WO2018128283A1 - 내부의 온도를 측정할 수 있는 전지셀 - Google Patents

내부의 온도를 측정할 수 있는 전지셀 Download PDF

Info

Publication number
WO2018128283A1
WO2018128283A1 PCT/KR2017/014296 KR2017014296W WO2018128283A1 WO 2018128283 A1 WO2018128283 A1 WO 2018128283A1 KR 2017014296 W KR2017014296 W KR 2017014296W WO 2018128283 A1 WO2018128283 A1 WO 2018128283A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode
negative electrode
terminal
battery cell
Prior art date
Application number
PCT/KR2017/014296
Other languages
English (en)
French (fr)
Inventor
김수현
이수림
오송택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17889679T priority Critical patent/PL3442073T3/pl
Priority to CN201780021362.0A priority patent/CN108886179B/zh
Priority to US16/093,391 priority patent/US10897066B2/en
Priority to EP17889679.1A priority patent/EP3442073B1/en
Priority to JP2018550712A priority patent/JP6860126B2/ja
Publication of WO2018128283A1 publication Critical patent/WO2018128283A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell capable of measuring the internal temperature.
  • a secondary battery means a battery that can be charged and discharged, unlike a primary battery that cannot be charged, and is widely used in electronic devices such as mobile phones, camcorders, laptops, and electric vehicles.
  • a lithium secondary battery is a power source for electronic equipment. It has a capacity more than three times that of a commonly used nickel cadmium battery or a nickel hydride battery, and because of its excellent energy density per unit weight, the degree of utilization is rapidly increasing.
  • the secondary battery may be classified into a lithium ion battery using a liquid electrolyte and a lithium ion polymer battery using a polymer solid electrolyte according to the type of electrolyte.
  • the electrode assembly may be formed into a cylindrical or rectangular metal can.
  • the built-in cylindrical and rectangular batteries and the electrode assembly are classified into pouch-type batteries in which a pouch-type case of an aluminum laminate sheet is incorporated.
  • secondary batteries are classified according to the structure of an electrode assembly having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are formed.
  • Jelly-roll type electrode assembly having a structure wound in a state where a separator is interposed, a stack type electrode assembly in which a plurality of anodes and cathodes cut in units of a predetermined size are sequentially stacked with a separator therebetween
  • an electrode assembly having an advanced structure which is a mixed form of the jelly-roll type and the stack type has a predetermined unit.
  • Stacked / foldable electrode having a structure in which positive and negative electrodes are sequentially wound in a state in which unit cells stacked on a separator film are stacked with a separator interposed therebetween Developed body lip.
  • the jelly-roll type electrode assembly has advantages of being easy to manufacture and having an excellent energy density per weight.
  • the jelly-roll type electrode assembly has been widely used.
  • the conventional lithium secondary battery is caused by the high temperature and high pressure inside the battery caused by abnormal operation state of the battery such as internal short, overcharge state exceeding the allowable current and voltage, exposure to high temperature, dropping, etc. May cause an explosion. That is, when the secondary battery is overheated due to abnormal operation, there is a possibility that gas may be generated inside and explode due to an increase in pressure. If the temperature of the secondary battery rises sharply due to a short circuit current, the gas may ignite to cause a fire accident together with an explosion. It is also raised.
  • the temperature of the surface of a secondary battery was measured and the value was monitored.
  • the temperature inside the secondary battery is difficult to measure in real time, only after-effects are possible, and precautionary measures are virtually impossible. That is, when a short circuit occurs in the secondary battery due to penetration of a needle object, and a short circuit current flows, a rapid electrochemical reaction occurs in the positive electrode plate and the negative electrode plate, and heat is generated. Ascend at a high speed. Therefore, it takes a certain time for the temperature of the surface of the secondary battery to rise rapidly based on the time when the short circuit occurs, so when the overheat is detected by measuring the temperature of the surface, the short circuit current flows considerably, causing safety problems. To be.
  • a technique for measuring the temperature inside the battery in real time is being developed, and a conventional technique (KR2014-0131716) has a resistance thermometer (RTD), a thermocoupler, and a thermistor.
  • the temperature sensor was measured by attaching it to the cell surface, but the sensor member was attached as a separate additional process during manufacturing, which not only caused the complexity of the process, the increase of cost, and the decrease of the battery capacity,
  • There are problems such as frequent failure of the sensor member and error or error of measurement temperature, limitation of application to various types of secondary batteries such as jelly-roll type, stack and stack / fold type secondary batteries.
  • a temperature measuring sensor such as a thermocoupler may partially pressurize the electrode to deform the electrode model. Pressurization and deformation may cause delamination of the active material or breakage of the separator in the electrode, and when measuring by a thermocoupler or thermistor, there is a point of inability to accurately measure temperature due to a response speed (25 ms). Was present.
  • the temperature measuring sensor is corroded by the electrolyte of the battery cell to generate metal ions that can generate a low voltage.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • an electrode mixture including an electrode active material to a cathode and an anode as described later, and an electrode terminal is formed as an external input / output terminal on the anode and the cathode.
  • the battery cell according to the present invention is a battery cell including an electrode assembly having a structure in which a separator is interposed between a positive electrode, a negative electrode, and a positive electrode and a negative electrode,
  • the positive electrode and the negative electrode are coated with an electrode mixture including an electrode active material on one or both surfaces of a current collector;
  • a first positive electrode terminal and a first negative electrode terminal are formed on the positive electrode and the negative electrode, respectively, as external input / output terminals of the battery cell;
  • At least one of the positive electrode and the negative electrode is characterized in that the resistance measuring terminal for measuring the resistance of the current collector is formed in the opposite position of the external input and output terminals.
  • a method of measuring the temperature of the temperature of the battery cell a method of measuring the temperature of the battery surface or inserting a separate sensor member into the battery cell is used.
  • the present invention is formed by forming a resistance measuring terminal on at least one of the positive electrode or the negative electrode of the battery cell and measuring the resistance change in real time through the resistance measuring terminal, the resistance curve according to the temperature of a specific metal Since the change of the resistance of the positive electrode or the negative electrode during the operation of the secondary battery can be measured in real time the temperature inside the battery cell.
  • the resistance of the current collector is measured by electrically connecting one external input / output terminal selected from the first positive terminal and the second negative terminal, and a resistance measurement terminal having the same polarity as the selected external input / output terminal. Resistance measuring member; And a controller for estimating the temperature of the battery cell in response to the resistance value of the current collector measured from the resistance measuring member.
  • the one external input / output terminal and the resistance measuring terminal having the same polarity are not particularly limited, but in one specific example, may be electrically connected to a connection member made of copper, aluminum, or an alloy thereof.
  • the controller may estimate the temperature based on the measured resistance value of the current collector based on the temperature correlation according to the resistance of the metal itself forming the current collector.
  • an electrode terminal for resistance measurement may be formed in the positive electrode or the negative electrode, and the electrode assembly is a specific example, in which one positive electrode sheet and one negative electrode sheet are wound with a separator interposed therebetween.
  • One end of the positive electrode sheet is formed with a first positive electrode non-coating portion is not coated with the electrode assembly
  • One end of the negative electrode sheet is formed with a first negative electrode non-coating portion is not coated with the electrode
  • the first positive electrode terminal may be coupled to the current collector of the first positive electrode non-coating portion
  • the first negative electrode terminal may be coupled to the current collector of the first negative electrode non-coating portion.
  • the battery cell according to the present invention may include a jelly-roll type (winding type) electrode assembly having a structure in which a long sheet type positive electrode and negative electrode are wound with a separator interposed therebetween, Each of the one end portion may have a structure in which an uncoated portion, to which the electrode mixture is not applied, is formed and the electrode terminals are coupled thereto.
  • a jelly-roll type (winding type) electrode assembly having a structure in which a long sheet type positive electrode and negative electrode are wound with a separator interposed therebetween,
  • Each of the one end portion may have a structure in which an uncoated portion, to which the electrode mixture is not applied, is formed and the electrode terminals are coupled thereto.
  • a second positive electrode non-coating portion having no electrode union is formed, and a resistance measuring positive electrode is formed on the current collector of the second positive electrode non-coating portion.
  • the terminals may be coupled.
  • a second negative electrode non-coating portion having no electrode union applied is formed at the other end of the negative electrode sheet at a position facing the first negative electrode non-coating portion, and a negative electrode terminal for resistance measurement on the current collector of the second negative electrode non-coating portion. May be combined.
  • the position of the resistance measurement electrode terminal is not particularly limited as long as it is an unsupported non-coated phase, but since the resistance is measured at the shortest distance, in order to broaden the range of the measurement temperature, the first It is preferable to be located on the 2nd positive electrode non-coating part located in the position which opposes a 2nd positive electrode non-coating part or the position which opposes a 1st negative electrode non-coating part. In other words, it is preferably located at both ends of the electrode. However, if only the temperature of a specific part is to be measured, the position of the electrode terminal should be included in the range in which the resistance is measured.
  • the electrode assembly included in the battery cell according to the present invention in one specific example, has a structure in which a plurality of positive electrode plates and a plurality of negative electrode plates are stacked with a separator interposed therebetween, and ends of one side of each of the positive electrode plates.
  • the positive electrode tab to which the electrode assembly is not applied is protruded outwardly
  • the negative electrode tab to which the electrode assembly is not applied is protruded outwardly at one end of each of the negative electrode plates, and the positive electrode tabs are coupled to the positive electrode lead to form the first positive electrode terminal.
  • negative electrode tabs coupled to the negative electrode lead to form a first negative electrode terminal in one specific example, has a structure in which a plurality of positive electrode plates and a plurality of negative electrode plates are stacked with a separator interposed therebetween, and ends of one side of each of the positive electrode plates.
  • the positive electrode tab to which the electrode assembly is not applied is protruded outwardly
  • the negative electrode tab to which the electrode assembly is not applied is
  • the battery cell according to the present invention may include an electrode assembly having a structure (stack type) in which a plurality of positive and negative electrodes cut in units of a predetermined size are sequentially stacked with a separator therebetween, and a plurality of electrodes Electrode tabs protrude from one end of each of the plates and may have a structure in which they are coupled to electrode leads to form electrode terminals.
  • a structure stack type
  • Electrode tabs protrude from one end of each of the plates and may have a structure in which they are coupled to electrode leads to form electrode terminals.
  • the positive electrode tab for resistance measurement may protrude outwardly from one of the positive electrode plates opposite to the positive electrode tabs, and the negative electrode plate of one of the negative electrode plates may measure resistance at opposite positions of the negative electrode tabs.
  • the negative electrode tab may protrude outward.
  • each of the unit cells having a structure in which at least one positive electrode plate and at least one negative electrode plate is laminated in a state in which a separator is interposed, wound by a separation film
  • the positive electrode tabs on which the electrode assemblies are not coated are protruded outwardly from one end of each of the positive electrode plates, and the negative electrode tabs are not coated on the one end of each of the negative electrode plates.
  • the outwardly protruding, the positive electrode tabs of the wound unit cells are coupled to the positive electrode lead to form a first positive electrode terminal, and the negative electrode tabs of the wound unit cells are coupled to the negative electrode lead to form a first negative electrode terminal.
  • the battery cell according to the present invention is an electrode assembly of an advanced structure in which the jelly-roll type and the stack type are mixed, and the unit cells of the positive and negative electrodes of a predetermined unit are laminated on the separation film.
  • the electrode assembly may include an electrode assembly having a structure (stack / folding type) sequentially wound in a state of being positioned in an electrode position, and electrode tabs protrude from one end of each of the electrode plates, and the electrode tabs are coupled to the electrode lead to form an electrode terminal. It may have a structure to form.
  • a positive electrode tab for resistance measurement may protrude outwardly from one of the positive electrode plates in the wound unit cells, and a negative plate of one of the negative electrode plates in the wound unit cells.
  • the negative electrode tab for resistance measurement may protrude outward from a position opposite the negative electrode tabs.
  • the battery cell according to the present invention it is possible to form an additional resistance measurement terminal on the positive electrode surface and / or the negative electrode surface perpendicular to the resistance measurement terminal.
  • the plurality of resistance measuring terminals may be electrically connected by a connection member so that the resistance of the current collector may be measured by the resistance measuring member, and the temperature of the battery cell may be estimated based on the measured resistance value. Therefore, by additionally forming a resistance measuring terminal in the electrode, it is possible to measure the resistance of the battery cell even without using the existing electrode terminal bar, it is possible to flexibly cope with the production of various types of battery cells. .
  • the battery cell according to the present invention may be composed of one positive electrode tab and negative electrode tab, a pair of positive electrode tab for resistance measurement and negative electrode tab for resistance measurement, respectively,
  • the pair of positive electrode tabs for resistance measurement and the negative electrode tab for resistance measurement are electrically connected, and the resistance measurement member is connected to the connection member to measure the resistance of the current collector, and estimate the temperature of the battery cell through the control unit.
  • the present invention provides a battery pack including the battery cell, wherein the control unit may further include a function of releasing the electrical connection of the external input and output terminals of the battery cell when the measured temperature is above the threshold.
  • the battery pack according to the present invention accurately predicts the resistance change of the battery cell in real time through the resistance measuring terminal, and even if the battery is overheated due to abnormal operation of the battery, the temperature of the battery is higher than or equal to a preset threshold temperature set in the controller. When it rises, it automatically releases the electrical connection of the external input and output terminals to prevent explosion or fire in advance to provide a battery pack with improved safety.
  • the battery cells included in the battery pack may be lithium secondary batteries, but are not limited thereto.
  • Such a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator and a lithium salt-containing nonaqueous electrolyte, and these are known in the art, and thus detailed description thereof is omitted herein.
  • the present invention also provides a device including the battery pack as a power source.
  • the device may be selected from mobile phones, portable computers, smartphones, smart pads, netbooks, wearable electronics, light electronic vehicles (LEVs), electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage devices. Since the structure of the battery pack, the device and the manufacturing method thereof are also known in the art, a detailed description thereof will be omitted herein.
  • FIG. 1 is a perspective view showing a positive electrode and a negative electrode according to the present invention.
  • FIG. 2 is a plan view showing that the resistance measuring member and the control unit are coupled to the positive electrode according to the present invention.
  • FIG 3 is a perspective view showing that the positive electrode, the separator, and the negative electrode according to the present invention are sequentially stacked, and that the electrode terminal and the electrode terminal for resistance measurement are coupled to the positive electrode and the negative electrode, respectively.
  • FIG. 4 is an enlarged view showing a coupling portion of a positive electrode terminal and a positive electrode terminal for resistance measurement and a positive electrode plate.
  • FIG. 5 is an enlarged view showing a coupling portion of a negative electrode terminal and a negative electrode terminal for resistance measurement and a negative electrode plate.
  • FIG. 6 is a perspective view showing a structure in which the positive electrode sheet and the negative electrode sheet according to the present invention are wound with a separator interposed therebetween.
  • FIG. 7 is a perspective view illustrating a structure in which one positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween.
  • FIG. 8 is a perspective view illustrating a structure in which one positive electrode plate and one negative electrode plate are stacked with a separator interposed therebetween and a resistance measuring member and a control unit are coupled to each other.
  • FIG. 9 is a perspective view illustrating measurement of resistance between the positive electrode tab for resistance measurement by adding the positive electrode tab for resistance measurement.
  • FIG. 10 is a perspective view illustrating a structure in which a plurality of positive electrode plates and a plurality of negative electrode plates are stacked with a separator interposed therebetween and a resistance measuring member and a control unit are coupled to each other.
  • FIG. 11 is an enlarged cross-sectional view illustrating one side part of FIG. 9.
  • FIG. 12 is a plan view showing that at least one positive electrode plate and at least one negative electrode plate are arranged with a separator interposed therebetween.
  • FIG. 13 is a front view illustrating a structure in which unit cells having a structure in which at least one positive electrode plate and at least one negative electrode plate are laminated with a separator interposed therebetween are wound by a separator film.
  • FIG. 1 is a perspective view showing a positive electrode and a negative electrode according to the present invention
  • Figure 2 is a plan view showing that the resistance measuring member and the control unit is coupled to the positive electrode according to the present invention.
  • the battery cell 10 according to the present invention is the positive electrode 100 and the negative electrode 200 and the separator 300 is interposed between the positive electrode 100 and the negative electrode 200
  • an electrode mixture including electrode active materials 120 and 220 is coated on one or both surfaces of the current collectors 110 and 210, respectively, on the electrodes 100 and 200.
  • First electrodes 130 and 230 are formed on the electrodes 100 and 200 as external input / output terminals of the battery cell 10, respectively, and at least one of the electrodes 100 and 200 is first electrode terminal 130.
  • Resistance measuring terminals 150 and 250 for measuring the resistance of the current collectors 110 and 210 are formed at opposite positions of the second and second ends 230.
  • the cathode 100 for resistance measurement is formed on the anode 100, and the cathode terminal 250 for resistance measurement is formed on the cathode 200.
  • the resistance measurement having the same polarity as the external input and output terminals selected from the first positive terminal 130 and the first negative terminal 230, the selected external input and output terminals
  • the terminals 150 and 250 and the resistance measuring member 20 are electrically connected by the connecting member 40 to measure the resistance on the current collectors 110 and 210.
  • the resistance values of the current collectors 110 and 210 measured from the resistance measuring member 20 are input to the controller 30, and the controller 30 applies the input resistance values to a resistance curve graph according to temperature to collect the current collectors. Estimate the current temperature at (110, 210).
  • FIG. 3 is a perspective view showing that the positive electrode, the separator, and the negative electrode according to the present invention are stacked in this order, and that the electrode terminal and the electrode for resistance measurement are coupled to the positive electrode and the negative electrode, respectively, and FIG. 4 shows the positive electrode terminal and the resistance measurement.
  • An enlarged view showing a coupling portion of the positive electrode terminal for the illustrated is shown
  • Figure 5 is an enlarged view showing a coupling portion of the negative electrode terminal and the negative electrode for resistance measurement
  • Figure 6 is a positive electrode sheet and a negative electrode sheet according to the present invention
  • a perspective view showing the structure in which the separator is wound with the separator interposed therebetween is shown.
  • the electrode assembly according to the present invention in one specific example, one positive electrode sheet 100 and one negative electrode sheet 200 is wound with the separator 300 interposed therebetween It has a structure.
  • the first positive electrode non-coating portion 160 to which the electrode mixture is not coated is formed at one end of the positive electrode sheet 100, and the first negative electrode to which the electrode compound is not coated is applied at one end of the negative electrode sheet 200.
  • the uncoated portion 260 is formed.
  • a first positive electrode terminal 130 is coupled to the positive electrode current collector 110 of the first positive electrode non-coating portion 160, and the first negative electrode non-coating portion 260 of the first negative electrode non-coating portion 260 is coupled to the first positive electrode terminal portion 260.
  • the first negative electrode 230 is coupled to the negative electrode current collector 210.
  • a second positive electrode non-coating portion 170 is not formed on the other end of the positive electrode sheet 100 at a position opposite to the first positive electrode non-coating portion 160, the electrode is not coated
  • the positive electrode terminal 150 for resistance measurement is coupled on the current collector 110 of the second positive electrode non-coating portion 170, or the other side of the negative electrode sheet 200 at a position facing the first negative electrode non-coating portion 260.
  • a second negative electrode non-coating portion 270 having no electrode coalescing is formed, and a negative electrode terminal 250 for resistance measurement is coupled on the current collector 210 of the second negative electrode non-coating portion 270. have.
  • the first negative electrode terminal 230 and the negative electrode terminal 250 for resistance measurement which are formed on the negative electrode sheet 200, are electrically connected to each other by a connecting member 40.
  • the resistance values of the entire 110 and 210 are measured by the resistance measuring member 20, and the measured resistance values are input to the controller 30 to estimate the temperature of the current collectors 110 and 210 in real time.
  • FIG. 7 is a perspective view illustrating a structure in which one positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, and in FIG. 8, one positive electrode plate and one negative electrode plate are laminated with a separator interposed therebetween, and a resistance measuring member is provided.
  • a perspective view showing the structure in which the control unit is coupled is shown.
  • the battery cell according to the present invention in one specific example, the positive electrode plate 100 is coated with a positive electrode mixture including the positive electrode active material 120 on both sides of the positive electrode current collector 110 ) And a negative electrode plate 200 coated with a negative electrode mixture including a negative electrode active material 220 on both surfaces of the negative electrode current collector 210 are laminated with the separator 300 interposed therebetween. At one end of each of the electrode tabs 180, 280, which are not coated with electrode coalescing, protrude outwardly, the electrode tabs 180, 280 are coupled to an electrode lead (not shown) to form a first electrode terminal ( 130, 230).
  • the electrode tabs 190 and 290 for resistance measurement protrude outward from the electrode plates 100 and 200 at positions opposite to the electrode tabs 180 and 280, and these electrode tabs are connected by the connecting member 40.
  • 180 and 280, the resistance measuring electrode tabs 190 and 290, and the resistance measuring member 20 are electrically connected to each other, and additionally includes a controller 30 for estimating the temperature of the battery cell by inputting a resistance value. have.
  • the stacked electrode assembly includes a positive electrode tab 180 protruding from one end of the positive electrode plate 100, which is combined with a positive electrode lead (not shown) to form a first positive electrode terminal 130.
  • the resistance value of the positive electrode current collector 110 is electrically connected by the resistance measuring positive electrode tab 190 and the connecting member 40 at a position opposed to the positive electrode tab 180.
  • the measured and measured resistance value is input to the controller 30 to measure the temperature of the positive electrode current collector 110 in real time.
  • FIG. 9 is a perspective view illustrating the measurement of resistance between the positive electrode tab for resistance measurement by adding the positive electrode tab for resistance measurement.
  • the battery cell 10 includes, in one specific example, a pair of electrode tabs 180 and 280 and a pair of electrode tabs 190, 190, 290, respectively, for resistance measurement.
  • a pair of positive electrode tabs 190 and 190 for resistance measurement are electrically connected by the connection member 40, and additionally input a resistance value to control the temperature of the battery cell 30. It includes. Therefore, it is not necessary to use the existing electrode tabs 180 and 280 to measure the internal temperature of the battery cell 10 according to the present invention, and by adding the electrode tabs 190 and 290 for resistance measurement, the current collector ( 110, 210) can be measured.
  • FIG. 10 is a perspective view illustrating a structure in which a plurality of positive electrode plates and a plurality of negative electrode plates are stacked with a separator interposed therebetween and a resistance measuring member and a control unit are coupled to each other
  • FIG. 11 is an enlarged cross-sectional view illustrating one side of FIG. 10. Is shown.
  • the battery cell 10 includes, in one specific example, one positive electrode plate 100 and a negative electrode plate 200 shown in FIG. 7 having a separator 300.
  • stacked in the state through this has a structure which is laminated
  • the cathode active material 220 is disposed on both surfaces of the cathode plate 100, the separator 300, and the anode current collector 210, on which the cathode mixture including the cathode active material 120 is coated on both surfaces of the cathode current collector 110. It has a stacked structure that is sequentially stacked in the order of the negative electrode plate 200, the separator 300 is coated with a negative electrode mixture including a.
  • FIG. 12 is a plan view showing that at least one positive electrode plate and at least one negative electrode plate are arranged with the separator interposed therebetween, and in FIG. 13, at least one positive electrode plate and the at least one negative electrode plate are laminated with the separator interposed therebetween.
  • a front view showing the structure in which the unit cells having the structure shown in FIG. 3 are wound by the separation film is shown.
  • the battery cell 10 in one specific example, the one or more positive electrode plate 100 and one or more negative electrode plate 200 is a state in which the separator 300 is interposed Unit cells having a stacked structure have a structure in which the unit cells are wound by the separation film 50.
  • each of the unit cells has electrode tabs 180 and 280 protruding outwardly from each of the electrode plates 100 and 200, and the electrode tabs 180 and 280 are coupled to an electrode lead (not shown). Electrode terminals 130 and 230 are formed, and the electrode tabs 190 for resistance measurement at positions opposite to the electrode tabs 180 and 280 on one of the electrode plates 100 and 200 in the unit cells. , 290 is formed.
  • the stack / foldable electrode assembly includes a positive electrode tab 180 protruding from one end of the positive electrode plate 100, which is combined with a positive electrode lead (not shown) to connect the first positive electrode terminal 130.
  • a resistance value of the positive electrode current collector 110 is electrically connected by the resistance measuring positive electrode tab 190 and the connecting member 40 positioned at the position opposite to the positive electrode tab 180. The measured resistance value is input to the controller 30 to measure the temperature of the positive electrode current collector 110 in real time.
  • the battery cell according to the present invention in one specific example, as shown in Figure 12, the outermost is composed of the A-type bi-cell 60 and the outermost negative electrode plate 200 is composed of a positive electrode plate (100) C-type bi-cells 70 are formed to form a structure that is wound by the separation film (50).
  • the battery cell according to the present invention forms a resistance measuring terminal for measuring the resistance of the current collector in the opposite position of the external input and output terminals on at least one of the positive electrode and the negative electrode to adjust the current collector temperature of the battery cell in real time.
  • the protection device can be operated and the temperature inside the battery cell can be detected more accurately. Therefore, the safety is improved, the manufacturing process and economic efficiency are excellent, and the battery cell can be applied to various types of electrode assemblies. Has the effect of providing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 양극, 음극 및 양극과 음극 사이에 분리막이 개재되어 있는 구조의 전극조립체를 포함하는 전지셀로서, 상기 양극 및 음극은 집전체의 일면 또는 양면에 전극활물질을 포함하는 전극 합제가 도포되어 있고, 상기 양극 및 음극에는 각각 전지셀의 외부 입출력 단자로서 제 1 양극 단자와 제 1 음극 단자가 형성되어 있으며, 상기 양극 및 음극 중의 적어도 하나에는 외부 입출력 단자의 대향 위치에 집전체의 저항을 측정하기 위한 저항 측정용 단자가 형성되어 있는 것을 특징으로 하는 전지셀을 제공한다.

Description

내부의 온도를 측정할 수 있는 전지셀
본 발명은 내부의 온도를 측정할 수 있는 전지셀에 관한 것이다.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
일반적으로, 이차전지는 충전이 불가능한 일차전지와 달리, 충방전이 가능한 전지를 의미하며, 휴대폰, 캠코더, 노트북 등의 전자기기 또는 전기 자동차 등에 널리 사용되고 있으며, 특히 리튬 이차전지는 전자 장비의 전원으로 많이 사용되는 니켈 카드뮴 전지나 니켈 수소 전지보다 3 배 이상의 용량을 가지며, 단위 중량당 에너지 밀도가 우수하기 때문에 활용 정도가 급속도로 증가되고 있다.
이차전지는 전해질의 종류에 따라 액체 전해질을 사용하는 리튬 이온 전지와 고분자 고체 전해질을 사용하는 리튬 이온 폴리머 전지로 구분할 수 있으며, 또한 전지 케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
또한, 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있으며, 최근에는, 상기 젤리-롤형 전극조립체 및 스택형 전극조립체가 갖는 문제점을 해결하기 위해, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 개발되었다.
이들 중에서 젤리-롤형 전극조립체는 제조가 용이하고 중량당 에너지 밀도가 우수한 장점을 가지고, 특히 원통형 이차전지 케이스에 수납이 용이한 바, 젤리-롤형 전극조립체가 널리 사용되고 있다.
그러나, 종래의 리튬 이차전지는 내부 쇼트, 허용된 전류 및 전압을 초과한 과충전 상태, 고온에의 노출, 낙하 등에 의한 충격과 같은 전지의 비정상적인 작동 상태로 인해 유발되는 전지 내부의 고온 및 고압에 의해 폭발을 초래할 수 있다. 즉, 이차전지가 비정상적인 작동으로 과열되면, 내부에서 가스가 발생하여 압력이 증가하여 폭발할 가능성이 있으며, 이차전지의 온도가 단락 전류로 인해 급격하게 상승하면 가스가 발화하여 폭발과 함께 화재 사고를 일으키기도 한다.
따라서, 이차전지 내부의 온도 변화를 측정하고 만약 온도가 과도하게 상승하면 이차전지의 충방전을 중단시킴으로써 폭발 또는 발화의 위험으로부터 이차전지를 보호하기 위한 장치가 널리 사용되고 있다.
종래에는 이차전지의 표면의 온도를 측정하여 그 값을 모니터하였다. 다만 이 경우 이차전지 내부의 온도를 실시간으로 측정하기 어려워 사후적인 조치만이 가능하고 사전적 예방 조치가 사실상 불가능한 단점이 있었다. 즉, 침상 물체의 관통 등으로 이차전지 내부에서 단락이 발생하여 단락 전류가 흐르면, 양극판 및 음극판에서 급격한 전기화학적 반응이 발생하여 열이 발생되며, 이 열은 주변으로 전도되어 이차전지 표면의 온도가 빠른 속도로 상승하게 된다. 따라서 일단 단락 현상이 발생한 시점을 기준으로 이차전지의 표면의 온도가 급상승하기까지는 일정한 시간이 소요되므로 표면의 온도를 측정함으로써 과열을 감지한 시점은 이미 단락 전류가 상당히 흘러 안전성에 문제가 야기된 이후가 되는 것이다.
이러한 문제를 해결하기 위해 실시간으로 전지 내부의 온도를 측정하기 위한 기술이 개발되고 있으며, 종래의 기술(KR2014-0131716)은 내부에 RTD(Resistance Thermometer Detector), 서머커플러(Thermocoupler), 서미스터(Thermistor)와 같은 온도 센서를 셀 표면에 부착하여 측정하였으나, 제조시 별도의 추가적인 공정으로 센서부재를 부착하였는 바, 공정의 복잡화, 비용의 증가 및 전지 용량의 감소를 야기하였을 뿐만 아니라, 작동 과정에 있어서의 센서부재의 잦은 고장 및 측정 온도의 오류 또는 오차, 젤리-롤형, 스택 및 스택/폴딩형 이차전지 등 다양한 형태의 이차전지에의 적용의 한계 등의 문제점이 있었다.
구체적으로, 전지셀을 장기적으로 사용시 전극의 스웰링 현상이 발생할 수 있으며, 이 경우, 서머커플러(thermocoupler)와 같은 온도 측정 센서가 전극을 부분적으로 가압하여 전극의 모형을 변형시킬 수 있는 바, 이러한 가압 및 변형은 전극에서 활물질의 박리 또는 분리막의 파단 현상을 야기할 수 있고, 서머커플러, 서미스터(thermistor)에 의한 측정 시, 응답 속도(25 ms)로 인한 정확한 온도 측정의 불가 시점이 존재하는 문제점이 존재하였다.
또한, 전지셀의 전해액에 의해 상기 온도 측정 센서가 부식이 되어 저전압이 발생할 수 있는 금속 이온을 발생시키는 문제점이 있다.
이에, 제조가 용이하고, 제조 비용을 최소화하며 전지 용량의 감소를 방지하면서도 다양한 이차전지에 적용이 가능한 내부 온도의 측정이 가능한 이차전지의 개발의 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이 양극 및 음극에 전극활물질을 포함하는 전극 합제가 도포되어 있고, 상기 양극 및 음극에는 외부 입출력 단자로서 전극 단자가 형성되어 있으며 외부 입출력 단자의 대향 위치에 저항 측정용 단자를 형성하는 경우, 소망하는 효과를 발휘할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 전지셀은, 양극, 음극 및 양극과 음극 사이에 분리막이 개재되어 있는 구조의 전극조립체를 포함하는 전지셀로서,
상기 양극 및 음극은 집전체의 일면 또는 양면에 전극활물질을 포함하는 전극 합제가 도포되어 있고;
상기 양극 및 음극에는 각각 전지셀의 외부 입출력 단자로서 제 1 양극 단자와 제 1 음극 단자가 형성되어 있으며;
상기 양극 및 음극 중의 적어도 하나에는 외부 입출력 단자의 대향 위치에 집전체의 저항을 측정하기 위한 저항 측정용 단자가 형성되어 있는 것을 특징으로 한다.
상기 설명한 바와 같이, 일반적으로 전지셀의 온도의 온도를 측정하는 방식으로서, 전지 표면의 온도를 측정하거나 전지셀의 내부에 별도의 센서 부재를 삽입하는 방식이 이용된다.
그러나 본 발명은 전지셀의 양극 또는 음극 중 적어도 하나에 저항 측정용 단자를 형성하고 상기 저항 측정용 단자를 통해 실시간으로 저항 변화를 측정하는 방식으로 이루어지고, 특정 금속의 온도에 따른 저항 곡선은 특정되어 있으므로 이차전지 작동시의 양극 또는 음극의 저항의 변화를 측정하여 전지셀 내부의 온도를 실시간으로 측정할 수 있다.
따라서, 실시간으로 전지셀의 온도를 측정함으로써 폭발이나 발화에 대비한 사전적 보호 장치를 작동시킬 수 있고, 온도 변화에 민감한 집전체 상의 온도를 직접 측정함으로써 보다 정확한 전지셀의 온도를 측정할 수 있으며, 별도의 센서 부재를 부착할 필요 없이 양극 또는 음극 상에 단자를 결합시킴으로써 제조상의 용이성이 확보되고, 고가의 센서를 대체함으로써 비용이 감소되며, 양극 및 음극의 제조 단계에서 상기 저항측정 단자의 제작 및 부착이 가능하므로 젤리-롤형, 스택형 및 스택/폴딩형 전극조립체를 제조함에 있어서도 본 발명의 전지셀을 용이하게 적용할 수 있는 효과를 제공한다.
하나의 구체적인 예에서, 상기 제 1 양극 단자 및 제 2 음극 단자 중에서 선택된 하나의 외부 입출력 단자, 및 상기 선택된 외부 입출력 단자와 동일 극성의 저항 측정용 단자를 전기적으로 연결하여 집전체의 저항을 측정하는 저항 측정 부재; 및 상기 저항 측정 부재로부터 측정된 집전체의 저항 값에 대응하여 전지셀의 온도를 추정하는 제어부를 더 포함할 수 있다.
상기 하나의 외부 입출력 단자 및 이와 동일한 극성을 가지는 저항 측정용 단자는 특별히 그 종류가 한정되지 않으나, 하나의 구체적인 예에서, 구리, 알루미늄 또는 이들의 합금으로 이루어진 연결부재로 전기적으로 연결될 수 있고, 상기 제어부는, 집전체를 형성하는 금속 자체의 저항에 따른 온도 상관 관계를 바탕으로, 측정된 집전체의 저항 값을 통해 온도를 추정하는 것을 특징으로 한다.
이 경우, 상기 양극 또는 음극에는 저항 측정용 전극 단자가 형성되어 있을 수 있고, 상기 전극조립체는 하나의 구체적인 예로서, 하나의 양극 시트와 하나의 음극 시트가 분리막이 개재된 상태로 권취되어 있는 구조로 이루어져 있으며, 양극 시트의 일측 단부에는 전극 합체가 도포되어 있지 않은 제 1 양극 무지부가 형성되어 있고, 음극 시트의 일측 단부에는 전극 합체가 도포되어 있지 않은 제 1 음극 무지부가 형성되어 있으며, 상기 제 1 양극 무지부의 집전체 상에 제 1 양극 단자가 결합되어 있고, 상기 제 1 음극 무지부의 집전체 상에 제 1 음극 단자가 결합되어 있을 수 있다.
재언하면, 본 발명에 따른 전지셀은 긴 시트 형의 양극과 음극들을 분리막이 개재되어 있는 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체를 포함할 수 있고, 양극 시트와 음극 시트의 일측 단부 각각에는 전극 합제가 도포되어 있지 않은 무지부가 형성되고 이에 전극 단자가 결합되어 있는 구조를 가질 수 있다.
이 경우, 상기 제 1 양극 무지부에 대향하는 위치에서 양극 시트의 타측 단부에는 전극 합체가 도포되어 있지 않은 제 2 양극 무지부가 형성되어 있고, 상기 제 2 양극 무지부의 집전체 상에 저항 측정용 양극 단자가 결합되어 있을 수 있다.
또한, 상기 제 1 음극 무지부에 대향하는 위치에서 음극 시트의 타측 단부에는 전극 합체가 도포되어 있지 않은 제 2 음극 무지부가 형성되어 있고, 상기 제 2 음극 무지부의 집전체 상에 저항 측정용 음극 단자가 결합되어 있을 수 있다.
이 경우, 상기 저항 측정용 전극 단자는 전극 합제가 도포되어 있지 않은 무지부상이라면 특별히 그 위치가 한정되는 것은 아니지만, 저항은 가장 짧은 거리로 측정이 되기 때문에 측정 온도의 범위를 넓게 하기 위해서는, 제 1 양극 무지부에 대향하는 위치에 위치하는 제 2 양극 무지부 또는 제 1 음극 무지부에 대향하는 위치에 위치하는 제 2 음극 무지부 상에 위치하는 것이 바람직하다. 재언하면, 전극의 양 끝단에 위치하는 것이 바람직하다. 다만, 특정 부위의 온도만을 측정하고자 하는 경우에는 전극 단자의 위치는 저항이 측정되는 범위에 포함되어야 한다.
한편, 본 발명에 따른 전지셀에 포함되는 전극조립체는, 하나의 구체적인 예에서, 복수의 양극판들과 복수의 음극판들이 분리막이 개재된 상태로 적층되어 있는 구조로 이루어져 있으며, 양극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 양극 탭이 외향 돌출되어 있고, 음극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 음극 탭이 외향 돌출되어 있으며, 양극 탭들이 양극 리드에 결합되어 제 1 양극 단자를 형성하고 있고, 상기 음극 탭들이 음극 리드에 결합되어 제 1 음극 단자를 형성하고 있을 수 있다.
재언하면, 본 발명에 따른 전지셀은 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 구조(스택형)의 전극조립체를 포함할 수 있고, 복수의 전극판들 각각의 일측 단부에는 전극 탭이 돌출되어 있으며 이들이 전극 리드에 결합되어 전극 단자를 형성하는 구조를 가질 수 있다.
이 경우, 상기 양극판들 중의 하나의 양극 판에는 양극 탭들에 대향하는 위치에서 저항 측정용 양극 탭이 외향 돌출되어 있을 수 있으며, 상기 음극판들 중의 하나의 음극 판에는 음극 탭들에 대향하는 위치에서 저항 측정용 음극 탭이 외향 돌출되어 있을 수 있다.
또한, 본 발명에 따른 전지셀에 포함되는 전극조립체는, 하나의 구체적인 예에서, 각각 하나 이상의 양극판과 하나 이상의 음극판이 분리막이 개재되어 있는 상태로 적층된 구조를 가진 단위셀들이 분리필름에 의해 권취되어 있는 구조로 이루어져 있으며, 상기 단위셀들에서 양극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 양극 탭이 외향 돌출되어 있고, 음극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 음극 탭이 외향 돌출되어 있으며, 권취된 단위셀들의 양극 탭들이 양극 리드에 결합되어 제 1 양극 단자를 형성하고 있고, 권취된 단위셀들의 음극 탭들이 음극 리드에 결합되어 제 1 음극 단자를 형성하고 있을 수 있다.
재언하면, 본 발명에 따른 전지셀은 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조(스택/폴딩형)의 전극조립체를 포함할 수 있고, 전극판들 각각의 일측 단부에는 전극 탭이 돌출되어 있고 전극 탭들이 전극 리드에 결합되어 전극 단자를 형성하는 구조를 가질 수 있다.
이 경우, 상기 권취된 단위셀들에서 양극판들 중의 하나의 양극판에는 양극 탭들에 대향하는 위치에서 저항 측정용 양극 탭이 외향 돌출되어 있을 수 있고, 상기 권취된 단위셀들에서 음극판들 중의 하나의 음극판에는 음극 탭들에 대향하는 위치에서 저항 측정용 음극 탭이 외향 돌출되어 있을 수 있다.
한편, 본 발명에 따른 전지셀은, 상기 저항 측정용 단자에 수직으로 인접한 양극면 및/또는 음극면에 추가적인 저항 측정용 단자를 형성할 수 있다. 상기 복수의 저항 측정용 단자들은 연결부재에 의해 전기적으로 연결되어 저항 측정 부재에 의해 집전체의 저항이 측정되고, 이로부터 측정된 저항 값에 대응하여 전지셀의 온도를 추정할 수 있다. 따라서, 전극에 저항 측정용 단자를 추가적으로 형성함으로써, 기존의 전극 단자를 사용하지 않더라도 전지셀의 저항을 측정할 수 있는 바, 다양한 형태의 전지셀의 제조에 대해 유연하게 대처할 수 있는 효과를 발휘한다.
하나의 구체적인 예에서, 본 발명에 따른 전지셀은, 하나의 양극 탭 및 음극 탭과, 각각 한 쌍의 저항 측정용 양극 탭 및 저항 측정용 음극 탭으로 구성될 수 있고, 연결부재에 의해 상기 한 쌍의 저항 측정용 양극 탭 및 저항 측정용 음극 탭은 전기적으로 연결되어 있으며, 저항 측정 부재는 상기 연결부재에 연결되어 집전체의 저항을 측정하고, 제어부를 통해 전지셀의 온도를 추정한다.
또한 본 발명은 상기 전지셀을 포함하는 전지팩을 제공하며 이때, 상기 제어부는 측정된 온도가 임계치 이상일 때 전지셀의 외부 입출력 단자의 전기적 연결을 해제하는 기능을 추가로 포함할 수 있다.
따라서, 본 발명에 따른 전지팩은, 저항 측정 단자를 통해 전지셀의 저항 변화를 실시간으로 정확히 예측하고, 전지의 비정상적인 작동에 따라 전지가 과열되더라도, 제어부에 미리 설정된 임계 온도 이상으로 전지의 온도가 상승하면 외부 입출력 단자의 전기적 연결을 자동적으로 해제함으로써 폭발 또는 발화를 사전에 방지하여 안전성이 향상된 전지팩을 제공하는 효과를 발휘한다.
참고로, 상기 전지팩에 포함되어 있는 전지셀은 리튬 이차전지일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
이러한 리튬 이차전지는 양극, 음극, 분리막 및 리튬염 함유 비수 전해액으로 구성되어 있으며, 이들은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
본 발명은 또한 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 상기 디바이스는 휴대폰, 휴대용 컴퓨터, 스마트폰, 스마트 패드, 넷북, 웨어러블 전자기기, LEV(Light Electronic Vehicle), 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 및 전력저장장치로부터 선택될 수 있으며, 전지팩, 디바이스의 구조 및 그것의 제조 방법 역시 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
도 1은 본 발명에 따른 양극과 음극을 나타내는 사시도이다.
도 2는 본 발명에 따른 양극에 저항측정부재와 제어부가 결합되어 있는 것을 나타내는 평면도이다.
도 3은 본 발명에 따른 양극, 분리막, 음극이 순서대로 적층되고 양극 및 음극에 각각 전극단자 및 저항측정용 전극 단자가 결합되어 있는 것을 나타내는 사시도이다.
도 4는 양극 단자 및 저항 측정용 양극 단자와 양극판의 결합 부위를 나타내는 확대도이다.
도 5는 음극 단자 및 저항 측정용 음극 단자와 음극판의 결합 부위를 나타내는 확대도이다.
도 6은 본 발명에 따른 양극 시트와 음극 시트가 분리막이 개재된 상태로 권취되어 있는 구조를 나타내는 사시도이다.
도 7은 하나의 양극판과 음극판이 분리막이 개재된 상태로 적층되어 있는 구조를 나타내는 사시도이다.
도 8은 하나의 양극판과 하나의 음극판이 분리막이 개재된 상태로 적층되고 저항측정부재와 제어부가 결합되어 있는 구조를 나타내는 사시도이다.
도 9는 저항 측정용 양극 탭을 추가하여 저항 측정용 양극 탭 사이의 저항을 측정하는 것을 나타내는 사시도이다.
도 10은 복수의 양극판들과 복수의 음극판들이 분리막이 개재된 상태로 적층되고 저항측정부재와 제어부가 결합되어 있는 구조를 나타내는 사시도이다.
도 11은 도 9의 일측부를 나타내는 확대 단면도이다.
도 12는 각각 하나 이상의 양극판과 하나 이상의 음극판이 분리막이 개재되어 있는 상태로 배열되어 있는 것을 나타내는 평면도이다.
도 13은 각각 하나 이상의 양극판과 하나 이상의 음극판이 분리막이 개재되어 있는 상태로 적층된 구조를 가진 단위셀들이 분리필름에 의해 권취되어 있는 구조를 나타내는 정면도이다.
이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명에 따른 양극과 음극을 나타내는 사시도가 도시되어 있고, 도 2에는 본 발명에 따른 양극에 저항측정부재와 제어부가 결합되어 있는 것을 나타내는 평면도가 도시되어 있다.
도 1과 도 2를 함께 참조하면, 본 발명에 따른 전지셀(10)은 양극(100)과 음극(200) 및 상기 양극(100)과 음극(200) 사이에 분리막(300)이 개재되어 있는 구조로서, 상기 전극(100, 200)에는 각각 집전체(110, 210)의 일면 또는 양면에 전극 활물질(120, 220)을 포함하는 전극 합제가 도포되어 있다.
상기 전극(100, 200)에는 각각 전지셀(10)의 외부 입출력 단자로서 제 1 전극 단자(130, 230)이 형성되어 있고, 상기 전극(100, 200) 중 적어도 하나에는 제 1 전극 단자(130, 230)의 대향 위치에 집전체(110, 210)의 저항을 측정하기 위한 저항 측정용 단자(150, 250)가 형성되어 있다.
구체적으로, 상기 양극(100)에는 저항 측정용 양극 단자(150)가 형성되어 있고, 상기 음극(200)에는 저항 측정용 음극 단자(250)가 형성되어 있다.
본 발명에 따른 전지셀은, 하나의 구체적인 예에서, 상기 제 1 양극 단자(130) 및 제 1 음극 단자(230) 중에서 선택된 하나의 외부 입출력 단자, 상기 선택된 외부 입출력 단자와 동일한 극성을 가지는 저항 측정용 단자(150, 250) 및 저항 측정 부재(20)가 연결부재(40)에 의해 전기적으로 연결되어 집전체(110, 210) 상의 저항을 측정한다.
상기 저항 측정 부재(20)로부터 측정된 집전체(110, 210)의 저항 값은 제어부(30)에 입력되고, 제어부(30)에서는 입력된 저항 값을 온도에 따른 저항 곡선 그래프에 적용하여 집전체(110, 210)의 현재 온도를 추정한다.
도 3에는 본 발명에 따른 양극, 분리막, 음극이 순서대로 적층되고 양극 및 음극에 각각 전극단자 및 저항측정용 전극 단자가 결합되어 있는 것을 나타내는 사시도가 도시되어 있고, 도 4에는 양극 단자 및 저항측정용 양극 단자의 결합 부위를 나타내는 확대도가 도시되어 있으며, 도 5에는 음극 단자 및 저항측정용 음극 단자의 결합 부위를 나타내는 확대도가 도시되어 있고, 도 6에는 본 발명에 따른 양극 시트와 음극 시트가 분리막이 개재된 상태로 권취되어 있는 구조를 나타내는 사시도가 도시되어 있다.
도 3 내지 도 6을 함께 참조하면, 본 발명에 따른 전극조립체는, 하나의 구체적인 예에서, 하나의 양극 시트(100)와 하나의 음극 시트(200)가 분리막(300)이 개재된 상태로 권취되어 있는 구조를 가진다. 이때, 양극 시트(100)의 일측 단부에는 전극 합제가 도포되어 있지 않은 제 1 양극 무지부(160)가 형성되어 있고, 음극 시트(200)의 일측 단부에는 전극 합체가 도포되어 있지 않은 제 1 음극 무지부(260)가 형성되어 있다.
본 발명에 따른 전지셀(10)은 상기 제 1 양극 무지부(160)의 양극 집전체(110) 상에 제 1 양극 단자(130)가 결합되어 있고, 상기 제 1 음극 무지부(260)의 음극 집전체(210) 상에 제 1 음극 단자(230)가 결합되어 있다.
하나의 구체적인 예에서, 상기 제 1 양극 무지부(160)에 대향하는 위치에서 양극 시트(100)의 타측 단부에는 전극 합체가 도포되어 있지 않은 제 2 양극 무지부(170)가 형성되어 있고, 상기 제 2 양극 무지부(170)의 집전체(110) 상에 저항 측정용 양극 단자(150)가 결합되어 있거나, 상기 제 1 음극 무지부(260)에 대향하는 위치에서 음극 시트(200)의 타측 단부에는 전극 합체가 도포되어 있지 않은 제 2 음극 무지부(270)가 형성되어 있고, 상기 제 2 음극 무지부(270)의 집전체(210) 상에 저항 측정용 음극 단자(250)가 결합되어 있다.
따라서, 상기 젤리-롤형 전극조립체의 경우, 음극 시트(200)에 형성되어 있는 상기 제 1 음극 단자(230)와 저항 측정용 음극 단자(250)는 연결부재(40)에 의해 전기적으로 연결되어 집전체(110, 210)의 저항 값이 저항 측정 부재(20)에 의해 측정되고, 측정된 저항 값은 제어부(30)에 입력되어 집전체(110, 210)의 온도를 실시간으로 추정한다.
도 7에는 하나의 양극판과 음극판이 분리막이 개재된 상태로 적층되어 있는 구조를 나타내는 사시도가 도시되어 있고, 도 8에는 하나의 양극판과 하나의 음극판이 분리막이 개재된 상태로 적층되고 저항측정부재와 제어부가 결합되어 있는 구조를 나타내는 사시도가 도시되어 있다.
도 7 및 도 8을 함께 참조하면, 본 발명에 따른 전지셀은, 하나의 구체적인 예에서, 양극 집전체(110)의 양면에 양극 활물질(120)을 포함하는 양극 합제가 도포되어 있는 양극판(100)과 음극 집전체(210)의 양면에 음극 활물질(220)을 포함하는 음극 합제가 도포되어 있는 음극판(200)이 분리막(300)이 개재된 상태로 적층되어 있는 구조로서, 전극판(100, 200) 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 전극 탭(180, 280)이 외향 돌출되어 있고, 전극 탭(180, 280)은 전극 리드(도시하지 않음)에 결합되어 제 1 전극 단자(130, 230)를 형성한다.
이 경우, 상기 전극판(100, 200)에는 전극 탭(180, 280)에 대향하는 위치에서 저항 측정용 전극 탭(190, 290)이 외향 돌출되어 있으며, 연결부재(40)에 의해 이들 전극 탭(180, 280), 저항 측정용 전극 탭(190, 290) 및 저항 측정 부재(20)가 전기적으로 연결되어 있고, 추가적으로 저항 값을 입력하여 전지셀의 온도를 추정하는 제어부(30)를 포함하고 있다.
이러한 스택형 전극조립체는 하나의 구체적인 예에서, 양극판(100)의 일측 단부에 양극 탭(180)이 돌출되고, 이는 양극 리드(도시하지 않음)와 결합하여 제 1 양극 단자(130)를 형성하며 상기 양극 탭(180)에 대항하는 위치에 있는 저항 측정용 양극 탭(190)과 연결부재(40)에 의해 전기적으로 연결되어 양극 집전체(110)의 저항 값이 저항 측정 부재(20)에 의해 측정되고, 측정된 저항 값은 제어부(30)에 입력되어 양극 집전체(110)의 온도를 실시간으로 측정한다.
도 9에는 저항 측정용 양극 탭을 추가하여 저항 측정용 양극 탭 사이의 저항을 측정하는 것을 나타내는 사시도가 도시되어 있다.
도 9를 참조하면, 본 발명에 따른 전지셀(10)은, 하나의 구체적인 예에서, 한 쌍의 전극 탭(180, 280)과 각각 한 쌍의 저항 측정용 전극 탭(190, 190, 290, 290)으로 구성되고, 연결부재(40)에 의해 한 쌍의 저항 측정용 양극 탭(190, 190)이 전기적으로 연결되어 있으며, 추가적으로 저항 값을 입력하여 전지셀의 온도를 추정하는 제어부(30)를 포함하고 있다. 따라서, 본 발명에 따른 전지셀(10)의 내부 온도를 측정하기 위해 반드시 기존의 전극 탭(180, 280)을 사용할 필요는 없고, 저항 측정용 전극 탭(190, 290)를 추가하여 집전체(110, 210)을 측정할 수 있다.
도 10에는 복수의 양극판들과 복수의 음극판들이 분리막이 개재된 상태로 적층되고 저항측정부재와 제어부가 결합되어 있는 구조를 나타내는 사시도가 도시되어 있고, 도 11에는 도 10의 일측부를 나타내는 확대 단면도가 도시되어 있다.
도 10 및 도 11을 도 7과 함께 참조하면, 본 발명에 따른 전지셀(10)은, 하나의 구체적인 예에서, 도 7에 나타낸 하나의 양극판(100)과 음극판(200)이 분리막(300)을 개재한 상태로 적층되어 있는 구조가 복수 적층되어 있는 구조를 가진다. 구체적으로, 양극 집전체(110)의 양면에 양극 활물질(120)을 포함하는 양극 합제가 도포되어 있는 양극판(100), 분리막(300), 음극 집전체(210)의 양면에 음극 활물질(220)을 포함하는 음극 합제가 도포되어 있는 음극판(200), 분리막(300)의 순서로 순차적으로 적층되어 있는 스택형 구조를 가지고 있다.
도 12에는 각각 하나 이상의 양극판과 하나 이상의 음극판이 분리막이 개재되어 있는 상태로 배열되어 있는 것을 나타내는 평면도가 도시되어 있고, 도 13에는 각각 하나 이상의 양극판과 하나 이상의 음극판이 분리막이 개재되어 있는 상태로 적층된 구조를 가진 단위셀들이 분리필름에 의해 권취되어 있는 구조를 나타내는 정면도가 도시되어 있다.
도 12와 도 13을 함께 참조하면, 본 발명에 따른 전지셀(10)은, 하나의 구체적인 예에서, 하나 이상의 양극판(100)과 하나 이상의 음극판(200)이 분리막(300)이 개재되어 있는 상태로 적층된 구조를 가진 단위셀들이 분리필름(50)에 의해 권취되어 있는 구조를 가진다.
이때, 상기 단위셀들이 전극판들(100, 200) 각각의 일부에는 전극 탭(180, 280)이 외향 돌출되어 있고, 상기 전극 탭들(180, 280)은 전극 리드(도시하지 않음)에 결합되어 전극 단자(130, 230)을 형성하고 있으며, 상기 단위셀들에서 전극판들 중 하나의 전극판(100, 200)에는 전극 탭들(180, 280)에 대향하는 위치에서 저항 측정용 전극 탭(190, 290)이 형성되어 있다.
이러한 스택/폴딩형 전극조립체는 하나의 구체적인 예에서, 양극판(100)의 일측 단부에 양극 탭(180)이 돌출되고, 이는 양극 리드(도시하지 않음)와 결합하여 제 1 양극 단자(130)를 형성하며 상기 양극 탭(180)에 대항하는 위치에 있는 저항 측정용 양극 탭(190)과 연결부재(40)에 의해 전기적으로 연결되어 양극 집전체(110)의 저항 값이 저항 측정 부재(20)에 의해 측정되고, 측정된 저항 값은 제어부(30)에 입력되어 양극 집전체(110)의 온도를 실시간으로 측정한다.
또한, 본 발명에 따른 전지셀은, 하나의 구체적인 예에서, 도 12에 도시된 바와 같이, 최외곽이 양극판(100)으로 구성되는 A형 바이셀(60) 및 최외곽이 음극판(200)으로 구성되는 C형 바이셀(70)들이 분리필름(50)에 의해 권취되어 있는 구조를 형성하고 있다.
이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상의 설명과 같이, 본 발명에 따른 전지셀은 양극 및 음극 중의 적어도 하나에 외부 입출력 단자의 대향 위치에 집전체의 저항을 측정하기 위한 저항 측정용 단자를 형성하여 전지셀의 집전체 온도를 실시간으로 측정함으로써 사전적 보호 장치를 작동시킬 수 있고, 보다 정확하게 전지셀 내부의 온도를 감지할 수 있으므로 안전성이 보다 향상되며, 제조상의 공정성 및 경제성이 우수하고, 다양한 형태의 전극조립체에 적용이 가능한 전지셀을 제공하는 효과가 있다.

Claims (15)

  1. 양극, 음극 및 양극과 음극 사이에 분리막이 개재되어 있는 구조의 전극조립체를 포함하는 전지셀로서,
    상기 양극 및 음극은 집전체의 일면 또는 양면에 전극활물질을 포함하는 전극 합제가 도포되어 있고;
    상기 양극 및 음극에는 각각 전지셀의 외부 입출력 단자로서 제 1 양극 단자와 제 1 음극 단자가 형성되어 있으며;
    상기 양극 및 음극 중의 적어도 하나에는 외부 입출력 단자의 대향 위치에 집전체의 저항을 측정하기 위한 저항 측정용 단자가 형성되어 있는 것을 특징으로 하는 전지셀.
  2. 제 1 항에 있어서, 상기 양극에는 저항 측정용 양극 단자가 형성되어 있고, 상기 음극에는 저항 측정용 음극 단자가 형성되어 있으며, 집전체의 저항 측정을 측정하는 저항 측정부재 및 전지셀의 온도를 추정하는 제어부를 더 포함하는 것을 특징으로 하는 전지셀.
  3. 제 1 항에 있어서, 상기 전극조립체는,
    하나의 양극 시트와 하나의 음극 시트가 분리막이 개재된 상태로 권취되어 있는 구조로 이루어져 있으며;
    양극 시트의 일측 단부에는 전극 합체가 도포되어 있지 않은 제 1 양극 무지부가 형성되어 있고, 음극 시트의 일측 단부에는 전극 합체가 도포되어 있지 않은 제 1 음극 무지부가 형성되어 있으며;
    상기 제 1 양극 무지부의 집전체 상에 제 1 양극 단자가 결합되어 있고, 상기 제 1 음극 무지부의 집전체 상에 제 1 음극 단자가 결합되어 있는 것을 특징으로 하는 전지셀.
  4. 제 3 항에 있어서, 상기 제 1 양극 무지부에 대향하는 위치에서 양극 시트의 타측 단부에는 전극 합체가 도포되어 있지 않은 제 2 양극 무지부가 형성되어 있고, 상기 제 2 양극 무지부의 집전체 상에 저항 측정용 양극 단자가 결합되어 있는 것을 특징으로 하는 전지셀.
  5. 제 3 항에 있어서, 상기 제 1 음극 무지부에 대향하는 위치에서 음극 시트의 타측 단부에는 전극 합체가 도포되어 있지 않은 제 2 음극 무지부가 형성되어 있고, 상기 제 2 음극 무지부의 집전체 상에 저항 측정용 음극 단자가 결합되어 있는 것을 특징으로 하는 전지셀.
  6. 제 1 항에 있어서, 상기 전극조립체는,
    복수의 양극판들과 복수의 음극판들이 분리막이 개재된 상태로 적층되어 있는 구조로 이루어져 있으며;
    양극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 양극 탭이 외향 돌출되어 있고, 음극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 음극 탭이 외향 돌출되어 있으며;
    양극 탭들이 양극 리드에 결합되어 제 1 양극 단자를 형성하고 있고, 상기 음극 탭들이 음극 리드에 결합되어 제 1 음극 단자를 형성하고 있는 것을 특징으로 하는 전지셀.
  7. 제 6 항에 있어서, 상기 양극판들 중의 하나 양극 판에는 양극 탭들에 대향하는 위치에서 저항 측정용 양극 탭이 외향 돌출되어 있는 것을 특징으로 하는 전지셀.
  8. 제 6 항에 있어서, 상기 음극판들 중의 하나의 음극 판에는 음극 탭들에 대향하는 위치에서 저항 측정용 음극 탭이 외향 돌출되어 있는 것을 특징으로 하는 전지셀.
  9. 제 1 항에 있어서, 상기 전극조립체는,
    각각 하나 이상의 양극판과 하나 이상의 음극판이 분리막이 개재되어 있는 상태로 적층된 구조를 가진 단위셀들이 분리필름에 의해 권취되어 있는 구조로 이루어져 있으며;
    상기 단위셀들에서 양극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 양극 탭이 외향 돌출되어 있고, 음극판들 각각의 일측 단부에는 전극 합체가 도포되어 있지 않은 음극 탭이 외향 돌출되어 있으며;
    권취된 단위셀들의 양극 탭들이 양극 리드에 결합되어 제 1 양극 단자를 형성하고 있고, 권취된 단위셀들의 음극 탭들이 음극 리드에 결합되어 제 1 음극 단자를 형성하고 있는 것을 특징으로 하는 전지셀.
  10. 제 9 항에 있어서, 상기 권취된 단위셀들에서 양극판들 중의 하나 양극 판에는 양극 탭들에 대향하는 위치에서 저항 측정용 양극 탭이 외향 돌출되어 있는 것을 특징으로 하는 전지셀.
  11. 제 9 항에 있어서, 상기 권취된 단위셀들에서 음극판들 중의 하나의 음극 판에는 음극 탭들에 대향하는 위치에서 저항 측정용 음극 탭이 외향 돌출되어 있는 것을 특징으로 하는 전지셀.
  12. 제 2 항에 있어서, 상기 제어부는, 집전체를 형성하는 금속 자체의 저항에 따른 온도 상관 관계를 바탕으로, 측정된 집전체의 저항 값을 통해 온도를 추정하는 것을 특징으로 하는 전지셀.
  13. 제 1 항에 있어서, 상기 저항 측정용 단자에 수직으로 인접한 전극면에는 저항 측정용 단자가 추가적으로 형성되어 있고,
    상기 저항 측정용 단자들을 연결부재에 의해 전기적으로 연결하여 집전체의 저항을 측정하는 것을 특징으로 하는 전지셀.
  14. 제 1 항 내지 제 13 항 중 어느 하나에 따른 전지셀을 포함하는 것을 특징으로 하는 전지팩.
  15. 제 14 항에 있어서, 상기 제어부는, 측정된 온도가 임계치 이상일 때, 전지셀의 외부 입출력 단자의 전기적 연결을 해제하는 기능을 추가로 포함하는 것을 특징으로 하는 전지팩.
PCT/KR2017/014296 2017-01-03 2017-12-07 내부의 온도를 측정할 수 있는 전지셀 WO2018128283A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17889679T PL3442073T3 (pl) 2017-01-03 2017-12-07 Ogniwo akumulatorowe zdolne do pomiaru temperatury wewnętrznej
CN201780021362.0A CN108886179B (zh) 2017-01-03 2017-12-07 能够测量电池单元的内部温度的电池单元
US16/093,391 US10897066B2 (en) 2017-01-03 2017-12-07 Battery cell capable of measuring inner temperature thereof
EP17889679.1A EP3442073B1 (en) 2017-01-03 2017-12-07 Battery cell capable of measuring internal temperature
JP2018550712A JP6860126B2 (ja) 2017-01-03 2017-12-07 内部温度の測定が可能な電池セル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0000678 2017-01-03
KR1020170000678A KR102105172B1 (ko) 2017-01-03 2017-01-03 내부의 온도를 측정할 수 있는 전지셀

Publications (1)

Publication Number Publication Date
WO2018128283A1 true WO2018128283A1 (ko) 2018-07-12

Family

ID=62791388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014296 WO2018128283A1 (ko) 2017-01-03 2017-12-07 내부의 온도를 측정할 수 있는 전지셀

Country Status (8)

Country Link
US (1) US10897066B2 (ko)
EP (1) EP3442073B1 (ko)
JP (1) JP6860126B2 (ko)
KR (1) KR102105172B1 (ko)
CN (2) CN108886179B (ko)
PL (1) PL3442073T3 (ko)
TW (1) TWI734880B (ko)
WO (1) WO2018128283A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092251A (zh) * 2018-10-24 2020-05-01 现代自动车株式会社 袋型电池单元

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374743B1 (ko) * 2018-02-19 2022-03-14 주식회사 엘지에너지솔루션 파우치형 이차 전지
KR20210039081A (ko) * 2019-10-01 2021-04-09 주식회사 엘지화학 서로 다른 형태의 전극을 포함하는 이차전지용 전극조립체
KR20210077512A (ko) * 2019-12-17 2021-06-25 주식회사 엘지에너지솔루션 내부 단락 평가용 전지 셀 및 이를 이용한 전지 셀의 내부 단락 평가 방법
US11525742B2 (en) * 2020-02-12 2022-12-13 GM Global Technology Operations LLC Temperature sensor
CN112952206A (zh) * 2021-01-04 2021-06-11 李曼琳 一种叠片锂电池电芯及叠片设备
US20220238932A1 (en) * 2021-01-28 2022-07-28 GM Global Technology Operations LLC Electrochemical cell monitoring assembly
CN113903969B (zh) * 2021-09-23 2022-07-08 宁德新能源科技有限公司 电芯及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548765Y2 (ja) * 1990-12-26 1997-09-24 新神戸電機株式会社 密閉形鉛蓄電池
KR101147237B1 (ko) * 2010-07-12 2012-05-18 삼성에스디아이 주식회사 전극조립체 및 이를 포함하는 이차 전지
JP2012174418A (ja) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd 非水電解質電池、及び電池システム
KR101392213B1 (ko) * 2013-02-22 2014-05-08 (주)오렌지파워 절연저항 측정부를 구비하는 전지케이스, 이를 포함하는 파우치형 전지 및 절연저항 측정 시스템
KR20140131716A (ko) 2013-05-06 2014-11-14 주식회사 엘지화학 이차전지, 이를 포함하는 이차전지 모듈 및 이차전지 팩
JP2016031829A (ja) * 2014-07-29 2016-03-07 昭和電工パッケージング株式会社 電気化学デバイスの絶縁性検査方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228177B2 (ja) * 2002-04-24 2009-02-25 日本電気株式会社 二次電池、および、それを用いたバッテリー
JP4218792B2 (ja) 2002-09-18 2009-02-04 マクセル北陸精器株式会社 非水二次電池
JP5151115B2 (ja) 2006-11-02 2013-02-27 日産自動車株式会社 双極型二次電池
KR100959871B1 (ko) 2007-12-17 2010-05-27 삼성에스디아이 주식회사 보호회로기판 및 이를 구비하는 배터리 팩
JP5380991B2 (ja) 2008-10-01 2014-01-08 日産自動車株式会社 双極型電池、その双極型電池を用いた組電池および車両
KR20100006491U (ko) 2008-12-17 2010-06-25 주식회사 엘지화학 전지팩용 온도 센서
JP5035428B2 (ja) 2010-04-28 2012-09-26 トヨタ自動車株式会社 電池温度測定装置および電池温度測定方法、電池の製造方法
KR101283022B1 (ko) 2011-06-10 2013-07-08 현대자동차주식회사 내부온도 측정이 가능한 연료전지의 스택
US8828570B2 (en) * 2011-06-29 2014-09-09 Hewlett-Packard Development Company, L.P. Battery temperature sensor
EP2741060B1 (en) 2011-08-01 2016-11-02 Alps Green Devices Co., Ltd. Battery device temperature measurement method
JP6146953B2 (ja) * 2012-01-31 2017-06-14 昭和電工パッケージング株式会社 電池用外装材およびリチウム二次電池
KR20130089376A (ko) 2012-02-02 2013-08-12 주식회사 엘지화학 온도 센서를 포함하는 이차전지
CN102694214A (zh) * 2012-05-22 2012-09-26 奇瑞汽车股份有限公司 一种锂离子电池温度的测量方法
WO2014203424A1 (ja) 2013-06-21 2014-12-24 Necエナジーデバイス株式会社 二次電池と電極の製造方法
WO2016167602A1 (ko) 2015-04-15 2016-10-20 주식회사 엘지화학 전해액 누액 감지용 와셔 및 이를 포함하는 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548765Y2 (ja) * 1990-12-26 1997-09-24 新神戸電機株式会社 密閉形鉛蓄電池
KR101147237B1 (ko) * 2010-07-12 2012-05-18 삼성에스디아이 주식회사 전극조립체 및 이를 포함하는 이차 전지
JP2012174418A (ja) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd 非水電解質電池、及び電池システム
KR101392213B1 (ko) * 2013-02-22 2014-05-08 (주)오렌지파워 절연저항 측정부를 구비하는 전지케이스, 이를 포함하는 파우치형 전지 및 절연저항 측정 시스템
KR20140131716A (ko) 2013-05-06 2014-11-14 주식회사 엘지화학 이차전지, 이를 포함하는 이차전지 모듈 및 이차전지 팩
JP2016031829A (ja) * 2014-07-29 2016-03-07 昭和電工パッケージング株式会社 電気化学デバイスの絶縁性検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3442073A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092251A (zh) * 2018-10-24 2020-05-01 现代自动车株式会社 袋型电池单元
US11031660B2 (en) * 2018-10-24 2021-06-08 Hyundai Motor Company Pouch type battery cell

Also Published As

Publication number Publication date
KR20180079924A (ko) 2018-07-11
CN108886179A (zh) 2018-11-23
US10897066B2 (en) 2021-01-19
CN108886179B (zh) 2021-05-28
TWI734880B (zh) 2021-08-01
CN208336422U (zh) 2019-01-04
JP6860126B2 (ja) 2021-04-14
EP3442073A1 (en) 2019-02-13
PL3442073T3 (pl) 2021-10-04
JP2019510351A (ja) 2019-04-11
EP3442073A4 (en) 2019-07-24
EP3442073B1 (en) 2020-11-25
KR102105172B1 (ko) 2020-04-27
US20190190092A1 (en) 2019-06-20
TW201830764A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018128283A1 (ko) 내부의 온도를 측정할 수 있는 전지셀
WO2014181950A1 (ko) 이차전지, 이를 포함하는 이차전지 모듈 및 이차전지 팩
WO2017073908A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2017061728A1 (ko) 전지셀의 팽창을 감지하기 위한 프로브를 포함하고 있는 전지모듈
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
WO2015167046A1 (ko) 이차 전지용 회로 기판 및 이를 포함하는 배터리 팩
WO2019050152A1 (ko) 벤팅 가스를 이용하여 커넥터를 파단시키는 구조를 갖는 배터리 모듈
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
WO2019074193A1 (ko) 원통형 이차전지 모듈 및 원통형 이차전지 모듈 생산 방법
WO2016032092A1 (ko) 전지모듈
WO2015046798A1 (ko) 온도 센서를 포함하는 전지모듈
WO2018151415A1 (ko) 열팽창성 테이프를 포함하는 안전성이 개선된 배터리 셀 및 이의 제조방법
WO2017078265A1 (ko) 배터리 모듈 및 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2022071759A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2019103393A1 (ko) 최외곽 전극의 구조 및 집전체의 재질에 의해 사용 안전성이 향상된 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
WO2021101027A1 (ko) 전극 조립체 및 그의 제조 방법
WO2020166803A1 (ko) 이차 전지 및 전지 모듈
WO2022149923A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2018074849A1 (ko) 2차 전지
WO2021182741A1 (ko) 이차전지 및 이의 리튬 석출 검출 방법
WO2018186601A1 (ko) 배터리 팩
WO2018143737A2 (ko) 이차 전지
WO2019045365A1 (ko) 열전달 부재를 포함하는 파우치형 이차전지
WO2023113122A1 (ko) 전해액 누액 검출기능이 구비된 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550712

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017889679

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017889679

Country of ref document: EP

Effective date: 20181109

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE