WO2018129961A1 - 多谐振电路并联的磁耦合共振电能发射端、接收端及*** - Google Patents

多谐振电路并联的磁耦合共振电能发射端、接收端及*** Download PDF

Info

Publication number
WO2018129961A1
WO2018129961A1 PCT/CN2017/104460 CN2017104460W WO2018129961A1 WO 2018129961 A1 WO2018129961 A1 WO 2018129961A1 CN 2017104460 W CN2017104460 W CN 2017104460W WO 2018129961 A1 WO2018129961 A1 WO 2018129961A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
circuit
receiving
transmitting
parallel
Prior art date
Application number
PCT/CN2017/104460
Other languages
English (en)
French (fr)
Inventor
范金焰
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2018129961A1 publication Critical patent/WO2018129961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/22Capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling

Definitions

  • the present invention relates to the field of wireless charging technologies, and in particular, to a magnetically coupled resonant power transmitting end, a receiving end and a system in which multiple resonant circuits are connected in parallel.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the present invention provides A multi-resonant circuit in parallel with a magnetically coupled resonant power transmitting end, the transmitting end is connected with a DC voltage power supply, the transmitting end includes two or more transmitting circuit units, and each transmitting circuit unit includes a transmitting resonance
  • the circuit and the inverter circuit for driving the transmitting resonant circuit are connected in parallel with each input end of the inverter circuit.
  • the resonant coils in all of the transmit resonant circuits form an array of transmit coils.
  • each of the resonant coils constituting the array of transmitting coils is disposed in a plane.
  • each of the resonant coils constituting the array of the transmitting coils is a planar coil.
  • a compensation capacitor is connected in series in the transmission resonant circuit.
  • the emission resonant circuit is a CLC resonant circuit.
  • the inverter circuit is a full bridge inverter circuit.
  • the PWM switching frequency of the full bridge inverter circuit is 85 kHz.
  • the invention also provides a magnetic resonance resonant power receiving end of a multi-resonant circuit connected in parallel, the receiving end is connected with an output voltage, the receiving end comprises a receiving circuit unit, and the number of the receiving circuit unit is parallel with the multi-resonant circuit
  • the number of transmitting circuit units in the transmitting end is the same, and each receiving circuit unit includes a receiving resonant circuit corresponding to the transmitting resonant circuit in the transmitting circuit unit, and a rectifying output circuit, and the output ends of the respective rectified output circuits are connected in parallel.
  • the resonant coils in all of the receiving resonant circuits form an array of receiving coils.
  • each of the resonant coils constituting the array of receiving coils is disposed in a plane.
  • each of the resonant coils constituting the array of the transmitting coils is a planar coil.
  • a compensation capacitor is connected in series in the receiving resonant circuit.
  • the receiving resonant circuit is a CLC resonant circuit.
  • the rectified output circuit is a bridge rectifier circuit.
  • the invention also provides a magnetically coupled resonance electrical energy system in which multiple resonant circuits are connected in parallel, comprising a transmitting end and a receiving end.
  • the inductance values of the resonant coils in the transmitting resonant circuit and the receiving resonant circuit are equal, and the capacitance values of the compensation capacitors in the transmitting resonant circuit and the receiving resonant circuit are equal.
  • the present invention has at least the following advantages:
  • FIG. 1 is a schematic diagram of wiring provided in the prior art for solving the problem of the on-state current limit of a power tube
  • FIG. 2 is a schematic diagram showing the connection of a magnetically coupled resonant power system in which multiple resonant circuits are connected in parallel according to the present invention
  • FIG. 3 is a schematic diagram showing the specific wiring of a magnetically coupled resonant power system in which two resonant circuits are connected in parallel according to the present invention
  • FIG. 4 is a schematic diagram of a resonant coil in a transmitting end of the same plane provided by the present invention.
  • the invention solves the contradiction between the high-power wireless charging resonant current and the MOS tube not being too large, and solves the contradiction between the high-power wireless charging resonant current and the MOS tube not exceeding the current, and promotes the wireless charging in the electric vehicle charging field. Universal application.
  • the invention provides a magnetic resonance resonant power transmitting end of a multi-resonant circuit in parallel, and a magnetic coupling resonant power receiving end of a multi-resonant circuit in parallel, and a multi-resonant circuit composed of the transmitting end and the receiving end are connected in parallel Magnetically coupled resonant power system.
  • the transmitting end, the receiving end, and the system will be generally described from the perspective of a magnetically coupled resonant power system in which multiple resonant circuits are connected in parallel.
  • the magnetically coupled resonant power system 01 includes a magnetically coupled resonant power transmitting end 02 in which multiple resonant circuits are connected in parallel, and a multi-resonant circuit.
  • the resonant coils in all the transmitting resonant circuits 05 constitute an array of transmitting coils, and the resonant coils constituting the transmitting coil array are disposed in the same plane, and the resonant coils constituting the transmitting coil array are planar coils; all receiving resonant circuits 08
  • the resonant coils in the middle constitute a receiving coil array, and the resonant coils constituting the receiving coil array are disposed in a plane, and the resonant coils constituting the receiving coil array are planar coils;
  • the transmitting resonant circuit 05 and the receiving resonant circuit 08 are The inductance values of the resonant coils are equal; in practical applications, the resonant coils in the array of transmitting coils and the resonant coils in the array of receiving coils are correspondingly arranged.
  • the respective resonant coils do not overlap each other.
  • the resonant coils L 1 and L 2 are disposed in the same plane.
  • the predetermined spacing distance between the resonant coils is preferably not less than 5 cm.
  • the transmitting resonant circuit 05 and the receiving resonant circuit 08 are each connected in series with a compensation capacitor, and the capacitance values of the compensation capacitors in the transmitting resonant circuit 05 and the receiving resonant circuit 08 are equal; the transmitting resonant circuit 05 and the receiving resonant circuit 08 are both It is a CLC resonant circuit.
  • two or more selected radiating resonant circuits 04 are selected, which can realize that the MOS tube to be solved cannot be excessively current, and how to reduce the resonant capacitor.
  • the working voltage which in turn reduces the cost, promotes the popularization of wireless charging in the field of electric vehicle charging, especially the design of two resonant circuits 04 is optimal.
  • the following description is directed to the preferred embodiment employing two resonant circuits 04 as an embodiment.
  • the DC voltage source is U
  • two transmit resonant circuits (the compensation capacitor C 1 , the resonant coil L 1 and the compensation capacitor C 2 form a transmit resonant circuit, and the compensation capacitor C 3
  • the resonant coil L 2 and the compensation capacitor C 4 constitute another transmitting resonant circuit
  • the corresponding two receiving resonant circuits (the compensation capacitor C 5 , the resonant coil L 3 and the compensation capacitor C 6 form a receiving resonant circuit, and the compensation capacitor C 7.
  • the resonant coil L 4 and the compensation capacitor C 8 constitute another receiving resonant circuit);
  • the PWM (Pulse Width Modulation) driving signal applied to the switching circuit of the inverter circuit is a square wave
  • the PWM switching frequency is 85 kHz
  • the DC voltage is inverted to an AC square wave voltage of 85,000 Hz, which drives the C 1 L 1 C 2 emission resonant circuit to resonate with the C 3 L 2 C 4 transmit resonant circuit, generating an alternating magnetic field in space, receiving
  • the C 5 L 3 C 6 receiving resonant circuit and the C 7 L 4 C 8 receiving resonant circuit resonate with the transmitting resonant circuit, and the resonant sinusoidal voltage is outputted by the rectified output circuit to become the DC voltage V out .
  • the inverter circuit in the transmitting end of the magnetically coupled resonant power system is a full bridge inverter circuit, and the PWM switching frequency of the full bridge inverter circuit is 85 kHz; the rectified output circuit is a bridge rectifier circuit.
  • the multi-resonant circuit in parallel with the multi-resonant circuit has a multi-resonant circuit connected in parallel with the magnetically coupled resonance electric energy transmitting end 02, and the multi-resonant circuit is connected in parallel with the magnetically coupled resonant electric energy receiving end 03, and the transmitting end 02 is connected with a DC voltage power supply.
  • the receiving end 03 is connected with an output voltage.
  • the transmitting end 02 is disposed at the charging station and the receiving end 03 is disposed in the vehicle body. Only when the electric vehicle is charged, the transmitting end 02 and the receiving end 03 cooperate with each other to realize electric energy. Wireless transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种多谐振电路并联的磁耦合共振电能发射端(02)、接收端(03)及***(01),包括接入有直流电压电源的发射端(02),连接输出电压的接收端(03),所述发射端(02)中包括两个或两个以上的发射电路单元(04),每个发射电路单元(04)包括发射谐振电路(05)、以及用于驱动发射谐振电路(05)的逆变电路(06),各逆变电路(06)输入端并联;接收电路单元(07)数量与发射端(02)中发射电路单元(04)数量相同,每个接收电路单元(07)包括与所述发射电路单元(04)中发射谐振电路(05)对应设置的接收谐振电路(08)、以及整流输出电路(09),各整流输出电路(09)输出端并联。该方案解决了MOS管不能过大电流的问题,在传输同等功率的条件下,较现有的方案降低了谐振电容工作电压,进而降低了成本,推动了无线充电在电动汽车充电领域的普及应用。

Description

多谐振电路并联的磁耦合共振电能发射端、接收端及*** 技术领域
本发明涉及无线充电技术领域,尤其涉及一种多谐振电路并联的磁耦合共振电能发射端、接收端及***。
背景技术
基于磁耦合谐振原理的无线充电***中,谐振电流非常大,目前MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)(MOS管与MOSFET含义相同,下述所出现的所有MOSFET均以MOS管进行代替阐述)通态电流能力有限,而多个MOS管并联会降低可靠性;当需要大功率传输功率时,谐振电容电压非常高;这样会导致制造成本高。
面对上述问题,现有技术中,提出了如下解决方案,如图1所示,这种方案尽管理论上解决了MOS管通态电流限值的问题,可以实现较大的发射功率,但实际上谐振电容的谐振电压会非常高,如果传输10KW以上的功率,谐振电压会高达10KV量级;目前这种高压电容的制造工艺尚且不成熟,且制造成本高,同时这种谐振腔需要高压工作的特性也带来了安全问题;目前MOS管并联应用因其导通模态中温度系数有变化,并联也会带来一系列可靠性问题。
发明内容
为了解决现有技术中的上述问题,即为了解决MOS管不能过大电流,以及如何降低谐振电容工作电压,进而降低成本,推动无线充电在电动汽车充电领域的普及应用的问题,本发明提供了一种多谐振电路并联的磁耦合共振电能发射端,所述发射端接入有直流电压电源,所述发射端中包括两个或两个以上的发射电路单元,每个发射电路单元包括发射谐振电路、以及用于驱动发射谐振电路的逆变电路,各逆变电路输入端并联。
优选地,所有发射谐振电路中的谐振线圈组成发射线圈阵列。
优选地,构成所述发射线圈阵列的各谐振线圈同平面设置。
优选地,构成所述发射线圈阵列的各谐振线圈为平面型线圈。
优选地,所述发射谐振电路中串联有补偿电容。
优选地,所述发射谐振电路为CLC谐振电路。
优选地,所述逆变电路为全桥逆变电路。
优选地,所述全桥逆变电路的PWM开关频率为85千赫兹。
本发明还提供了一种多谐振电路并联的磁耦合共振电能接收端,所述接收端连接有输出电压,所述接收端包括接收电路单元,所述接收电路单元数量与前述多谐振电路并联的发射端中发射电路单元数量相同,且每个接收电路单元包括与所述发射电路单元中发射谐振电路对应设置的接收谐振电路、以及整流输出电路,各整流输出电路输出端并联。
优选地,所有接收谐振电路中的谐振线圈组成接收线圈阵列。
优选地,构成所述接收线圈阵列的各谐振线圈同平面设置。
优选地,构成所述发射线圈阵列的各谐振线圈为平面型线圈。
优选地,所述接收谐振电路中串联有补偿电容。
优选地,所述接收谐振电路为CLC谐振电路。
优选地,所述整流输出电路为桥式整流电路。
本发明还提供了一种多谐振电路并联的磁耦合共振电能***,包括发射端和接收端。
优选地,所述发射谐振电路中和接收谐振电路中的谐振线圈的电感值相等,所述发射谐振电路和接收谐振电路中的补偿电容的电容值相等。
与现有技术相比,本发明至少具有以下优点:
通过本发明中的多谐振电路并联的磁耦合共振电能***设计,解决了MOS管不能过大电流的问题,在传输同等功率的条件下,较现有的方案降低了谐振电容工作电压,进而降低了成本,推动了无线充电在电动汽车充电领域的普及应用。
附图说明
图1是现有技术中提供的解决功率管通态电流限值问题的接线示意图;
图2是本发明所提供的多谐振电路并联的磁耦合共振电能***的连接示意图;
图3是本发明所提供的两谐振电路并联的磁耦合共振电能***的具体接线示意图;
图4是本发明所提供的同平面设置的发射端中谐振线圈示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明通过利用多谐振电路并联的磁耦合共振电能***设计方案,解决了所要解决的大功率无线充电谐振电流很大与MOS管不能过大电流的矛盾,推动了无线充电在电动汽车充电领域的普及应用。
本发明提出了一种多谐振电路并联的磁耦合共振电能发射端,还提出了一种多谐振电路并联的磁耦合共振电能接收端,以及由前述发射端和接收端构成的多谐振电路并联的磁耦合共振电能***。为了更清楚地对本发明的电路构成及工作原理进行描述,下面从多谐振电路并联的磁耦合共振电能***的角度来对发射端、接收端、以及***进行整体描述。
本发明中,提供了一种多谐振电路并联的磁耦合共振电能***,如图2所示,该磁耦合共振电能***01中包括多谐振电路并联的磁耦合共振电能发射端02,多谐振电路并联的磁耦合共振电能接收端03,发射端02将电能转化为电磁能、接收端03将电磁能转化为电能,所述发射端02中包括两个或两个以上的发射电路单元04,每个发射电路单元04包括发射谐振电路05、以及用于驱动发射谐振电路05的逆变电路06,各逆变电路06输入端并联;所述接收端02包括接收电路单元07,所述接收电路单元07数量与前述多谐振电路并联的发射端02中发射电路单元04数量相同,且每个接收电路单元07包括与所述发射电路单元04中发射谐振电路05对应设置的接收谐振电路08、以及整流输出电路09,各整流输出电路09输出端并联。
其中,所有发射谐振电路05中的谐振线圈组成发射线圈阵列,构成所述发射线圈阵列的各谐振线圈同平面设置,构成所述发射线圈阵列的各谐振线圈为平面型线圈;所有接收谐振电路08中的谐振线圈组成接收线圈阵列,构成所述接收线圈阵列的各谐振线圈同平面设置,构成所述接收线圈阵列的各谐振线圈为平面型线圈;所述发射谐振电路05和接收谐振电路08中的谐振线圈的电感值相等;在实际应用中,发射线圈阵列中的谐振线圈和接收线圈阵列中的谐振线圈对应设置。无论是构成发射线圈阵列的各谐振线圈,还是构成接收线圈阵列的各谐振线圈,其各谐振线圈彼此间不重叠。如图4所示,谐振线圈L1、L2同平面设置。在一优选地实施方式中,该各谐振线圈间的预设间隔距离尤以不小于5cm为优。
所述发射谐振电路05和接收谐振电路08中均串联有补偿电容,所述发射谐振电路05和接收谐振电路08中的补偿电容的电容值相等;所述发射谐振电路05和接收谐振电路08均为CLC谐振电路。
在本发明的磁耦合共振电能***01的发射端02中,所选取的两个或两个以上的发射谐振电路04设计,均能实现所要解决的MOS管不能过大电流,以及如何降低谐振电容工作电压,进而降低成本,推动无线充电在电动汽车充电领域的普及应用的问题,尤以两个发生谐振电路04设计为最佳。下面针对采用两个发生谐振电路04的最佳实施方式作为实施例加以阐述。
在该具体实施例中,如图3所示,直流电压电源为U,两个发射谐振电路(补偿电容C1、谐振线圈L1和补偿电容C2构成一个发射谐振电路,以及补偿电容C3、谐振线圈L2和补偿电容C4构成另一个发射谐振电路),对应的两个接收谐振电路(补偿电容C5、谐振线圈L3和补偿电容C6构成一个接收谐振电路,以及补偿电容C7、谐振线圈L4和补偿电容C8构成另一个接收谐振电路);其中,
C1=C2=C3=C4=C5=C6=C7=C8
L1=L2=L3=L4
谐振频率f=85000HZ,计算公式为:
Figure PCTCN2017104460-appb-000001
上述公式中,L=L1=L2=L3=L4
C=C1+C2=C3+C4=C5+C6=C7+C8
具体的,直流电压电源U的直流电压输出后,当施加在逆变电路开关管的PWM(Pulse Width Modulation,脉冲宽度调制)的驱动信号为方波时,(该PWM开关频率为85千赫兹)直流电压被逆变成85000赫兹的交流方波电压,该方波电压驱动C1L1C2发射谐振电路和C3L2C4发射谐振电路发生谐振,在空间内产生交变磁场,接收端的C5L3C6接收谐振电路和C7L4C8接收谐振电路与发射谐振电路产生共振,共振正弦电压经整流输出电路变成直流电压Vout后输出。
在该磁耦合共振电能***的发射端中的逆变电路为全桥逆变电路,所述全桥逆变电路的PWM开关频率为85千赫兹;所述整流输出电路为桥式整流电路。
上述多谐振电路并联的磁耦合共振电能***中的多谐振电路并联的磁耦合共振电能发射端02、多谐振电路并联的磁耦合共振电能接收端03分离设置,发射端02接入有直流电压电源,接收端03连接有输出电压,比如在电动汽车领域,发射端02设置在充电站、接收端03设置在车体内,只有在电动汽车充电时,发射端02和接收端03相互配合,实现电能的无线传输。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (17)

  1. 一种多谐振电路并联的磁耦合共振电能发射端,所述发射端接入有直流电压电源,其特征在于,所述发射端中包括两个或两个以上的发射电路单元,每个发射电路单元包括发射谐振电路、以及用于驱动发射谐振电路的逆变电路,各逆变电路输入端并联。
  2. 根据权利要求1所述的发射端,其特征在于,所有发射谐振电路中的谐振线圈组成发射线圈阵列。
  3. 根据权利要求2所述的发射端,其特征在于,构成所述发射线圈阵列的各谐振线圈同平面设置。
  4. 根据权利要求3所述的发射端,其特征在于,构成所述发射线圈阵列的各谐振线圈为平面型线圈。
  5. 根据权利要求1~4中任一项所述的发射端,其特征在于,所述发射谐振电路中串联有补偿电容。
  6. 根据权利要求5所述的发射端,其特征在于,所述发射谐振电路为CLC谐振电路。
  7. 根据权利要求1~4中任一项所述的发射端,其特征在于,所述逆变电路为全桥逆变电路。
  8. 根据权利要求7所述的发射端,其特征在于,所述全桥逆变电路的PWM开关频率为85千赫兹。
  9. 一种多谐振电路并联的磁耦合共振电能接收端,所述接收端连接有输出电压,其特征在于,所述接收端包括接收电路单元,所述接收电路单元数量与权利要求1~8中任一种多谐振电路并联的发射端中发射电路单元数量相同,且每个接收电路单元包括与所述发射电路单元中发射 谐振电路对应设置的接收谐振电路、以及整流输出电路,各整流输出电路输出端并联。
  10. 根据权利要求9所述的接收端,其特征在于,所有接收谐振电路中的谐振线圈组成接收线圈阵列。
  11. 根据权利要求10所述的接收端,其特征在于,构成所述接收线圈阵列的各谐振线圈同平面设置。
  12. 根据权利要求11所述的接收端,其特征在于,构成所述接收线圈阵列的各谐振线圈为平面型线圈。
  13. 根据权利要求9~12中任一项所述的接收端,其特征在于,所述接收谐振电路中串联有补偿电容。
  14. 根据权利要求13所述的接收端,其特征在于,所述接收谐振电路为CLC谐振电路。
  15. 根据权利要求9~12中任一项所述的接收端,其特征在于,所述整流输出电路为桥式整流电路。
  16. 一种多谐振电路并联的磁耦合共振电能***,其特征在于,包括如权利要求1~8中任一项所述的发射端和权利要求9~15中任一项所述的接收端。
  17. 根据权利要求16所述的磁耦合共振电能***,其特征在于,所述发射谐振电路中和接收谐振电路中的谐振线圈的电感值相等,所述发射谐振电路和接收谐振电路中的补偿电容的电容值相等。
PCT/CN2017/104460 2017-01-13 2017-09-29 多谐振电路并联的磁耦合共振电能发射端、接收端及*** WO2018129961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710025029.9 2017-01-13
CN201710025029.9A CN106602733B (zh) 2017-01-13 2017-01-13 多谐振电路并联的磁耦合共振电能发射端、接收端及***

Publications (1)

Publication Number Publication Date
WO2018129961A1 true WO2018129961A1 (zh) 2018-07-19

Family

ID=58585896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104460 WO2018129961A1 (zh) 2017-01-13 2017-09-29 多谐振电路并联的磁耦合共振电能发射端、接收端及***

Country Status (2)

Country Link
CN (1) CN106602733B (zh)
WO (1) WO2018129961A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847706A (zh) * 2018-09-03 2018-11-20 北京有感科技有限责任公司 一种多频率无线充电装置及其应用
CN109787373A (zh) * 2019-03-15 2019-05-21 国网黑龙江省电力有限公司电力科学研究院 一种互操作无线充电信息接收电路
CN110391698A (zh) * 2019-04-26 2019-10-29 苏州工业职业技术学院 多用无线充电器
CN113396520A (zh) * 2019-05-29 2021-09-14 华为技术有限公司 一种无线电力接收电路
CN113472087A (zh) * 2021-06-21 2021-10-01 国网安徽省电力有限公司检修分公司 一种发射线圈复用的能量发射装置、充电***及机器人
CN115230500A (zh) * 2022-07-23 2022-10-25 广西电网有限责任公司电力科学研究院 基于屏蔽板耦合电压检测位置的电动汽车无线充电***

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602733B (zh) * 2017-01-13 2020-05-15 上海蔚来汽车有限公司 多谐振电路并联的磁耦合共振电能发射端、接收端及***
WO2018196411A1 (zh) * 2017-04-28 2018-11-01 中惠创智无线供电技术有限公司 一种基于无线电能传输的电源管理***及方法
CN106961165B (zh) * 2017-05-23 2020-02-07 宁波微鹅电子科技有限公司 无线电能传输电路、无线电能发射端和无线电能接收端
CN107220446A (zh) * 2017-06-02 2017-09-29 深圳市皇驰科技有限公司 一种单发射对四接收线圈电动汽车静态无线供电***的建模方法
US10579916B2 (en) * 2017-07-07 2020-03-03 Integrated Device Technology, Inc. Low power magnetic secure transmission system
CN107240963B (zh) * 2017-08-11 2020-03-10 宁波微鹅电子科技有限公司 无线电能接收电路
CN110165790A (zh) * 2019-04-12 2019-08-23 江西崇政科技有限公司 一种共振磁耦合无线供电工艺
CN112928828A (zh) * 2021-02-05 2021-06-08 郑州轻工业大学 一种可调频率的单逆变器输出多频正弦波装置
CN115483765A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 无线充电接收设备、电子设备和无线充电***
CN116014913B (zh) * 2022-12-12 2023-07-14 中国矿业大学 基于混合谐振的抗偏移无线电能传输***及参数优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204835719U (zh) * 2015-06-02 2015-12-02 介面光电股份有限公司 无线充电装置
CN105186714A (zh) * 2015-09-10 2015-12-23 胡江浩 一种低功率无线充电电路拓扑结构
CN105186718A (zh) * 2015-10-22 2015-12-23 重庆大学 复合谐振式ecpt***及其参数设计方法
CN106300574A (zh) * 2015-06-02 2017-01-04 介面光电股份有限公司 无线充电装置及***
CN106602733A (zh) * 2017-01-13 2017-04-26 上海蔚来汽车有限公司 多谐振电路并联的磁耦合共振电能发射端、接收端及***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118203B2 (en) * 2011-11-15 2015-08-25 Qualcomm Incorporated Systems and methods for induction charging with a closed magnetic loop
GB2526444C (en) * 2013-02-15 2020-09-23 Murata Manufacturing Co Wireless power supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204835719U (zh) * 2015-06-02 2015-12-02 介面光电股份有限公司 无线充电装置
CN106300574A (zh) * 2015-06-02 2017-01-04 介面光电股份有限公司 无线充电装置及***
CN105186714A (zh) * 2015-09-10 2015-12-23 胡江浩 一种低功率无线充电电路拓扑结构
CN105186718A (zh) * 2015-10-22 2015-12-23 重庆大学 复合谐振式ecpt***及其参数设计方法
CN106602733A (zh) * 2017-01-13 2017-04-26 上海蔚来汽车有限公司 多谐振电路并联的磁耦合共振电能发射端、接收端及***

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847706A (zh) * 2018-09-03 2018-11-20 北京有感科技有限责任公司 一种多频率无线充电装置及其应用
CN109787373A (zh) * 2019-03-15 2019-05-21 国网黑龙江省电力有限公司电力科学研究院 一种互操作无线充电信息接收电路
CN109787373B (zh) * 2019-03-15 2022-08-12 国网黑龙江省电力有限公司电力科学研究院 一种互操作无线充电信息接收电路
CN110391698A (zh) * 2019-04-26 2019-10-29 苏州工业职业技术学院 多用无线充电器
CN113396520A (zh) * 2019-05-29 2021-09-14 华为技术有限公司 一种无线电力接收电路
CN113472087A (zh) * 2021-06-21 2021-10-01 国网安徽省电力有限公司检修分公司 一种发射线圈复用的能量发射装置、充电***及机器人
CN115230500A (zh) * 2022-07-23 2022-10-25 广西电网有限责任公司电力科学研究院 基于屏蔽板耦合电压检测位置的电动汽车无线充电***

Also Published As

Publication number Publication date
CN106602733A (zh) 2017-04-26
CN106602733B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2018129961A1 (zh) 多谐振电路并联的磁耦合共振电能发射端、接收端及***
US10714979B2 (en) Wireless power receiving terminal and wireless charging system
US10326310B2 (en) High-efficiency electrical energy transmitting end and wireless electrical energy transmission device
TWI525956B (zh) 無線受電裝置、無線供電裝置、無線供電系統以及自動調整輔助電路
CN104362769B (zh) 一种无线输能***
US20140175868A1 (en) Electric power supply apparatus, contactless electricity transmission apparatus, vehicle, and contactless electric power transfer system
TW201517455A (zh) 用於無線充電線路的裝置
US20190067997A1 (en) Wireless power transmitting apparatus and method thereof
WO2006022365A1 (ja) 非接触電力伝送装置
US20170324281A1 (en) Wireless power trnsfer device
WO2017056343A1 (ja) 無線電力伝送システムおよび送電装置
KR20170049510A (ko) 공진 결합형 전력 전송 시스템, 공진형 전력 송신 장치 및 공진형 전력 수신 장치
US10186908B2 (en) Efficient power transmitting terminal, contactless power transmission device and power transmission method
CN106487105B (zh) 一种变线圈结构的磁耦合谐振式无线电能传输装置
CN103455177A (zh) 基于无线电能传输的无源无线鼠标及键盘
Kiran et al. Analysis and experimental verification of three-coil inductive resonant coupled wireless power transfer system
US9819215B2 (en) Wireless charging system
JP6113360B1 (ja) 電力伝送装置及び高周波電源
CN103825467A (zh) 具有阻抗匹配网络的充电***的高频变换电路
CN109861404B (zh) 一种无线电能传输***
KR20200007519A (ko) 무선 전력 수신 장치
JP2017005841A (ja) 送電機器
CN203573277U (zh) 一种无源无线鼠标
CN214396437U (zh) 一种电动汽车无线充电***和一种电动汽车
TW201728047A (zh) 電力傳送裝置、高頻率電源及高頻率整流電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891640

Country of ref document: EP

Kind code of ref document: A1