WO2018128185A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018128185A1
WO2018128185A1 PCT/JP2018/000055 JP2018000055W WO2018128185A1 WO 2018128185 A1 WO2018128185 A1 WO 2018128185A1 JP 2018000055 W JP2018000055 W JP 2018000055W WO 2018128185 A1 WO2018128185 A1 WO 2018128185A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
level measurement
user terminal
unit
cell
Prior art date
Application number
PCT/JP2018/000055
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
聡 永田
ジン ワン
リュー リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to BR112019013915A priority Critical patent/BR112019013915A2/pt
Priority to ES18735939T priority patent/ES2952660T3/es
Priority to US16/475,482 priority patent/US10728810B2/en
Priority to JP2018560405A priority patent/JP6725698B2/ja
Priority to EP18735939.3A priority patent/EP3562200B1/en
Priority to EP23175573.7A priority patent/EP4228311A1/en
Priority to CN201880006054.5A priority patent/CN110169114A/zh
Publication of WO2018128185A1 publication Critical patent/WO2018128185A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11, 12 or 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel.14 or Also referred to as after 15).
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC dual connectivity
  • CG Cell Group
  • CC cell
  • Inter-eNB CA inter-base station CA
  • a synchronization signal (PSS, SSS), a broadcast channel (PBCH), and the like that are used by the user terminal for the initial access operation are fixedly defined in advance. Assigned.
  • the user terminal can synchronize with the network and identify a cell (for example, cell ID) to which the user terminal is connected.
  • system information can be acquired by receiving broadcast channels (PBCH, SIB) after cell search.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Future wireless communication systems for example, 5G, NR are expected to realize various wireless communication services to meet different requirements (for example, ultra-high speed, large capacity, ultra-low delay, etc.) Yes.
  • NR is considering the provision of wireless communication services called eMBB (enhanced Mobile Broad Band), mMTC (massive Machine Type Communication), URLLC (Ultra Reliable and Low Latency Communications), and the like.
  • eMBB enhanced Mobile Broad Band
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communications
  • NR is studying to provide services using a very high carrier frequency of 100 GHz, for example.
  • carrier frequency 100 GHz
  • a beam (antenna directivity) can be formed by controlling the amplitude and / or phase of a signal transmitted / received from each element. This processing is also called beam forming (BF) and can reduce radio wave propagation loss.
  • BF beam forming
  • NR a scenario in which a cell is composed of a plurality of beams (multi-beam scenario) is being studied.
  • multi-beam scenario it is necessary to measure cell level quality and perform measurement reports for proper cell selection.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a user terminal and a wireless communication method capable of appropriately reporting a cell-level measurement result even when multibeam is applied. To do.
  • the user terminal which concerns on 1 aspect of this invention acquires the measurement result regarding one or more beams based on the receiving part which receives a predetermined signal, and the said predetermined signal, and uses the measurement result regarding the said one or more beam as the measurement result. And a measurement unit that obtains a cell level measurement result based on the measurement result.
  • cell level measurement results can be acquired appropriately, and cell selection / reselection can be performed appropriately.
  • FIG. 3A is a diagram illustrating a measurement model in the user terminal according to the first embodiment
  • FIG. 3B is a diagram illustrating a modified example of the evaluation unit. It is a figure which shows the measurement model in the user terminal in 2nd Embodiment. It is a figure which shows the measurement model in the user terminal in 3rd Embodiment. It is a figure which shows the measurement model in the user terminal in 4th Embodiment. It is a figure which shows the specific operation
  • Future wireless communication systems are expected to realize various wireless communication services so as to satisfy different requirements (for example, ultra-high speed, large capacity, ultra-low delay, etc.). For example, in a future wireless communication system, as described above, it is considered to perform communication using beam forming (BF).
  • BF beam forming
  • Digital BF can be classified into digital BF and analog BF.
  • Digital BF is a method of performing precoding signal processing (for a digital signal) on baseband.
  • parallel processing of inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) / digital-analog conversion (DAC: Digital to Analog Converter) / RF (Radio Frequency) is required for the number of antenna ports (RF Chain). Become.
  • IFFT Inverse Fast Fourier Transform
  • DAC Digital to Analog Converter
  • RF Radio Frequency
  • Analog BF is a method using a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration is easy and can be realized at low cost, but a plurality of beams cannot be formed at the same timing. Specifically, in analog BF, only one beam can be formed at a time for each phase shifter.
  • a base station for example, called eNB (evolved Node B), BS (Base Station), gNB, etc.
  • eNB evolved Node B
  • BS Base Station
  • gNB gNode B
  • one beam can be formed at a certain time. . Therefore, when a plurality of beams are transmitted using only the analog BF, the beams cannot be transmitted at the same time using the same time resource, and thus the beams need to be switched or rotated in time.
  • a hybrid BF configuration in which a digital BF and an analog BF are combined can also be used.
  • future wireless communication systems for example, 5G
  • introduction of large-scale MIMO is being studied.
  • the circuit configuration becomes expensive. For this reason, it is assumed that an analog BF configuration or a hybrid BF configuration is used in 5G.
  • BF operations include a single BF operation using a single BF (Single BF operation) and a multiple BF operation using a plurality of BFs (Multiple BF operation).
  • CSI-RS RSI for CSI measurement
  • MRS Mobility Reference Signal
  • the MRS only needs to be a signal that can be used as an RS for RRM measurement, and an existing synchronization signal (for example, PSS / SSS), an existing reference signal (for example, CRS, CSI-RS), or an extension thereof. / It may be a changed signal.
  • the MRS may be a PSS for NR (NR-PSS) and / or SSS (NR-SSS), or may be a new reference signal designed for RRM measurement.
  • the MRS may be transmitted in one or more beams using one or more antenna ports.
  • MRS may also be called a measurement signal, a beam-specific RS, an RS transmitted for each beam, or the like.
  • the UE may report information on received power (for example, RSRP (Reference Signal Received Power)).
  • RSRP Reference Signal Received Power
  • the UE uses a channel quality indicator (CQI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), a rank indicator (RI: Rank Indicator). ) Etc. may be reported.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • RI rank indicator
  • Etc. may be reported.
  • Mem report may be used interchangeably with “measurement and / or report”.
  • the UE uses the reference signal (for example, CRS) to measure and report the cell quality. To do. Since this measurement is performed in cell units, it is also referred to as cell level measurement.
  • CRS reference signal
  • Fig. 1 shows a measurement model in conventional cell level measurement.
  • the user terminal receives a measurement signal (not beamformed) transmitted in the cell at the physical layer.
  • Layer 1 filtering is applied to the measurement values measured at the physical layer indicated by point A.
  • the layer 1 filtering method is a design matter, for example, it may be filtered by measuring a plurality of samples. As long as the terminal can satisfy the quality requirement defined in the specification without applying the layer 1 filtering, the layer 1 filtering may not be used.
  • Measured results are reported from layer 1 to layer 3 after layer 1 filtering.
  • Layer 3 filtering is applied to the measurement result provided at point B.
  • Layer 3 filtering may be determined by the standard, and the necessary parameters are set by RRC signaling. Specifically, in the layer 3 filtering, the latest measurement result and the past measurement result are smoothed.
  • the evaluation criteria may be determined by a standard, and necessary parameters may be set by RRC signaling. A measurement result that satisfies the evaluation criteria is supplied to point D and transmitted to the wireless interface.
  • NR for mobility requiring RRC signaling (L3 mobility), it is possible to measure and report at least one of cell quality and beam quality using MRS, an NR synchronization signal or another reference signal. It has been agreed. Since the measurement of the beam is a measurement in units of beams, it is also called a beam level measurement.
  • the user terminal reports the cell level measurement result in the idle mode, and reports at least one of the cell level measurement result and the beam level measurement result in the connected mode. Therefore, L3 mobility is performed based on the cell level measurement result in the user terminal in the idle mode, and L3 mobility is performed based on at least one of the cell level measurement result and the beam level measurement result in the connected mode user terminal.
  • a user terminal in idle mode may use a cell-specific MRS scrambled with a cell identifier (which may be referred to as a physical cell ID (PCI: Physical Cell Identity), cell ID, etc.) for RRM measurement. May not be able to recognize the beams individually (Case 1).
  • PCI Physical Cell Identity
  • a beam can be identified even in a mode user terminal (Case 2).
  • the user terminal in the connection mode can perform RRM measurement using cell-specific MRS or beam-specific MRS. Since the user terminal can acquire beam information from the base station in the connection mode, it is considered that each user beam can be specified (case 3).
  • FIG. 2 schematically shows a DL beam specific MRS being transmitted while changing the beam in a multi-beam operation cell.
  • transmission sweeping periods 1 to Y are continuous in the time axis direction. In one sweeping period, the DL beam specific MRS is transmitted X times while changing the beam.
  • a beam level measurement result based on the DL beam specific MRS can be obtained for each beam.
  • RSRP can be used as the beam level measurement result based on the DL beam specific MRS, but RSRQ, RSSI, other measurement values, and the like may be used.
  • FIG. 2 shows beam level measurement results ResB i, j corresponding to individual beams. “I” indicates a measurement instance index, and “j” indicates a beam index.
  • the user terminal can obtain the beam level measurement result ResB 1,1 from the DL beam specific MRS transmitted by the beam of the beam index 1 in the sweeping period 1 of the measurement instance 1, and each of the beam index X from the beam index 2 Beam level measurement results ResB 1, 2, ... ResB 1, X can be obtained from the DL beam specific MRS transmitted by the beam.
  • the above RRM measurement is repeated X times in each measurement instance.
  • each beam level measurement result ResB i, j corresponding to (number of measurement instances) ⁇ (maximum value of the beam index) are obtained from one cell operated in multiple beams.
  • each beam level measurement result ResB i, j only indicates the quality of one beam transmitted locally in the cell, and is insufficient as an index indicating the quality of the entire cell. If the cell level measurement result is not specified in the case of the multi-beam scenario, an appropriate cell selection cannot be performed, and there is a possibility that throughput is deteriorated.
  • the present inventors have focused on the fact that the beam level measurement result alone in a multi-beam operation cell is not sufficient as an index indicating the quality of the entire cell, and the cell level measurement is performed based on the measurement result on one or more beams. Inspired to derive the results.
  • the user terminal acquires a cell level measurement result based on a measurement result regarding one or more beams. Thereby, even if multi-beam is applied, a cell level measurement result can be obtained, so that appropriate cell selection and the like can be performed.
  • the beam is distinguished by at least one of the following (1) to (9), but is not limited to this: (1) Resources (for example, time and / or Or frequency resource), (2) SS block (SS block index), (3) antenna port, (4) precoding (eg, presence / absence of precoding, precoding weight), (5) transmission power, (6) phase Rotation, (7) beam width, (8) beam angle (eg, tilt angle), and (9) number of layers.
  • Resources for example, time and / or Or frequency resource
  • SS block SS block index
  • antenna port (4) precoding (eg, presence / absence of precoding, precoding weight), (5) transmission power, (6) phase Rotation, (7) beam width, (8) beam angle (eg, tilt angle), and (9) number of layers.
  • beam used herein may be used interchangeably with at least one of the above (1) to (9).
  • beam is “resource”, “antenna port” Or the like.
  • 1st Embodiment is a user terminal which acquires a cell level measurement result using the measurement result regarding one or more beams before applying layer 1 filtering.
  • FIG. 3A shows a measurement model in the user terminal in the first embodiment.
  • a cell level conversion unit 51 serving as a measurement unit that converts a beam level measurement result into a cell level measurement result is provided in the previous stage of layer 1 filtering. Also, an L1 filter 21 that performs layer 1 filtering on the beam level measurement result and one cell level measurement result corresponding to the number of beams (beam indexes 1 to X), an L3 filter 31 that performs layer 3 filtering on the measurement result after layer 1 filtering, Further, an evaluation unit 41 is provided for evaluating whether the beam level measurement result and the cell level measurement result after layer 3 filtering satisfy the report criteria.
  • the base station sweeps and transmits the DL beam specific MRS while changing the beam in each of the sweep periods 1 to Y.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam 1 to X in each sweep period 1 to Y.
  • the beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ), which are DL beam specific MRS measurement results (for example, RSRP), are sequentially sent to the cell level conversion unit 51 and the L1 filter 21. Is input.
  • the beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ) are converted into cell level measurement results (ResC 1 to ResC 1 ). Y ).
  • the cell level measurement result (ResC 1 to ResC Y ) converted before the layer 1 filtering is input to the L1 filter 21.
  • the L1 filter 21 performs layer 1 filtering on the cell level measurement results (ResC 1 to ResC Y ), and layer the beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ). 1 filter.
  • the L1 filter 21 performs layer 1 filtering on the cell level measurement results (ResC 1 to ResC Y ) to obtain the cell level measurement results ResC_L1).
  • the L3 filter 31 performs layer 3 filtering on the cell level measurement result ResC_L1 after layer 1 filtering and layer 3 filtering on the beam level measurement result after layer 1 filtering.
  • the evaluation unit 41 evaluates whether the cell level measurement result after layer 3 filtering and the beam level measurement result after layer 3 filtering are combined to satisfy the report criteria. When the report criterion is satisfied, the cell level measurement result is reported in the idle mode, and at least one of the cell level measurement result and the beam level measurement result is reported in the connection mode.
  • the evaluation unit 41 comprehensively evaluates the cell level measurement result and the beam level measurement result. As shown in FIG. 3B, the evaluation unit 41 evaluates the cell level measurement result.
  • An evaluation unit that evaluates the beam level measurement result may be provided separately, and evaluation may be performed separately at the cell level and the beam level.
  • the cell level conversion unit 51 since the cell level conversion unit 51 converts the beam level measurement result into the cell level measurement result, the cell level measurement result can be reported and an appropriate cell can be selected. .
  • a 2nd embodiment is a user terminal which acquires a cell level measurement result using a measurement result about one or more beams after applying layer 1 filtering and before applying layer 3 filtering.
  • FIG. 4 shows a measurement model in the user terminal in the second embodiment.
  • a cell level conversion unit 52 is provided as a measurement unit that converts the beam level measurement result into the cell level measurement result. Also, an L1 filter 22 that performs layer 1 filtering on the beam level measurement results corresponding to the number of beams (beam indexes 1 to X), an L3 filter 31 that performs layer 3 filtering on the cell level measurement results and the beam level measurement results after layer 1 filtering, Further, an evaluation unit 41 is provided for evaluating whether the beam level measurement result and the cell level measurement result after layer 3 filtering satisfy the report criteria.
  • the base station sweeps and transmits the DL beam specific MRS while changing the beam in each of the sweep periods 1 to Y.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam 1 to X in each sweeping period 1 to Y.
  • Beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ), which are DL beam specific MRS measurement results (for example, RSRP), are sequentially input to the L1 filter 22.
  • the L1 filter 22 performs layer 1 filtering on the beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ).
  • the beam level measurement result (ResB_L1 all, 1 ... ResB_L1 all, X ) after layer 1 filtering is input to the cell level conversion unit 52 and the L3 filter 31.
  • the beam level measurement results (ResB_L1 all, 1 ... ResB_L1 all, X ) after layer 1 filtering are converted into cell level measurement results (ResC) in the cell level conversion unit 52.
  • the converted cell level measurement result (ResC) is input to the L3 filter 31 at the subsequent stage.
  • the L3 filter 31 performs layer 3 filtering on the cell level measurement result ResC after layer 1 filtering, and performs layer 3 filtering on the beam level measurement result after layer 1 filtering.
  • the evaluation unit 41 evaluates whether the cell level measurement result after the layer 3 filtering and the beam level measurement result after the layer 3 filtering satisfy the report standard as in the first embodiment. Note that the evaluation unit 41 may separate and evaluate the cell level and the beam level as shown in FIG. 3B.
  • the cell level conversion unit 52 converts the beam level measurement result into the cell level measurement result, the cell level measurement result can be reported, and appropriate cell selection becomes possible. .
  • a 3rd embodiment is a user terminal which acquires a cell level measurement result using a measurement result about one or more beams after applying layer 3 filtering.
  • FIG. 5 shows a measurement model in the user terminal in the third embodiment.
  • a cell level conversion unit 53 serving as a measurement unit that converts the beam level measurement result into the cell level measurement result is provided. Also, the L1 filter 22 that performs layer 1 filtering on the beam level measurement results corresponding to the number of beams (beam indexes 1 to X), the L3 filter 32 that performs layer 3 filtering on the beam level measurement results after layer 1 filtering, and further after layer 3 filtering The evaluation unit 41 is provided for evaluating whether the beam level measurement result and the cell level measurement result satisfy the report criteria.
  • the base station sweeps and transmits the DL beam specific MRS while changing the beam in each of the sweep periods 1 to Y.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam 1 to X in each sweeping period 1 to Y.
  • Beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ), which are DL beam specific MRS measurement results (for example, RSRP), are sequentially input to the L1 filter 22.
  • the L1 filter 22 performs layer 1 filtering on the beam level measurement results (ResB 1,1 ... ResB 1, X 1 to ResB Y, 1 ... ResB Y, X ).
  • the beam level measurement result (ResB_L1 all, 1 ... ResB_L1 all, X ) after layer 1 filtering is input to the L3 filter 32.
  • the L3 filter 32 performs layer 3 filtering on the beam level measurement result after layer 1 filtering.
  • the L3 filter 32 inputs the beam level measurement result (ResB_L3 all, 1 ... ResB_L3 all, X ) after layer 3 filtering to the cell level conversion unit 53 and the evaluation unit 41.
  • the beam level measurement result (ResB_L3 all, 1 ... ResB_L3 all, X ) after layer 3 filtering is input to the cell level conversion unit 53 and converted into the cell level measurement result ResC, and then the evaluation unit 41. To enter.
  • the evaluation unit 41 evaluates whether the cell level measurement result after the layer 3 filtering and the beam level measurement result after the layer 3 filtering satisfy the report standard as in the first embodiment. Note that the evaluation unit 41 may separate and evaluate the cell level and the beam level as shown in FIG. 3B.
  • the cell level conversion unit 53 converts the beam level measurement result into the cell level measurement result, the cell level measurement result can be reported, and appropriate cell selection becomes possible. .
  • a user terminal that acquires a cell level measurement result using a measurement result on one or more beams obtained based on a predetermined signal (for example, MRS) detected during a predetermined period. It is.
  • FIG. 6 shows a measurement model in the user terminal of the fourth embodiment.
  • the user terminal in the fourth embodiment corresponds to the above case 1 in which the beam cannot be identified.
  • the user terminal converts the measurement result of the signal detected without identifying the beam into the cell level measurement result in the L1 filter 23 that performs layer 1 filtering.
  • the converted cell level measurement result is input to the L3 filter 33 that performs layer 3 filtering.
  • the L3 filter 33 applies layer 3 filtering to the cell level measurement result.
  • Parameters applied to the layer 3 filtering may depend on the implementation or may be notified by SIB. Alternatively, parameters defined by the standard may be set.
  • the base station sweeps and transmits the DL beam specific MRS while changing the beam in each of the sweep periods 1 to Y.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam (beam index 1 to X) (beam level measurement result: ResB 1,1 ... ResB 1, X 1 . ResB Y, 1 ... ResB Y, X ).
  • the user terminal receives X beams in one sweeping period, but selects N beams from the X beams.
  • N is a numerical value that is 1 or larger than 1, but does not exceed X.
  • the user terminal may select a beam according to the following rules.
  • Rule 1 The top N beams with the highest quality are selected from the detected beams.
  • Rule 2 A beam whose beam quality (for example, RSRP) exceeds a threshold is selected.
  • Rule 3 A beam having a beam quality within a predetermined value is selected with reference to a beam having the best quality (for example, RSRP).
  • Rule 4 The above rules are arbitrarily combined. For example, a combination of rule 1 and rule 2, a combination of rule 1 and rule 3, a combination of rule 2 and rule 3, and all combinations of rules 1 to 3 are conceivable.
  • the beam level measurement results of N beams selected based on the above rules are converted into cell level measurement results.
  • an averaging method or a weighting method can be used as a conversion method to the beam level measurement result.
  • an averaging method for example, an average value of N beam level measurement results corresponding to the selected N beams is calculated and used as the cell level measurement result.
  • the weighting method is a method of weighting and summing N beam level measurement results corresponding to selected N beams, for example.
  • the averaging method and the weighting method are examples, and other methods may be applied.
  • the following method can be considered. For example, some parameters are determined in advance by the standard, and signaling is unnecessary, while other parameters are notified to the user terminal by SIB.
  • the following method is conceivable for allowing the user terminal in the connection mode to recognize the parameters related to the conversion method. For example, necessary parameters are included in the measurement setting information and notified to the user terminal by RRC signaling.
  • FIG. 7 shows the specific processing contents of the first embodiment. Description will be made on the assumption that multi-beam transmission illustrated in FIG. 2 is performed.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam (beam index 1 to X), and a beam level measurement result (ResB 1,1 ... ResB 1, X 1 ResB Y, 1 ... ResB Y, X ) are obtained.
  • the user terminal selects N of the beam level measurement results (ResB 1,1 ... ResB 1, X obtained in the sweeping period 1. For example, the beam having the best quality among the X beam level measurement values.
  • N beam level measurement results whose beam quality is within a predetermined value (3 dB) are selected (rule 1 + rule 3)
  • Other sweeping periods (measurement instance index 2)
  • N beam level measurement results are selected according to the same rule as above.
  • the cell-level measurement result ResC 2 ⁇ ResC Y and Layer 1 filtering obtain cell level measurements ResC_L1.
  • the cell level measurement result ResC_L1 after layer 1 filtering is further subjected to layer 3 filtering to obtain a cell level measurement result ResC_L3.
  • the cell level measurement result ResC_L3 after layer 3 filtering is input to the evaluation unit 41.
  • FIG. 8 shows the specific processing contents of the second embodiment. Description will be made on the assumption that multi-beam transmission illustrated in FIG. 2 is performed.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam (beam index 1 to X), and a beam level measurement result (ResB 1,1 ... ResB 1, X 1 ResB Y, 1 ... ResB Y, X ) is obtained.
  • the user terminal extracts the beam level measurement result of the same beam index from the beam level measurement result in each sweeping period (measurement instance indexes 1 to Y), and performs layer 1 filtering. For example, a beam level measurement result (ResB 1,1 ... ResB Y, 1) corresponding to the beam index 1 is extracted from the sweeping periods 1 to Y, averaged as layer 1 filtering, and corresponding to the beam index 1 The beam level measurement result ResB_L1 all, 1 is obtained. Layer 1 filtering is similarly performed for other beam indexes. In this way, beam level measurement results (ResB_L1 all, 1 to ResB_L1 all, X ) for each beam index are obtained.
  • a beam level measurement result (ResB 1,1 ... ResB Y, 1) corresponding to the beam index 1 is extracted from the sweeping periods 1 to Y, averaged as layer 1 filtering, and corresponding to the beam index 1
  • the beam level measurement result ResB_L1 all, 1 is obtained.
  • Layer 1 filtering is similarly
  • N are selected from the X beam level measurement results ResB_L1 all, 1 to ResB_L1 all, X corresponding to the beam indexes 1 to X.
  • N beam level measurement results having a beam quality within a predetermined value (3 dB) based on the beam quality measurement result (ResB_L1 all, 2 ) with the highest quality as a reference.
  • Select Rule 1 + Rule 3.
  • the quality of the beam 2 (beam index 2) is the highest, and the beam 3, the beam X, etc. within 3 dB from the quality of the beam 2 (beam index 2) are present.
  • the selected N beam level measurement results are converted into one cell level measurement result ResC using an averaging method or a weighting method. For example, when the averaging method is applied, N beam level measurement results (ResB_L1 all, 2 , ResB_L1 all, 3 ,... ResB_L1 all, X ) are added, and the added value is divided by N to measure the cell level. The result ResC is obtained.
  • the cell level measurement result ResC is subjected to layer 3 filtering to obtain the cell level measurement result ResC_L3.
  • the cell level measurement result ResC_L3 after layer 3 filtering is input to the evaluation unit 41.
  • FIG. 9 shows the specific processing contents of the third embodiment. Description will be made on the assumption that multi-beam transmission illustrated in FIG. 2 is performed.
  • the user terminal measures each DL beam specific MRS with resources corresponding to each beam (beam index 1 to X), and a beam level measurement result (ResB 1,1 ... ResB 1, X 1 ResB Y, 1 ... ResB Y, X ) is obtained.
  • the user terminal extracts the beam level measurement result of the same beam index from the beam level measurement results in each of the sweep periods 1 to Y, and performs layer 1 filtering. For example, a beam level measurement result (ResB 1,1 ... ResB Y, 1) corresponding to the beam index 1 is extracted from the sweeping periods 1 to Y, averaged as layer 1 filtering, and corresponding to the beam index 1 The beam level measurement result ResB_L1 all, 1 is obtained. Layer 1 filtering is similarly performed for other beam indexes. In this way, beam level measurement results (ResB_L1 all, 1 to ResB_L1 all, X ) for each beam index are obtained.
  • a beam level measurement result (ResB 1,1 ... ResB Y, 1) corresponding to the beam index 1 is extracted from the sweeping periods 1 to Y, averaged as layer 1 filtering, and corresponding to the beam index 1
  • the beam level measurement result ResB_L1 all, 1 is obtained.
  • Layer 1 filtering is similarly performed for other beam indexe
  • the beam level measurement results (ResB_L1 all, 1 to ResB_L1 all, X ) for each beam index are respectively subjected to layer 3 filtering, and the beam level measurement results (ResB_L3 all, 1 to ResB_L3 all, X ) after layer 3 filtering are performed. Get.
  • N are selected from X beam level measurement results ResB_L3 all, 1 to ResB_L3 all, X ) corresponding to the beam indexes 1 to X.
  • N beam level measurement results having a beam quality within a predetermined value (3 dB) with the beam quality measurement result (ResB_L3 all, 2 ) having the best quality as a reference.
  • Select Rule 1 + Rule 3.
  • the quality of the beam 2 (beam index 2) is the highest, and the beam 3, the beam X, etc. within 3 dB from the quality of the beam 2 (beam index 2) are present.
  • the selected N beam level measurement results are converted into one cell level measurement result ResC using an averaging method or a weighting method. For example, when the averaging method is applied, N beam level measurement results (ResB_L3 all, 2 , ResB_L3 all, 3 ,... ResB_L3 all, X ) are added, and the added value is divided by N to measure the cell level. The result ResC is obtained.
  • the cell level measurement result ResC is input to the evaluation unit 41.
  • FIG. 10 shows the specific processing contents of the fourth embodiment. Description will be made on the assumption that multi-beam transmission illustrated in FIG. 2 is performed. Since the user terminal cannot identify individual beams transmitted in the sweeping period, the average value of the signals detected in each sweeping period is treated as the cell level measurement result ResC and converted into the cell level measurement result in the layer 1 filtering. To do.
  • a signal is detected with a resource corresponding to the beam 3, the beam X, etc. during a period corresponding to the sweeping period 1, and no signal is detected with a resource corresponding to the beam 1, beam 2, etc.
  • the average value of the signals detected in the sweeping period 1 is defined as the cell level measurement result ResC 1, and the average value of the signals detected in each of the sweeping periods 2 to Y is similarly determined in the other sweeping periods. 2 to ResC Y (Step 1).
  • Step 2 to convert the cell-level measurement result RESC 1 ⁇ RESC Y by averaging method or weighted approach to one cell representative value (Step 2). For example, by averaging the cell level measurements RESC 1 ⁇ RESC Y, obtaining a cell-level measurement result ResC_L1 after layer 1 filtering.
  • the measurement instance index corresponding to each sweep period is incremented from 1 to Y, and the cell level measurement results ResC 1 to ResC Y are obtained for all sweep periods, and then the averaging process (or weighting process) is performed.
  • the cell level measurement result ResC_L1 after layer 1 filtering is subjected to layer 3 filtering to obtain the cell level measurement result ResC_L3 after layer 3 filtering.
  • the cell level measurement result ResC_L3 after layer 3 filtering is input to the evaluation unit 41.
  • RRM measurement related information information related to conversion processing for converting a beam level measurement result into a cell level measurement result will be described.
  • SIB1 information related to RRM measurement is notified to the user terminal using SIB.
  • SIB3 information related to cell reselection is transmitted in SIB1
  • SIB3 information related to cell reselection is transmitted in SIB3.
  • SIB4 information related to cell reselection is transmitted for neighboring cells, and in SIB5, information related to cell reselection between different frequencies is transmitted.
  • the following information can be added as cell selection / reselection information.
  • Information relating to cell selection may include resource information for MRS transmission and measurement, and conversion-related information necessary in the process of converting the beam level measurement result to the cell level measurement result.
  • the MRS resource information includes DL beam specific MRS transmission period in each sweep period, length of each MRS transmission, time offset of MRS transmission, frequency resource or frequency band for MRS measurement, beam related to DL beam specific MRS At least one of information etc. may be included.
  • the conversion-related information includes (1) the number “N” of selected beams in rule 1, (2) the rule itself for selecting N beams and / or the threshold value in rule 2, and (3) the beam level measurement result. At least one of function information (for example, a weighting factor in a weighting method) to be converted into a cell level measurement result may be included.
  • the conversion related information is included in the SIB and notified to the user terminal. Alternatively, a part of the conversion related information may be determined by the standard so that signaling is unnecessary, and the remaining information may be included in the SIB for signaling.
  • the following information may be added as cell reselection information at the same frequency / different frequencies.
  • resource information for transmission and measurement of MRS may be included.
  • MRS resource information for transmission and measurement of MRS
  • Several different parameters may be simply indicated using an auxiliary white list or black list.
  • the white list may indicate cells to which multi-beam (or single beam) is applied.
  • the white list may indicate a cell with the same MRS topology as the current cell.
  • the user terminal in the connected mode can be notified of RRM measurement related information from the base station via RRC signaling.
  • beam-related information (beam list) in a cell operated in multiple beams should be added as measurement target information included in the RRM measurement-related information.
  • the added beam-related information (beam list) may include at least one of beam ID and resource information for beam-specific MRS measurement.
  • Wireless communication system Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one of the above aspects of the present invention or a combination thereof.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th Generation mobile communication system), 5G. (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced 4G (4th Generation mobile communication system)
  • 5G. 5th generation mobile communication system
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • the common control channel that reports the presence or absence of the paging channel is mapped to the downlink L1 / L2 control channel (for example, PDCCH), and the data of the paging channel (PCH) is mapped to the PDSCH.
  • a downlink reference signal, an uplink reference signal, and a physical downlink synchronization signal are separately arranged.
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat Request) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat Request
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used.
  • PUSCH uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a downlink reference signal As a downlink reference signal, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS) Signal), a positioning reference signal (PRS), etc. are transmitted.
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • PRS positioning reference signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • DMRS demodulation reference signal
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal).
  • the transmitted reference signal is not limited to these.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 is configured to be able to apply both a multi-beam approach and a single beam approach, and includes an analog beam forming unit that provides analog beam forming.
  • beam sweeping is applied to sweep a beam with one or a plurality of consecutive symbols as one unit.
  • the beam forming unit may be composed of a beam forming circuit (for example, phase shifter, phase shift circuit) or a beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. it can.
  • the transmission / reception antenna 101 can be configured by an array antenna, for example.
  • the transmission / reception unit 103 transmits DL beam specific MRS, synchronization signal, broadcast channel, system information (SIB), and the like.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 shall also have another functional block required for radio
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the baseband signal processing unit 104 has a digital beamforming function that provides digital beamforming.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, generation of signals (including signals corresponding to DL beam specific MRS, synchronization signal, MIB, paging channel, broadcast channel) by the transmission signal generation unit 302 and signal allocation by the mapping unit 303. To do.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 performs scheduling (for example, resource allocation) of system information (SIB, MIB, etc.), downlink data signals transmitted on the PDSCH (including PCH of paging messages), downlink control signals transmitted on the PDCCH and / or EPDCCH. , A shared control channel that notifies the presence or absence of a paging message, a signal that notifies a multi-beam approach or a single beam approach).
  • the control unit 301 controls scheduling of downlink signals such as synchronization signals (for example, PSS / SSS) and CRS, CSI-RS, DMRS, MRS.
  • the control unit 301 schedules RRM measurement related information to be notified to the user terminal in the idle mode.
  • Information relating to cell selection may include resource information for transmission and measurement of MRS, and conversion-related information necessary in the process of converting the beam level measurement result to the cell level measurement result.
  • the MRS resource information includes DL beam specific MRS transmission period in each sweep period, length of each MRS transmission, time offset of MRS transmission, frequency resource or frequency band for MRS measurement, beam related to DL beam specific MRS At least one of information etc. may be included.
  • the conversion-related information includes (1) the number “N” of selected beams in rule 1, (2) the rule itself for selecting N beams and / or the threshold value in rule 2, and (3) the beam level measurement result. At least one of function information (for example, a weighting factor in a weighting method) to be converted into a cell level measurement result may be included.
  • the conversion related information is included in the SIB and notified to the user terminal. Alternatively, a part of the conversion related information may be determined by the standard so that signaling is unnecessary, and the remaining information may be included in the SIB for signaling.
  • control unit 401 may add the following information as cell reselection information at the same frequency / different frequencies in the multi-beam scenario.
  • Information regarding cell reselection may include resource information (for example, frequency band, period, etc.) for transmission and measurement of MRS.
  • resource information for example, frequency band, period, etc.
  • MRS measurement of MRS.
  • auxiliary white list or black list may indicate cells to which multi-beam (or single beam) is applied.
  • the white list may indicate a cell with the same MRS topology as the current cell.
  • the control unit 401 schedules RRM measurement related information for the user terminal in the connection mode.
  • the user terminal in the connection mode is notified of the RRM measurement related information from the base station via RRC signaling.
  • beam-related information (beam list) in a cell operated in multiple beams should be added as measurement target information included in the RRM measurement-related information.
  • the added beam-related information (beam list) may include at least one of beam ID and resource information for beam-specific MRS measurement.
  • the control unit 301 also includes an uplink data signal transmitted on the PUSCH, an uplink control signal (eg, delivery confirmation information) transmitted on the PUCCH and / or PUSCH, a random access preamble transmitted on the PRACH, an uplink reference signal, etc. Control the scheduling of
  • the control unit 301 forms a transmission beam and / or a reception beam by using digital beam forming (for example, precoding) by the baseband signal processing unit 104 and / or analog beam forming (for example, phase rotation) by the transmission / reception unit 103. Control to do.
  • digital beam forming for example, precoding
  • analog beam forming for example, phase rotation
  • the control unit 301 applies different beam forming to each symbol in a subframe (sweep period) including a DL beam specific MRS, a synchronization signal and / or a broadcast channel, and a paging channel. Then, it may be controlled to transmit while sweeping (see FIG. 2).
  • the control unit 301 controls multi-beam transmission of DL beam specific MRS, and receives a cell level measurement result and / or a beam level measurement result from a user terminal in an idle mode or a connection mode. Cell selection or cell reselection is controlled based on the cell level measurement result and / or the beam level measurement result.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the transmission signal generation unit 302 Based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a signal for notifying the multi-beam approach or the single beam approach in a common control channel including system information corresponding to MIB or MIB.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention. For example, the synchronization signal and the broadcast channel are mapped to the same symbol number in different subframes (first mode).
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (cell level measurement result, beam level measurement result, uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a cell level measurement result and / or a beam level measurement result is received, it is output to the control unit 301. When receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may, for example, receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio)) or channel of the received signal. You may measure about a state etc.
  • the measurement result may be output to the control unit 301.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmission / reception antenna 201 can be configured by, for example, an array antenna.
  • the transmission / reception unit 203 receives DL beam specific MRS, synchronization signal, broadcast channel, system information (SIB), and the like.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 controls generation of an uplink control signal (for example, delivery confirmation information) and an uplink data signal based on a downlink control signal, a result of determining whether or not retransmission control is required for the downlink data signal, and the like.
  • the control unit 401 uses the digital BF (for example, precoding) by the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. To control.
  • digital BF for example, precoding
  • analog BF for example, phase rotation
  • control unit 401 receives at least one beam directed to itself among a plurality of beams transmitted in a predetermined period (for example, a sweep period).
  • the control unit 401 performs control so as to perform reception processing assuming that the synchronization signal to which the same beam (beam pattern) is applied and the broadcast channel are assigned to the same time domain in different transmission time intervals.
  • control unit 401 performs a reception operation so as to receive a paging channel by monitoring a synchronization signal received from a radio base station before transmission of a random access preamble and / or a resource determined according to a detection result of a broadcast channel. You may control.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generator 402 generates an uplink control signal related to delivery confirmation information and channel state information (CSI) based on an instruction from the controller 401, for example.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the received signal processing unit 404 receives, based on an instruction from the control unit 401, a DL beam specific MRS, a synchronization signal, and a broadcast channel that are transmitted by the radio base station by applying beamforming.
  • a DL beam specific MRS included in a multi-beam transmitted from a multi-beam operation cell is received (see FIG. 2).
  • the received signal processing unit 404 may receive a paging message (PCH) and a common control channel for scheduling it on different symbols or on different subframes based on an instruction from the control unit 401.
  • PCH paging message
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 performs measurement using the beam forming RS transmitted from the radio base station 10.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), reception quality (for example, RSRQ, received SINR), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • the measurement unit 405 realizes any of the measurement models shown in the first to fourth embodiments.
  • the measurement unit 405 acquires measurement results (for example, a beam level measurement result, an individual beam measurement result, etc.) regarding one or more beams based on a received predetermined signal (for example, DL beam specific MRS).
  • the measurement unit 405 includes a cell level conversion unit 51 (or 52 or 53) that converts a measurement result related to a beam into a cell level measurement result, an L1 filter 21 (or 22) that performs layer 1 filtering, and an L3 filter 31 (that performs layer 3 filtering). Or 32 or 33), an evaluation unit 41 is provided for evaluating whether the beam level measurement result and the cell level measurement result satisfy the report criteria.
  • the measurement unit 405 acquires the cell level measurement result using the measurement result on one or more beams before applying the layer 1 filtering (first embodiment).
  • the measurement unit 405 may acquire the cell level measurement result using the measurement result regarding one or more beams after applying the layer 1 filtering and before applying the layer 3 filtering (second embodiment). ).
  • the measurement unit 405 may acquire the cell level measurement result using the measurement result regarding one or more beams after applying the layer 3 filtering (third embodiment). In addition, the measurement unit 405 may acquire a cell level measurement result using a measurement result regarding one or more beams obtained based on a predetermined signal detected during a predetermined period (fourth implementation). Form).
  • the control unit 401 controls the transmission signal generation unit 302 and the mapping unit 303 to transmit the cell level measurement result and / or the beam level measurement result output from the evaluation unit 41.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 16 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • component carrier carrier
  • a base station is a term such as fixed station, NodeB, eNodeB (eNB), access point, access point (TRP: Transmission Reception Point), transmission point, reception point, femto cell, small cell, etc. Sometimes called.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.
  • a and B are different may represent that A and B are different from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

マルチビームを適用する場合に、セルレベル測定結果を適切に取得すること。ユーザ端末は、所定の信号を受信する受信部と、前記所定の信号に基づいて1つ以上のビームに関する測定結果を取得し、前記1つ以上のビームに関する測定結果に基づいてセルレベル測定結果を取得する測定部と、を有する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12又は13ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の基地局(例えば、eNB(evolved Node B)、BS(Base Station)などと呼ばれる)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末が初期アクセス動作に利用する同期信号(PSS、SSS)、報知チャネル(PBCH)等が予め固定的に定義された領域に割当てられている。ユーザ端末は、セルサーチにより同期信号を検出することにより、ネットワークとの同期をとると共に、ユーザ端末が接続するセル(例えば、セルID)を識別することができる。また、セルサーチ後に報知チャネル(PBCH、SIB)を受信することによりシステム情報を取得することができる。
 将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。
 例えば、NRでは、eMBB(enhanced Mobile Broad Band)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communications)などと呼ばれる無線通信サービスの提供が検討されている。
 NRでは、例えば100GHzという非常に高い搬送波周波数を用いてサービス提供を行うことが検討されている。一般的に、搬送波周波数が増大するとカバレッジを確保することが難しくなる。理由としては、距離減衰が激しくなり電波の直進性が強くなることや、超広帯域送信のため送信電力密度が低くなることに起因する。
 そこで、高周波数帯においても上記の多様な通信に対する要求を満たすために、超多素子アンテナを用いる大規模MIMO(Massive MIMO(Multiple Input Multiple Output))を利用することが検討されている。超多素子アンテナでは、各素子から送信/受信される信号の振幅及び/又は位相を制御することで、ビーム(アンテナ指向性)を形成することができる。当該処理はビームフォーミング(BF:Beam Forming)とも呼ばれ、電波伝播損失を低減することが可能となる。
 一方、NRにおいては、セルが複数のビームによって構成されるシナリオ(マルチビームシナリオ)が検討されている。しかしながら、マルチビームシナリオにおいて、適切なセル選択のためにセルレベルの品質を測定して測定報告を行うことが必要である。
 本発明はかかる点に鑑みてなされたものであり、マルチビームを適用する場合であっても、セルレベルの測定結果を適切に報告できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、所定の信号を受信する受信部と、前記所定の信号に基づいて1つ以上のビームに関する測定結果を取得し、前記1つ以上のビームに関する測定結果に基づいてセルレベル測定結果を取得する測定部と、を有することを特徴とする。
 本発明によれば、マルチビームを適用する場合であっても、セルレベル測定結果を適切に取得できて、セル選択/再選択を適切に行うことができる。
セルレベル測定における測定モデルを示す図である。 マルチビーム運用のセルにおけるマルチビーム送信の概念説明図である。 図3Aは第1の実施形態でのユーザ端末における測定モデルを示す図であり、図3Bは評価部の変形例を示す図である。 第2の実施形態でのユーザ端末における測定モデルを示す図である。 第3の実施形態でのユーザ端末における測定モデルを示す図である。 第4の実施形態でのユーザ端末における測定モデルを示す図である。 第1の実施形態におけるユーザ端末の具体的な動作内容を示す図である。 第2の実施形態におけるユーザ端末の具体的な動作内容を示す図である。 第3の実施形態におけるユーザ端末の具体的な動作内容を示す図である。 第4の実施形態におけるユーザ端末の具体的な動作内容を示す図である。 無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システムは、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。例えば、将来の無線通信システムでは、上述したように、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。
 BFは、デジタルBF及びアナログBFに分類できる。デジタルBFは、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法である。この場合、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)/デジタル-アナログ変換(DAC:Digital to Analog Converter)/RF(Radio Frequency)の並列処理が、アンテナポート(RF Chain)の個数だけ必要となる。一方で、任意のタイミングで、RF chain数に応じた数だけビームを形成できる。
 アナログBFは、RF上で位相シフト器を用いる方法である。この場合、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できるが、同じタイミングで複数のビームを形成することができない。具体的には、アナログBFでは、位相シフト器ごとに、一度に1ビームしか形成できない。
 このため、基地局(例えば、eNB(evolved Node B)、BS(Base Station)、gNBなどと呼ばれる)が位相シフト器を1つのみ有する場合には、ある時間において形成できるビームは、1つとなる。したがって、アナログBFのみを用いて複数のビームを送信する場合には、同じ時間リソースで同時に送信することはできないため、ビームを時間的に切り替えたり、回転させたりする必要がある。
 なお、デジタルBFとアナログBFとを組み合わせたハイブリッドBF構成とすることも可能である。将来の無線通信システム(例えば、5G)では、大規模MIMOの導入が検討されているが、膨大な数のビーム形成をデジタルBFだけで行うとすると、回路構成が高価になってしまう。このため、5GではアナログBF構成またはハイブリッドBF構成が利用されると想定される。
 BF動作としては、1つのBFを利用するシングルBF動作(Single BF operation)と、複数のBFを利用するマルチプルBF動作(Multiple BF operation)がある。
 また、NRにおいては、セルが複数のビームによって構成されるシナリオ(マルチビームシナリオ)におけるL1/L2ビーム制御方法として、CSI-RS(CSI測定用RS)又はモビリティ参照信号(MRS:Mobility Reference Signal)を用いて、ビーム選択のための測定報告を行うことが検討されている。
 ここで、MRSは、RRM測定用RSとして用いることができる信号であればよく、既存の同期信号(例えば、PSS/SSS)、既存の参照信号(例えば、CRS、CSI-RS)又はこれらを拡張/変更した信号などであってもよい。例えば、MRSは、NR用のPSS(NR-PSS)及び/又はSSS(NR-SSS)であってもよいし、RRM測定用にデザインされる新たな参照信号であってもよい。MRSは、1つ又は複数のアンテナポートを用いて、1つ又は複数のビームで送信されてもよい。また、MRSは測定用信号、ビーム固有RS、ビームごとに送信されるRSなどと呼ばれてもよい。
 なお、RRM測定報告では、UEは、受信電力(例えば、RSRP(Reference Signal Received Power))に関する情報を報告してもよい。CSI測定報告では、UEは、チャネル品質指標(CQI:Channel Quality Indicator)、プリコーディング行列指標(PMI:Precoding Matrix Indicator)、プリコーディングタイプ指標(PTI:Precoding Type Indicator)、ランク指標(RI:Rank Indicator)などの少なくとも1つに関するCSIを報告してもよい。なお、本明細書では、「測定報告」は、「測定及び/又は報告」と互換的に使用されてもよい。
 ところで、既存のLTEシステム(例えば、LTE Rel.13)においては、RRCシグナリングを要するモビリティ(L3モビリティ)のために、UEは、参照信号(例えば、CRS)を用いて、セルの品質を測定報告する。この測定はセル単位での測定であるため、セルレベル測定ともいう。
 図1に従来のセルレベル測定における測定モデルを示す。ユーザ端末は、セルで送信された測定用信号(ビーム形成されていない)を物理層で受信する。A点で示される物理層で測定実施された測定値に対して、レイヤ1フィルタリングが適用される。レイヤ1フィルタリングの方法は設計事項であるが、例えば複数サンプルで測定してフィルタリングするようにしてもよい。レイヤ1フィルタリングを適用しなくても仕様で定められる品質要求を満たせる端末であれば、レイヤ1フィルタリングを用いなくてもよい。
 レイヤ1フィルタリング後にレイヤ1からレイヤ3へ測定結果が報告される。B点に提供される測定結果に対してレイヤ3フィルタリングが適用される。レイヤ3フィルタリングは規格で決められてもよく、必要なパラメータはRRCシグナリングによって設定される。具体的にはレイヤ3フィルタリングでは最新の測定結果と過去の測定結果とを平滑化している。
 C点(及び/又は後述のC’点)に提供される測定結果を用いて、測定結果の報告が必要か否か評価する。なお、測定フローは複数あってもよく、それがC’として示されている。評価基準は規格で決められてもよく、必要なパラメータはRRCシグナリングで設定されてもよい。評価基準を満たした測定結果がD点へ供給され、無線インターフェースへ送信される。
 ところで、NRにおいては、RRCシグナリングを要するモビリティ(L3モビリティ)のために、MRS、NR用同期信号又は別の参照信号を用いて、セルの品質又はビームの品質の少なくとも一方を測定報告することが合意されている。ビームの測定はビーム単位での測定であるため、ビームレベル測定ともいう。
 マルチビームシナリオにおいて、ユーザ端末は、アイドルモードではセルレベル測定結果を報告すること、接続モードではセルレベル測定結果及びビームレベル測定結果の少なくとも一方を報告することが合意されている。したがって、アイドルモードのユーザ端末ではセルレベル測定結果に基づいてL3モビリティが実施され、接続モードのユーザ端末ではセルレベル測定結果及びビームレベル測定結果の少なくとも1つに基づいてL3モビリティが実施される。
 マルチビームシナリオの下では、アイドルモードのユーザ端末がRRM測定する場合、ユーザ端末において個々のビームを特定できないケース(ケース1)と、ユーザ端末がいずれかの方法により個々のビームを特定できるケース(ケース2)とが発生する。
 例えば、アイドルモードのユーザ端末は、セル識別子(物理セルID(PCI:Physical Cell Identity)、セルIDなどと呼ばれてもよい)でスクランブリングされたセル固有MRSがRRM測定に用いられた場合にはビームを個別に認識できない可能性がある(ケース1)。
 また、セル固有MRSの中にセルIDが含まれているが予めビームとリソースが紐付けられていて当該リソースからビームを認識できる場合、又はビーム固有MRSがRRM測定に用いられた場合は、アイドルモードのユーザ端末であってもビームを特定できる(ケース2)。
 一方、接続モードのユーザ端末は、セル固有MRS又はビーム固有MRSを用いてRRM測定することができる。ユーザ端末は、接続モードであれば基地局からビーム情報を取得できるので、個々のビームを特定できると考えられる(ケース3)。
 しかし、上記ケース1-3のいずれの場合も、個々のビームの測定結果は得られるが、ビーム固有の測定結果からどのようにしてセルレベル測定結果にするかが問題となる。
 図2はマルチビーム運用のセルにおいてビームを変えながらDLビーム固有MRSを送信している様子が模式的に示されている。測定インスタンス1~Yに対応して時間軸方向に送信スイーピング期間(sweeping period)1~Yが連続している。1つのスイーピング期間ではDLビーム固有MRSがビームを変えながらX回送信される。
 ユーザ端末がマルチビームを個別に識別できる場合(ケース2又は3)、ビーム単位でDLビーム固有MRSに基づいたビームレベル測定結果を得ることができる。DLビーム固有MRSに基づくビームレベル測定結果は、例えばRSRPを用いることができるが、RSRQ、RSSI、その他の測定値などであってもよい。図2には個々のビームに対応したビームレベル測定結果ResBi,jが示されている。“i”は測定インスタンスインデックスを示しており、“j”はビームインデックスを示している。
 ユーザ端末は、測定インスタンス1のスイーピング期間1において、ビームインデックス1のビームで送信されたDLビーム固有MRSからビームレベル測定結果ResB1,1を得ることができ、ビームインデックス2からビームインデックスXの各ビームで送信されたDLビーム固有MRSからビームレベル測定結果ResB1,2…ResB1,Xをそれぞれ得ることができる。測定インスタンス1からYにおいて、各測定インスタンスでX回の上記RRM測定が繰り返される。
 上記RRM測定の結果、マルチビーム運用されている1つのセルから(測定インスタンス数)×(ビームインデックスの最大値)に相当する数のビームレベル測定結果ResBi,jが得られる。しかしながら、個々のビームレベル測定結果ResBi,jはセル内で局所的に送信された1ビームの品質を示すだけであり、セル全体の品質を示す指標としては不十分である。マルチビームシナリオの場合にセルレベル測定結果をどのようにするかを規定しなければ、適切なセル選択が行えなくなり、スループットの劣化が生じるおそれがある。
 そこで、本発明者等は、マルチビーム運用のセルにおいてビームレベル測定結果だけではセル全体の品質を示す指標としては不十分であることに着目し、1つ以上のビームに関する測定結果からセルレベル測定結果を導出することを着想した。
 例えば、本実施の形態の一態様において、ユーザ端末は、1つ以上のビームに関する測定結果に基づいてセルレベル測定結果を取得する。これにより、マルチビームが適用されたとしてもセルレベル測定結果が得られるので、適切なセル選択などが行える。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本明細書において、ビームは、下記(1)-(9)のうち少なくとも1つによって区別されるものとするが、これに限られるものではない:(1)リソース(例えば、時間及び/又は周波数リソース)、(2)SSブロック(SSブロックインデックス)、(3)アンテナポート、(4)プリコーディング(例えば、プリコーディングの有無、プリコーディングウェイト)、(5)送信電力、(6)位相回転、(7)ビーム幅、(8)ビームの角度(例えば、チルト角)、(9)レイヤ数。
 また、本明細書で使用される「ビーム」という用語は、上記(1)-(9)の少なくとも1つと互換的に使用されてもよく、例えば「ビーム」は、「リソース」、「アンテナポート」などで読み替えられてもよい。
(第1の実施形態)
 第1の実施形態は、レイヤ1フィルタリングを適用する前の1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得するユーザ端末である。図3Aは第1の実施形態でのユーザ端末における測定モデルを示している。
 レイヤ1フィルタリングの前段において、ビームレベル測定結果をセルレベル測定結果へ変換する測定部となるセルレベル変換部51が設けられている。また、ビーム数(ビームインデックス1~X)に対応したビームレベル測定結果及び1つのセルレベル測定結果をレイヤ1フィルタリングするL1フィルタ21、レイヤ1フィルタリング後の測定結果をレイヤ3フィルタリングするL3フィルタ31、さらにレイヤ3フィルタリング後のビームレベル測定結果及びセルレベル測定結果がレポート基準を満たしているか評価する評価部41を備える。
 図2に示したように、基地局が、各スイーピング期間1~Yにおいて、DLビーム固有MRSをビーム変化させながらスイープして送信する。ユーザ端末は、個々のビームを認識できる上記ケース2又はケース3の場合、各スイーピング期間1~Yにおいて、各ビーム1~Xに対応したリソースで各DLビーム固有MRSを測定する。DLビーム固有MRSの測定結果(例えばRSRP)であるビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)がセルレベル変換部51及びL1フィルタ21へ順次に入力される。
 第1の実施形態では、セルレベル変換部51において、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)が、セルレベル測定結果(ResCからResC)へ変換される。レイヤ1フィルタリング前に変換されたセルレベル測定結果(ResCからResC)が、L1フィルタ21へ入力される。
 L1フィルタ21は、セルレベル測定結果(ResCからResC)をレイヤ1フィルタリングすると共に、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)をレイヤ1フィルタリングする。L1フィルタ21は、セルレベル測定結果(ResCからResC)をレイヤ1フィルタリングしてセルレベル測定結果ResC_L1)を得る。
 L3フィルタ31は、レイヤ1フィルタリング後のセルレベル測定結果ResC_L1をレイヤ3フィルタリングすると共に、レイヤ1フィルタリング後のビームレベル測定結果をレイヤ3フィルタリングする。
 評価部41は、レイヤ3フィルタリング後のセルレベル測定結果とレイヤ3フィルタリング後のビームレベル測定結果とを総合してレポート基準を満たしているか評価する。レポート基準を満たしている場合、アイドルモードの場合にはセルレベル測定結果を報告し、接続モードの場合にはセルレベル測定結果及びビームレベル測定結果の少なくとも1つを報告する。
 なお、図3Aに示す測定モデルでは、評価部41がセルレベル測定結果とビームレベル測定結果とを総合して評価しているが、図3Bに示すようにセルレベル測定結果を評価する評価部とビームレベル測定結果を評価する評価部とを別々に設け、セルレベルとビームレベルで分離して評価してもよい。
 第1の実施形態によれば、セルレベル変換部51において、ビームレベル測定結果がセルレベル測定結果へ変換されるので、セルレベル測定結果を報告することができ、適切なセル選択が可能になる。
(第2の実施形態)
 第2の実施形態は、レイヤ1フィルタリングを適用した後かつレイヤ3フィルタリングを適用する前の1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得するユーザ端末である。図4は第2の実施形態でのユーザ端末における測定モデルを示している。
 レイヤ1フィルタリングの後であってレイヤ3フィルタリングを適用する前に、ビームレベル測定結果をセルレベル測定結果へ変換する測定部となるセルレベル変換部52が設けられている。また、ビーム数(ビームインデックス1~X)に対応したビームレベル測定結果をレイヤ1フィルタリングするL1フィルタ22、レイヤ1フィルタリング後のセルレベル測定結果及びビームレベル測定結果をレイヤ3フィルタリングするL3フィルタ31、さらにレイヤ3フィルタリング後のビームレベル測定結果及びセルレベル測定結果がレポート基準を満たしているか評価する評価部41を備える。
 図2に示したように、基地局が、各スイーピング期間1~Yにおいて、DLビーム固有MRSをビーム変化させながらスイープして送信する。ユーザ端末は、個々のビームを認識できる上記ケース2又はケース3の場合、各スイーピング期間1~Yにおいて、各ビーム1からXに対応したリソースで各DLビーム固有MRSを測定する。DLビーム固有MRSの測定結果(例えばRSRP)であるビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)がL1フィルタ22へ順次に入力される。
 L1フィルタ22は、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)をレイヤ1フィルタリングする。レイヤ1フィルタリング後のビームレベル測定結果(ResB_L1all,1…ResB_L1all,X)が、セルレベル変換部52及びL3フィルタ31へ入力される。
 第2の実施形態では、レイヤ1フィルタリング後のビームレベル測定結果(ResB_L1all,1…ResB_L1all,X)が、セルレベル変換部52において、セルレベル測定結果(ResC)へ変換される。セルレベル変換部52において、変換されたセルレベル測定結果(ResC)は後段のL3フィルタ31へ入力される。
 L3フィルタ31は、レイヤ1フィルタリング後のセルレベル測定結果ResCをレイヤ3フィルタリングすると共に、レイヤ1フィルタリング後のビームレベル測定結果をレイヤ3フィルタリングする。
 評価部41は、第1の実施形態と同様に、レイヤ3フィルタリング後のセルレベル測定結果とレイヤ3フィルタリング後のビームレベル測定結果とを総合してレポート基準を満たしているか評価する。なお、評価部41は、図3Bに示すようにセルレベルとビームレベルで分離して評価してもよい。
 第2の実施形態によれば、セルレベル変換部52において、ビームレベル測定結果がセルレベル測定結果へ変換されるので、セルレベル測定結果を報告することができ、適切なセル選択が可能になる。
(第3の実施形態)
 第3の実施形態は、レイヤ3フィルタリングを適用した後の1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得するユーザ端末である。図5は第3の実施形態でのユーザ端末における測定モデルを示している。
 レイヤ3フィルタリングの後に、ビームレベル測定結果をセルレベル測定結果へ変換する測定部となるセルレベル変換部53が設けられている。また、ビーム数(ビームインデックス1~X)に対応したビームレベル測定結果をレイヤ1フィルタリングするL1フィルタ22、レイヤ1フィルタリング後のビームレベル測定結果をレイヤ3フィルタリングするL3フィルタ32、さらにレイヤ3フィルタリング後のビームレベル測定結果及びセルレベル測定結果がレポート基準を満たしているか評価する評価部41を備える。
 図2に示したように、基地局が、各スイーピング期間1~Yにおいて、DLビーム固有MRSをビーム変化させながらスイープして送信する。ユーザ端末は、個々のビームを認識できる上記ケース2又はケース3の場合、各スイーピング期間1~Yにおいて、各ビーム1からXに対応したリソースで各DLビーム固有MRSを測定する。DLビーム固有MRSの測定結果(例えばRSRP)であるビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)がL1フィルタ22へ順次に入力される。
 L1フィルタ22は、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)をレイヤ1フィルタリングする。レイヤ1フィルタリング後のビームレベル測定結果(ResB_L1all,1…ResB_L1all,X)が、L3フィルタ32へ入力される。
 L3フィルタ32は、レイヤ1フィルタリング後のビームレベル測定結果をレイヤ3フィルタリングする。L3フィルタ32は、レイヤ3フィルタリング後のビームレベル測定結果(ResB_L3all,1…ResB_L3all,X)をセルレベル変換部53及び評価部41へ入力する。
 第3の実施形態では、レイヤ3フィルタリング後のビームレベル測定結果(ResB_L3all,1…ResB_L3all,X)をセルレベル変換部53へ入力してセルレベル測定結果ResCへ変換してから評価部41へ入力する。
 評価部41は、第1の実施形態と同様に、レイヤ3フィルタリング後のセルレベル測定結果とレイヤ3フィルタリング後のビームレベル測定結果とを総合してレポート基準を満たしているか評価する。なお、評価部41は、図3Bに示すようにセルレベルとビームレベルで分離して評価してもよい。
 第3の実施形態によれば、セルレベル変換部53において、ビームレベル測定結果がセルレベル測定結果へ変換されるので、セルレベル測定結果を報告することができ、適切なセル選択が可能になる。
(第4の実施形態)
 第4の実施形態は、所定の期間中に検出された所定の信号(例えば、MRS)に基づいて得られた1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得するユーザ端末である。図6は第4の実施形態のユーザ端末における測定モデルを示している。
 第4の実施形態でのユーザ端末は、ビームを識別できない上記ケース1に対応している。ユーザ端末は、レイヤ1フィルタリングするL1フィルタ23において、ビームを識別すること無く検出できた信号の測定結果をセルレベル測定結果に変換する。変換されたセルレベル測定結果はレイヤ3フィルタリングするL3フィルタ33に入力される。
 L3フィルタ33は、セルレベル測定結果にレイヤ3フィルタリングを適用する。レイヤ3フィルタリングに適用されるパラメータは実装に依存してもよいし、SIBで通知されてもよい。または規格で定めたパラメータを設定するようにしてもよい。
 次に、第1の実施形態から第3の実施形態において、ビームレベル測定結果をセルレベル測定結果に変換するセルレベル変換部51、52、53に適用可能な変換方法について説明する。
 図2に示したように、基地局が、各スイーピング期間1~Yにおいて、DLビーム固有MRSをビーム変化させながらスイープして送信する。ユーザ端末は、各スイーピング期間1~Yにおいて、各ビーム(ビームインデックス1~X)に対応したリソースで各DLビーム固有MRSを測定する(ビームレベル測定結果:ResB1,1…ResB1、X~ResBY,1…ResBY,X)。ユーザ端末は、1回のスイーピング期間においてX個のビームを受信しているが、X個のビームからN個のビームを選択する。Nは1又は1より大きい数値であるが、Xを超えない数値である。
 ユーザ端末は、以下のルールに従ってビーム選択してもよい。
 ルール1:検出されたビームの中から品質の良い上位N個のビームを選択する。
 ルール2:ビームの品質(例えばRSRP)が閾値を超えたビームを選択する。
 ルール3:最も品質(例えばRSRP)の良いビームを基準にして、ビームの品質が所定値以内のビームを選択する。
 ルール4:上記ルールを任意に組み合わせる。例えば、ルール1とルール2の組み合わせ、ルール1とルール3の組み合わせ、ルール2とルール3の組み合わせ、ルール1から3の全ての組み合わせが考えられる。
 上記ルールに基づいて選択された例えばN個のビームのビームレベル測定結果から、セルレベル測定結果に変換する。ビームレベル測定結果への変換方法として、平均化手法、重み付け手法を用いることができる。平均化手法では、例えば選択したN個のビームに対応したN個のビームレベル測定結果の平均値を計算してセルレベル測定結果として用いる。重み付け手法は、例えば選択したN個のビームに対応したN個のビームレベル測定結果に重み付けして合算する手法である。平均化手法、重み付け手法は一例であり、他の方法を適用しても良い。
 アイドルモードのユーザ端末に対して上記変換方法に関するパラメータを認識させるためには次の方法が考えられる。例えば、パラメータの一部は予め規格で定めておきシグナリングを不要とする一方、他のパラメータはSIBによってユーザ端末へ通知する。
 接続モードのユーザ端末に対して上記変換方法に関するパラメータを認識させるためには次の方法が考えられる。例えば、必要なパラメータをメジャメント設定情報に含めてRRCシグナリングによってユーザ端末へ通知する。
 次に、第1の実施形態から第4の実施形態の処理内容の一例を具体的に説明する。
 図7は第1の実施形態の具体的な処理内容を示している。図2に例示するマルチビーム送信が行われていることを前提として説明する。ユーザ端末は、各スイーピング期間1~Yにおいて、各ビーム(ビームインデックス1~X)に対応したリソースで各DLビーム固有MRSを測定し、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)を得る。
 ユーザ端末は、スイーピング期間1で得られたビームレベル測定結果(ResB1,1…ResB1、XからN個を選択する。例えば、X個のビームレベル測定値の中から、最も品質の良いビームレベル測定結果(ResB1,3)を基準にして、ビームの品質が所定値(3dB)以内のビームレベル測定結果をN個選択する(ルール1+ルール3)。他のスイーピング期間(測定インスタンスインデックス2~Y)についても上記同様のルールでN個のビームレベル測定結果をそれぞれ選択する。
 次に、スイーピング期間(測定インスタンスインデックス1~Y)ごとに、選択されたN個のビームレベル測定結果から平均化手法又は重み付け手法を用いて、スイーピング期間(1~Y)毎のセルレベル測定結果に変換する。例えば、平均化手法を適用した場合は、スイーピング期間1で選択されたN個のビームレベル測定結果(ResB1,3…ResB1、X)を加算し、加算値をNで割ることでスイーピング期間1に対するセルレベル測定結果ResCを得る。他のスイーピング期間(測定インスタンスインデックス2~Y)についても同様にしてセルレベル測定結果ResC~ResCを得る。
 次に、セルレベル測定結果ResC~ResCをレイヤ1フィルタリングして、セルレベル測定結果ResC_L1を得る。レイヤ1フィルタリング後のセルレベル測定結果ResC_L1は、さらにレイヤ3フィルタリングしてセルレベル測定結果ResC_L3を得る。レイヤ3フィルタリング後のセルレベル測定結果ResC_L3が評価部41へ入力される。
 図8は第2の実施形態の具体的な処理内容を示している。図2に例示するマルチビーム送信が行われていることを前提として説明する。ユーザ端末は、各スイーピング期間1~Yにおいて、各ビーム(ビームインデックス1~X)に対応したリソースで各DLビーム固有MRSを測定し、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)が得られている。
 ユーザ端末は、レイヤ1フィルタリングでは各スイーピング期間(測定インスタンスインデックス1~Y)のビームレベル測定結果から同じビームインデックスのビームレベル測定結果を抽出してレイヤ1フィルタリングする。例えば、スイーピング期間1~Yの中からビームインデックス1に対応したビームレベル測定結果(ResB1,1…ResBY,1)を抽出し、それらをレイヤ1フィルタリングとして平均化し、ビームインデックス1に対応したビームレベル測定結果ResB_L1all,1を得る。他のビームインデックスに関しても同様にしてレイヤ1フィルタリングする。このようにして、ビームインデックス毎のビームレベル測定結果(ResB_L1all,1~ResB_L1all,X)を得る。
 次に、ビームインデックス1からXに対応したX個のビームレベル測定結果ResB_L1all,1~ResB_L1all,XからN個を選択する。例えば、X個のビームレベル測定値の中から、最も品質の良いビームレベル測定結果(ResB_L1all,2)を基準にして、ビームの品質が所定値(3dB)以内のビームレベル測定結果をN個選択する(ルール1+ルール3)。図8に示す例ではビーム2(ビームインデックス2)の品質が最も高く、ビーム2(ビームインデックス2)の品質から3dB以内のビーム3、ビームX等が存在している。
 次に、選択されたN個のビームレベル測定結果から平均化手法又は重み付け手法を用いて、1つのセルレベル測定結果ResCに変換する。例えば、平均化手法を適用した場合は、N個のビームレベル測定結果(ResB_L1all,2、ResB_L1all,3、…ResB_L1all,X)を加算し、加算値をNで割ることでセルレベル測定結果ResCを得る。
 次に、セルレベル測定結果ResCをレイヤ3フィルタリングして、セルレベル測定結果ResC_L3を得る。レイヤ3フィルタリング後のセルレベル測定結果ResC_L3が評価部41へ入力される。
 図9は第3の実施形態の具体的な処理内容を示している。図2に例示するマルチビーム送信が行われていることを前提として説明する。ユーザ端末は、各スイーピング期間1~Yにおいて、各ビーム(ビームインデックス1~X)に対応したリソースで各DLビーム固有MRSを測定し、ビームレベル測定結果(ResB1,1…ResB1、X~ResBY,1…ResBY,X)が得られている。
 ユーザ端末は、レイヤ1フィルタリングでは各スイーピング期間1~Yのビームレベル測定結果から同じビームインデックスのビームレベル測定結果を抽出してレイヤ1フィルタリングする。例えば、スイーピング期間1~Yの中からビームインデックス1に対応したビームレベル測定結果(ResB1,1…ResBY,1)を抽出し、それらをレイヤ1フィルタリングとして平均化し、ビームインデックス1に対応したビームレベル測定結果ResB_L1all,1を得る。他のビームインデックスに関しても同様にしてレイヤ1フィルタリングする。このようにして、ビームインデックス毎のビームレベル測定結果(ResB_L1all,1~ResB_L1all,X)を得る。
 次に、ビームインデックス毎のビームレベル測定結果(ResB_L1all,1~ResB_L1all,X)をそれぞれレイヤ3フィルタリングして、レイヤ3フィルタリング後のビームレベル測定結果(ResB_L3all,1~ResB_L3all,X)を得る。
 次に、ビームインデックス1からXに対応したX個のビームレベル測定結果ResB_L3all,1~ResB_L3all,X)からN個を選択する。例えば、X個のビームレベル測定値の中から、最も品質の良いビームレベル測定結果(ResB_L3all,2)を基準にして、ビームの品質が所定値(3dB)以内のビームレベル測定結果をN個選択する(ルール1+ルール3)。図9に示す例ではビーム2(ビームインデックス2)の品質が最も高く、ビーム2(ビームインデックス2)の品質から3dB以内のビーム3、ビームX等が存在している。
 次に、選択されたN個のビームレベル測定結果から平均化手法又は重み付け手法を用いて、1つのセルレベル測定結果ResCに変換する。例えば、平均化手法を適用した場合は、N個のビームレベル測定結果(ResB_L3all,2、ResB_L3all,3、…ResB_L3all,X)を加算し、加算値をNで割ることでセルレベル測定結果ResCを得る。セルレベル測定結果ResCは評価部41へ入力される。
 図10は第4の実施形態の具体的な処理内容を示している。図2に例示するマルチビーム送信が行われていることを前提として説明する。ユーザ端末は、スイーピング期間に送信される個々のビームを識別できないので、スイーピング期間毎に検出できた信号の平均値をセルレベル測定結果ResCとして扱い、レイヤ1フィルタリングの中でセルレベル測定結果に変換する。
 図10に示す例ではスイーピング期間1に対応した期間にビーム3、ビームX等に対応したリソースで信号が検出されていて、ビーム1、ビーム2等に対応したリソースでは信号検出されていない。スイーピング期間1において検出できた信号の平均値をセルレベル測定結果ResCとし、他のスイーピング期間においても同様にして、各スイーピング期間2~Yで検出できた信号の平均値をセルレベル測定結果ResC~ResCとして得る(ステップ1)。
 さらに、セルレベル測定結果ResC~ResCを平均化手法又は重み付け手法により1つのセル代表値に変換する(ステップ2)。例えば、セルレベル測定結果ResC~ResCを平均化して、レイヤ1フィルタリング後のセルレベル測定結果ResC_L1を得る。
 なお、図10に示す例では各スイーピング期間に対応した測定インスタンスインデックスを1からYまでインクリメントして全スイープ期間についてセルレベル測定結果ResC~ResCを取得してから平均化処理(又は重み付け処理)しているが、短縮測定を適用することもできる。例えば、Y=1に設定して、スイーピング期間1のセルレベル測定結果ResCが取得できたら、ステップ2を省略して、レイヤ3フィルタリングへ移行する。
 次に、レイヤ1フィルタリング後のセルレベル測定結果ResC_L1をレイヤ3フィルタリングして、レイヤ3フィルタリング後のセルレベル測定結果ResC_L3を得ている。レイヤ3フィルタリング後のセルレベル測定結果ResC_L3は評価部41へ入力される。
 次に、アイドルモード/接続モードのユーザ端末に対してRRM測定関連情報を通知する通知方法の一例について説明する。RRM測定関連情報として、特にビームレベル測定結果からセルレベル測定結果に変換する変換処理に関連する情報について説明する。
 まず、アイドルモードのユーザ端末に対するRRM測定関連情報の通知方法について説明する。既存LTEシステムでは、SIBを用いてRRM測定関連の情報がユーザ端末に通知される。例えば、SIB1ではセル選択及びセル接続に関する情報が送信され、SIB3ではセル再選択に関する情報が送信される。また、SIB4では隣接セルに関してセル再選択に関する情報が送信され、SIB5では異周波数間でのセル再選択に関する情報が送信される。
 5G又はNRにおけるマルチビームシナリオでは、セル選択/再選択情報として次の情報を追加することができる。
 セル選択に関する情報として、MRSの送信及び測定のためのリソース情報、ビームレベル測定結果からセルレベル測定結果に変換する過程で必要な変換関連情報を含んでもよい。
 MRSリソース情報には、各スイープ期間でのDLビーム固有MRSの送信周期、各MRS送信の長さ、MRS送信の時間オフセット、MRS測定のための周波数リソース又は周波数帯域、DLビーム固有MRSのビーム関連情報等の少なくとも1つが含まれてもよい。
 変換関連情報には、(1)ルール1における選択ビームの個数“N”、(2)N個のビームを選択するためのルール自体及び/又はルール2における閾値、(3)ビームレベル測定結果からセルレベル測定結果へ変換する関数情報(例えば、重み付け手法における重み係数等)の少なくとも1つが含まれてもよい。変換関連情報はSIBに含まれてユーザ端末へ通知される。または、変換関連情報の一部を規格で定めてシグナリングを不要とし、残りの情報をSIBに含めてシグナリングしてもよい。
 また、マルチビームシナリオにおいて、同一周波数/異周波数でのセル再選択情報として次の情報を追加してもよい。
 セル再選択に関する情報として、MRSの送信及び測定のためのリソース情報(例えば周波数帯域、周期等)を含んでもよい。ホワイトリスト又はブラックリストを補助的に用いていくつかの異なるパラメータを簡易に示してもよい。ホワイトリストは、マルチビーム(又はシングルビーム)が適用されるセルを示すものであってもよい。又はホワイトリストは、現在のセルと同じMRSニューメロロジーのセルを示すものであってもよい。
 次に、接続モードのユーザ端末に対するRRM測定関連情報の通知方法について説明する。接続モードのユーザ端末は、基地局からRRCシグナリングを介してRRM測定関連情報を通知されることができる。特に、RRM測定関連情報に含まれる測定対象情報として、マルチビーム運用されるセルにおけるビーム関連情報(ビームリスト)が追加されるべきである。追加されるビーム関連情報(ビームリスト)には、ビームID、ビーム固有MRS測定用のリソース情報の少なくとも1つが含まれてもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各態様のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図11は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th Generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。ページングチャネルの有無を通知する共通制御チャネルは下りL1/L2制御チャネル(例えば、PDCCH)にマッピングされ、ページングチャネル(PCH)のデータはPDSCHにマッピングされる。下りリンク参照信号、上りリンク参照信号、物理下りリンクの同期信号が別途配置される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat Request)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、復調用参照信号(DMRS:Demodulationreference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図12は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、マルチビームアプローチとシングルビームアプローチの両方を適用可能に構成され、アナログビームフォーミングを提供するアナログビームフォーミング部を備える。マルチビームアプローチでDLビーム固有MRS、同期信号及び/又はページングチャネルを送信する場合、1つ又は連続する複数シンボルを1単位としてビームを変更(Sweeping)するビームスイーピングを適用する。ビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。
 送受信部103は、DLビーム固有MRS、同期信号、報知チャネル、システム情報(SIB)等を送信する。
 図13は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。ベースバンド信号処理部104は、デジタルビームフォーミングを提供するデジタルビームフォーミング機能を備える。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号(DLビーム固有MRS、同期信号、MIB、ページングチャネル、報知チャネルに対応した信号を含む)の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、システム情報(SIB、MIB等)、PDSCHで送信される下りデータ信号(ページングメッセージのPCHを含む)、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て、ページングメッセージの有無を通知する共有制御チャネル、マルチビームアプローチ又はシングルビームアプローチを通知する信号)を制御する。
 制御部301は、同期信号(例えば、PSS/SSS)や、CRS、CSI-RS、DMRS、MRSなどの下り参照信号のスケジューリングの制御を行う。制御部301は、アイドルモードのユーザ端末に通知するRRM測定関連情報をスケジューリングする。
 マルチビームシナリオでは、セル選択/再選択情報として次の情報を追加することができる。セル選択に関する情報として、MRSの送信及び測定のためのリソース情報、ビームレベル測定結果からセルレベル測定結果に変換する過程で必要な変換関連情報を含んでもよい。
 MRSリソース情報には、各スイープ期間でのDLビーム固有MRSの送信周期、各MRS送信の長さ、MRS送信の時間オフセット、MRS測定のための周波数リソース又は周波数帯域、DLビーム固有MRSのビーム関連情報等の少なくとも1つが含まれてもよい。
 変換関連情報には、(1)ルール1における選択ビームの個数“N”、(2)N個のビームを選択するためのルール自体及び/又はルール2における閾値、(3)ビームレベル測定結果からセルレベル測定結果へ変換する関数情報(例えば、重み付け手法における重み係数等)の少なくとも1つが含まれてもよい。変換関連情報はSIBに含まれてユーザ端末へ通知される。または、変換関連情報の一部を規格で定めてシグナリングを不要とし、残りの情報をSIBに含めてシグナリングしてもよい。
 また制御部401は、マルチビームシナリオにおいて、同一周波数/異周波数でのセル再選択情報として次の情報を追加してもよい。セル再選択に関する情報として、MRSの送信及び測定のためのリソース情報(例えば周波数帯域、周期等)を含んでもよい。ホワイトリスト又はブラックリストを補助的に用いていくつかの異なるパラメータを簡易に示してもよい。ホワイトリストは、マルチビーム(又はシングルビーム)が適用されるセルを示すものであってもよい。又はホワイトリストは、現在のセルと同じMRSニューメロロジーのセルを示すものであってもよい。
 また制御部401は、接続モードのユーザ端末に対するRRM測定関連情報をスケジューリングする。接続モードのユーザ端末は、基地局からRRCシグナリングを介してRRM測定関連情報を通知される。特に、RRM測定関連情報に含まれる測定対象情報として、マルチビーム運用されるセルにおけるビーム関連情報(ビームリスト)が追加されるべきである。追加されるビーム関連情報(ビームリスト)には、ビームID、ビーム固有MRS測定用のリソース情報の少なくとも1つが含まれてもよい。
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認情報)、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。
 制御部301は、ベースバンド信号処理部104によるデジタルビームフォーミング(例えば、プリコーディング)及び/又は送受信部103によるアナログビームフォーミング(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御する。
 例えば、制御部301は、マルチビームアプローチが適用される場合は、DLビーム固有MRS、同期信号及び又は報知チャネル、ページングチャネルが含まれるサブフレーム(スイープ期間)において、各シンボルに異なるビームフォーミングを適用してスイープしながら送信するように制御してもよい(図2参照)。
 制御部301は、DLビーム固有MRSのマルチビーム送信を制御し、アイドルモード又は接続モードのユーザ端末から、セルレベル測定結果及び又はビームレベル測定結果を受信する。セルレベル測定結果及び又はビームレベル測定結果に基づいてセル選択又はセル再選択を制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。また、送信信号生成部302は、制御部301からの指示に基づいて、MIB又はMIBに相当するシステム情報を含む共通制御チャネルの中でマルチビームアプローチ又はシングルビームアプローチを通知する信号を生成する。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。例えば、同期信号及び報知チャネルを異なるサブフレームの同一シンボル番号にマッピングする(第1の態様)。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(セルレベル測定結果、ビームレベル測定結果、上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、セルレベル測定結果及び又はビームレベル測定結果を受信した場合、制御部301に出力する。また、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図14は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。
 送受信部203は、DLビーム固有MRS、同期信号、報知チャネル、システム情報(SIB)等を受信する。
 図15は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認情報など)や上りデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御する。
 例えば、制御部401は、所定の期間(例えば、スイープ期間)において送信される複数のビームのうち、自分に向けられた少なくとも1つのビームを受信する。
 制御部401は、同一のビーム(ビームパターン)が適用される同期信号と報知チャネルが異なる送信時間間隔における同一の時間領域に割当てられていると想定して受信処理するように制御する。
 また、制御部401は、ランダムアクセスプリアンブルの送信前に無線基地局から受信する同期信号及び又は報知チャネルの検出結果に応じて決定されるリソースをモニタしてページングチャネルを受信するように受信動作を制御してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報やチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、制御部401からの指示に基づいて、無線基地局がビームフォーミングを適用して送信するDLビーム固有MRS、同期信号及び報知チャネルを受信する。特に、マルチビーム運用のセルから送信されるマルチビームに含まれるDLビーム固有MRSを受信する(図2参照)。
 また、受信信号処理部404は、制御部401からの指示に基づいて、ページングメッセージ(PCH)とそれをスケジューリングする共通制御チャネルとを、異なるシンボル上又は異なるサブフレーム上で受信してもよい。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局10から送信されたビーム形成用RSを用いて測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、受信SINR)やチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 測定部405は、第1の実施形態から第4の実施形態に示したいずれかの測定モデルを実現している。測定部405は、受信した所定の信号(例えば、DLビーム固有MRS)に基づいて1つ以上のビームに関する測定結果(例えば、ビームレベル測定結果、個別のビームの測定結果など)を取得する。測定部405は、ビームに関する測定結果をセルレベル測定結果に変換するセルレベル変換部51(又は52、又は53)、レイヤ1フィルタリングするL1フィルタ21(又は22)、レイヤ3フィルタリングするL3フィルタ31(又は32、又は33)、ビームレベル測定結果及びセルレベル測定結果がレポート基準を満たしているか評価する評価部41を備える。
 例えば、測定部405は、レイヤ1フィルタリングを適用する前の1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得する(第1の実施形態)。また測定部405は、レイヤ1フィルタリングを適用した後かつレイヤ3フィルタリングを適用する前の1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得してもよい(第2の実施形態)。
 また測定部405は、レイヤ3フィルタリングを適用した後の1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得してもよい(第3の実施形態)。また測定部405は、所定の期間中に検出された所定の信号に基づいて得られた1つ以上のビームに関する測定結果を用いて、セルレベル測定結果を取得してもよい(第4の実施形態)。
 なお、制御部401は、評価部41から出力されるセルレベル測定結果及び又はビームレベル測定結果を送信するように送信信号生成部302及びマッピング部303を制御する。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送受信ポイント(TRP:Transmission Reception Point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本明細書又は特許請求の範囲で使用する「AとBが異なる」という用語は、AとBが互いに異なることを表してもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2017年1月6日出願の特願2017-001438に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  所定の信号を受信する受信部と、
     前記所定の信号に基づいて1つ以上のビームに関する測定結果を取得し、前記1つ以上のビームに関する測定結果に基づいてセルレベル測定結果を取得する測定部と、を有することを特徴とするユーザ端末。
  2.  前記測定部は、レイヤ1フィルタリングを適用する前の前記1つ以上のビームに関する測定結果を用いて、前記セルレベル測定結果を取得することを特徴とする請求項1に記載のユーザ端末。
  3.  前記測定部は、レイヤ1フィルタリングを適用した後かつレイヤ3フィルタリングを適用する前の前記1つ以上のビームに関する測定結果を用いて、前記セルレベル測定結果を取得することを特徴とする請求項1に記載のユーザ端末。
  4.  前記測定部は、レイヤ3フィルタリングを適用した後の前記1つ以上のビームに関する測定結果を用いて、前記セルレベル測定結果を取得することを特徴とする請求項1に記載のユーザ端末。
  5.  前記測定部は、所定の期間中に検出された前記所定の信号に基づいて得られた前記1つ以上のビームに関する測定結果を用いて、前記セルレベル測定結果を取得することを特徴とする請求項1に記載のユーザ端末。
  6.  ユーザ端末の無線通信方法であって、
     所定の信号を受信する工程と、
     前記所定の信号に基づいて1つ以上のビームに関する測定結果を取得し、前記ビームレベル測定結果に基づいてセルレベル測定結果を取得する工程と、を有することを特徴とする無線通信方法。
PCT/JP2018/000055 2017-01-06 2018-01-05 ユーザ端末及び無線通信方法 WO2018128185A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019013915A BR112019013915A2 (pt) 2017-01-06 2018-01-05 terminal de usuário e método de radiocomunicação
ES18735939T ES2952660T3 (es) 2017-01-06 2018-01-05 Terminal de usuario y método de comunicación por radio
US16/475,482 US10728810B2 (en) 2017-01-06 2018-01-05 User terminal and radio communication method
JP2018560405A JP6725698B2 (ja) 2017-01-06 2018-01-05 端末及び無線通信方法
EP18735939.3A EP3562200B1 (en) 2017-01-06 2018-01-05 User terminal and radio communication method
EP23175573.7A EP4228311A1 (en) 2017-01-06 2018-01-05 User terminal and radio communication method
CN201880006054.5A CN110169114A (zh) 2017-01-06 2018-01-05 用户终端以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-001438 2017-01-06
JP2017001438 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018128185A1 true WO2018128185A1 (ja) 2018-07-12

Family

ID=62789498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000055 WO2018128185A1 (ja) 2017-01-06 2018-01-05 ユーザ端末及び無線通信方法

Country Status (8)

Country Link
US (1) US10728810B2 (ja)
EP (2) EP3562200B1 (ja)
JP (1) JP6725698B2 (ja)
CN (1) CN110169114A (ja)
BR (1) BR112019013915A2 (ja)
ES (1) ES2952660T3 (ja)
HU (1) HUE062527T2 (ja)
WO (1) WO2018128185A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509654A (ja) * 2017-02-03 2020-03-26 日本電気株式会社 通信デバイス及びそれにより実行される方法
WO2021029077A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末
WO2021029073A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末
WO2021029078A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末
WO2024038613A1 (ja) * 2022-08-19 2024-02-22 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501567B (zh) 2017-03-23 2024-04-26 艾普拉控股有限公司 新无线电中的下行链路测量设计
CN108668312B (zh) * 2017-03-29 2021-10-26 华为技术有限公司 一种测量参数发送方法及其装置
CN110603737B (zh) * 2017-06-02 2022-04-01 苹果公司 用于新无线电(nr)的波束成形测量
CN110636567B (zh) * 2018-06-22 2022-11-22 中兴通讯股份有限公司 一种切换评估、报告方法、装置及基站
CN116963169A (zh) * 2018-12-04 2023-10-27 华为技术有限公司 一种通信方法及设备
US20220232471A1 (en) * 2019-06-12 2022-07-21 Nokia Technologies Oy Beam based mobility state for ue power saving
US10856191B1 (en) * 2019-11-08 2020-12-01 Nokia Technologies Oy User equipment configuration
US11469803B2 (en) * 2020-04-24 2022-10-11 Qualcomm Incorporated Multi-part layer 1 reporting
CN112788155A (zh) * 2021-02-27 2021-05-11 广西壮族自治区农业科学院 一种竹荪轻简化栽培方法及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001438A (ja) 2015-06-05 2017-01-05 株式会社ブリヂストン タイヤ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2774943T3 (es) * 2013-09-25 2020-07-23 Sony Corp Aparato de control de comunicaciones, método de control de comunicaciones, aparato de radiocomunicaciones y método de radiocomunicaciones
JP6325249B2 (ja) * 2013-12-26 2018-05-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20160262077A1 (en) * 2015-03-05 2016-09-08 Mediatek (Beijing) Inc. Methods and apparatus for cell selection/reselection in millimeter wave system
WO2016165128A1 (zh) * 2015-04-17 2016-10-20 华为技术有限公司 传输信息的方法、基站和用户设备
TWI709303B (zh) * 2016-07-01 2020-11-01 華碩電腦股份有限公司 無線通訊系統中處理量測的方法和設備
WO2018034520A1 (ko) * 2016-08-18 2018-02-22 삼성전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보를 송수신하는 방법 및 장치
EP3501200B1 (en) * 2016-08-19 2024-03-20 Apple Inc. Filtering for measurement in fifth generation networks
WO2018048203A1 (en) * 2016-09-06 2018-03-15 Samsung Electronics Co., Ltd. Apparatus and method for selecting cell in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001438A (ja) 2015-06-05 2017-01-05 株式会社ブリヂストン タイヤ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS36.300, April 2010 (2010-04-01)
HUAWEI ET AL.: "Measurement and mobility in high frequency", 3GPP TSG RAN WG2#96 R2-168255, 4 November 2016 (2016-11-04), XP051192614 *
MEDIATEK INC: "Consolidation of multiple beams for DL measurements", 3GPPTSGRANWG2#96 R2-168000, 4 November 2016 (2016-11-04), XP051192324 *
NOKIA ET AL.: "Downlink mobility measurements in connected mode", 3 GPP TSG RAN WG2#96 R2-167711, 4 November 2016 (2016-11-04), XP051192257 *
SAMSUNG: "RRM measurement model in NR", 3GPP TSG RAN WG2 # 9 6 R2-168041, 4 November 2016 (2016-11-04), XP051192337 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509654A (ja) * 2017-02-03 2020-03-26 日本電気株式会社 通信デバイス及びそれにより実行される方法
JP7031674B2 (ja) 2017-02-03 2022-03-08 日本電気株式会社 通信デバイス及びそれにより実行される方法
JP2022068331A (ja) * 2017-02-03 2022-05-09 日本電気株式会社 通信デバイス及びそれにより実行される方法
US11476957B2 (en) 2017-02-03 2022-10-18 Nec Corporation Communication system with beam quality measurement
US11984937B2 (en) 2017-02-03 2024-05-14 Nec Corporation Communication system with beam quality measurement
WO2021029077A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末
WO2021029073A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末
WO2021029078A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末
WO2024038613A1 (ja) * 2022-08-19 2024-02-22 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
EP4228311A1 (en) 2023-08-16
EP3562200A1 (en) 2019-10-30
US10728810B2 (en) 2020-07-28
EP3562200A4 (en) 2019-11-13
JP6725698B2 (ja) 2020-07-22
CN110169114A (zh) 2019-08-23
EP3562200B1 (en) 2023-07-12
ES2952660T3 (es) 2023-11-03
JPWO2018128185A1 (ja) 2019-11-14
HUE062527T2 (hu) 2023-11-28
US20190342807A1 (en) 2019-11-07
BR112019013915A2 (pt) 2020-02-04

Similar Documents

Publication Publication Date Title
JP6725698B2 (ja) 端末及び無線通信方法
CN110679197B (zh) 用户终端以及无线通信方法
WO2018025908A1 (ja) ユーザ端末及び無線通信方法
JP6325597B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018173163A1 (ja) ユーザ端末及び無線通信方法
WO2018025946A1 (ja) ユーザ端末及び無線通信方法
WO2018128187A1 (ja) ユーザ端末及び無線通信方法
WO2018143390A1 (ja) ユーザ端末及び無線通信方法
WO2018088538A1 (ja) ユーザ端末及び無線通信方法
WO2018128186A1 (ja) ユーザ端末及び無線通信方法
WO2018167958A1 (ja) ユーザ端末及び無線通信方法
JPWO2018062462A1 (ja) ユーザ端末及び無線通信方法
WO2018124028A1 (ja) ユーザ端末及び無線通信方法
WO2018198342A1 (ja) ユーザ端末及び無線通信方法
JPWO2017164220A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018084136A1 (ja) ユーザ端末及び無線通信方法
JP7010927B2 (ja) 端末及び無線通信方法
WO2018143397A1 (ja) ユーザ端末及び無線通信方法
JPWO2018084135A1 (ja) 装置及び無線通信方法
WO2019193735A1 (ja) ユーザ端末及び無線基地局
WO2018062460A1 (ja) ユーザ端末及び無線通信方法
WO2018128181A1 (ja) ユーザ端末及び無線通信方法
WO2018062454A1 (ja) ユーザ端末及び無線通信方法
WO2018203399A1 (ja) ユーザ端末及び無線通信方法
WO2018207373A1 (ja) 装置及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013915

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018735939

Country of ref document: EP

Effective date: 20190722

ENP Entry into the national phase

Ref document number: 112019013915

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190704