 방식으로 청소기의 주행 경로를 설정하면, 목적지까지 주행함에 있어서, 청소영역의 일 격자마다 위치를 검출할 수 있는 정보가 충분히 제공되는지 여부에 대해 판단하지 않는다. 따라서, 기존의 방식으로 주행하다 보면, 청소기의 위치를 파악하기 위한 정보가 충분히 획득되지 않는 영역으로 진입하게 되어, 청소기의 위치를 잃어버리거나 검출된 위치에 오류가 발생하는 문제점이 있다.
본 발명이 해결하고자 하는 기술적 과제는, 청소영역 중 일부 영역에 대응되는 맵 정보가 부정확한 경우, 상기 일부 영역을 회피하면서 목적지까지 이동할 수 있는 자율 주행을 수행하는 청소기 및 그의 제어 방법을 제공하는 것이다.
또한, 본 발명의 목적은 단순히 최단 경로로 장애물을 회피하는 것 이외에, 본체의 위치와 관련된 정확한 정보를 확보할 수 있는 자율 주행을 수행하는 청소기 및 그의 제어 방법을 제공하는 것이다.
또한, 본 발명의 목적은 위험 영역으로의 진입을 방지하고, 목적지까지 최대한 안전하게 이동할 수 있는 자율 주행을 수행하는 청소기 및 그의 제어 방법을 제공하는 것이다.
위와 같은 본 발명의 기술적 과제를 해결하기 위하여, 본 발명에 따른 자율주행을 수행하는 청소기는 본체, 상기 본체를 이동시키는 구동부, 상기 본체가 청소영역을 주행하는 중에, 상기 본체의 주변 환경과 관련된 정보를 획득하는 감지부 및 상기 감지부에서 획득된 정보에 근거하여, 상기 청소영역에 대응되는 맵 정보를 생성하고, 상기 맵 정보에 포함된 복수의 격자마다 주행비용 값을 설정하며, 설정된 주행비용 값에 근거하여, 상기 본체의 주행 경로를 설정하는 제어부를 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 제어부는 상기 복수의 격자에 각각 대응되는 상기 주변 환경과 관련된 정보의 정확도를 판단하고, 상기 복수의 격자에 대해 각각 판단된 정확도에 근거하여, 상기 주행비용 값을 연산하는 것을 특징으로 한다.
일 실시예에서, 상기 감지부는 카메라 센서를 포함하고, 상기 주변 환경과 관련된 정보는 상기 카메라 센서에 의해 획득된 상기 본체 주변의 영상을 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 제어부는 상기 영상으로부터 상기 복수의 격자마다 복수의 특징(Features)을 검출하고, 검출된 특징에 근거하여 상기 복수의 격자에 대해 각각 정확도를 판단하는 것을 특징으로 한다.
일 실시예에서, 상기 제어부는 소정의 규칙에 따라 상기 복수의 격자마다 검출된 특징에 대한 점수를 부여하고, 부여된 점수에 근거하여, 상기 복수의 격자마다 할당되는 주행 비용 값을 결정하는 것을 특징으로 한다.
일 실시예에서, 상기 제어부는 상기 영상의 밝기와, 상기 영상으로부터 검출된 특징의 개수 및 분포도 중 적어도 하나에 근거하여, 상기 복수의 격자마다 할당되는 주행 비용 값을 결정하는 것을 특징으로 한다.
일 실시예에서, 상기 제어부는 상기 청소기가 목적지로 이동하는 중에, 상기 청소영역 중 일 영역을 회피하도록 상기 구동부를 제어하는 것을 특징으로 한다.
일 실시예에서, 상기 일 영역에서 획득되는 상기 본체의 주변 환경과 관련된 정보의 양은, 미리 설정된 기준 정보의 양보다 작은 것을 특징으로 한다.
일 실시예에서, 상기 제어부는 상기 영상으로부터 추출되는 특징의 개수를 기준으로, 상기 본체의 주변 환경과 관련된 정보의 양을 판단하는 것을 특징으로 한다.
일 실시예에서, 상기 본체의 주변 환경과 관련된 정보는 청소영역 내의 천장을 촬영한 영상을 포함하는 것을 특징으로 한다.
본 발명에 따르면, 자율 주행을 수행하는 청소기가 인식하는 청소기 자체의 위치 오차를 감소시킬 수 있다.
또한, 본 발명에 따르면, 청소기가 주변 환경과 관련된 정보를 충분히 획득할 수 없는 위험 영역을 회피할 수 있으므로, 청소기의 주행 안정성을 향상시킬 수 있다.
또한, 본 발명에 따르면, 청소기가 맵 정보를 생성할 때 수집한 정보를 이용함으로써, 별도의 센서를 부가하지 않아도 장애물에 대한 회피 성능을 향상시킬 수 있다.
도 1은 본 발명에 따른 청소기의 일 예를 보인 사시도이다.
도 2는 도 1에 도시된 청소기의 평면도이다.
도 3은 도 1에 도시된 청소기의 측면도이다.
도 4는 본 발명의 일 실시예에 따른 청소기의 구성요소를 나타내는 블록도이다.
도 5는 맵 정보만을 이용하여 주행하는 청소기의 일 실시예를 나타내는 개념도이다.
도 6은 보로노이(Voronoi) 다이어그램을 이용하여 주행하는 청소기의 일 실시예를 나타내는 개념도이다.
도 7은 본 발명에 따른 청소기의 주행 방법을 나타내는 개념도이다.
도 8은 본 발명에 따른 청소기의 제어 방법을 나타내는 흐름도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 명세서에 개시된 기술의 사상을 한정하려는 의도가 아님을 유의해야 한다.
도 1은 본 발명에 따른 로봇 청소기(100)의 일 예를 보인 사시도이고, 도 2는 도 1에 도시된 로봇 청소기(100)의 평면도이며, 도 3은 도 1에 도시된 로봇 청소기(100)의 측면도이다.
참고로, 본 명세서에서는 이동 로봇, 로봇 청소기 및 자율 주행을 수행하는 청소기가 동일한 의미로 사용될 수 있다.
도 1 내지 도 3을 참조하면, 로봇 청소기(100)는 일정 영역을 스스로 주행하면서 바닥을 청소하는 기능을 수행한다. 여기서 말하는 바닥의 청소에는, 바닥의 먼지(이물질을 포함한다)를 흡입하거나 바닥을 걸레질하는 것이 포함된다.
로봇 청소기(100)는 청소기 본체(110), 흡입 유닛(120), 센싱 유닛(130) 및 먼지통(140)을 포함한다.
청소기 본체(110)에는 로봇 청소기(100)의 제어를 위한 제어부(미도시) 및 로봇 청소기(100)의 주행을 위한 휠 유닛(111)이 구비된다. 휠 유닛(111)에 의해 로봇 청소기(100)는 전후좌우로 이동되거나 회전될 수 있다.
휠 유닛(111)은 메인 휠(111a) 및 서브 휠(111b)을 포함한다.
메인 휠(111a)은 청소기 본체(110)의 양측에 각각 구비되어, 제어부의 제어 신호에 따라 일 방향 또는 타 방향으로 회전 가능하게 구성된다. 각각의 메인 휠(111a)은 서로 독립적으로 구동 가능하게 구성될 수 있다. 예를 들어, 각각의 메인 휠(111a)은 서로 다른 모터에 의해서 구동될 수 있다.
서브 휠(111b)은 메인 휠(111a)과 함께 청소기 본체(110)를 지지하며, 메인 휠(111a)에 의한 로봇 청소기(100)의 주행을 보조하도록 이루어진다. 이러한 서브 휠(111b)은 후술하는 흡입 유닛(120)에도 구비될 수 있다.
살펴본 바와 같이, 제어부가 휠 유닛(111)의 구동을 제어함으로써, 로봇 청소기(100)는 바닥을 자율 주행하도록 이루어진다.
한편, 청소기 본체(110)에는 로봇 청소기(100)에 전원을 공급하는 배터리(미도시)가 장착된다. 배터리는 충전 가능하게 구성되며, 청소기 본체(110)의 저면부에 착탈 가능하게 구성될 수 있다.
흡입 유닛(120)은 청소기 본체(110)의 일측으로부터 돌출된 형태로 배치되어, 먼지가 포함된 공기를 흡입하도록 이루어진다. 상기 일측은 상기 청소기 본체(110)가 정방향(F)으로 주행하는 측, 즉 청소기 본체(110)의 앞쪽이 될 수 있다.
본 도면에서는, 흡입 유닛(120)이 청소기 본체(110)의 일측에서 전방 및 좌우 양측방으로 모두 돌출된 형태를 가지는 것을 보이고 있다. 구체적으로, 흡입 유닛(120)의 전단부는 청소기 본체(110)의 일측으로부터 전방으로 이격된 위치에 배치되고, 흡입 유닛(120)의 좌우 양단부는 청소기 본체(110)의 일측으로부터 좌우 양측으로 각각 이격된 위치에 배치된다.
청소기 본체(110)가 원형으로 형성되고, 흡입 유닛(120)의 후단부 양측이 청소기 본체(110)로부터 좌우 양측으로 각각 돌출 형성됨에 따라, 청소기 본체(110)와 흡입 유닛(120) 사이에는 빈 공간, 즉 틈이 형성될 수 있다. 상기 빈 공간은 청소기 본체(110)의 좌우 양단부와 흡입 유닛(120)의 좌우 양단부 사이의 공간으로서, 로봇 청소기(100)의 내측으로 리세스된 형태를 가진다.
상기 빈 공간에 장애물이 끼이는 경우, 로봇 청소기(100)가 장애물에 걸려 움직이지 못하는 문제가 초래될 수 있다. 이를 방지하기 위하여, 커버부재(129)가 상기 빈 공간의 적어도 일부를 덮도록 배치될 수 있다. 커버부재(129)는 청소기 본체(110) 또는 흡입 유닛(120)에 구비될 수 있다. 본 실시예에서는, 흡입 유닛(120)의 후단부 양측에 각각 커버부재(129)가 돌출 형성되어, 청소기 본체(110)의 외주면을 덮도록 배치된 것을 보이고 있다.
커버부재(129)는 상기 빈 공간, 즉 청소기 본체(110)와 흡입 유닛(120) 간의 빈 공간의 적어도 일부를 메우도록 배치된다. 따라서, 상기 빈 공간에 장애물이 끼이는 것이 방지되거나, 상기 빈 공간에 장애물이 끼이더라도 장애물로부터 용이하게 이탈 가능한 구조가 구현될 수 있다.
흡입 유닛(120)에서 돌출 형성된 커버부재(129)는 청소기 본체(110)의 외주면에 지지될 수 있다. 만일, 커버부재(129)가 청소기 본체(110)에서 돌출 형성되는 경우라면, 커버부재(129)는 흡입 유닛(120)의 후면부에 지지될 수 있다. 상기 구조에 따르면, 흡입 유닛(120)이 장애물과 부딪혀 충격을 받았을 때, 그 충격의 일부가 청소기 본체(110)로 전달되어 충격이 분산될 수 있다.
흡입 유닛(120)은 청소기 본체(110)에 착탈 가능하게 결합될 수 있다. 흡입 유닛(120)이 청소기 본체(110)로 분리되면, 분리된 흡입 유닛(120)을 대체하여 걸레 모듈(미도시)이 청소기 본체(110)에 착탈 가능하게 결합될 수 있다. 따라서, 사용자는 바닥의 먼지를 제거하고자 하는 경우에는 청소기 본체(110)에 흡입 유닛(120)을 장착하고, 바닥을 닦고자 하는 경우에는 청소기 본체(110)에 걸레 모듈을 장착할 수 있다.
흡입 유닛(120)이 청소기 본체(110)에 장착시, 상술한 커버부재(129)에 의해 상기 장착이 가이드될 수 있다. 즉, 커버부재(129)가 청소기 본체(110)의 외주면을 덮도록 배치됨으로써, 청소기 본체(110)에 대한 흡입 유닛(120)의 상대적 위치가 결정될 수 있다.
청소기 본체(110)에는 센싱 유닛(130)이 배치된다. 도시된 바와 같이, 센싱 유닛(130)은 흡입 유닛(120)이 위치하는 청소기 본체(110)의 일측, 즉 청소기 본체(110)의 앞쪽에 배치될 수 있다.
센싱 유닛(130)은 청소기 본체(110)의 상하 방향으로 흡입 유닛(120)과 오버랩되도록 배치될 수 있다. 센싱 유닛(130)은 흡입 유닛(120)의 상부에 배치되어, 로봇 청소기(100)의 가장 앞쪽에 위치하는 흡입 유닛(120)이 장애물과 부딪히지 않도록 전방의 장애물이나 지형지물 등을 감지하도록 이루어진다.
센싱 유닛(130)은 이러한 감지 기능 외의 다른 센싱 기능을 추가로 수행하도록 구성된다. 이에 대하여는 뒤에서 자세히 설명하기로 한다.
청소기 본체(110)에는 먼지통 수용부(113)가 구비되며, 먼지통 수용부(113)에는 흡입된 공기 중의 먼지를 분리하여 집진하는 먼지통(140)이 착탈 가능하게 결합된다. 도시된 바와 같이, 먼지통 수용부(113)는 청소기 본체(110)의 타측, 즉 청소기 본체(110)의 뒤쪽에 형성될 수 있다.
먼지통(140)의 일부는 먼지통 수용부(113)에 수용되되, 먼지통(140)의 다른 일부는 청소기 본체(110)의 후방[즉, 정방향(F)에 반대되는 역방향(R)]을 향하여 돌출되게 형성될 수 있다.
먼지통(140)에는 먼지가 포함된 공기가 유입되는 입구(140a)와 먼지가 분리된 공기가 배출되는 출구(140b)가 형성되며, 먼지통 수용부(113)에 먼지통(140)이 장착시 입구(140a)와 출구(140b)는 먼지통 수용부(113)의 내측벽에 형성된 제1개구(110a) 및 제2개구(110b)와 각각 연통되도록 구성된다.
청소기 본체(110) 내부의 흡기유로는 연통부(120b")와 연통되는 유입구(미도시)부터 제1개구(110a)까지의 유로에 해당하며, 배기유로는 제2개구(110b)부터 배기구(112)까지의 유로에 해당한다.
이러한 연결관계에 따라, 흡입 유닛(120)을 통하여 유입된 먼지가 포함된 공기는 청소기 본체(110) 내부의 흡기유로를 거쳐, 먼지통(140)으로 유입되고, 먼지통(140)의 필터 내지는 사이클론을 거치면서 공기와 먼지가 상호 분리된다. 먼지는 먼지통(140)에 집진되며, 공기는 먼지통(140)에서 배출된 후 청소기 본체(110) 내부의 배기유로를 거쳐 최종적으로 배기구(112)를 통하여 외부로 배출된다.
이하의 도 4에서는 로봇 청소기(100)의 구성요소와 관련된 일 실시예가 설명된다.
본 발명의 일 실시 예에 따른 로봇 청소기(100) 또는 이동 로봇은, 통신부(1100), 입력부(1200), 구동부(1300), 센싱부(1400), 출력부(1500), 전원부(1600), 메모리(1700) 및 제어부(1800) 중 적어도 하나 또는 이들의 조합을 포함할 수 있다.
이때, 도 4에 도시한 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 갖거나 그보다 적은 구성요소들을 갖는 로봇 청소기가 구현될 수 있음은 물론이다. 이하, 각 구성요소들에 대해 살펴보기로 한다.
우선, 전원부(1600)는 외부 상용 전원에 의해 충전 가능한 배터리를 구비하여 이동 로봇 내로 전원을 공급한다. 전원부(1600)는 이동 로봇에 포함된 각 구성들에 구동 전원을 공급하여, 이동 로봇이 주행하거나 특정 기능을 수행하는데 요구되는 동작 전원을 공급할 수 있다.
이때, 제어부(1800)는 배터리의 전원 잔량을 감지하고, 전원 잔량이 부족하면 외부 상용 전원과 연결된 충전대로 이동하도록 제어하여, 충전대로부터 충전 전류를 공급받아 배터리를 충전할 수 있다. 배터리는 배터리 감지부와 연결되어 배터리 잔량 및 충전 상태가 제어부(1800)에 전달될 수 있다. 출력부(1500)은 제어부에 의해 상기 배터리 잔량을 화면에 표시할 수 있다.
배터리는 로봇 청소기 중앙의 하부에 위치할 수도 있고, 좌, 우측 중 어느 한쪽에 위치할 수도 있다. 후자의 경우, 이동 로봇은 배터리의 무게 편중을 해소하기 위해 균형추를 더 구비할 수 있다.
한편, 구동부(1300)는 모터를 구비하여, 상기 모터를 구동함으로써, 좌, 우측 주바퀴를 양 방향으로 회전시켜 본체를 회전 또는 이동시킬 수 있다. 구동부(1300)는 이동 로봇의 본체를 전후좌우로 진행시키거나, 곡선주행시키거나, 제자리 회전시킬 수 있다.
한편, 입력부(1200)는 사용자로부터 로봇 청소기에 대한 각종 제어 명령을 입력받는다. 입력부(1200)는 하나 이상의 버튼을 포함할 수 있고, 예를 들어, 입력부(1200)는 확인버튼, 설정버튼 등을 포함할 수 있다. 확인버튼은 감지 정보, 장애물 정보, 위치 정보, 맵 정보를 확인하는 명령을 사용자로부터 입력받기 위한 버튼이고, 설정버튼은 상기 정보들을 설정하는 명령을 사용자로부터 입력받기 위한 버튼이다.
또한, 입력부(1200)는 이전 사용자 입력을 취소하고 다시 사용자 입력을 받기 위한 입력재설정버튼, 기 설정된 사용자 입력을 삭제하기 위한 삭제버튼, 작동 모드를 설정하거나 변경하는 버튼, 충전대로 복귀하도록 하는 명령을 입력받는 버튼 등을 포함할 수 있다.
또한, 입력부(1200)는 하드 키나 소프트 키, 터치패드 등으로 이동 로봇의 상부에 설치될 수 있다. 또, 입력부(1200)는 출력부(1500)와 함께 터치 스크린의 형태를 가질 수 있다.
한편, 출력부(1500)는, 이동 로봇의 상부에 설치될 수 있다. 물론 설치 위치나 설치 형태는 달라질 수 있다. 예를 들어, 출력부(1500)는 배터리 상태 또는 주행 방식 등을 화면에 표시할 수 있다.
또한, 출력부(1500)는, 센싱부(1400)가 검출한 이동 로봇 내부의 상태 정보, 예를 들어 이동 로봇에 포함된 각 구성들의 현재 상태를 출력할 수 있다. 또, 출력부(1500)는 센싱부(1400)가 검출한 외부의 상태 정보, 장애물 정보, 위치 정보, 지도 정보 등을 화면에 디스플레이할 수 있다. 출력부(1500)는 발광 다이오드(Light Emitting Diode; LED), 액정 표시 장치(Liquid Crystal Display; LCD), 플라즈마 표시 패널(Plasma Display Panel), 유기 발광 다이오드(Organic Light Emitting Diode; OLED) 중 어느 하나의 소자로 형성될 수 있다.
출력부(1500)는, 제어부(1800)에 의해 수행되는 이동 로봇의 동작 과정 또는 동작 결과를 청각적으로 출력하는 음향 출력 수단을 더 포함할 수 있다. 예를 들어, 출력부(1500)는 제어부(1800)에 의해 생성된 경고 신호에 따라 외부에 경고음을 출력할 수 있다.
이때, 음향 출력 수단은 비퍼(beeper), 스피커 등의 음향을 출력하는 수단일 수 있고, 출력부(1500)는 메모리(1700)에 저장된 소정의 패턴을 가진 오디오 데이터 또는 메시지 데이터 등을 이용하여 음향 출력 수단을 통해 외부로 출력할 수 있다.
따라서, 본 발명의 일 실시예에 따른 이동 로봇은, 출력부(1500)를 통해 주행 영역에 대한 환경 정보를 화면에 출력하거나 음향으로 출력할 수 있다. 또 다른 실시예에 따라, 이동 로봇은 출력부(1500)를 통해 출력할 화면이나 음향을 단말 장치가 출력하도록, 지도 정보 또는 환경 정보를 통신부(1100)릍 통해 단말 장치에 전송할 수 있다.
한편, 통신부(1100)는 단말 장치 및/또는 특정 영역 내 위치한 타 기기(본 명세서에서는 "가전 기기"라는 용어와 혼용하기로 한다)와 유선, 무선, 위성 통신 방식들 중 하나의 통신 방식으로 연결되어 신호와 데이터를 송수신한다.
통신부(1100)는 특정 영역 내에 위치한 타 기기와 데이터를 송수신할 수 있다. 이때, 타 기기는 네트워크에 연결하여 데이터를 송수신할 수 있는 장치이면 어느 것이어도 무방하며, 일 예로, 공기 조화 장치, 난방 장치, 공기 정화 장치, 전등, TV, 자동차 등과 같은 장치일 수 있다. 또한, 상기 타 기기는, 문, 창문, 수도 밸브, 가스 밸브 등을 제어하는 장치 등일 수 있다. 또한, 상기 타 기기는, 온도, 습도, 기압, 가스 등을 감지하는 센서 등일 수 있다.
한편, 메모리(1700)는 로봇 청소기를 제어 또는 구동하는 제어 프로그램 및 그에 따른 데이터를 저장한다. 메모리(1700)는 오디오 정보, 영상 정보, 장애물 정보, 위치 정보, 지도 정보 등을 저장할 수 있다. 또, 메모리(1700)는 주행 패턴과 관련된 정보를 저장할 수 있다.
상기 메모리(1700)는 비휘발성 메모리를 주로 사용한다. 여기서, 상기 비휘발성 메모리(Non-Volatile Memory, NVM, NVRAM)는 전원이 공급되지 않아도 저장된 정보를 계속 유지할 수 있는 저장 장치로서, 일 예로, 롬(ROM), 플래시 메모리(Flash Memory), 마그네틱 컴퓨터 기억 장치(예를 들어, 하드 디스크, 디스켓 드라이브, 마그네틱 테이프), 광디스크 드라이브, 마그네틱 RAM, PRAM 등일 수 있다.
한편, 센싱부(1400)는, 외부 신호 감지 센서, 전방 감지 센서, 낭떠러지 감지 센서, 하부 카메라 센서, 상부 카메라 센서 중 적어도 하나를 포함할 수 있다.
외부 신호 감지 센서는 이동 로봇의 외부 신호를 감지할 수 있다. 외부 신호 감지 센서는, 일 예로, 적외선 센서(Infrared Ray Sensor), 초음파 센서(Ultra Sonic Sensor), RF 센서(Radio Frequency Sensor) 등일 수 있다.
이동 로봇은 외부 신호 감지 센서를 이용하여 충전대가 발생하는 안내 신호를 수신하여 충전대의 위치 및 방향을 확인할 수 있다. 이때, 충전대는 이동 로봇이 복귀 가능하도록 방향 및 거리를 지시하는 안내 신호를 발신할 수 있다. 즉, 이동 로봇은 충전대로부터 발신되는 신호를 수신하여 현재의 위치를 판단하고 이동 방향을 설정하여 충전대로 복귀할 수 있다.
한편, 전방 감지 센서는, 이동 로봇의 전방, 구체적으로 이동 로봇의 측면 외주면을 따라 일정 간격으로 설치될 수 있다. 전방 감지 센서는 이동 로봇의 적어도 일 측면에 위치하여, 전방의 장애물을 감지하기 위한 것으로서, 전방 감지 센서는 이동 로봇의 이동 방향에 존재하는 물체, 특히 장애물을 감지하여 검출 정보를 제어부(1800)에 전달할 수 있다. 즉, 전방 감지 센서는, 이동 로봇의 이동 경로 상에 존재하는 돌출물, 집안의 집기, 가구, 벽면, 벽 모서리 등을 감지하여 그 정보를 제어부(1800)에 전달할 수 있다.
전방 감지 센서는, 일 예로, 적외선 센서, 초음파 센서, RF 센서, 지자기 센서 등일 수 있고, 이동 로봇은 전방 감지 센서로 한 가지 종류의 센서를 사용하거나 필요에 따라 두 가지 종류 이상의 센서를 함께 사용할 수 있다.
일 예로, 초음파 센서는 일반적으로 원거리의 장애물을 감지하는 데에 주로 사용될 수 있다. 초음파 센서는 발신부와 수신부를 구비하여, 제어부(1800)는 발신부를 통해 방사된 초음파가 장애물 등에 의해 반사되어 수신부에 수신되는 지의 여부로 장애물의 존부를 판단하고, 초음파 방사 시간과 초음파 수신 시간을 이용하여 장애물과의 거리를 산출할 수 있다.
또한, 제어부(1800)는 발신부에서 방사된 초음파와, 수신부에 수신되는 초음파를 비교하여, 장애물의 크기와 관련된 정보를 검출할 수 있다. 예를 들어, 제어부(1800)는 수신부에 더 많은 초음파가 수신될수록, 장애물의 크기가 큰 것으로 판단할 수 있다.
일 실시 예에서, 복수(일 예로, 5개)의 초음파 센서가 이동 로봇의 전방 측면에 외주면을 따라 설치될 수 있다. 이때, 바람직하게 초음파 센서는 발신부와 수신부가 교대로 이동 로봇의 전면에 설치될 수 있다.
즉, 발신부는 본체의 전면 중앙으로부터 좌, 우측에 이격되도록 배치될 수 있고, 수신부의 사이에 하나 또는 둘 이상의 발신부가 배치되어 장애물 등으로부터 반사된 초음파 신호의 수신 영역을 형성할 수 있다. 이와 같은 배치로 센서의 수를 줄이면서 수신 영역을 확장할 수 있다. 초음파의 발신 각도는 크로스토크(crosstalk) 현상을 방지하도록 서로 다른 신호에 영향을 미치지 아니하는 범위의 각을 유지할 수 있다. 또한, 수신부들의 수신 감도는 서로 다르게 설정될 수 있다.
또한, 초음파 센서에서 발신되는 초음파가 상향으로 출력되도록 초음파 센서는 일정 각도만큼 상향으로 설치될 수 있고, 이때, 초음파가 하향으로 방사되는 것을 방지하기 위해 소정의 차단 부재를 더 포함할 수 있다.
한편, 전방 감지 센서는, 전술한 바와 같이, 두 가지 종류 이상의 센서를 함께 사용할 수 있고, 이에 따라, 전방 감지 센서는 적외선 센서, 초음파 센서, RF 센서 등 중 어느 한 가지 종류의 센서를 사용할 수 있다.
일 예로, 전방 감지 센서는 초음파 센서 이외에 다른 종류의 센서로 적외선 센서를 포함할 수 있다.
적외선 센서는 초음파 센서와 함께 이동 로봇의 외주면에 설치될 수 있다. 적외선 센서 역시, 전방이나 측면에 존재하는 장애물을 감지하여 장애물 정보를 제어부(1800)에 전달할 수 있다. 즉, 적외선 센서는, 이동 로봇의 이동 경로 상에 존재하는 돌출물, 집안의 집기, 가구, 벽면, 벽 모서리 등을 감지하여 그 정보를 제어부(1800)에 전달한다. 따라서, 이동 로봇은 본체가 장애물과의 충돌없이 특정 영역 내에서 이동할 수 있다.
한편, 낭떠러지 감지 센서(또는 클리프 센서(Cliff Sensor))는, 다양한 형태의 광 센서를 주로 이용하여, 이동 로봇의 본체를 지지하는 바닥의 장애물을 감지할 수 있다.
즉, 낭떠러지 감지 센서는, 바닥의 이동 로봇의 배면에 설치되되, 이동 로봇의 종류에 따라 다른 위치에 설치될 수 있음은 물론이다. 낭떠러지 감지 센서는 이동 로봇의 배면에 위치하여, 바닥의 장애물을 감지하기 위한 것으로서, 낭떠러지 감지 센서는 상기 장애물 감지 센서와 같이 발광부와 수광부를 구비한 적외선 센서, 초음파 센서, RF 센서, PSD(Position Sensitive Detector) 센서 등일 수 있다.
일 예로, 낭떠러지 감지 센서 중 어느 하나는 이동 로봇의 전방에 설치되고, 다른 두 개의 낭떠러지 감지 센서는 상대적으로 뒤쪽에 설치될 수 있다.
예를 들어, 낭떠러지 감지 센서는 PSD 센서일 수 있으나, 복수의 서로 다른 종류의 센서로 구성될 수도 있다.
PSD 센서는 반도체 표면저항을 이용해서 1개의 p-n접합으로 입사광의 단장거리 위치를 검출한다. PSD 센서에는 일축 방향만의 광을 검출하는 1차원 PSD 센서와, 평면상의 광위치를 검출할 수 있는 2차원 PSD 센서가 있으며, 모두 pin 포토 다이오드 구조를 가질 수 있다. PSD 센서는 적외선 센서의 일종으로서, 적외선을 이용하여, 적외선을 송신한 후 장애물에서 반사되어 돌아오는 적외선의 각도를 측정하여 거리를 측정한다. 즉, PSD 센서는 삼각측량방식을 이용하여, 장애물과의 거리를 산출한다.
PSD 센서는 장애물에 적외선을 발광하는 발광부와, 장애물로부터 반사되어 돌아오는 적외선을 수광하는 수광부를 구비하되, 일반적으로 모듈 형태로 구성된다. PSD 센서를 이용하여, 장애물을 감지하는 경우, 장애물의 반사율, 색의 차이에 상관없이 안정적인 측정값을 얻을 수 있다.
제어부(1800)는 낭떠러지 감지 센서가 지면을 향해 발광한 적외선의 발광신호와 장애물에 의해 반사되어 수신되는 반사신호 간의 적외선 각도를 측정하여, 낭떠러지를 감지하고 그 깊이를 분석할 수 있다.
한편, 제어부(1800)는 낭떠러지 감지 센서를 이용하여 감지한 낭떠러지의 지면 상태에 따라 통과 여부를 판단할 수 있고, 판단 결과에 따라 낭떠러지의 통과 여부를 결정할 수 있다. 예를 들어, 제어부(1800)은 낭떠러지 감지 센서를 통해 낭떠러지의 존재 여부 및 낭떠러지 깊이를 판단한 다음, 낭떠러지 감지 센서를 통해 반사 신호를 감지한 경우에만 낭떠러지를 통과하도록 한다.
다른 예로, 제어부(1800)은 낭떠러지 감지 센서를 이용하여 이동 로봇의 들림 현상을 판단할 수도 있다.
한편, 하부 카메라 센서는, 이동 로봇의 배면에 구비되어, 이동 중 하방, 즉, 바닥면(또는 피청소면)에 대한 이미지 정보를 획득한다. 하부 카메라 센서는, 다른 말로 옵티컬 플로우 센서(Optical Flow Sensor)라 칭하기도 한다. 하부 카메라 센서는, 센서 내에 구비된 이미지 센서로부터 입력되는 하방 영상을 변환하여 소정 형식의 영상 데이터를 생성한다. 생성된 영상 데이터는 메모리(1700)에 저장될 수 있다.
또한, 하나 이상의 광원이 이미지 센서에 인접하여 설치될 수 있다. 하나 이상의 광원은, 이미지 센서에 의해 촬영되는 바닥면의 소정 영역에 빛을 조사한다. 즉, 이동 로봇이 바닥면을 따라 특정 영역을 이동하는 경우에, 바닥면이 평탄하면 이미지 센서와 바닥면 사이에는 일정한 거리가 유지된다. 반면, 이동 로봇이 불균일한 표면의 바닥면을 이동하는 경우에는 바닥면의 요철 및 장애물에 의해 일정 거리 이상 멀어지게 된다. 이때 하나 이상의 광원은 조사되는 빛의 양을 조절하도록 제어부(1800)에 의해 제어될 수 있다. 상기 광원은 광량 조절이 가능한 발광 소자, 예를 들어 LED(Light Emitting Diode) 등일 수 있다.
하부 카메라 센서를 이용하여, 제어부(1800)는 이동 로봇의 미끄러짐과 무관하게 이동 로봇의 위치를 검출할 수 있다. 제어부(1800)은 하부 카메라 센서에 의해 촬영된 영상 데이터를 시간에 따라 비교 분석하여 이동 거리 및 이동 방향을 산출하고, 이를 근거로 이동 로봇의 위치를 산출할 수 있다. 하부 카메라 센서를 이용하여 이동 로봇의 하방에 대한 이미지 정보를 이용함으로써, 제어부(1800)는 다른 수단에 의해 산출한 이동 로봇의 위치에 대하여 미끄러짐에 강인한 보정을 할 수 있다.
한편, 상부 카메라 센서는 이동 로봇의 상방이나 전방을 향하도록 설치되어 이동 로봇 주변을 촬영할 수 있다. 이동 로봇이 복수의 상부 카메라 센서들을 구비하는 경우, 카메라 센서들은 일정 거리 또는 일정 각도로 이동 로봇의 상부나 옆면에 형성될 수 있다.
이하의 도 5에서는 일반적인 이동 로봇이나 로봇 청소기 또는 자율 주행을 수행하는 청소기가 청소 영역 내에서 이동하는 방법이 설명된다.
도 5에 도시된 것과 같이, 로봇 청소기의 메모리는 청소영역과 관련된 맵 정보를 저장할 수 있다.
로봇 청소기의 제어부는 로봇 청소기가 청소영역에서 청소 동작 또는 주행 동작을 수행하는 중에, 센서에 의해 감지된 정보를 이용하여 상기 맵 정보를 생성하고, 생성한 맵 정보를 메모리에 저장할 수 있다.
도 5를 참조하면, 맵 정보는 복수의 격자(501)로 형성될 수 있다. 즉, 제어부는 상기 격자(501)에 대응되는 단위 영역마다 지형, 장애물, 밝기, 바닥 재질 중 적어도 하나와 관련된 정보를 설정할 수 있다. 아울러, 제어부는 상기 격자(501) 마다 좌표 정보를 설정할 수 있다.
종래의 로봇 청소기의 제어부는 위와 같이 설정된 좌표 정보만을 이용하여, 청소기의 본체를 목적지까지 이동시키도록, 구동부를 제어한다. 즉, 청소기의 주행 경로는, 본체의 현재 위치(510)로부터 목적지(520)까지 이동시키는 최단 경로로 설정되었다.
다만, 이러한 방법으로 청소기의 경로를 설정하는 경우, 청소기가 위험 영역에 진입하여 더 이상 이동하지 못하는 문제점이 있다. 여기에서 위험 영역이란, 청소기가 정상적으로 주행하기 어려운 영역을 의미할 수도 있고, 센서가 청소기의 주변 환경과 관련된 정보를 충분히 획득하기 어려운 영역을 의미할 수도 있다.
즉, 도 5에 도시된 주행 방법에 의하면, 제어부가 위치를 인식할 수 없는 위험 영역으로의 진입을 고려하지 않고, 이동에 소요되는 비용만을 최소화할 수 있는 경로를 설정하므로, 이동 시에 청소기가 자신의 위치를 잃어버릴 확률이 높다.
한편, 도 6에서는 보로노이(Voronoi) 다이어그램을 이용하여 주행하는 청소기의 일 실시예가 설명된다.
도 6을 참조하면, 보로노이 다이어그램을 이용하는 제어부는, 장애물(620)의 정보에 근거하여, 맵 상에 복수의 다각형(610)을 생성하고, 상기 생성된 다각형에 근거하여 이동 경로를 생성한다.
즉, 도 6에 도시된 주행 방법에 의하면, 제어부(1800)는 청소영역과 대응되는 평면에 복수의 장애물(620) 중 어느 하나를 선택하고, 선택된 장애물에 근거하여 수직 이등분선을 생성하며, 상기 생성된 이등분선에 의해 복수의 다각형을 생성한다.
그러나, 보로노이 다이어그램을 이용하는 주행 경로 설정 방법은, 맵의 장애물 정보만을 이용할 뿐이고, 이동 경로 상에 위험 지역을 판단할 수 없는 문제점이 있다.
따라서, 이하의 도 7 및 도 8에서는 본 발명에 따른 청소기 및 그의 제어 방법을 설명한다.
도 7을 참조하면, 본 발명에 따른 이동 로봇 또는 자율 주행을 수행하는 로봇 청소기(100)의 제어부(1800) 센서(1400)에서 획득된 정보에 근거하여, 청소영역에 대응되는 맵 정보를 생성하고, 상기 맵 정보에 포함된 복수의 격자(701)마다 주행비용 값을 설정할 수 있다. 아울러, 제어부(1800)는 이와 같이 설정된 주행비용 값에 근거하여, 상기 본체의 주행 경로를 설정할 수 있다.
이때, 센서(1400)는 청소기(100)의 본체가 청소영역을 주행하는 중에, 상기 본체의 주변 환경과 관련된 정보를 획득할 수 있다.
구체적으로, 제어부(1800)는 복수의 격자(701)에 각각 대응되는 상기 주변 환경과 관련된 정보의 정확도를 판단할 수 있다. 제어부(1800)는 복수의 격자(701)에 대해 각각 판단된 정확도에 근거하여, 상기 격자(701)마다 설정될 주행비용 값을 연산할 수 있다.
일 실시예에서, 제어부(1800)는 소정의 규칙에 따라 상기 복수의 격자마다 검출된 특징에 대한 점수를 부여하고, 부여된 점수에 근거하여, 상기 복수의 격자마다 할당되는 주행 비용 값을 결정할 수 있다.
일 예에서, 상기 본체의 주변 환경과 관련된 정보는 카메라 센서에 의해 획득된 본체 주변의 영상일 수 있다.
보다 상세하게, 제어부(1800)는 상기 영상의 밝기와, 상기 영상으로부터 검출된 특징의 개수 및 분포도 중 적어도 하나에 근거하여, 상기 복수의 격자마다 할당되는 주행 비용 값을 결정할 수 있다.
도 7에 도시된 것과 같이, 제어부(1800)는 청소기(100)가 목적지로 이동하는 중에, 상기 청소영역 중 일 영역을 회피하도록 상기 구동부를 제어할 수 있다.
여기에서, 상기 일 영역에서 획득되는 상기 본체의 주변 환경과 관련된 정보의 양은, 미리 설정된 기준 정보의 양보다 작다.
일 예에서, 제어부(1800)는 상기 영상으로부터 추출되는 특징의 개수를 기준으로, 상기 본체의 주변 환경과 관련된 정보의 양을 판단할 수 있다.
구체적으로, 본 발명에 따른 청소기(100)의 제어부(1800)는 현재 위치(710)로부터 목적지(720)까지 이동하는 중에, 위험영역(702)을 회피하도록 구동부를 제어할 수 있다.
예를 들어, 위험영역(702)은 천장 영상을 획득할 수 없는 가구 밑의 영역을 포함할 수 있다. 또 다른 예에서, 위험영역(702)은 영상을 획득하는데 필요한 빛이 충분히 공급되지 않는 어두운 장소를 포함할 수 있다.
즉, 본 발명에 따른 주행 방법에 의하면, 제어부(1800)는 청소기(100)의 현재 위치(710)에서 목적지(720)까지 이동하기 위한 최단 경로 상에 위험 영역(702)이 존재하는 경우, 청소기(100)의 주행경로를 상기 위험 영역(702)을 통과하지 않도록 설정할 수 있다.
한편, 도 7에 도시되지는 않았으나, 본 발명의 제어부(1800)는 맵 정보의 격자(701)마다 설정된 주행 비용에 근거하여, 청소기(100)의 주행 경로를 설정하므로, 위험 영역(702)을 무조건 회피하는 것은 아니다.
즉, 위험 영역(702)을 일부 통과하는 제1 주행 경로의 주행비용이, 위험 영역(702)을 완전히 회피하는 제2 주행 경로의 주행비용보다 낮은 경우, 제어부(1800)는 상기 제1 주행 경로를 선택할 수도 있다.
제어부(1800)는 배터리의 잔여 용량에 따라, 주행 경로에 대응되는 복수의 격자(702)에 각각 설정된 주행 비용이 특정 주행 비용 범위에 포함되도록, 상기 주행 경로를 설정할 수 있다.
즉, 제어부(1800)는 배터리의 잔여 용량이 한계 용량 이상인 경우, 주행경로에 대응되는 복수의 격자에 각각 설정된 주행 비용이 특정 주행 비용 범위에 포함되도록, 상기 청소기(100)가 특정 주행 비용 범위에 포함되는 주행 비용 값이 설정된 격자만 통과하도록 구동부를 제어할 수 있다.
반대로, 제어부(1800)는 배터리의 잔여 용량이 한계 용량 이상인 경우, 격자에 설정된 주행 비용과 상관없이 최단 경로로 이동하도록 주행 경로를 설정할 수 있다.
이하의 도 8에서는 본 발명에 따른 청소기(100)의 제어 방법이 설명된다.
본 발명의 제어부(1800)는 기존의 SLAM(Simultaneous Localization And Mapping) 시스템에서 획득되었으나, 맵 정보를 생성할 때는 활용하지 않던 데이터를 이용하여, 청소영역의 격자마다 위치 정확도를 판단할 수 있다.
즉, 제어부(1800)는 SLAM을 이용하여, 주행 중 맵을 작성할 수 있다(S801).
제어부(1800)는 SLAM에 의해 획득된 정보에 근거하여, 작성된 맵에 포함된 복수의 격자마다 주행비용을 설정할 수 있다(S802).
예를 들어, SLAM에 의해 획득된 정보는 천장 영상을 포함할 수 있다.
제어부(1800)는 격자마다 설정된 주행비용을 이용하여, 청소기(100)의 주행 경로를 설정할 수 있다(S803).
본 발명에 따르면, 자율 주행을 수행하는 청소기가 인식하는 청소기 자체의 위치 오차를 감소시킬 수 있다.
또한, 본 발명에 따르면, 청소기가 주변 환경과 관련된 정보를 충분히 획득할 수 없는 위험 영역을 회피할 수 있으므로, 청소기의 주행 안정성을 향상시킬 수 있다.
또한, 본 발명에 따르면, 청소기가 맵 정보를 생성할 때 수집한 정보를 이용함으로써, 별도의 센서를 부가하지 않아도 장애물에 대한 회피 성능을 향상시킬 수 있다.

Claims (10)

  1. 본체;
    상기 본체를 이동시키는 구동부;
    상기 본체가 청소영역을 주행하는 중에, 상기 본체의 주변 환경과 관련된 정보를 획득하는 감지부; 및
    상기 감지부에서 획득된 정보에 근거하여, 상기 청소영역에 대응되는 맵 정보를 생성하고, 상기 맵 정보에 포함된 복수의 격자마다 주행비용 값을 설정하며,
    설정된 주행비용 값에 근거하여, 상기 본체의 주행 경로를 설정하는 제어부를 포함하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 복수의 격자에 각각 대응되는 상기 주변 환경과 관련된 정보의 정확도를 판단하고,
    상기 복수의 격자에 대해 각각 판단된 정확도에 근거하여, 상기 주행비용 값을 연산하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  3. 제2항에 있어서,
    상기 감지부는 카메라 센서를 포함하고,
    상기 주변 환경과 관련된 정보는 상기 카메라 센서에 의해 획득된 상기 본체 주변의 영상을 포함하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  4. 제3항에 있어서,
    상기 제어부는,
    상기 영상으로부터 상기 복수의 격자마다 복수의 특징(Features)을 검출하고,
    검출된 특징에 근거하여 상기 복수의 격자에 대해 각각 정확도를 판단하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  5. 제4항에 있어서,
    상기 제어부는,
    소정의 규칙에 따라 상기 복수의 격자마다 검출된 특징에 대한 점수를 부여하고,
    부여된 점수에 근거하여, 상기 복수의 격자마다 할당되는 주행 비용 값을 결정하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  6. 제4항에 있어서,
    상기 제어부는,
    상기 영상의 밝기와, 상기 영상으로부터 검출된 특징의 개수 및 분포도 중 적어도 하나에 근거하여, 상기 복수의 격자마다 할당되는 주행 비용 값을 결정하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  7. 제4항에 있어서,
    상기 제어부는,
    상기 청소기가 목적지로 이동하는 중에, 상기 청소영역 중 일 영역을 회피하도록 상기 구동부를 제어하는 것을 특징으로 하는 자율 주행을 수행하는 청소기.
  8. 제7항에 있어서,
    상기 일 영역에서 획득되는 상기 본체의 주변 환경과 관련된 정보의 양은, 미리 설정된 기준 정보의 양보다 작은 것을 특징으로 하는 자율주행을 수행하는 청소기.
  9. 제8항에 있어서,
    상기 제어부는,
    상기 영상으로부터 추출되는 특징의 개수를 기준으로, 상기 본체의 주변 환경과 관련된 정보의 양을 판단하는 것을 특징으로 하는 자율주행을 수행하는 청소기.
  10. 제1항에 있어서,
    상기 본체의 주변 환경과 관련된 정보는 청소영역 내의 천장을 촬영한 영상을 포함하는 것을 특징으로 하는 자율주행을 수행하는 청소기.
PCT/KR2018/000361 2017-01-13 2018-01-08 청소기 및 그 제어방법 WO2018131856A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18738571.1A EP3569125B1 (en) 2017-01-13 2018-01-08 Cleaner and method for controlling same
US16/477,363 US11324371B2 (en) 2017-01-13 2018-01-08 Robot and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0006025 2017-01-13
KR1020170006025A KR101917701B1 (ko) 2017-01-13 2017-01-13 청소기 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2018131856A1 true WO2018131856A1 (ko) 2018-07-19

Family

ID=62840500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000361 WO2018131856A1 (ko) 2017-01-13 2018-01-08 청소기 및 그 제어방법

Country Status (4)

Country Link
US (1) US11324371B2 (ko)
EP (1) EP3569125B1 (ko)
KR (1) KR101917701B1 (ko)
WO (1) WO2018131856A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109846427A (zh) * 2019-01-16 2019-06-07 深圳乐动机器人有限公司 一种清洁机器人的控制方法及清洁机器人
CN110448241A (zh) * 2019-07-18 2019-11-15 广东宝乐机器人股份有限公司 机器人被困检测及脱困方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102500684B1 (ko) * 2018-09-10 2023-02-16 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어 방법
US20200142413A1 (en) * 2018-11-02 2020-05-07 Pony.ai, Inc. Configurable illumination on region of interest for autonomous driving
KR20200099264A (ko) 2019-02-14 2020-08-24 한화디펜스 주식회사 장애물 지도 생성 방법 및 그 장치
KR102207714B1 (ko) 2019-06-04 2021-01-26 엘지전자 주식회사 이동로봇의 충전 스테이션 위치 추천 방법을 통해 추천된 충전 스테이션에서 충전 가능한 이동로봇
US11480431B1 (en) * 2019-08-27 2022-10-25 Alarm.Com Incorporated Lighting adaptive navigation
CN112034467B (zh) * 2020-07-20 2023-09-26 深圳市无限动力发展有限公司 扫地机构图的方法、装置、计算机设备和可读存储介质
CN113467482A (zh) * 2021-08-12 2021-10-01 深圳市伽利略机器人有限公司 一种自清洁的清洁机器人清扫路径规划方法及清洁机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130002218A (ko) * 2011-06-28 2013-01-07 삼성전자주식회사 로봇 청소기 및 그 제어방법
KR20140063119A (ko) * 2012-11-16 2014-05-27 삼성전자주식회사 로봇 청소기와 로봇 청소기를 이용한 환경 정보 제공 방법
KR20140145648A (ko) * 2013-06-13 2014-12-24 삼성전자주식회사 청소 로봇 및 그 제어 방법
KR20150137643A (ko) * 2014-05-30 2015-12-09 삼성전자주식회사 로봇 청소기 및 그 제어방법
KR20160038437A (ko) 2014-09-30 2016-04-07 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211499A (ja) 2004-01-30 2005-08-11 Funai Electric Co Ltd 自走式掃除機
KR20050108923A (ko) * 2004-05-14 2005-11-17 삼성광주전자 주식회사 모빌로봇, 모빌로봇 시스템, 및 그 경로보정방법
KR100677252B1 (ko) * 2004-09-23 2007-02-02 엘지전자 주식회사 로봇 청소기를 이용한 원격 감시시스템 및 방법
WO2007051972A1 (en) 2005-10-31 2007-05-10 Qinetiq Limited Navigation system
KR101362373B1 (ko) 2007-08-17 2014-02-12 삼성전자주식회사 로봇청소기 및 그 제어방법
JP4973640B2 (ja) * 2008-10-30 2012-07-11 株式会社デンソー 経路探索装置および情報管理サーバ
KR101813922B1 (ko) 2010-07-12 2018-01-02 엘지전자 주식회사 로봇 청소기 및 이의 제어 방법
KR102015315B1 (ko) * 2012-10-09 2019-10-21 삼성전자주식회사 청소 로봇 및 그 제어 방법
JP6621129B2 (ja) * 2014-08-28 2019-12-18 東芝ライフスタイル株式会社 電気掃除機
JP2017213009A (ja) * 2014-10-10 2017-12-07 パナソニックIpマネジメント株式会社 自律走行型掃除機
US9519289B2 (en) * 2014-11-26 2016-12-13 Irobot Corporation Systems and methods for performing simultaneous localization and mapping using machine vision systems
KR102328252B1 (ko) 2015-02-13 2021-11-19 삼성전자주식회사 청소 로봇 및 그 제어방법
JP6685755B2 (ja) * 2016-02-16 2020-04-22 東芝ライフスタイル株式会社 自律走行体
WO2021050745A1 (en) * 2019-09-10 2021-03-18 Zoox, Inc. Dynamic collision checking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130002218A (ko) * 2011-06-28 2013-01-07 삼성전자주식회사 로봇 청소기 및 그 제어방법
KR20140063119A (ko) * 2012-11-16 2014-05-27 삼성전자주식회사 로봇 청소기와 로봇 청소기를 이용한 환경 정보 제공 방법
KR20140145648A (ko) * 2013-06-13 2014-12-24 삼성전자주식회사 청소 로봇 및 그 제어 방법
KR20150137643A (ko) * 2014-05-30 2015-12-09 삼성전자주식회사 로봇 청소기 및 그 제어방법
KR20160038437A (ko) 2014-09-30 2016-04-07 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569125A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109846427A (zh) * 2019-01-16 2019-06-07 深圳乐动机器人有限公司 一种清洁机器人的控制方法及清洁机器人
CN110448241A (zh) * 2019-07-18 2019-11-15 广东宝乐机器人股份有限公司 机器人被困检测及脱困方法
CN110448241B (zh) * 2019-07-18 2021-05-18 华南师范大学 机器人被困检测及脱困方法

Also Published As

Publication number Publication date
EP3569125A4 (en) 2020-10-28
KR20180083580A (ko) 2018-07-23
US20190380550A1 (en) 2019-12-19
US11324371B2 (en) 2022-05-10
KR101917701B1 (ko) 2018-11-13
EP3569125B1 (en) 2024-03-20
EP3569125A1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
WO2018164326A1 (ko) 청소기 및 그 제어방법
WO2018131856A1 (ko) 청소기 및 그 제어방법
WO2018079985A1 (ko) 청소기 및 그 제어방법
WO2017018848A1 (en) Mobile robot and control method thereof
WO2018026124A1 (ko) 이동 로봇 및 그 제어방법
AU2018239735B2 (en) Cleaner and method of controlling the same
WO2016200098A1 (ko) 이동 로봇 및 그 제어방법
WO2019212173A1 (ko) 청소기 및 그 제어방법
KR102032516B1 (ko) 이동 로봇 및 그 제어방법
WO2015008874A1 (ko) 로봇 청소기 및 그 로봇 청소기의 3d 센서 자가 교정 방법
WO2019212174A1 (ko) 인공지능 청소기 및 그 제어방법
WO2015099205A1 (ko) 로봇 청소기
WO2020004834A1 (en) A plurality of autonomous cleaners and a controlling method for the same
WO2018043957A1 (en) Robot cleaner
KR20140011216A (ko) 로봇 청소기 및 이의 제어 방법
WO2019221524A1 (ko) 청소기 및 그 제어방법
AU2020231781B2 (en) Moving robot and controlling method for the moving robot
WO2017146419A1 (en) Moving robot and control method thereof
KR20180134155A (ko) 인공지능 로봇 청소기 및 이를 구비하는 로봇 청소 시스템
WO2019221523A1 (ko) 청소기 및 그 제어방법
EP3966000A2 (en) Mobile robot and control method of mobile robots
WO2019212172A1 (ko) 청소기 및 그 제어방법
WO2020017943A1 (ko) 복수의 로봇 청소기 및 그 제어방법
WO2021006590A1 (en) Docking device and mobile robot system
AU2020208074B2 (en) Mobile robot and method of controlling mobile robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018738571

Country of ref document: EP

Effective date: 20190813