WO2018167958A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018167958A1
WO2018167958A1 PCT/JP2017/010985 JP2017010985W WO2018167958A1 WO 2018167958 A1 WO2018167958 A1 WO 2018167958A1 JP 2017010985 W JP2017010985 W JP 2017010985W WO 2018167958 A1 WO2018167958 A1 WO 2018167958A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
timing
transmission
user terminal
data
Prior art date
Application number
PCT/JP2017/010985
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
チン ムー
リュー リュー
スウネイ ナ
シン ワン
ジン ワン
リフェ ワン
ミン リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT179006200T priority Critical patent/PT3598816T/pt
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/010985 priority patent/WO2018167958A1/ja
Priority to BR112019019004A priority patent/BR112019019004A2/pt
Priority to JP2019505656A priority patent/JPWO2018167958A1/ja
Priority to DK17900620.0T priority patent/DK3598816T3/da
Priority to EP17900620.0A priority patent/EP3598816B1/en
Priority to EP23177232.8A priority patent/EP4236547A3/en
Priority to US16/494,426 priority patent/US11219056B2/en
Priority to CN201780088551.XA priority patent/CN110431898B/zh
Priority to NZ757930A priority patent/NZ757930B2/en
Priority to CA3056738A priority patent/CA3056738C/en
Publication of WO2018167958A1 publication Critical patent/WO2018167958A1/ja
Priority to US17/533,756 priority patent/US11758558B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 13, 14 or (Also referred to as after 15).
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC dual connectivity
  • CG Cell Group
  • CC cell
  • Inter-eNB CA inter-base station CA
  • a user terminal can use a downlink (DL) control channel (for example, PDCCH: Physical Downlink Control Channel, EPDCCH: Enhanced Physical Downlink Control Channel, MPDCCH: MTC (Machine type communication), Physical Downlink Control Channel, etc.) to receive downlink control information (DCI).
  • the user terminal receives a DL data channel (for example, PDSCH: Physical Downlink Shared Channel) and / or transmits a UL data channel (for example, PUSCH: Physical Uplink Shared Channel) at a predetermined timing based on the DCI.
  • DL data channel for example, PDSCH: Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a frequency band higher than the existing frequency band for example, 3 to 40 GHz, etc.
  • MIMO also referred to as Multiple Input, Multiple Output, Massive MIMO, etc.
  • a beam in MIMO using a large number of antenna elements, a beam (antenna directivity) can be formed by controlling the amplitude and / or phase of a signal transmitted or received by each antenna element (Beam Forming (BF)).
  • Beam Forming BF
  • the number of antenna elements that can be arranged in a predetermined area increases as the frequency increases.
  • the beam width becomes narrower, so that the beam forming gain increases. Therefore, when beam forming is applied, propagation loss (path loss) can be reduced, and coverage can be ensured even in a high frequency band.
  • beam degradation and / or link interruption may occur due to blockage caused by obstacles, and communication quality may be degraded.
  • the DL control channel (also referred to as NR-PDCCH, etc.) is transmitted using a plurality of different time domains and / or frequency domains (one or more beams), thereby ensuring robustness of the DL control channel.
  • the user terminal when transmitting the DL control channel using a plurality of different time domains and / or frequency domains (one or more beams), the user terminal appropriately sets the scheduling timing of data scheduled on the DL control channel (DCI). There is a possibility that it cannot be grasped.
  • An advantage of some aspects of the invention is that it provides a user terminal and a wireless communication method capable of appropriately grasping a scheduling timing of data scheduled in a DL control channel (DCI). .
  • DCI DL control channel
  • a user terminal monitors a downlink control channel transmitted in a plurality of different time domains and / or frequency domains and receives downlink control information (DCI), and the DCI And a control unit that controls reception and / or transmission of data scheduled by the control unit, and the control unit controls reception timing and / or transmission timing of the data based on at least timing information included in DCI It is characterized by that.
  • DCI downlink control information
  • DCI DL control channel
  • FIG. 2A and 2B are diagrams illustrating an example of NR-PDCCH monitoring.
  • 3A and 3B are diagrams illustrating another example of NR-PDCCH monitoring.
  • 4A and 4B are diagrams illustrating an example of a data scheduling timing control method. It is a figure which shows the other example of the control method of the scheduling timing of data. It is a figure which shows the other example of the control method of the scheduling timing of data. It is a figure which shows the other example of the control method of the scheduling timing of data. It is a figure which shows the other example of the control method of the scheduling timing of data. It is a figure which shows an example of schematic structure of the radio
  • Beam forming includes digital BF and analog beam BF.
  • Digital BF is a method of performing precoding signal processing (for a digital signal) on baseband.
  • parallel processing of inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform), digital-analog conversion (DAC: Digital to Analog Converter), and RF (Radio Frequency) is required for the number of antenna ports (RF chains). Become. On the other hand, as many beams as the number of RF chains can be formed at an arbitrary timing.
  • Analog BF is a method using a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration is easy and can be realized at low cost, but a plurality of beams cannot be formed at the same timing. Specifically, in analog BF, only one beam can be formed at a time for each phase shifter.
  • a radio base station for example, gNB (gNodeB), a transmission / reception point (Transmission and Reception Point (TRP)), an eNB (eNodeB), a base station (Base Station (BS)), etc.
  • gNB gNodeB
  • TRP Transmission and Reception Point
  • eNB eNodeB
  • BS Base Station
  • phase shifter In the case of having only one beam, one beam can be formed at a certain time. Therefore, when transmitting a plurality of beams using only analog BF, it is necessary to switch or rotate the beams in time because they cannot be transmitted simultaneously with the same resource.
  • a hybrid BF configuration in which a digital BF and an analog BF are combined can also be used.
  • future wireless communication systems for example, 5G, NR
  • MIMO for example, Massive MIMO
  • massive MIMO massive MIMO
  • the circuit configuration may be expensive. For this reason, it is assumed that a hybrid BF is used in a future wireless communication system.
  • beam quality for example, received power (for example, RSSI: Received Signal Strength Indicator and / or) due to blockage by an obstacle, etc.
  • RSRP Reference Signal Received Power, etc.
  • reception quality eg, received signal-to-noise ratio (SNR), received signal-to-interference plus noise power ratio (SINR)
  • SINR received signal-to-noise ratio
  • SINR received signal-to-interference plus noise power ratio
  • RSRQ At least one of Reference Signal Received Quality, etc.
  • link interruption beam failure
  • multiple DL control channels also called NR-PDCCH
  • NR-PDCCH DL control channels
  • the user terminal monitors (monitors) NR-PDCCH transmitted using a plurality of beams in different time resources and / or frequency resources.
  • the plurality of beams applied to the NR-PDCCH may be a plurality of transmission beams or reception beams, or may be a plurality of beam pair links (BPL).
  • a beam pair link (BPL) is a beam (also referred to as a transmission beam, a Tx beam, etc.) used for signal transmission (for example, a base station side) and a beam (for example, a UE side) used for receiving the signal (for example, the UE side) It corresponds to a combination of a reception beam and an Rx beam.
  • the BPL may be determined by the user terminal using a DL signal (for example, a reference signal) transmitted from the radio base station, or may be determined by the radio base station based on a measurement report from the user terminal. Good.
  • FIG. 1 is a diagram showing an example of BPL.
  • the radio base station transmits a mobility measurement signal (mobility measurement signal) using one or more beams (here, B1 to B3).
  • the user terminal receives received power (eg, RSSI and / or RSRP) and / or received quality (eg, at least one of RSRQ, SNR, and SINR) of signals for mobility measurement associated with beams B1 to B3. Measure.
  • the user terminal transmits one or more beam identifiers (also referred to as a beam ID, a beam index (BI), etc.) and / or a measurement report (MR: Measurement Report) indicating a measurement result to the radio base station.
  • a beam identifiers also referred to as a beam ID, a beam index (BI), etc.
  • MR Measurement Report
  • the user terminal may transmit one or more beam pair link identifiers (also referred to as beam pair link ID, BPLI, BPLID, etc.) and / or a measurement report (MR: Measurement Report) indicating the measurement result to the radio base station. Good.
  • beam pair link identifiers also referred to as beam pair link ID, BPLI, BPLID, etc.
  • MR Measurement Report
  • the radio base station determines Tx beams B21 to B24 used for data communication or control signal communication with the user terminal based on the measurement report.
  • the user terminal measures the CSI-RS resources # 1 to # 4 respectively associated with the TPL beams B21 to B24 or the BPL configured by the Rx beams corresponding to the respective Tx beams, and generates one or more CSI reports.
  • the user terminal may select a predetermined number of Tx beams or BPL based on the measurement result, and report the CSI for the Tx beam or BPL to the radio base station. Further, the user terminal may determine an Rx beam suitable for each selected Tx beam and determine a beam pair link (BPL). Further, the user terminal may report one or more determined BPLs to the radio base station.
  • BPL beam pair link
  • FIG. 1 shows a case where the Tx beam B23 and the Rx beam b3 are selected as the best BPL, and the Tx beam B22 and the Rx beam b2 are selected as the second best BPL.
  • a predetermined BPL may be selected in the radio base station based on a report from the user terminal, and the predetermined BPL may be notified to the user terminal by higher layer signaling or MAC signaling.
  • the BPL and radio resources predetermined frequency resource and / or time resource
  • the radio base station may transmit NR-PDCCH using M (M ⁇ 1) Tx beams (or BPL) determined based on CSI from the user terminal.
  • M M ⁇ 1
  • the user terminal may monitor (blind decoding) the NR-PDCCH with at least one of the M BPLs.
  • the user terminal may monitor the NR-PDCCH with all of the M BPLs, or may monitor the NR-PDCCH with some of the M BPLs.
  • the maximum value of M may be determined based on the capability of the user terminal.
  • the user terminal may monitor the NR-PDCCH transmitted with one or more beams (BPL or Tx beam) transmitted with one or more time resources and / or frequency resources. Further, the user terminal may monitor the NR-PDCCH of a certain beam with a shorter period than other beams. Moreover, monitoring of NR-PDCCH over a plurality of time resources may be applied when a user terminal does not have a plurality of RF chains (antenna ports).
  • the unit of time resources corresponding to different beams may be one or more slots (or minislots) or one or more symbols.
  • the unit of frequency resources corresponding to different beams is one or more resource blocks (RB), one or more resource element groups (REG), one or more REG groups, or one or more control channel elements (CCE), etc. It may be.
  • the REG group includes a plurality of REGs.
  • the REG is composed of a plurality of resource elements (RE).
  • the RE is composed of one symbol and one subcarrier.
  • the user terminal can perform NR- corresponding to other beams.
  • PDCCH can be received.
  • a user terminal when a user terminal receives a DL control channel (DCI) for scheduling data, it transmits and receives data after a predetermined timing. For example, when DCI (also referred to as UL grant) instructing UL transmission is received, the user terminal performs UL transmission after a predetermined timing (for example, after 4 ms). Further, when DCI (also referred to as DL grant or DL assignment) instructing DL transmission is received, the user terminal performs DL reception in the same subframe.
  • DCI also referred to as UL grant
  • DL grant DL grant
  • the user terminal performs DL reception in the same subframe.
  • transmission / reception is controlled at a predetermined scheduling timing.
  • the present inventors do not schedule data after a predetermined timing from the detection of the DCI, but detect the data. It was found that the DCI includes at least information indicating the data scheduling timing. With this configuration, even when NR-PDCCH (DCI) that schedules data of the same time resource is transmitted using different time resources, the user terminal appropriately grasps the data scheduling timing based on information notified by DCI. It becomes possible to do.
  • DCI NR-PDCCH
  • beam refers to a beam (also referred to as a transmission beam or a Tx beam) used for transmitting a DL signal from a radio base station and / or a beam used for receiving a DL signal at a user terminal. (Also referred to as a reception beam, an Rx beam, or the like).
  • a beam also referred to as a transmission beam, a Tx beam, etc.
  • a beam also referred to as a reception beam, an Rx beam, etc.
  • the combination of the Tx beam and the Rx beam may be called a beam pair link (BPL) or the like.
  • One NR-PDCCH may perform transmission / reception with a plurality of time resources and / or frequency resources associated with one beam, or a plurality of time resources and / or frequencies respectively associated with a plurality of beams. Transmission / reception may be controlled by resources.
  • the NR-PDCCH When a single NR-PDCCH is transmitted / received with a plurality of time resources and / or frequency resources respectively associated with a plurality of beams, the NR-PDCCH is divided and assigned to a plurality of time resources and / or frequency resources. May be. Alternatively, the NR-PDCCH may be duplicated (the same NR-PDCCH is repeatedly generated) and assigned to a plurality of time resources and / or frequency resources. With reference to FIGS. 2 and 3, NR-PDCCH in which transmission / reception is performed using a plurality of beams will be described in detail. In FIGS. 2 and 3, only the Tx beam is shown, but an Rx beam (or BPL) corresponding to the Tx beam may be used.
  • a single NR-PDCCH is configured (divided) into a plurality of pieces of encoded data, and the plurality of pieces of encoded data are transmitted using a plurality of different beams.
  • FIGS. 2A and 2B show an example in which a single NR-PDCCH corresponds to a plurality of pieces of encoded data (here, two encoded data).
  • FIG. 2A two encoded data are mapped to different frequency resources of the same symbol (OFDM symbol) and transmitted using different beams # 1 and # 2, respectively.
  • FIG. 2B two encoded data are mapped to different symbol frequency resources and transmitted using different beams # 1 and # 2, respectively.
  • the user terminal when a single NR-PDCCH is monitored with M beams, if the coding rate of the NR-PDCCH is 1 / M or less, the user terminal is theoretically: The NR-PDCCH can be restored by detecting one of the M beams.
  • FIG. 3 is a diagram showing another example of the NR-PDCCH transmitted (base station side) and monitored (UE side) with a plurality of beams.
  • the same NR-PDCCH is repeated (replicated), and a plurality of duplicated NR-PDCCHs are transmitted using a plurality of different beams.
  • Repetition is performed by copying DCI before error correction coding (after adding CRC), performing error correction coding, rate matching, and data modulation for each to generate NR-PDCCH, and then each different.
  • the NR-PDCCH generated by error correction, rate matching, and data modulation may be duplicated and transmitted using different beams.
  • FIGS. 3A and 3B show an example in which the same NR-PDCCH is repeated a plurality of times (here, twice).
  • FIG. 3A two NR-PDCCHs having the same contents are mapped to different frequency resources of the same symbol, and transmitted using different beams # 1 and # 2, respectively.
  • FIG. 3B the two NR-PDCCHs are mapped to frequency resources of different symbols, and transmitted using different beams # 1 and # 2, respectively.
  • the plurality of NR-PDCCHs are different candidate resources (NR-PDCCH candidates, etc.) in the same search space. May be arranged in a candidate resource in a different search space.
  • the user terminal when a plurality of repeated NR-PDCCHs are monitored with M beams, the user terminal can restore the NR-PDCCHs by detecting one of the M beams.
  • the user terminal may combine a plurality of NR-PDCCHs.
  • a plurality of repeated NR-PDCCHs can be transmitted using the same beam.
  • channel estimation values obtained using respective RSs corresponding to the plurality of NR-PDCCHs can be averaged / filtered to improve channel estimation accuracy.
  • an RS corresponding to only one or a part of the plurality of NR-PDCCHs may be transmitted. In this case, the RS overhead can be reduced and the performance can be improved.
  • the user terminal may set information on whether channel estimation values obtained by each RS corresponding to a plurality of repeated NR-PDCCHs can be averaged / filtered by higher layer signaling. Alternatively, the user terminal can obtain the channel estimation obtained in each RS corresponding to the plurality of repeated NR-PDCCHs regardless of whether the plurality of repeated NR-PDCCHs are transmitted using the same beam or different beams. The channel may be estimated independently without averaging / filtering the values. As described above, information regarding whether the transmission beams for a plurality of repeated NR-PDCCHs are the same or different, and how they are different in different cases, should be appropriately controlled without necessarily being identified by the user terminal. Is possible.
  • the user terminal demodulates each NR-PDCCH using a predetermined demodulation reference signal for each beam.
  • channel estimation may be performed without averaging between different beams. By performing channel estimation for each beam, the channel state for each beam can be accurately grasped.
  • DCI downlink control information
  • a DL control channel for example, NR-PDCCH
  • a predetermined reference timing A case of controlling the transmission of data will be described.
  • the user terminal recognizes the reception timing and / or transmission timing of data scheduled in DCI using timing information included in DCI transmitted on the detected NR-PDCCH and a predetermined reference timing set in advance.
  • the timing information included in the DCI may be an offset value from a preset reference timing.
  • the offset value may be a configurable value or a fixed value.
  • a plurality of offset value candidates are set in advance in association with a plurality of bit information (for example, a table is defined), and predetermined bit information is notified to the user terminal by using DCI. You may be notified.
  • a plurality of offset value candidates may be defined as fixed values, or may be set as appropriate using higher layer signaling or the like.
  • the offset value is specified in a predetermined time unit (for example, a scheduling unit).
  • the offset value is defined by the number of OFDM symbols or the number of sets of OFDM symbols.
  • the set of OFDM symbols is composed of a combination of a plurality of OFDM symbols.
  • the offset value may be defined by the number of minislots or the number of sets of minislots.
  • the set of mini slots is composed of a combination of a plurality of mini slots.
  • the offset value may be defined by the number of slots or the number of sets of slots.
  • the set of slots is composed of a combination of a plurality of slots.
  • the offset value may be defined by combining at least two of a plurality of scheduling units (OFDM symbols, minislots, slots, etc.). Moreover, you may prescribe
  • an offset value included in DCI that schedules DL data may be defined by symbols and / or minislots
  • an offset value included in DCI that schedules UL data may be defined by slots. Of course, it is not limited to this.
  • the reference timing (reference timing) is set in advance in the user terminal and becomes a reference when applying an offset value notified by DCI.
  • the reference timing may be fixedly set according to specifications or the like, or may be set from the radio base station to the user terminal using higher layer signaling (for example, RRC signaling, broadcast information) or the like.
  • higher layer signaling for example, RRC signaling, broadcast information
  • the beginning of a predetermined scheduling unit for example, a slot
  • the time unit and position for setting the reference timing are not limited to this.
  • the reference timing is set in common even when NR-PDCCH (DCI) is transmitted by any time resource (for example, symbol). Therefore, even when a plurality of DCIs that schedule the same data (for example, NR-PDCCH corresponding to different BPLs) are transmitted using different time resources, the offset values included in each DCI are the same.
  • DCI NR-PDCCH
  • the user terminal may control the data reception timing and / or transmission timing assuming that the same offset value is included in a plurality of NR-PDCCHs (DCI) for scheduling the same data.
  • DCI NR-PDCCHs
  • the NR-PDCCH that schedules the same data is transmitted with different frequency resources and / or time resources by applying different beams (for example, BPL), for example.
  • the user terminal monitors (monitors) NR-PDCCH (which may be called an NR-PDCCH candidate or a search space) to which different beams are applied, and receives DCI.
  • the NR-PDCCH monitored by the user terminal may be set in advance from the radio base station.
  • FIG. 4 shows a case where the reception of DL data is controlled based on the offset value notified by DCI and the reference timing.
  • FIG. 4 shows a case where the beginning of the slot is set as the reference timing. The reference timing is not limited to the beginning of the slot. Further, FIG. 4 shows a case where reception of DL data is controlled, but transmission of UL data may also be controlled based on an offset value notified by DCI and a reference timing.
  • FIG. 4 shows a case where DCI and DL data transmission is performed in a slot composed of 14 OFDM symbols (# 0- # 13).
  • the slot is composed of six minislots (# 0 to # 5), and each minislot is composed of 3, 2, 2, 2, 2, 2, 3 symbols in the time direction.
  • the applicable slot configuration and mini-slot configuration are not limited to this.
  • a mini-slot may have a configuration of 2, 2, 2, 2, 2, 2, 2 symbols in the slot in the time direction, or a configuration of 2, 3, 2, 2, 2, 3 in the slot.
  • the number of symbols per mini-slot may be configured with a different number of symbols.
  • One mini-slot may be arranged across two slots.
  • FIG. 4A shows a case where data # 1 is assigned to minislot # 3 (or symbols # 7 and # 8) and data # 2 is assigned to minislot # 4 (or symbols # 9 and # 10). ing.
  • Each data is scheduled by one or a plurality of NR-PDCCHs (DCI).
  • DCI # 1 that schedules data # 1
  • DCI # 2 that schedules data # 2 are transmitted using the same time resource (here, symbol # 0).
  • the offset value included in each DCI is determined from the reference timing and the data allocation scheduled position.
  • the offset between the reference timing and data # 1 is 7 symbols + 8 symbols (or 3 minislots).
  • the offset between the reference timing and data # 2 is 9 symbols + 10 symbols (or 4 minislots).
  • the radio base station transmits DCI # 1 for scheduling data # 1 including an offset value corresponding to 7 symbols + 8 symbols (or 3 minislots). Also, the radio base station transmits DCI # 2 for scheduling data # 2 including an offset value corresponding to 9 symbols + 10 symbols (or 4 minislots).
  • the period during which the data is allocated may be included in an offset value, or only a part (for example, data The allocation start position and / or end position) may be included in the offset value and notified.
  • the user terminal can recognize the reception timing of data # 1 and data # 2 based on the offset value and the reference timing included in DCI # 1 and DCI # 2.
  • FIG. 4B shows a case where DCI # 2 for scheduling data # 2 is transmitted with a different time resource (here, symbol # 1) from DCI # 1. That is, in FIG. 4B, the time resource in which DCI # 2 is transmitted is changed compared to FIG. 4A.
  • the offset value included in DCI # 2 is the same value as DCI # 2 in FIG. 4A.
  • the offset value can be made the same regardless of the timing (time resource) at which the DCI is transmitted.
  • FIG. 5 shows a case where data scheduling is performed in slot units.
  • the offset value included in the DCI is defined at least in slot units.
  • data # 2, # 1, and # 3 are assigned to slots # 1, # 2, and # 3, respectively, and data # 1 to # 3 are transmitted in different slots, respectively.
  • 3 shows the case of scheduling (cross slot scheduling).
  • DCI # 1 transmitted in slot # 0 schedules data # 1 assigned to slot # 2.
  • the reference timing is set at the head of a slot (here, # 0) where DCI (NR-PDCCH) is detected, the offset value included in DCI # 1 is 2.
  • DCI # 2 transmitted in slot # 0 schedules data # 2 assigned to slot # 1. For this reason, the offset value included in DCI # 2 is 1. Also, DCI # 3 transmitted in slot # 1 schedules data # 3 assigned to slot # 3. For this reason, the offset value included in DCI # 3 is 2.
  • FIG. 5 shows a case where data scheduling is controlled using DCI transmitted in different slots (cross slot scheduling), DCI and data may be arranged in the same slot.
  • the offset value included in DCI may be set to 0.
  • FIG. 5 shows a case where the offset value is notified in slot units, but in addition to the slot, information in symbols and / or minislot units may be included in the offset value and notified.
  • FIG. 6 shows a case where a plurality of NR-PDCCHs (DCI) scheduling data of the same time resource (for example, the same data) are allocated to different time resources.
  • FIG. 6 shows a case where NR-PDCCH (DCI) for scheduling data transmitted in symbols # 7 and # 8 (minislot # 3) is transmitted in symbol # 0 and symbol # 1, respectively.
  • the same or different beams for example, BPL are applied to the NR-PDCCH (DCI) transmitted in the symbols # 0 and # 1, respectively.
  • each DCI includes an offset value corresponding to 7 symbols + 8 symbols (or 3 minislots).
  • the user terminal controls the data reception timing and / or transmission timing using the offset value and the reference timing notified by at least one DCI.
  • the user terminal When the user terminal detects at least one NR-PDCCH, the user terminal may stop detecting NR-PDCCH of other beams. With this operation, the processing load on the user terminal can be reduced.
  • the user terminal receives a plurality of NR-PDCCHs (DCI)
  • the reception and / or transmission of data may be controlled by combining (combining) the plurality of DCIs.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • DCI first detected NR-PDCCH
  • DCI last detected NR-PDCCH
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission
  • DL data reception and / or UL data transmission is controlled using timing information included in DCI transmitted on a DL control channel (for example, NR-PDCCH) and reception timing of the DCI. The case where it does is demonstrated.
  • a DL control channel for example, NR-PDCCH
  • the user terminal uses the timing information included in the detected NR-PDCCH (DCI) and the detection timing of the NR-PDCCH to control the reception timing and / or transmission timing of data scheduled in the DCI.
  • the timing information included in the DCI may be an offset value from the detection timing of the NR-PDCCH.
  • the offset value notified by DCI may be a configurable value or may be a fixed value.
  • a plurality of offset value candidates are set in advance in association with a plurality of bit information (for example, a table is defined), and predetermined bit information is notified to the user terminal by using DCI. You may be notified.
  • a plurality of offset value candidates may be defined as fixed values, or may be set as appropriate using higher layer signaling or the like.
  • the offset value is specified in a predetermined time unit (for example, a scheduling unit).
  • the offset value is defined by the number of OFDM symbols or the number of sets of OFDM symbols.
  • the offset value may be defined by the number of minislots or the number of sets of minislots.
  • the offset value may be defined by the number of slots or the number of sets of slots.
  • the offset value may be defined by combining at least two of a plurality of scheduling units (OFDM symbols, minislots, slots, etc.). Moreover, you may prescribe
  • an offset value included in DCI that schedules DL data may be defined by symbols and / or minislots
  • an offset value included in DCI that schedules UL data may be defined by slots. Of course, it is not limited to this.
  • an offset value included in each DCI is set according to the timing at which each DCI is transmitted. For this reason, when a plurality of DCIs that schedule the same data are transmitted using different time resources, the offset values included in each DCI are different values.
  • FIG. 7 shows a case where a plurality of NR-PDCCHs (DCI) scheduling data of the same time resource (for example, the same data) are allocated to different time resources.
  • FIG. 7 shows a case where NR-PDCCH (DCI) for scheduling data transmitted in symbols # 7 and # 8 (minislot # 3) is transmitted in symbol # 0 and symbol # 3, respectively.
  • the same or different beams for example, BPL are applied to the NR-PDCCH (DCI) transmitted in the symbols # 0 and # 3, respectively.
  • the data scheduling timing is controlled based on the detection timing of each DCI.
  • the offset values included in the DCI transmitted by symbol # 0 and symbol # 3 are different values.
  • the DCI transmitted with symbol # 0 includes an offset value corresponding to 7 symbols + 8 symbols (or 3 minislots).
  • the DCI transmitted by symbol # 3 includes an offset value corresponding to 4 symbols + 5 symbols (or 2 minislots).
  • the user terminal controls the data reception timing and / or transmission timing using the offset value notified by at least one DCI and the reception timing of the DCI.
  • the user terminal When the user terminal detects at least one NR-PDCCH, the user terminal may stop detecting NR-PDCCH of other beams. With this operation, the processing load on the user terminal can be reduced.
  • the user terminal receives a plurality of NR-PDCCHs (DCI)
  • the reception and / or transmission of data may be controlled by combining (combining) the plurality of DCIs.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • DCI first detected NR-PDCCH
  • DCI last detected NR-PDCCH
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission
  • reception of DL data and / or transmission of UL data is controlled using timing information included in DCI transmitted on a DL control channel (for example, NR-PDCCH).
  • a DL control channel for example, NR-PDCCH
  • the user terminal uses the timing information included in the detected NR-PDCCH (DCI) to control the reception timing and / or transmission timing of data scheduled by the DCI.
  • the timing information included in the DCI may be information indicating a position where data is scheduled (for example, an index of a scheduling unit (absolute index)). That is, the user terminal can determine the data scheduling timing using information specified by DCI regardless of the reception timing of NR-PDCCH (DCI).
  • Timing information is a slot index within a subframe or a radio frame.
  • the timing information may be a minislot index within a slot, a subframe, or a radio frame.
  • the timing information may be a symbol index within a minislot, within a slot, within a subframe, or within a radio frame.
  • FIG. 8 shows a case where a plurality of NR-PDCCHs (DCI) scheduling data of the same time resource (for example, the same data) are allocated to different time resources.
  • FIG. 8 shows a case where NR-PDCCH (DCI) for scheduling data transmitted in symbols #m and # m + 1 (slot #n) is transmitted in symbol # 0 and symbol # 1, respectively. Further, a case is shown in which different beams # 1 and # 2 (for example, BPL) are applied to the NR-PDCCH (DCI) transmitted in symbol # 0 and symbol # 1, respectively.
  • DCI NR-PDCCH
  • the data scheduling timing is controlled based on timing information (for example, an index of a scheduling unit) included in each DCI. Therefore, the timing information included in the DCI transmitted by symbol # 0 and symbol # 1 indicates the same scheduling index.
  • timing information for example, an index of a scheduling unit
  • the DCI transmitted in symbol # 0 includes timing information indicating slot #n and symbol # m + # m + 1. Similarly, timing information indicating slot #n and symbol # m + # m + 1 is also included in DCI transmitted by symbol # 1.
  • the user terminal controls data reception timing and / or transmission timing using timing information notified by at least one DCI.
  • the timing information included in each DCI may be set in advance by associating a plurality of timing information candidates with a plurality of bit information (for example, defining a table).
  • the radio base station may notify the user terminal of predetermined timing information by notifying predetermined bit information using DCI.
  • the plurality of timing information candidates may be defined as fixed values, or may be set as appropriate using higher layer signaling or the like.
  • Timing information is specified in predetermined time units (for example, scheduling units).
  • the timing information is defined using at least one of an OFDM symbol, a mini-slot, and a slot. Further, the timing information may be defined by combining at least two of a plurality of scheduling units (OFDM symbols, minislots, slots, etc.).
  • timing information may be defined using different scheduling units for DL data scheduling and UL data scheduling.
  • timing information included in DCI for scheduling DL data may be defined by symbols and / or minislots
  • timing information included in DCI for scheduling UL data may be defined by slots, minislots and / or symbols. .
  • the user terminal may stop detecting NR-PDCCH of other beams. With this operation, the processing load on the user terminal can be reduced.
  • the user terminal receives a plurality of NR-PDCCHs (DCI)
  • the reception and / or transmission of data may be controlled by combining (combining) two DCIs.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • DCI first detected NR-PDCCH
  • DCI last detected NR-PDCCH
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission may be controlled.
  • the user terminal may control reception and / or transmission of data based on the first detected NR-PDCCH (DCI), or receive data based on the last detected NR-PDCCH (DCI). And / or transmission
  • an index of a slot in which data is scheduled is determined based on an offset value included in the DCI with a slot in which NR-PDCCH (DCI) is transmitted as a reference timing. Then, another bit field (a bit field different from the offset value) of DCI may be determined for the minislot index and / or symbol index in which data is scheduled in the slot.
  • DCI NR-PDCCH
  • the minislot index and / or symbol index in which data is scheduled is determined based on the offset value included in the DCI using the minislot and / or symbol in which NR-PDCCH (DCI) is transmitted as a reference timing.
  • the index of the slot in which the data is scheduled may be determined using another bit field (a bit field different from the offset value) of DCI.
  • wireless communication system (Wireless communication system)
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced 4G (4th generation mobile communication system)
  • 5G. 5th generation mobile communication system
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3 to 40 GHz
  • a wide bandwidth may be used between the user terminal 20 and the radio base station 12.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like.
  • a radio base station 10 when the radio base station 11 and the radio base station 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink (DL) channel a DL data channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), downlink L1 / L2 control A channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and PUSCH scheduling information is transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • PDCCH and / or EPDCCH are also called DL control channel, NR-PDCCH, and the like.
  • a UL data channel shared by each user terminal 20
  • a UL control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS DeModulation Reference Signal
  • PRS Positioning Reference Signal
  • MRS Mobility Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal).
  • UE-specific Reference Signal user terminal specific reference signal
  • the transmitted reference signal is not limited to these.
  • a synchronization signal PSS and / or SSS
  • PBCH broadcast channel
  • FIG. 10 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • other transmission processing are performed and the transmission / reception unit 103.
  • the DL control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmission / reception antenna 101 can be configured by an array antenna, for example.
  • the transmission / reception unit 103 is configured to be able to apply single BF and multi-BF.
  • the transmission / reception unit 103 transmits a DL signal (for example, at least one of NR-PDCCH / PDSCH, mobility measurement signal, CSI-RS, DMRS, DCI, DL data), and a UL signal (for example, PUCCH, PUSCH, recovery). At least one of a signal, a measurement report, a beam report, a CSI report, UCI, and UL data).
  • a DL signal for example, at least one of NR-PDCCH / PDSCH, mobility measurement signal, CSI-RS, DMRS, DCI, DL data
  • a UL signal for example, PUCCH, PUSCH, recovery.
  • the transmission / reception unit 103 transmits NR-PDCCH (DCI) in different time domains and / or frequency domains using a plurality of beams.
  • the transmission / reception unit 103 may transmit the DCI including timing information.
  • the timing information may be any one of information indicating an offset value from a preset reference timing, an offset value from a DCI reception timing, and an index of a predetermined scheduling unit. Further, the transmission / reception unit 103 may notify information related to the reference timing.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • the functional block of the characteristic part in this Embodiment is mainly shown, and the wireless base station 10 shall also have another functional block required for radio
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling of the DL data channel and the UL data channel, and controls generation and transmission of DCI (DL assignment) for scheduling the DL data channel and DCI (UL grant) for scheduling the UL data channel. .
  • the control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a Tx beam and / or an Rx beam. To control.
  • the control unit 301 controls a beam (Tx beam and / or Rx beam) used for transmission and / or reception of a DL signal (for example, NR-PDCCH / PDSCH).
  • the transmission signal generation unit 302 generates a DL signal based on an instruction from the control unit 301 and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates DCI (DL assignment, UL grant) based on an instruction from the control unit 301, for example.
  • the DL data channel (PDSCH) is subjected to encoding processing, modulation processing, and beamforming processing (precoding processing) according to a coding rate, a modulation scheme, and the like determined based on CSI and the like from each user terminal 20. Is called.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, a UL signal transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when feedback information (for example, CSI, HARQ-ACK, etc.) is received from the user terminal, the feedback information is output to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may, for example, receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio)) or channel of the received signal. You may measure about a state etc.
  • the measurement result may be output to the control unit 301.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmission / reception antenna 201 can be configured by, for example, an array antenna.
  • the transmission / reception unit 203 is configured to be able to apply single BF and multi-BF.
  • the transmission / reception unit 203 receives a DL signal (eg, at least one of NR-PDCCH / PDSCH, mobility measurement signal, CSI-RS, DMRS, DCI, and DL data), and receives a UL signal (eg, PUCCH, PUSCH, recovery). At least one of a signal, a measurement report, a beam report, a CSI report, UCI, and UL data).
  • a DL signal eg, at least one of NR-PDCCH / PDSCH, mobility measurement signal, CSI-RS, DMRS, DCI, and DL data
  • a UL signal eg, PUCCH, PUSCH, recovery.
  • the transmission / reception unit 203 transmits one or more NR-PDCCHs (or NR-PDCCH candidates, NR-PDCCH candidate regions) transmitted in different time regions and / or frequency regions (one or more beams) to different time regions. And / or receive (monitor) in the frequency domain.
  • the transmission / reception unit 203 may receive timing information included in the DCI.
  • the timing information may be any one of information indicating an offset value from a preset reference timing, an offset value from a DCI reception timing, and an index of a predetermined scheduling unit. Further, the transmission / reception unit 203 may receive information related to the reference timing.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 acquires the DL control signal (DL control channel) and the DL data signal (DL data channel) transmitted from the radio base station 10 from the received signal processing unit 404.
  • the control unit 401 controls generation of a UL control signal (for example, delivery confirmation information) and a UL data signal based on a DL control signal, a result of determining whether retransmission control is required for the DL data signal, or the like.
  • the control unit 401 uses the digital BF (for example, precoding) by the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. To control.
  • the control unit 401 controls a beam (Tx beam and / or Rx beam) used for receiving a DL signal (eg, NR-PDCCH / PDSCH).
  • the control unit 401 controls reception and / or transmission of data scheduled by DCI, and controls data reception timing and / or transmission timing based on timing information included in at least DCI.
  • the timing information is an offset value from a preset reference timing
  • the control unit 401 controls data reception timing and / or transmission timing based on the reference timing and the offset value (see FIG. 4-6). .
  • the control unit 401 controls the data reception timing and / or transmission timing based on the DCI reception timing and offset value (see FIG. 7).
  • the timing information is information indicating an index of a predetermined scheduling unit
  • the control unit 401 controls data reception timing and / or transmission timing based on the information indicating the index (see FIG. 8).
  • control unit 401 controls data reception and / or transmission based on the first detected DCI and / or the last detected DCI. Also good.
  • the transmission signal generation unit 402 generates a UL signal (UL control signal, UL data signal, UL reference signal, etc.) based on an instruction from the control unit 401, and outputs the UL signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates feedback information (for example, at least one of HARQ-ACK, CSI, and scheduling request) based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when a UL grant is included in the DL control signal notified from the radio base station 10.
  • feedback information for example, at least one of HARQ-ACK, CSI, and scheduling request
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a DL signal (DL control signal, DL data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 performs measurement using a mobility measurement signal and / or CSI-RS resource transmitted from the radio base station 10.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, received power (for example, RSRP), received quality (for example, RSRQ, received SINR), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

DL制御チャネル(DCI)でスケジューリングされるデータのスケジューリングタイミングを適切に把握するために、複数の異なる時間領域及び/又は周波数領域で送信される下りリンク制御チャネルを監視して、下りリンク制御情報(DCI)を受信する受信部と、前記DCIによりスケジューリングされるデータの受信及び/又は送信を制御する制御部と、を設け、前記制御部は、少なくともDCIに含まれるタイミング情報に基づいて前記データの受信タイミング及び/又は送信タイミングを制御する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延等を目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降等ともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)等とも呼ばれる。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、下りリンク(DL)制御チャネル(例えば、PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel、MPDCCH:MTC(Machine type communication) Physical Downlink Control Channelなど)を介して、下りリンク制御情報(DCI)を受信する。ユーザ端末は、当該DCIに基づいて所定タイミングでDLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信及び/又はULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を行う。
 将来の無線通信システム(例えば、5G、NR)では、高速及び大容量化(例えば、eMBB:enhanced Mobile Broad Band)を実現するため、既存の周波数帯よりも高い周波数帯(例えば、3~40GHzなど)を利用することが検討されている。一般に、周波数帯が高くなるほど、距離減衰が増大するため、カバレッジを確保することが難しくなる。そこで、多数のアンテナ素子を用いたMIMO(Multiple Input Multiple Output、Massive MIMO等ともいう)が検討されている。
 多数のアンテナ素子を用いたMIMOでは、各アンテナ素子で送信又は受信される信号の振幅及び/又は位相を制御して、ビーム(アンテナ指向性)を形成できる(ビームフォーミング(BF:Beam Forming))。例えば、アンテナ素子が2次元に配置される場合、周波数が高くなるほど所定面積で配置可能なアンテナ素子の数(アンテナ素子数)が増加する。所定面積あたりのアンテナ素子数が多いほど、ビーム幅が狭く(narrower)なるので、ビームフォーミングゲインは増加する。したがって、ビームフォーミングを適用する場合、伝搬損失(パスロス)を低減でき、高い周波数帯でもカバレッジを確保できる。
 一方で、ビームフォーミングを適用する場合、障害物による妨害(blockage)などによるビームの劣化及び/又はリンクの中断(ビーム失敗(beam failure))が生じ、通信品質が劣化するおそれがある。
 そのため、複数の異なる時間領域及び/又は周波数領域(一以上のビーム)を用いてDL制御チャネル(NR-PDCCH等ともいう)を送信することにより、当該DL制御チャネルのロバスト性(robustness)を確保することが検討されている。しかしながら、複数の異なる時間領域及び/又は周波数領域(一以上のビーム)を用いてDL制御チャネルの送信を行う場合、ユーザ端末が、DL制御チャネル(DCI)でスケジューリングされるデータのスケジューリングタイミングを適切に把握できないおそれがある。
 本発明はかかる点に鑑みてなされたものであり、DL制御チャネル(DCI)でスケジューリングされるデータのスケジューリングタイミングを適切に把握可能なユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、複数の異なる時間領域及び/又は周波数領域で送信される下りリンク制御チャネルを監視して、下りリンク制御情報(DCI)を受信する受信部と、前記DCIによりスケジューリングされるデータの受信及び/又は送信を制御する制御部と、を有し、前記制御部は、少なくともDCIに含まれるタイミング情報に基づいて前記データの受信タイミング及び/又は送信タイミングを制御することを特徴とする。
 本発明によれば、DL制御チャネル(DCI)でスケジューリングされるデータのスケジューリングタイミングを適切に把握できる。
BPLの一例を示す図である。 図2A及び図2Bは、NR-PDCCHの監視の一例を示す図である。 図3A及び図3Bは、NR-PDCCHの監視の他の例を示す図である。 図4A及び図4Bは、データのスケジューリングタイミングの制御方法の一例を示す図である。 データのスケジューリングタイミングの制御方法の他の例を示す図である。 データのスケジューリングタイミングの制御方法の他の例を示す図である。 データのスケジューリングタイミングの制御方法の他の例を示す図である。 データのスケジューリングタイミングの制御方法の他の例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、5G、NR)では、高速及び大容量(例えば、eMBB)、超多数端末(例えば、massive MTC(Machine Type Communication))、超高信頼及び低遅延(例えば、URLLC(Ultra Reliable and Low Latency Communications))などのユースケースが想定される。これらのユースケースを想定して、例えば、将来の無線通信システムでは、ビームフォーミング(BF)を利用して通信を行うことが検討されている。
 ビームフォーミング(BF)は、デジタルBF及びアナログビームBFを含む。デジタルBFは、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法である。この場合、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)、デジタル-アナログ変換(DAC:Digital to Analog Converter)及びRF(Radio Frequency)の並列処理が、アンテナポート(RF chain)の個数だけ必要となる。一方で、任意のタイミングで、RF chain数に応じた数だけビームを形成できる。
 アナログBFは、RF上で位相シフト器を用いる方法である。この場合、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できるが、同じタイミングで複数のビームを形成することができない。具体的には、アナログBFでは、位相シフト器ごとに、一度に1ビームしか形成できない。
 このため、無線基地局(例えば、gNB(gNodeB)、送受信ポイント(Transmission and Reception Point(TRP))、eNB(eNodeB)、基地局(Base Station(BS))等と呼ばれる)が位相シフト器を1つのみ有する場合には、ある時間において形成できるビームは、1つとなる。したがって、アナログBFのみを用いて複数のビームを送信する場合には、同じリソースで同時に送信することはできないため、ビームを時間的に切り替えたり、回転させたりする必要がある。
 なお、デジタルBFとアナログBFとを組み合わせたハイブリッドBF構成とすることも可能である。将来の無線通信システム(例えば、5G、NR)では、多数のアンテナ素子を用いたMIMO(例えば、Massive MIMO)の導入が検討されているが、膨大な数のビーム形成をデジタルBFだけで行うと、回路構成が高価になる恐れがある。このため、将来の無線通信システムではハイブリッドBFが利用されることも想定される。
 以上のようなBF(デジタルBF、アナログBF、ハイブリッドBFを含む)を適用する場合、障害物による妨害(blockage)などによるビーム品質(例えば、受信電力(例えば、RSSI:Received Signal Strength Indicator及び/又はRSRP:Reference Signal Received Powerなど)及び/又は受信品質(例えば、受信信号対雑音電力比(SNR:Signal to Noise Ratio)、受信信号対雑音干渉電力比(SINR:Signal-to-Interference plus Noise power Ratio及びRSRQ:Reference Signal Received Qualityの少なくとも一つなど))のの劣化及び/又はリンクの中断(ビーム失敗(beam failure))が生じるおそれがある。特に、高い周波数帯において狭ビーム(narrower beam)を用いる場合、障害物等の影響を大きく受けて通信品質が劣化するおそれが高くなる。
 したがって、ビームのロバスト性(robustness)を確保するために、異なる時間リソース及び/又は周波数リソースを利用して、同じデータをスケジューリングする複数のDL制御チャネル(NR-PDCCHとも呼ぶ)を複数のビームを用いて送信することも検討されている。ユーザ端末は、複数のビームを用いて送信されるNR-PDCCHを異なる時間リソース及び/又は周波数リソースにおいて監視(モニタ)する。
 NR-PDCCHに適用する複数のビームは、複数の送信ビーム又は受信ビームとしてもよいし、複数のビームペアリンク(BPL)としてもよい。ビームペアリンク(BPL)とは、信号の送信(例えば、基地局側)に用いられるビーム(送信ビーム、Txビーム等ともいう)と、当該信号の受信(例えば、UE側)に用いられるビーム(受信ビーム、Rxビーム等ともいう)の組み合わせに相当する。BPLは、無線基地局から送信されるDL信号(例えば、参照信号)を利用してユーザ端末が決定してもよいし、ユーザ端末からの測定報告等に基づいて無線基地局が決定してもよい。
 図1は、BPLの一例を示す図である。例えば、図1では、無線基地局は、モビリティ測定用の信号(モビリティ測定用信号)を一以上のビーム(ここでは、B1~B3)を用いて送信する。図1において、ユーザ端末は、ビームB1~B3に関連付けられるモビリティ測定用信号の受信電力(例えば、RSSI及び/又はRSRP)及び/又は受信品質(例えば、RSRQ、SNR及びSINRの少なくとも一つなど)を測定する。ユーザ端末は、一以上のビームの識別子(ビームID、ビームインデックス(BI)等ともいう)及び/又は測定結果を示す測定報告(MR:Measurement Report)を無線基地局に送信する。あるいは、ユーザ端末は、一以上のビームペアリンク識別子(ビームペアリンクID、BPLI、BPLID等ともいう)及び/又は測定結果を示す測定報告(MR:Measurement Report)を無線基地局に送信してもよい。
 無線基地局は、測定報告に基づいて当該ユーザ端末とのデータ通信又は制御信号通信に用いるTxビームB21~B24を決定する。ユーザ端末は、TxビームB21~B24又はそれぞれのTxビームと対応するRxビームで構成されるBPLにそれぞれ関連付けられるCSI-RSリソース#1~#4を測定し、一以上のCSI報告を生成する。図1において、ユーザ端末は、測定結果に基づいて所定数のTxビーム又はBPLを選択し、当該Txビーム又はBPLについてのCSIを無線基地局に報告してもよい。また、ユーザ端末は、選択された各Txビームに適するRxビームを決定し、ビームペアリンク(BPL)を決定してもよい。また、ユーザ端末は、決定した一以上のBPLを無線基地局に報告してもよい。
 図1では、最も良いBPLとしてTxビームB23及びRxビームb3を選択し、2番目に良いBPLとしてTxビームB22及びRxビームb2を選択する場合を示している。なお、ユーザ端末からの報告に基づいて無線基地局において所定のBPLを選択し、上位レイヤシグナリング、MACシグナリングにより所定のBPLをユーザ端末に通知してもよい。また、BPLと無線リソース(所定の周波数リソース及び/又は時間リソース)は関連付けられて設定されてもよく、この場合BPLと無線リソースの関連付け情報は無線基地局からユーザ端末に通知(設置)すればよい。
 無線基地局は、ユーザ端末からのCSIに基づいて決定されるM(M≧1)個のTxビーム(又はBPL)を用いてNR-PDCCHを送信してもよい。ユーザ端末は、M個のBPLの少なくとも一つで、NR-PDCCHを監視(ブラインド復号)してもよい。ユーザ端末は、M個のBPLの全てでNR-PDCCHを監視してもよいし、M個のBPLの一部でNR-PDCCHを監視してもよい。Mの最大値は、ユーザ端末の能力に基づいて決定されてもよい。
 ユーザ端末は、一以上の時間リソース及び/又は周波数リソースで送信される一以上のビーム(BPL又はTxビーム)で送信されるNR-PDCCHを監視してもよい。また、ユーザ端末は、あるビームのNR-PDCCHを、他のビームよりも短い周期で監視してもよい。また、複数の時間リソースに渡るNR-PDCCHの監視は、ユーザ端末が複数のRFチェーン(アンテナポート)を有しない場合に適用されてもよい。
 なお、異なるビームに対応する時間リソースの単位は、一以上のスロット(又はミニスロット)であってもよいし、一以上のシンボルであってもよい。また、異なるビームに対応する周波数リソースの単位は、一以上のリソースブロック(RB)、一以上のリソース要素グループ(REG)、一以上のREGグループ、又は、一以上の制御チャネル要素(CCE)等であってもよい。ここで、REGグループは、複数のREGで構成される。REGは、複数のリソース要素(RE)で構成される。REは、1シンボル及び1サブキャリアで構成される。
 このように、所定データをスケジューリングするNR-PDCCHを、異なるビーム(例えば、BPL)を用いて複数送信することにより、あるビームが劣化する場合でも、ユーザ端末は、他のビームに対応するNR-PDCCHを受信することができる。複数のビームを用いてNR-PDCCHを送信することにより、障害物による妨害(blockage)による通信品率の劣化を抑制できる。
 ところで、既存のLTEシステムにおいて、ユーザ端末は、データをスケジューリングするDL制御チャネル(DCI)を受信した場合、所定タイミング後にデータの送受信を行う。例えば、UL送信を指示するDCI(ULグラントとも呼ぶ)を受信した場合、ユーザ端末は所定タイミング後(例えば、4ms後)にUL送信を行う。また、DL送信を指示するDCI(DLグラント、DLアサイメントとも呼ぶ)を受信した場合、ユーザ端末は同じサブフレームでDL受信を行う。このように既存のLTEシステムでは、DL制御チャネルを受信した場合、予め規定されたスケジューリングタイミングで送受信を制御する。
 一方で、上述したように複数のNR-PDCCH(DCI)が送信される場合、データの受信タイミング及び/又は送信タイミングをどのように制御するかが問題となる。特に、ユーザ端末が同一データをスケジューリングする複数のNR-PDCCHを異なる時間リソースで検出した場合、既存の方法ではデータのスケジューリングタイミングを適切に把握できなくなるおそれがある。
 そこで、本発明者らは、異なるビームを用いて送信される複数のNR-PDCCH(DCI)を監視する場合に、当該DCIの検出から予め規定されたタイミング後にデータをスケジューリングするのではなく、検出したDCIにデータのスケジューリングタイミングを示す情報を少なくとも含めることを見出した。この構成により、同一時間リソースのデータをスケジューリングするNR-PDCCH(DCI)が異なる時間リソースで送信される場合でも、ユーザ端末は、DCIで通知される情報に基づいてデータのスケジューリングタイミングを適切に把握することが可能となる。
 以下、本実施の形態について、図面を参照して詳細に説明する。なお、本実施の形態におけるビームフォーミングは、デジタルBFを想定するが、アナログBF、ハイブリッドBFにも適宜適用可能である。また、本実施の形態において、「ビーム」は、無線基地局からのDL信号の送信に用いられるビーム(送信ビーム、Txビーム等ともいう)及び/又はユーザ端末におけるDL信号の受信に用いられるビーム(受信ビーム、Rxビーム等ともいう)を含んでもよい。あるいは、ユーザ端末からのUL信号の送信に用いられるビーム(送信ビーム、Txビーム等ともいう)及び/又は無線基地局におけるUL信号の受信に用いられるビーム(受信ビーム、Rxビーム等ともいう)を含んでもよい。Txビーム及びRxビームの組み合わせは、ビームペアリンク(BPL)等と呼ばれてもよい。
(第1の態様)
 第1の態様では、所定ビームを用いたNR-PDCCHを異なる時間リソース及び/又は周波数リソースで送信する場合の送信方法について説明する。
 1個のNR-PDCCHは、1個のビームに関連付けられた複数の時間リソース及び/又は周波数リソースで送受信を行ってもよいし、複数のビームにそれぞれ関連付けられた複数の時間リソース及び/又は周波数リソースで送受信が制御されてもよい。
 単一のNR-PDCCHが、複数のビームにそれぞれ関連付けられた複数の時間リソース及び/又は周波数リソースで送受信される場合、当該NR-PDCCHを分割して複数の時間リソース及び/又は周波数リソースに割当ててもよい。あるいは、当該NR-PDCCHを複製(同一のNR-PDCCHを繰り返し生成)して複数の時間リソース及び/又は周波数リソースに割当ててもよい。図2及び3を参照し、複数のビームで送受信が行われるNR-PDCCHについて詳細に説明する。なお、図2及び3では、Txビームだけが示されるが、Txビームに対応するRxビーム(又は、BPL)を用いてもよい。
 図2では、単一のNR-PDCCHが複数の符号化データで構成(に分割)され、複数の符号化データが異なる複数のビームを用いて送信される。例えば、図2A及び2Bでは、単一のNR-PDCCHが複数の符号化データ(ここでは、2つ符号化データ)に対応する例を示している。
 図2Aでは、2つの符号化データが、同一シンボル(OFDMシンボル)の異なる周波数リソースにマッピングされ、それぞれ異なるビーム#1及び#2を用いて送信される。一方、図2Bでは、2つの符号化データが、異なるシンボルの周波数リソースにマッピングされ、それぞれ異なるビーム#1及び#2を用いて送信される。
 図2A及び2Bに示すように、単一のNR-PDCCHがM個のビームで監視される場合、当該NR-PDCCHの符号化率が1/M以下であれば、理論上、ユーザ端末は、M個のビームの一つの検出により当該NR-PDCCHを復元できることになる。
 図3は、複数のビームで送信(基地局側)及び監視(UE側)されるNR-PDCCHの他の例を示す図である。図3では、同一のNR-PDCCHが繰り返され(複製され)、複製された複数のNR-PDCCHがそれぞれ異なる複数のビームを用いて送信される。繰り返しは、誤り訂正符号化前(CRC付加後)のDCIを複製し、それぞれに対して誤り訂正符号化・レートマッチング・データ変調を行って、それぞれでNR-PDCCHを生成した後、それぞれを異なるビームを用いて送信するものとしてもよいし、誤り訂正・レートマッチング・データ変調して生成したNR-PDCCHを複製し、それぞれを異なるビームを用いて送信するものとしてもよい。例えば、図3A及び3Bでは、同一のNR-PDCCHが複数回(ここでは、2回)繰り返される例を示している。
 図3Aでは、同一内容の2つのNR-PDCCHが、同一シンボルの異なる周波数リソースにマッピングされ、それぞれ、異なるビーム#1及び#2を用いて送信される。一方、図3Bでは、当該2つのNR-PDCCHが、異なるシンボルの周波数リソースにマッピングされ、それぞれ、異なるビーム#1及び#2を用いて送信される。
 図3A及び3Bに示すように、繰り返される複数のNR-PDCCHがM個のビームで監視される場合、当該複数のNR-PDCCHは、同一のサーチスペースの異なる候補リソース(NR-PDCCH候補等ともいう)に配置されてもよいし、異なるサーチスペース内の候補リソースに配置されてもよい。
 図3A及び3Bに示すように、繰り返される複数のNR-PDCCHがM個のビームで監視される場合、ユーザ端末は、M個のビームの一つの検出により当該NR-PDCCHを復元できる。複数のビームを検出する場合、ユーザ端末は、複数のNR-PDCCHを合成してもよい。
 なお、繰り返される複数のNR-PDCCHは、同じビームで送信することもできる。繰り返される複数のNR-PDCCHが同じビームで送信される場合、複数のNR-PDCCHに対応するそれぞれのRSを用いて得られるチャネル推定値を平均/フィルタリングし、チャネル推定精度を向上することができる。あるいは、繰り返される複数のNR-PDCCHが同じビームで送信される場合、複数のNR-PDCCHの一つまたは一部にのみ対応するRSを送信してもよい。この場合、RSオーバヘッドを削減し、性能を改善することができる。異なるビームで繰り返される複数のNR-PDCCHが送信される場合、それぞれのビームに対応するRSを用いて、独立にチャネル推定及び復調することが望ましい。
 ユーザ端末は、繰り返される複数のNR-PDCCHに対応するそれぞれのRSで得られるチャネル推定値を平均/フィルタリング可能かどうかという情報を、上位レイヤシグナリングで設定されるものとしてもよい。あるいは、ユーザ端末は、繰り返される複数のNR-PDCCHが同じビームで送信されるか異なるビームで送信されるかに関わらず、繰り返される複数のNR-PDCCHに対応するそれぞれのRSで得られるチャネル推定値を平均/フィルタリングせず、独立にチャネル推定するものとしてもよい。以上のように、繰り返される複数のNR-PDCCHに対する送信ビームが同じか異なるか、また、異なる場合にはどのように異なるかといった情報は、必ずしもユーザ端末が識別せずとも、適切に制御することが可能である。
 また、複数のビームを用いてNR-PDCCHが送信される場合、ユーザ端末はビーム毎に所定の復調用参照信号を利用して各NR-PDCCHの復調を行う。この際、チャネル推定は、異なるビーム間では平均せずに行ってもよい。ビーム毎にチャネル推定を行うことにより、ビーム毎のチャネル状態を正確に把握することができる。
(第2の態様)
 第2の態様では、DL制御チャネル(例えば、NR-PDCCH)で送信される下り制御情報(DCI)に含まれるタイミング情報と、所定の基準タイミングとを用いてDLデータの受信及び/又はULデータの送信を制御する場合について説明する。
 ユーザ端末は、検出したNR-PDCCHで送信されるDCIに含まれるタイミング情報と、予め設定された所定の基準タイミングを用いて、DCIでスケジューリングされるデータの受信タイミング及び/又は送信タイミングを認識する。DCIに含まれるタイミング情報は、予め設定される基準タイミングからのオフセット値としてもよい。オフセット値は、変更可能(configurable)な値としてもよいし、固定的(fixed)な値としてもよい。
 また、予め複数のオフセット値の候補を複数のビット情報と対応付けて設定し(例えば、テーブルを定義)、DCIを用いて所定のビット情報を通知することにより、ユーザ端末に所定のオフセット値を通知してもよい。また、複数のオフセット値の候補は、固定値として定義してもよいし、上位レイヤシグナリング等を用いて適宜設定してもよい。
 オフセット値は、所定の時間単位(例えば、スケジューリングユニット)で規定される。例えば、OFDMシンボル数、又はOFDMシンボルのセット数でオフセット値を規定する。OFDMシンボルのセットは、複数のOFDMシンボルの組み合わせで構成される。あるいは、ミニスロット数、又はミニスロットのセット数でオフセット値を規定してもよい。ミニスロットのセットは、複数のミニスロットの組み合わせで構成される。あるいは、スロット数、又はスロットのセット数でオフセット値を規定してもよい。スロットのセットは、複数のスロットの組み合わせで構成される。
 また、複数のスケジューリングユニット(OFDMシンボル、ミニスロット及びスロット等)の少なくとも2つを組み合わせてオフセット値を定義してもよい。また、DLデータのスケジューリングと、ULデータのスケジューリングに対して、異なるスケジューリングユニットを利用してオフセット値を規定してもよい。例えば、DLデータをスケジューリングするDCIに含まれるオフセット値をシンボル及び/又はミニスロットで規定し、ULデータをスケジューリングするDCIに含まれるオフセット値をスロットで規定してもよい。もちろんこれに限られない。
 基準タイミング(reference timing)は予めユーザ端末に設定され、DCIで通知されるオフセット値を適用する際の基準となる。基準タイミングは、仕様等で固定的に設定してもよいし、無線基地局からユーザ端末に上位レイヤシグナリング(例えば、RRCシグナリング、報知情報)等を用いて設定してもよい。一例として、所定のスケジューリングユニット(例えば、スロット)の先頭を基準タイミングとして定義してもよい。もちろん基準タイミングを設定する時間単位、位置はこれに限られない。
 基準タイミングは、NR-PDCCH(DCI)がいずれの時間リソース(例えば、シンボル)で送信される場合であっても共通に設定される。このため、同じデータをスケジューリングする複数のDCI(例えば、異なるBPLに対応するNR-PDCCH)が異なる時間リソースで送信される場合でも、各DCIに含まれるオフセット値は同じとなる。
 ユーザ端末は、同一データをスケジューリングする複数のNR-PDCCH(DCI)には同じオフセット値が含まれると想定してデータの受信タイミング及び/又は送信タイミングを制御してもよい。同一データをスケジューリングするNR-PDCCHは、例えば、異なるビーム(例えば、BPL)が適用されて、異なる周波数リソース及び/又は時間リソースで送信される。ユーザ端末は、異なるビームが適用されたNR-PDCCH(NR-PDCCH候補、又はサーチスペースと呼んでもよい)を監視(モニタ)してDCIを受信する。ユーザ端末がモニタするNR-PDCCHは、予め無線基地局から設定してもよい。
 図4は、DCIで通知されるオフセット値と、基準タイミングに基づいてDLデータの受信を制御する場合を示している。図4では、スロットの先頭を基準タイミングに設定する場合を示している。なお、基準タイミングはスロットの先頭に限られない。また、図4では、DLデータの受信を制御する場合を示しているが、ULデータの送信についてもDCIで通知されるオフセット値と、基準タイミングに基づいて制御してもよい。
 図4では、14OFDMシンボル(#0-#13)で構成されるスロットにおいてDCIとDLデータ送信が行われる場合を示している。スロットは、6個のミニスロット(#0-#5)で構成され、各ミニスロットは時間方向において3、2、2、2、2、3シンボルで構成される場合を示している。適用可能なスロット構成及びミニスロット構成はこれに限られない。例えば、ミニスロットは時間方向において、スロット内で2、2、2、2、2、2、2シンボルの構成であってもよいし、2、3、2、2、2、3の構成であってもよいし、ミニスロットあたりのシンボル数は、さらに異なるシンボル数で構成されるものとしてもよい。1つのミニスロットが2つのスロットにまたがって配置されていてもよい。
 図4Aでは、ミニスロット#3(又は、シンボル#7、#8)にデータ#1が割当てられ、ミニスロット#4(又は、シンボル#9、#10)にデータ#2が割当てられる場合を示している。各データはそれぞれ1又は複数のNR-PDCCH(DCI)でスケジューリングされる。ここでは、データ#1をスケジューリングするDCI#1と、データ#2をスケジューリングするDCI#2が同じ時間リソース(ここでは、シンボル#0)で送信される場合を示している。
 各DCIに含まれるオフセット値は、基準タイミングとデータの割当て予定位置から決定される。図4Aでは基準タイミングがスロットの先頭であるため、基準タイミングとデータ#1間のオフセットは、7シンボル+8シンボル(又は、3ミニスロット)となる。同様に、基準タイミングとデータ#2のオフセットは、9シンボル+10シンボル(又は、4ミニスロット)となる。
 無線基地局は、データ#1をスケジューリングするDCI#1に、7シンボル+8シンボル(又は、3ミニスロット)分に相当するオフセット値を含めて送信する。また、無線基地局は、データ#2をスケジューリングするDCI#2に、9シンボル+10シンボル(又は、4ミニスロット)分に相当するオフセット値を含めて送信する。
 データが複数のスケジューリングユニット(例えば、複数シンボル及び/又は複数ミニスロット等)に割当てられる場合、データが割当てられる期間を全てオフセット値に含めて通知してもよいし、一部のみ(例えば、データ割当て開始位置及び/又は終了位置)をオフセット値に含めて通知してもよい。ユーザ端末は、DCI#1、DCI#2に含まれるオフセット値と基準タイミングに基づいて、データ#1、データ#2の受信タイミングをそれぞれ認識できる。
 図4Bでは、データ#2をスケジューリングするDCI#2がDCI#1と異なる時間リソース(ここでは、シンボル#1)で送信される場合を示している。つまり、図4Bでは、図4Aと比べてDCI#2が送信される時間リソースが変更されている。
 但し、データ#2のスケジューリングタイミングは基準タイミングに基づいて決定されるため、DCI#2に含まれるオフセット値は図4AのDCI#2と同じ値となる。このように、基準タイミングに基づいてデータのスケジューリングタイミングを制御することにより、DCIが送信されるタイミング(時間リソース)に関わらずオフセット値を同一にできる。ユーザ端末は、少なくとも一つのNR-PDCCHを検出した場合、他のビームのNR-PDCCHの検出を停止してもよい。
 図5は、スロット単位でデータのスケジューリングを行う場合を示している。この場合、DCIに含まれるオフセット値を少なくともスロット単位で規定する。図5では、スロット#1、#2、#3においてそれぞれデータ#2、#1、#3が割当てられ、データ#1-#3はそれぞれ異なるスロットで送信されるDCI#1、#2、#3でスケジューリングされる場合(クロススロットスケジューリング)を示している。
 図5では、スロット#0で送信されるDCI#1がスロット#2に割当てられるデータ#1をスケジューリングする。基準タイミングがDCI(NR-PDCCH)を検出したスロット(ここでは、#0)の先頭に設定される場合、DCI#1に含まれるオフセット値は2となる。
 また、スロット#0で送信されるDCI#2がスロット#1に割当てられるデータ#2をスケジューリングする。このため、DCI#2に含まれるオフセット値は1となる。また、スロット#1で送信されるDCI#3がスロット#3に割当てられるデータ#3をスケジューリングする。このため、DCI#3に含まれるオフセット値は2となる。
 なお、図5では、データのスケジューリングを異なるスロットで送信されるDCIを用いて制御する場合(クロススロットスケジューリング)を示したが、DCIとデータを同じスロットに配置してもよい。この場合、DCIに含まれるオフセット値を0とすればよい。また、図5では、オフセット値をスロット単位で通知する場合を示したが、スロットに加えて、シンボル及び/又はミニスロット単位の情報をオフセット値に含めて通知してもよい。これにより、クロススロットスケジューリングを行う場合において、データの割当てをシンボル及び/又はミニスロット単位でも制御することができる。
 図6は、同じ時間リソースのデータ(例えば、同一データ)をスケジューリングする複数のNR-PDCCH(DCI)が異なる時間リソースに割当てられる場合を示している。図6では、シンボル#7及び#8(ミニスロット#3)で送信されるデータをスケジューリングするNR-PDCCH(DCI)がシンボル#0とシンボル#1でそれぞれ送信される場合を示している。シンボル#0とシンボル#1でそれぞれ送信されるNR-PDCCH(DCI)は、同一又は異なるビーム(例えば、BPL)が適用される。
 図6においても、データのスケジューリングタイミングは基準タイミング(例えば、スロットの先頭)に基づいて制御される。そのため、シンボル#0とシンボル#1でそれぞれ送信されるDCIに含まれるオフセット値は同じ値となる。基準タイミングがスロットの先頭に設定される場合、各DCIには、7シンボル+8シンボル(又は、3ミニスロット)分に相当するオフセット値が含まれる。ユーザ端末は、少なくとも一つのDCIで通知されるオフセット値と基準タイミングを用いてデータの受信タイミング及び/又は送信タイミングを制御する。
 ユーザ端末は、少なくとも一つのNR-PDCCHを検出した場合、他のビームのNR-PDCCHの検出を停止してもよい。かかる動作により、ユーザ端末の処理負荷を低減することができる。あるいは、ユーザ端末が複数のNR-PDCCH(DCI)を受信した場合、複数のDCIを組み合わせて(コンバインして)、データの受信及び/又は送信を制御してもよい。
 あるいは、ユーザ端末は、最初に検出したNR-PDCCH(DCI)に基づいてデータの受信及び/又は送信を制御してもよいし、最後に検出したNR-PDCCH(DCI)に基づいてデータの受信及び/又は送信を制御してもよい。この場合、ユーザ端末は、同じデータをスケジューリングする複数のDCIを受信した場合、所定DCIに基づいて、スケジューリングタイミング、受信処理に利用するパラメータ、及び送信処理に利用するパラメータ(UL送信に利用するリソース、符号化率等)の少なくとも一つを決定する。
(第3の態様)
 第3の態様では、DL制御チャネル(例えば、NR-PDCCH)で送信されるDCIに含まれるタイミング情報と、当該DCIの受信タイミングとを用いてDLデータの受信及び/又はULデータの送信を制御する場合について説明する。
 ユーザ端末は、検出したNR-PDCCH(DCI)に含まれるタイミング情報と、当該NR-PDCCHの検出タイミングを用いて、当該DCIでスケジューリングされるデータの受信タイミング及び/又は送信タイミングを制御する。DCIに含まれるタイミング情報は、NR-PDCCHの検出タイミングからのオフセット値であってもよい。DCIで通知されるオフセット値は、変更可能(configurable)な値としてもよいし、固定的(fixed)な値としてもよい。
 また、予め複数のオフセット値の候補を複数のビット情報と対応付けて設定し(例えば、テーブルを定義)、DCIを用いて所定のビット情報を通知することにより、ユーザ端末に所定のオフセット値を通知してもよい。また、複数のオフセット値の候補は、固定値として定義してもよいし、上位レイヤシグナリング等を用いて適宜設定してもよい。
 オフセット値は、所定の時間単位(例えば、スケジューリングユニット)で規定する。例えば、OFDMシンボル数、又はOFDMシンボルのセット数でオフセット値を規定する。あるいは、ミニスロット数、又はミニスロットのセット数でオフセット値を規定してもよい。あるいは、スロット数、又はスロットのセット数でオフセット値を規定してもよい。
 また、複数のスケジューリングユニット(OFDMシンボル、ミニスロット及びスロット等)の少なくとも2つを組み合わせてオフセット値を定義してもよい。また、DLデータのスケジューリングと、ULデータのスケジューリングに対して、異なるスケジューリングユニットを利用してオフセット値を規定してもよい。例えば、DLデータをスケジューリングするDCIに含まれるオフセット値をシンボル及び/又はミニスロットで規定し、ULデータをスケジューリングするDCIに含まれるオフセット値をスロットで規定してもよい。もちろんこれに限られない。
 同じ時間リソースのデータをスケジューリングする複数のNR-PDCCH(DCI)が送信される場合、各DCIが送信されるタイミングに応じて各DCIに含まれるオフセット値が設定される。このため、同じデータをスケジューリングする複数のDCIが異なる時間リソースで送信される場合、各DCIに含まれるオフセット値は異なる値となる。
 図7は、同じ時間リソースのデータ(例えば、同一データ)をスケジューリングする複数のNR-PDCCH(DCI)が異なる時間リソースに割当てられる場合を示している。図7では、シンボル#7及び#8(ミニスロット#3)で送信されるデータをスケジューリングするNR-PDCCH(DCI)がシンボル#0とシンボル#3でそれぞれ送信される場合を示している。シンボル#0とシンボル#3でそれぞれ送信されるNR-PDCCH(DCI)は、同一又は異なるビーム(例えば、BPL)が適用される。
 この場合、データのスケジューリングタイミングは各DCIの検出タイミングに基づいて制御される。そのため、シンボル#0とシンボル#3でそれぞれ送信されるDCIに含まれるオフセット値は異なる値となる。シンボル#0で送信されるDCIには、7シンボル+8シンボル(又は、3ミニスロット)分に相当するオフセット値が含まれる。シンボル#3で送信されるDCIには、4シンボル+5シンボル(又は、2ミニスロット)分に相当するオフセット値が含まれる。ユーザ端末は、少なくとも一つのDCIで通知されるオフセット値と当該DCIの受信タイミングを用いてデータの受信タイミング及び/又は送信タイミングを制御する。
 ユーザ端末は、少なくとも一つのNR-PDCCHを検出した場合、他のビームのNR-PDCCHの検出を停止してもよい。かかる動作により、ユーザ端末の処理負荷を低減することができる。あるいは、ユーザ端末が複数のNR-PDCCH(DCI)を受信した場合、複数のDCIを組み合わせて(コンバインして)、データの受信及び/又は送信を制御してもよい。
 あるいは、ユーザ端末は、最初に検出したNR-PDCCH(DCI)に基づいてデータの受信及び/又は送信を制御してもよいし、最後に検出したNR-PDCCH(DCI)に基づいてデータの受信及び/又は送信を制御してもよい。この場合、ユーザ端末は、同じデータをスケジューリングする複数のDCIを受信した場合、所定DCIに基づいて、スケジューリングタイミング、受信処理に利用するパラメータ、及び送信処理に利用するパラメータ(UL送信に利用するリソース、符号化率等)の少なくとも一つを決定する。
(第4の態様)
 第4の態様では、DL制御チャネル(例えば、NR-PDCCH)で送信されるDCIに含まれるタイミング情報を用いてDLデータの受信及び/又はULデータの送信を制御する場合について説明する。
 ユーザ端末は、検出したNR-PDCCH(DCI)に含まれるタイミング情報を用いて、当該DCIでスケジューリングされるデータの受信タイミング及び/又は送信タイミングを制御する。DCIに含まれるタイミング情報は、データがスケジューリングされる位置を示す情報(例えば、スケジューリングユニットのインデックス(absolute index))であってもよい。つまり、ユーザ端末は、NR-PDCCH(DCI)の受信タイミングに関わらず、DCIで指定される情報を用いてデータのスケジューリングタイミングを判断することができる。
 タイミング情報(例えば、スケジューリングユニットのインデックス)は、サブフレーム内又は無線フレーム内のスロットインデックスとする。あるいは、タイミング情報は、スロット内、サブフレーム内、又は無線フレーム内のミニスロットインデックスであってもよい。あるいは、タイミング情報は、ミニスロット内、スロット内、サブフレーム内、又は無線フレーム内のシンボルインデックスであってもよい。
 図8は、同じ時間リソースのデータ(例えば、同一データ)をスケジューリングする複数のNR-PDCCH(DCI)が異なる時間リソースに割当てられる場合を示している。図8では、シンボル#m及び#m+1(スロット#n)で送信されるデータをスケジューリングするNR-PDCCH(DCI)がシンボル#0とシンボル#1でそれぞれ送信される場合を示している。また、シンボル#0とシンボル#1でそれぞれ送信されるNR-PDCCH(DCI)に対して、異なるビーム#1、#2(例えば、BPL)が適用される場合を示している。
 図8において、データのスケジューリングタイミングは各DCIに含まれるタイミング情報(例えば、スケジューリングユニットのインデックス)に基づいて制御される。そのため、シンボル#0とシンボル#1でそれぞれ送信されるDCIに含まれるタイミング情報は同じスケジューリングインデックスを示す。
 ここでは、シンボル#0で送信されるDCIには、スロット#n且つシンボル#m+#m+1を示すタイミング情報が含まれる。同様に、シンボル#1で送信されるDCIにもスロット#n且つシンボル#m+#m+1を示すタイミング情報が含まれる。ユーザ端末は、少なくとも一つのDCIで通知されるタイミング情報を用いてデータの受信タイミング及び/又は送信タイミングを制御する。
 各DCIに含まれるタイミング情報は、予め複数のタイミング情報の候補を複数のビット情報と対応付けて設定してもよい(例えば、テーブルを定義)。無線基地局は、DCIを用いて所定のビット情報を通知することにより、ユーザ端末に所定のタイミング情報を通知してもよい。また、複数のタイミング情報の候補は、固定値として定義してもよいし、上位レイヤシグナリング等を用いて適宜設定してもよい。
 タイミング情報は、所定の時間単位(例えば、スケジューリングユニット)で規定される。例えば、OFDMシンボル、ミニスロット、及びスロットの少なくとも一つを用いてタイミング情報を規定する。また、複数のスケジューリングユニット(OFDMシンボル、ミニスロット及びスロット等)の少なくとも2つを組み合わせてタイミング情報を定義してもよい。
 また、DLデータのスケジューリングと、ULデータのスケジューリングに対して、異なるスケジューリングユニットを利用してタイミング情報を規定してもよい。例えば、DLデータをスケジューリングするDCIに含まれるタイミング情報をシンボル及び/又はミニスロットで規定し、ULデータをスケジューリングするDCIに含まれるタイミング情報をスロット、ミニスロット及び/又はシンボルで規定してもよい。
 また、ユーザ端末は、少なくとも一つのNR-PDCCHを検出した場合、他のビームのNR-PDCCHの検出を停止してもよい。かかる動作により、ユーザ端末の処理負荷を低減することができる。あるいは、ユーザ端末が複数のNR-PDCCH(DCI)を受信した場合、2つのDCIを組み合わせて(コンバインして)、データの受信及び/又は送信を制御してもよい。
 あるいは、ユーザ端末は、最初に検出したNR-PDCCH(DCI)に基づいてデータの受信及び/又は送信を制御してもよいし、最後に検出したNR-PDCCH(DCI)に基づいてデータの受信及び/又は送信を制御してもよい。この場合、ユーザ端末は、同じデータをスケジューリングする複数のDCIを受信した場合、所定DCIに基づいて、スケジューリングタイミング、受信処理に利用するパラメータ、及び送信処理に利用するパラメータ(UL送信に利用するリソース、符号化率等)の少なくとも一つを決定する。
(変形例)
 上述した第2の態様-第4の態様で示した構成を組み合わせて適用してもよい。例えば、データがスケジューリングされるスロットのインデックスを、NR-PDCCH(DCI)が送信されるスロットを基準タイミングとして当該DCIに含まれるオフセット値に基づいて決定する。そして、当該スロットにおいてデータがスケジューリングされるミニスロットインデックス及び/又はシンボルインデックスを、DCIの他のビットフィールド(オフセット値と異なるビットフィールド)を決定してもよい。
 あるいは、データがスケジューリングされるミニスロットインデックス及び/又はシンボルインデックスを、NR-PDCCH(DCI)が送信されるミニスロット及び/又はシンボルを基準タイミングとして当該DCIに含まれるオフセット値に基づいて決定する。そして、当該データがスケジューリングされるスロットのインデックスをDCIの他のビットフィールド(オフセット値と異なるビットフィールド)を用いて決定してもよい。
 このように、DCIを利用してオフセット値と所定のスケジューリングユニットをユーザ端末に通知することにより、所定スロット内の所定領域(ミニスロット及び/又はシンボル)のデータのスケジューリングを適切に制御することができる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図9は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)等と呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3~40GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース等)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、等と呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイント等と呼ばれてもよい。以下、無線基地局11及び無線基地局12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-A等の各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンク(DL)のチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネル等が用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)等が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)等を含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)等が伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACK等ともいう)が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCI等の伝送に用いられる。PDCCH及び/又はEPDCCHは、DL制御チャネル、NR-PDCCH等とも呼ばれる。
 無線通信システム1では、上りリンク(UL)のチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)等が用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報等が伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、DL参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)、モビリティ参照信号(MRS)等が伝送される。また、無線通信システム1では、UL参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)等が伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。また、無線通信システム1では、下りリンクにおいて、同期信号(PSS及び/又はSSS)、ブロードキャストチャネル(PBCH)等が伝送される。
<無線基地局>
 図10は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて送受信部103に転送される。また、DL制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。また、送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
 送受信部103は、DL信号(例えば、NR-PDCCH/PDSCH、モビリティ測定用信号、CSI-RS、DMRS、DCI、DLデータの少なくとも一つ)を送信し、UL信号(例えば、PUCCH、PUSCH、リカバリ信号、測定報告、ビーム報告、CSI報告、UCI、ULデータの少なくとも一つ)を受信する。
 また、送受信部103は、複数のビームを用いてNR-PDCCH(DCI)を異なる時間領域及び/又は周波数領域において送信する。送受信部103は、DCIにタイミング情報を含めて送信してもよい。タイミング情報は、予め設定された基準タイミングからのオフセット値、DCIの受信タイミングからのオフセット値、及び所定のスケジューリングユニットのインデックスを示す情報のいずれか一つであればよい。また、送受信部103は、基準タイミングに関する情報を通知してもよい。
 図11は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、DLデータチャネル、ULデータチャネルのスケジューリングを制御し、DLデータチャネルをスケジューリングするDCI(DLアサインメント)、ULデータチャネルをスケジューリングするDCI(ULグラント)の生成及び送信の制御を行う。
 制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、Txビーム及び/又はRxビームを形成するように制御する。例えば、制御部301は、DL信号(例えば、NR-PDCCH/PDSCH)の送信及び/又は受信に用いられるビーム(Txビーム及び/又はRxビーム)を制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、DCI(DLアサインメント、ULグラント)を生成する。また、DLデータチャネル(PDSCH)には、各ユーザ端末20からのCSI等に基づいて決定された符号化率、変調方式等に従って符号化処理、変調処理、ビームフォーミング処理(プリコーディング処理)が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信されるUL信号である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、ユーザ端末からのフィードバック情報(例えば、CSI、HARQ-ACKなど)を受信した場合、当該フィードバック情報を制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))やチャネル状態等について測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図12は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理等を行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理等が行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。また、送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
 送受信部203は、DL信号(例えば、NR-PDCCH/PDSCH、モビリティ測定用信号、CSI-RS、DMRS、DCI、DLデータの少なくとも一つ)を受信し、UL信号(例えば、PUCCH、PUSCH、リカバリ信号、測定報告、ビーム報告、CSI報告、UCI、ULデータの少なくとも一つ)を送信する。
 また、送受信部203は、異なる時間領域及び/又は周波数領域(一以上のビーム)で送信される一以上のNR-PDCCH(又は、NR-PDCCH候補、NR-PDCCHの候補領域)を異なる時間領域及び/又は周波数領域において受信(モニタ)する。送受信部203は、DCIに含まれるタイミング情報を受信してもよい。タイミング情報は、予め設定された基準タイミングからのオフセット値、DCIの受信タイミングからのオフセット値、及び所定のスケジューリングユニットのインデックスを示す情報のいずれか一つであればよい。また、送受信部203は、基準タイミングに関する情報を受信してもよい。
 図13は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信されたDL制御信号(DL制御チャネル)及びDLデータ信号(DLデータチャネル)を、受信信号処理部404から取得する。制御部401は、DL制御信号や、DLデータ信号に対する再送制御の要否を判定した結果等に基づいて、UL制御信号(例えば、送達確認情報等)やULデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御する。例えば、制御部401は、DL信号(例えば、NR-PDCCH/PDSCH)の受信に用いられるビーム(Txビーム及び/又はRxビーム)を制御する。
 制御部401は、DCIによりスケジューリングされるデータの受信及び/又は送信を制御し、少なくともDCIに含まれるタイミング情報に基づいてデータの受信タイミング及び/又は送信タイミングを制御する。タイミング情報が、予め設定された基準タイミングからのオフセット値である場合、制御部401は、基準タイミング及びオフセット値に基づいてデータの受信タイミング及び/又は送信タイミングを制御する(図4-6参照)。
 あるいは、タイミング情報がDCIの受信タイミングからのオフセット値である場合、制御部401は、DCIの受信タイミング及びオフセット値に基づいてデータの受信タイミング及び/又は送信タイミングを制御する(図7参照)。あるいは、タイミング情報が所定のスケジューリングユニットのインデックスを示す情報である場合、制御部401は、インデックスを示す情報に基づいてデータの受信タイミング及び/又は送信タイミングを制御する(図8参照)。
 また、制御部401は、同じ時間リソースのデータをスケジューリングする複数のDCIを検出した場合、最初に検出したDCI及び/又は最後に検出したDCIに基づいてデータの受信及び/又は送信を制御してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(UL制御信号、ULデータ信号、UL参照信号等)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、フィードバック情報(例えば、HARQ-ACK、CSI、スケジューリング要求の少なくとも一つ)を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知されるDL制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、無線基地局10から送信されるDL信号(DL制御信号、DLデータ信号、下り参照信号等)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCI等を、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局10から送信されたモビリティ測定用信号及び/又はCSI-RSリソースを用いて測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、受信SINR)やチャネル状態等について測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 

Claims (6)

  1.  複数の異なる時間領域及び/又は周波数領域で送信される下りリンク制御チャネルを監視して、下りリンク制御情報(DCI)を受信する受信部と、
     前記DCIによりスケジューリングされるデータの受信及び/又は送信を制御する制御部と、を有し、
     前記制御部は、少なくともDCIに含まれるタイミング情報に基づいて前記データの受信タイミング及び/又は送信タイミングを制御することを特徴とするユーザ端末。
  2.  前記タイミング情報は、予め設定された基準タイミングからのオフセット値であり、前記制御部は、前記基準タイミング及び前記オフセット値に基づいて前記データの受信タイミング及び/又は送信タイミングを制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記タイミング情報は、前記DCIの受信タイミングからのオフセット値であり、前記制御部は、前記DCIの受信タイミング及び前記DCIの受信タイミングからのオフセット値に基づいて前記データの受信タイミング及び/又は送信タイミングを制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記タイミング情報は、所定のスケジューリングユニットのインデックスを示す情報であり、前記制御部は、前記インデックスを示す情報に基づいて前記データの受信タイミング及び/又は送信タイミングを制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、同じ時間リソースのデータをスケジューリングする複数のDCIを検出した場合、最初に検出したDCI及び/又は最後に検出したDCIに基づいて前記データの受信及び/又は送信を制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  ユーザ端末の無線通信方法であって、
     複数の異なる時間領域及び/又は周波数領域で送信される下りリンク制御チャネルを監視して、下りリンク制御情報(DCI)を受信する工程と、
     前記DCIによりスケジューリングされるデータの受信及び/又は送信を制御する工程と、を有し、
     少なくともDCIに含まれるタイミング情報に基づいて前記データの受信タイミング及び/又は送信タイミングを制御することを特徴とする無線通信方法。
     
     
PCT/JP2017/010985 2017-03-17 2017-03-17 ユーザ端末及び無線通信方法 WO2018167958A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP17900620.0A EP3598816B1 (en) 2017-03-17 2017-03-17 User terminal and radio communication method
PCT/JP2017/010985 WO2018167958A1 (ja) 2017-03-17 2017-03-17 ユーザ端末及び無線通信方法
BR112019019004A BR112019019004A2 (pt) 2017-03-17 2017-03-17 terminal de usuário e método de radiocomunicação
JP2019505656A JPWO2018167958A1 (ja) 2017-03-17 2017-03-17 ユーザ端末及び無線通信方法
DK17900620.0T DK3598816T3 (da) 2017-03-17 2017-03-17 Brugerterminal og radiokommunikationsfremgangsmåde
PT179006200T PT3598816T (pt) 2017-03-17 2017-03-17 Terminal de utilizador e método para radiocomunicações
EP23177232.8A EP4236547A3 (en) 2017-03-17 2017-03-17 User terminal and radio communication method
NZ757930A NZ757930B2 (en) 2017-03-17 User terminal and radio communication method
CN201780088551.XA CN110431898B (zh) 2017-03-17 2017-03-17 终端、无线通信方法以及基站
US16/494,426 US11219056B2 (en) 2017-03-17 2017-03-17 User terminal and radio communication method
CA3056738A CA3056738C (en) 2017-03-17 2017-03-17 User terminal and radio communication method
US17/533,756 US11758558B2 (en) 2017-03-17 2021-11-23 Apparatus and system for allocation of a downlink shared channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010985 WO2018167958A1 (ja) 2017-03-17 2017-03-17 ユーザ端末及び無線通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/494,426 A-371-Of-International US11219056B2 (en) 2017-03-17 2017-03-17 User terminal and radio communication method
US17/533,756 Continuation US11758558B2 (en) 2017-03-17 2021-11-23 Apparatus and system for allocation of a downlink shared channel

Publications (1)

Publication Number Publication Date
WO2018167958A1 true WO2018167958A1 (ja) 2018-09-20

Family

ID=63521954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010985 WO2018167958A1 (ja) 2017-03-17 2017-03-17 ユーザ端末及び無線通信方法

Country Status (9)

Country Link
US (2) US11219056B2 (ja)
EP (2) EP3598816B1 (ja)
JP (1) JPWO2018167958A1 (ja)
CN (1) CN110431898B (ja)
BR (1) BR112019019004A2 (ja)
CA (1) CA3056738C (ja)
DK (1) DK3598816T3 (ja)
PT (1) PT3598816T (ja)
WO (1) WO2018167958A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
WO2020240868A1 (ja) * 2019-05-31 2020-12-03 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2022044277A1 (ja) * 2020-08-28 2022-03-03 株式会社Nttドコモ 端末、無線通信方法及び基地局
JP2022517478A (ja) * 2018-11-02 2022-03-09 中▲興▼通▲訊▼股▲ふぇん▼有限公司 無線通信における節電方式
EP3952524A4 (en) * 2019-04-02 2022-06-08 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
JP2023513283A (ja) * 2020-02-14 2023-03-30 北京小米移動軟件有限公司 データ伝送方法及びデータ伝送装置
US11956802B2 (en) 2020-07-17 2024-04-09 Wilus Institute Of Standards And Technology Inc. Method for transmitting physical downlink control channel and device for same in wireless communication system
JP7501544B2 (ja) 2019-07-01 2024-06-18 ソニーグループ株式会社 通信デバイス、インフラストラクチャ機器および方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388730B2 (en) * 2017-03-24 2022-07-12 Apple Inc. Beam recovery frame structure and recovery request for communication systems
CN108633045A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种链路重建方法及设备
WO2019029943A1 (en) * 2017-08-10 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) ENHANCED MONITORING OF CONTROL CHANNELS
AU2017426623A1 (en) 2017-08-10 2020-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device, and terminal device
US11310786B2 (en) * 2017-09-11 2022-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Control information on data channel in radio access network
US10778306B2 (en) * 2017-11-17 2020-09-15 Qualcomm Incorporated Methods for beam determination after beam pair link indication
CN108093481B (zh) * 2017-11-28 2023-04-18 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置
JP7121800B2 (ja) * 2018-02-16 2022-08-18 ノキア テクノロジーズ オサケユイチア アンライセンス無線バンドシナリオのための一時的フローティングdlタイミングアプローチ
US20200107319A1 (en) * 2018-09-28 2020-04-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a csi report
CN114731597A (zh) * 2019-11-28 2022-07-08 株式会社Ntt都科摩 无线通信节点
CN112104994A (zh) * 2020-10-30 2020-12-18 北京光宇之勋科技有限公司 一种获取用于大数据分析的物流信息的方法、***及非暂时性计算机可读存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405946B1 (ko) * 2007-10-18 2014-06-12 엘지전자 주식회사 광대역 무선접속 시스템에서 자원영역 할당방법
CN102468926B (zh) * 2010-11-09 2015-05-20 中兴通讯股份有限公司 一种下行控制信息的配置方法、网络设备及接入节点
US20130235784A1 (en) * 2012-03-06 2013-09-12 Electronics And Telecommunications Research Institute Method and apparatus for managing multicast resource
CN110719638A (zh) * 2014-05-30 2020-01-21 华为技术有限公司 一种下行控制信息的发送、接收方法和设备
EP3273618B1 (en) 2015-03-20 2019-12-11 LG Electronics Inc. Method, computer-readable medium and device for receiving resources dynamically allocated to a frequency band with short tti
US10616886B2 (en) 2015-08-25 2020-04-07 Idac Holdings, Inc. Framing, scheduling, and synchronization in wireless systems
WO2017146556A1 (ko) * 2016-02-26 2017-08-31 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018008918A1 (ko) * 2016-07-02 2018-01-11 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
CN115460705A (zh) * 2017-03-23 2022-12-09 苹果公司 基站和用户设备的基带处理器及方法
US11219906B2 (en) * 2019-01-23 2022-01-11 Omachron Intellectual Property Inc. Surface cleaning apparatus, cyclonic air treatment member and surface cleaning apparatus including the same
JP2019140597A (ja) * 2018-02-14 2019-08-22 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN110324902B (zh) * 2018-03-30 2023-06-27 华为技术有限公司 通信方法、通信装置和***

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Data scheduling and HARQ-ACK feedback procedures for NR", 3GPP TSG- RAN WG1 AH_NR MEETING, R1-1700625, 20 January 2017 (2017-01-20), XP051203006, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/R1-1700625.zip> [retrieved on 20170512] *
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300 V.8.12.0, April 2010 (2010-04-01)
"Initial views on DL control channel design", 3GPP TSG-RAN WG1#86BIS, R1-1610058, 14 October 2016 (2016-10-14), XP051159872, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610058.zip> [retrieved on 20170512] *
ERICSSON: "On timing of downlink control signaling", 3GPP TSG-RAN WG1#86BIS, R1-1609631, 14 October 2016 (2016-10-14), XP051158799, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1609631.zip> [retrieved on 20170512] *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240493B2 (ja) 2018-11-02 2023-03-15 中興通訊股▲ふん▼有限公司 無線通信における節電方式
CN114390655A (zh) * 2018-11-02 2022-04-22 中兴通讯股份有限公司 无线通信中的节能方案
CN114390655B (zh) * 2018-11-02 2024-02-27 中兴通讯股份有限公司 无线通信中的节能方案
JP2022517478A (ja) * 2018-11-02 2022-03-09 中▲興▼通▲訊▼股▲ふぇん▼有限公司 無線通信における節電方式
EP3952524A4 (en) * 2019-04-02 2022-06-08 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
JP2022528110A (ja) * 2019-04-02 2022-06-08 華為技術有限公司 通信方法及び装置
JP7460653B2 (ja) 2019-04-02 2024-04-02 華為技術有限公司 通信方法及び装置
WO2020240868A1 (ja) * 2019-05-31 2020-12-03 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7269333B2 (ja) 2019-05-31 2023-05-08 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
JPWO2020240868A1 (ja) * 2019-05-31 2020-12-03
JP7501544B2 (ja) 2019-07-01 2024-06-18 ソニーグループ株式会社 通信デバイス、インフラストラクチャ機器および方法
JP2023513283A (ja) * 2020-02-14 2023-03-30 北京小米移動軟件有限公司 データ伝送方法及びデータ伝送装置
JP7397210B2 (ja) 2020-02-14 2023-12-12 北京小米移動軟件有限公司 データ伝送方法及びデータ伝送装置
US11956802B2 (en) 2020-07-17 2024-04-09 Wilus Institute Of Standards And Technology Inc. Method for transmitting physical downlink control channel and device for same in wireless communication system
WO2022044277A1 (ja) * 2020-08-28 2022-03-03 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
JPWO2018167958A1 (ja) 2020-01-23
EP3598816A1 (en) 2020-01-22
NZ757930A (en) 2023-12-22
US11219056B2 (en) 2022-01-04
EP4236547A3 (en) 2023-09-20
EP3598816A4 (en) 2020-10-21
CN110431898A (zh) 2019-11-08
CN110431898B (zh) 2023-08-22
US11758558B2 (en) 2023-09-12
CA3056738C (en) 2024-04-02
BR112019019004A2 (pt) 2020-04-14
CA3056738A1 (en) 2018-09-20
EP4236547A2 (en) 2023-08-30
US20220086895A1 (en) 2022-03-17
US20210120574A1 (en) 2021-04-22
EP3598816B1 (en) 2023-07-19
PT3598816T (pt) 2023-08-18
DK3598816T3 (da) 2023-08-14

Similar Documents

Publication Publication Date Title
JP7197371B2 (ja) 端末、無線通信方法、基地局及びシステム
US11758558B2 (en) Apparatus and system for allocation of a downlink shared channel
CN110622432B (zh) 用户终端以及无线通信方法
WO2018173124A1 (ja) ユーザ端末及び無線通信方法
WO2018143390A1 (ja) ユーザ端末及び無線通信方法
WO2018173238A1 (ja) ユーザ端末及び無線通信方法
WO2018088538A1 (ja) ユーザ端末及び無線通信方法
WO2018128187A1 (ja) ユーザ端末及び無線通信方法
WO2018147346A1 (ja) ユーザ端末及び無線通信方法
WO2018128180A1 (ja) ユーザ端末及び無線通信方法
JP7010927B2 (ja) 端末及び無線通信方法
WO2019215794A1 (ja) ユーザ端末及び無線通信方法
WO2019193735A1 (ja) ユーザ端末及び無線基地局
WO2018203404A1 (ja) ユーザ端末及び無線通信方法
WO2018124027A1 (ja) ユーザ端末及び無線通信方法
WO2019215895A1 (ja) ユーザ端末
WO2019187092A1 (ja) ユーザ端末及び無線基地局
WO2018203399A1 (ja) ユーザ端末及び無線通信方法
CN112567844B (zh) 用户终端以及无线通信方法
CN112640547B (zh) 终端、无线通信方法、基站以及***
US20200389350A1 (en) User terminal and radio communication method
WO2018207373A1 (ja) 装置及び無線通信方法
WO2018207374A1 (ja) ユーザ端末及び無線通信方法
WO2020031324A1 (ja) ユーザ端末及び無線通信方法
WO2019234929A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505656

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3056738

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019004

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2017900620

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017900620

Country of ref document: EP

Effective date: 20191017

ENP Entry into the national phase

Ref document number: 112019019004

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190912