WO2018127986A1 - リアルタイム大容量水素水生成器 - Google Patents

リアルタイム大容量水素水生成器 Download PDF

Info

Publication number
WO2018127986A1
WO2018127986A1 PCT/JP2017/023464 JP2017023464W WO2018127986A1 WO 2018127986 A1 WO2018127986 A1 WO 2018127986A1 JP 2017023464 W JP2017023464 W JP 2017023464W WO 2018127986 A1 WO2018127986 A1 WO 2018127986A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
unit
dissolution
gas
Prior art date
Application number
PCT/JP2017/023464
Other languages
English (en)
French (fr)
Inventor
チェ・イング
Original Assignee
トラストネットワーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トラストネットワーク株式会社 filed Critical トラストネットワーク株式会社
Publication of WO2018127986A1 publication Critical patent/WO2018127986A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/30Workflow diagrams or layout of plants, e.g. flow charts; Details of workflow diagrams or layout of plants, e.g. controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a large-capacity hydrogen water generator that generates and supplies hydrogen water in real time, and in particular, a hydrogen generation unit for generating a large amount of hydrogen water and a dehydrogenation unit for further increasing the concentration of dissolved hydrogen.
  • the present invention relates to a real-time large-capacity hydrogen water generator including a gas unit and a dissolution unit.
  • Hydrogen water is known to have the effect of selectively removing active oxygen in the body and the action of keeping the balance of the body healthy as water rich in hydrogen.
  • Various applications and research are being conducted to utilize hydrogen water in the beauty field.
  • Hydrogen is basically an element that is colorless, odorless and tasteless and possesses strong reducing power. Dissolved hydrogen water is produced so that the oxidation-reduction potential (ORP) is located at the negative potential ( ⁇ mv) and contains a large amount of hydrogen, has a neutral pH value, is not only fast absorbed in the body, It contributes to disease treatment and health promotion through its powerful reducing action.
  • ORP oxidation-reduction potential
  • the production equipment that supplies high-concentration and large-capacity hydrogen water in real time is intended to provide hydrogen water rich in hydrogen according to drinking water or commercial use.
  • a hydrogen generation unit for generating high-purity hydrogen and a dissolution unit for increasing the solubility by mixing the generated hydrogen gas with purified water in a gas-liquid mixture are required.
  • a deaeration unit for removing in advance dissolved oxygen contained in purified water supplied for hydrogen water production, and a quantum exchange for electrolyzing water to generate hydrogen gas It has a membrane (PEM: Proton Exchange Membrane) type hydrogen generation unit, first and second dissolution units for effectively dissolving the generated hydrogen gas in water, and a control unit for controlling the aforementioned units.
  • PEM Proton Exchange Membrane
  • the real-time large-capacity hydrogen water generator in one aspect of the present invention includes a degassing unit for degassing dissolved oxygen in purified water, and a plurality of hydrogen generators that can be operated in a cross manner, each of the hydrogen generators A hydrogen generation unit that electrolyzes part of the purified water that has passed through the degassing unit to generate hydrogen gas, and a hydrogen generator that generates hydrogen gas by dissolving the hydrogen gas in the remaining portion of the purified water that has passed through the degassing unit.
  • dissolution unit for increasing the hydrogen gas concentration of hydrogen water supplied from the first dissolution unit, and a water entry line connected to the degassing unit to a water discharge line connected to the second dissolution unit It includes a control unit that controls the flow of purified water and hydrogen water through the internal flow path, and the production of hydrogen water.
  • the deaeration unit includes a hollow fiber-shaped gas separation membrane made of a hydrophobic polymer material, and the purified water is subjected to a pressure difference by a vacuum pump in the process of passing the gas separation membrane. The gas is removed.
  • the hydrogen generation unit includes a structure in which a PEM type hydrogen generator employing a quantum exchange membrane and a platinum electrode is connected in parallel to increase the amount of hydrogen generation, and the structure is operated in a cross operation. It is composed of two possible sets.
  • the first dissolution unit is disposed downstream of the venturi tube, and a venturi tube for gas-liquid mixing hydrogen supplied from the hydrogen generation unit and purified water supplied via the deaeration unit.
  • a plurality of baffles having different shapes are included.
  • the second dissolution unit is configured to form a plurality of pressurized dissolution tanks configured to be serially and parallelly combined in stages and a high-pressure flow of hydrogen water in the plurality of pressurized dissolution tanks.
  • Each of the large number of pressurized dissolution tanks includes a capillary tube connected in parallel inside the outer cylinder to form several flow paths, and the remaining part outside the flow path is sealed.
  • the capillary tube is formed by processing and has an inner diameter of 1 to 4 mm and a length of 1 to 10 m.
  • the real-time high-capacity hydrogen water generator is installed in the water input line, and the water inlet solenoid valve that selectively connects the water input line to an upstream electroprocessing water purification device;
  • a water discharge solenoid valve that selectively connects the water discharge line to a downstream hydrogen water packaging facility, a circulation solenoid valve that is installed in the internal flow path, and the pressure in the internal flow path in real time.
  • a pressure sensor for measuring, and the control unit controls the water supply solenoid valve and the water discharge solenoid valve so as to control the production of hydrogen water in real time in conjunction with the electroprocessing water purification device and the packaging facility.
  • the hydrogen water generator uses a hydrogen generation unit for generating high-purity hydrogen and a dissolution unit for increasing the solubility by mixing the generated hydrogen gas with purified water and gas-liquid, and is rich in hydrogen.
  • Produced hydrogen water can be produced and provided for drinking water or commercial use.
  • the figure for demonstrating the hydrogenous water generator by this invention The figure for demonstrating the structure of the deaeration unit of the hydrogen water generator by this invention The figure for demonstrating the 1st dissolution unit of the hydrogen water generator by this invention The figure for demonstrating the 2nd melt
  • dissolution unit of the hydrogen water generator by this invention The figure for demonstrating the control unit of the hydrogen water generator by this invention
  • Graph showing changes in dissolved hydrogen concentration by degassing unit Graph showing changes in dissolved hydrogen concentration by degassing unit Graph showing changes in dissolved hydrogen concentration by degassing unit Graph to show the relationship between hydrogen solubility, flow rate, and flow pressure when pressure dissolution tanks are combined in stages and in parallel Graph to show the relationship between hydrogen solubility, flow rate, and flow pressure when pressure dissolution tanks are combined in stages and in parallel Graph to show the relationship between hydrogen solubility, flow rate, and flow pressure when pressure dissolution tanks are combined in stages and in parallel Graph to show the relationship between hydrogen solubility, flow rate, and flow pressure when pressure dissolution tanks are
  • FIG. 1 is a configuration diagram for explaining a hydrogen water generator according to the present invention
  • FIG. 2 is a diagram for explaining the structure of a degassing unit of the hydrogen water generator according to the present invention
  • FIG. FIG. 4 is a view for explaining a first dissolution unit of a hydrogen water generator according to the present invention
  • FIG. 4 is a view for explaining a second dissolution unit of a hydrogen water generator according to the present invention
  • FIG. FIG. 6 is a view for explaining a control unit of a hydrogen water generator according to the present invention
  • FIG. 6 is a view for explaining a control method of the hydrogen water generator according to the present invention.
  • a hydrogen water generator according to an embodiment of the present invention includes a pressurization pump 20, a degassing unit 30, a pure water purification unit 40, a hydrogen generation unit 50, a first dissolution unit 60, 2 includes a dissolution unit 70, a cleaning liquid storage tank 80, and a control unit 100.
  • the pressurizing pump 20 pressurizes purified water supplied from the upstream side and serves to supply the purified water to the downstream side.
  • the deaeration unit 30 serves to remove dissolved oxygen from purified water supplied from the pressurizing pump 20.
  • the purified water that has passed through the deaeration unit 30 is separated into two lines.
  • the purified water in one line (first line) is filtered through the pure water purification unit 40 and stored as pure water, ie, dedicated water for electrolysis for generating hydrogen gas, and then supplied to the hydrogen generation unit 50. Is done.
  • the purified water in the other line (second line) is supplied as a means for dissolving hydrogen gas.
  • the pure water purification unit 40 includes a reverse osmotic pressure filter for filtering purified water to obtain pure water for electrolysis, and D.I. I filter and the pure water storage tank which stores the pure water for electrolysis.
  • the hydrogen generation unit 50 includes two hydrogen generators in parallel, each of which includes a quantum exchange membrane (PEM: Proton Exchange Membrane) and a platinum electrode, and is supplied from the pure water supplied through the pure water purification unit 40. Hydrogen gas is separated and supplied to the hydrogen gas dissolving means.
  • PEM Quantum exchange Membrane
  • the hydrogen gas dissolving means mixes the hydrogen gas generated from the hydrogen generation unit 50 with the purified water supplied from the degassing unit 30, and firstly dissolves the hydrogen gas.
  • a second melting unit 70 including a booster pump for pressurization and a pressurization dissolution tank for further dissolving in the purified water to obtain a higher concentration of hydrogen water is included.
  • an electroprocessing water purification device 10 is disposed at the front end of the water inlet line on the most upstream side of the hydrogen water generator, and a hydrogen water packaging facility is provided at the rear end of the water discharge line on the most downstream side of the hydrogen water generator. 90 is arranged. Further, the hydrogen water generator is provided with a water inlet solenoid valve 1 for selective connection with the electroprocessing water purifier 10 at the front end water supply line, and with the hydrogen water packaging facility 90 at the rear end water discharge line. A water discharge solenoid valve 5 is provided.
  • the hydrogen water generator further includes a cleaning unit for supplying a cleaning liquid to a line through which the purified water or hydrogen water flows, and the cleaning unit includes the cleaning liquid storage tank 80 and the cleaning liquid storage tank 80 in the purified water.
  • a cleaning liquid supply line connected to an internal flow pipe line through which hydrogen water flows is included.
  • the hydrogen water generator includes a control unit 100, which controls the real time control of the hydrogen water generator and controls the linkage between the electroprocessing water purification apparatus 10 and the hydrogen water packaging equipment 90, and the cleaning liquid storage tank 80. The internal flow path cleaning operation of the hydrogen water generator, which is periodically performed using the cleaning liquid, is controlled.
  • the pressurizing pump 20 is a process of transferring purified water supplied from the electric treatment water purification apparatus 10 to the deaeration unit 30. Operate selectively.
  • the pressure sensor 101 measures the pressure of the purified water flowing in through the incoming solenoid valve 1 in real time, and whether or not the pressurization pump 20 can be operated is turned on / off according to this measured value. OFF-controlled.
  • the hydrogen water generator further includes a flow sensor 103 on the downstream side of the second dissolution unit 70, and the flow sensor 103 measures the flow rate of the produced hydrogen water in real time.
  • purified water contains oxygen, which is called dissolved oxygen. It is known that about 5 to 10 ppm of dissolved oxygen is contained in tap water that we drink every day. If such dissolved oxygen is contained in the water, the dissolved oxygen combines with the hydrogen supplied to produce hydrogen water and turns into water, resulting in a reduction in the solubility of hydrogen to be dissolved in water. .
  • the deaeration unit 30 is constructed in such a manner that after the polymer material is produced in the form of a hollow fiber, several are bundled to increase the total surface area. It is desirable to have
  • the deaeration unit 30 includes a hollow fiber type gas separation membrane 31 disposed inside a cylindrical container, and a cylinder so as to keep both ends of the hollow fiber type gas separation membrane 31. It includes urethane sealing portions 32, 32 which are ported and closed at both ends of the shaped container.
  • the deaeration unit 30 is configured to allow purified water to flow into the hollow fiber type gas separation membrane 31 through a cross section of the urethane sealing part 32.
  • an internal / external pressure difference is generated in the gas separation membrane 31, and dissolved oxygen dissolved in water becomes bubbles and outside the gas separation membrane 31. It flows out.
  • the gas separation membrane 31 is formed using a hydrophobic polymer material, and has a selective separation function of discharging only gas without passing water in the lateral direction.
  • the dissolved oxygen removal efficiency increases or decreases depending on the degree of vacuum inside the degassing unit 30 formed by the vacuum pump 33 and the flow rate (flow velocity) of purified water passing through the inside of the gas separation membrane 31.
  • a myelene blue solution solution of MIZ Corporation in Japan used as a reduction indicator solution is used, and the reference flow rate for examining the change in the dissolved hydrogen concentration by vacuum degree is 3 Liters / min.
  • the experiment was carried out with the reference vacuum level set to 0.1 Torr for setting the dissolved hydrogen concentration by flow rate.
  • the purified water that has passed through the deaeration unit 30 is separated into two lines, and through one of the lines, a part of the purified water passes through the pure water purification unit 40 to the hydrogen generation unit 50. The remaining portion of the purified water is supplied to the primary dissolution unit 60 through the other line.
  • the pure water purification unit 40 supplies electrolysis-dedicated water, that is, ion-reduced pure water, to the hydrogen generation unit 50 that electrolyzes water to generate hydrogen. Residual ion components such as Ca and Mg are not yet removed and may be contained in the purified water that has undergone the water purification process of the electric treatment water purification apparatus 10. Such components cause the platinum electrode plate 52 constituting the hydrogen generation unit 50 to form a scale and reduce the hydrogen generation efficiency. Therefore, the pure water purification unit 40 removes residual ion components such as Ca and Mg.
  • a reverse osmosis membrane filter Reverse Osmosis Membrane Filter
  • D.D. D.D. It includes an I filter (DE-Ionization Filter) and a tank for storing the pure water.
  • the hydrogen generation unit 50 receives supply of pure water flowing in through the pure water purification unit 40 and electrolyzes it to generate hydrogen gas.
  • the hydrogen gas generated from the hydrogen generation unit 50 is supplied to the first dissolution unit 60.
  • the first dissolution unit 60 receives the hydrogen gas from the hydrogen generation unit 50 as described above, and at the same time, the degassing.
  • the supply of purified water flowing in through the unit 30 is also received.
  • the first dissolving unit 60 produces primary hydrogen water through a gas-liquid mixing process of purified water and hydrogen gas.
  • the hydrogen generation unit 50 includes a plurality of PEM-type hydrogen generators connected in parallel, which is to satisfy the amount of hydrogen necessary for producing a large volume of hydrogen water,
  • two tanks, tank A and tank B, are provided so as to enable selective cross operation.
  • control unit 100 first operates one of the two hydrogen generators included in the hydrogen generation unit 50, and automatically operates the other after a predetermined time. Furthermore, the control unit 100 can control the operation of the two hydrogen generators in a cross manner. This is because, during the electrolysis reaction, the tank A and the tank B are used for the purpose of normal time to cope with the rise in the internal temperature of the hydrogen generator due to the exothermic reaction and the characteristics of the large-capacity hydrogen water generator that must operate stably. This is to cope with the occurrence of any failure in the tank.
  • the operating voltage allowed for multiple hydrogen generators is measured in real time and compared with a set reference value to diagnose deterioration of each hydrogen generator's characteristics and inoperability, and corresponding errors. Controlled to release code and perform set actions.
  • the first dissolution unit 60 is disposed downstream of the venturi tube 61 and a venturi tube 61 for gas-liquid mixing of hydrogen supplied from the hydrogen generation unit 50 and purified water supplied through the deaeration unit 30.
  • the plurality of baffles 62a include a first baffle 62a having a small central hole and a second baffle 62b having a plurality of holes smaller than the central hole in order.
  • the first baffle 62a and the second baffle 62b are continuously and alternately arranged while having different shapes.
  • the purified water mixed with hydrogen gas forms baffles 62a, 62b having different shapes, that is, a turbulent flow while passing through a pipe line in which the first baffle 62a and the second baffle 62b are repeatedly arranged, By this turbulent flow, hydrogen gas is mixed with purified water several times, and the process of dividing is repeated and dissolved in sufficient amount in the purified water.
  • the baffle 62 is provided with several fine holes, and the baffles 62 are provided with different shapes having one hole at the central portion.
  • the solubility of hydrogen is increased by passing through the pipe line and providing a function of finely dividing the size of hydrogen bubbles while forming turbulent flow.
  • the diameter of the hole (Hole) and the diameter of the pipe line formed in the center of the flow path of the venturi tube 61 and the baffle 62 are determined by the flow rate and pressure of purified water supplied for hydrogen water production.
  • the numbers and diameters of the holes (Hole) to be formed, the diameter of the pipe line, the number of the baffles 62 to be repeatedly arranged, and the like can be increased or decreased.
  • the primary hydrogen water produced through the above-described process exhibits a sufficiently stable dissolved hydrogen concentration (DH: Dissolving Hydrogen) as produced under atmospheric pressure conditions.
  • the hydrogen water generator according to an embodiment of the present invention further includes a second dissolution unit 70 for the production of hydrogen water having a more supersaturated dissolved hydrogen concentration.
  • the hydrogen water generator further includes a second dissolution unit 70 in order to make the primary hydrogen water produced through the first dissolution unit 60 into a higher concentration hydrogen water.
  • the second dissolution unit 70 includes a booster pump 71 and a pressurized dissolution tank 72, and generates hydrogen supersaturated hydrogen using the booster pump 71 and the pressurized dissolution tank 72.
  • the second dissolution unit 70 applies Henry's law that the gas solubility is proportional to the pressure, and extends the residence time from the hydrogen atmosphere together with a strong pressure on the primary hydrogen water passing through the pipe. , Has a structure to increase the solubility of hydrogen.
  • the booster pump 71 includes an inverter device that can control speed increase / decrease according to an execution command of the control unit 100. Accordingly, the booster pump 71 is accelerated and decelerated by the control unit 100 in accordance with the pressure value at the front end of the pressurized dissolution tank 72 measured by the pressure sensor 102 (see FIG. 1), and thus is controlled in real time by the set pressure. .
  • the pressurized dissolution tank 72 includes a cylindrical outer cylinder and a large number of narrow and long capillary tubes 73 arranged in parallel as a structure for further increasing the solubility of the primary hydrogen water.
  • the large number of capillary tubes 73 form a large number of flow paths, and the remaining portion outside the flow paths is subjected to a sealing process.
  • the primary hydrogen water that is introduced passes through the capillary tube 73 having a very small cross-sectional area, and appropriate flow resistance is generated. This is to increase the hydrogen solubility by utilizing the phenomenon that the flow path pressure increases when the flow resistance is increased and the flow path pressure decreases when the flow resistance is decreased. By combining them in series and parallel in stages, the pressure inside the flow path and the hydrogen water production flow rate can be rationally adjusted.
  • the capillary tube 73 is an important factor for increasing or decreasing the solubility of hydrogen depending on the pressure inside the flow path.
  • the inner diameter of the capillary tube 73 is 0.5 to 5 mm in order to obtain a sufficient hydrogen solubility without significant hindrance to the flow of hydrogen water. Those having a range of are desirable. More preferably, the capillary tube 73 has an inner diameter of 1 to 4 mm.
  • the relationship between the hydrogen solubility, the flow rate, and the fluid pressure when the pressurized dissolution tanks 72 are combined stepwise and in parallel is as follows.
  • a capillary tube 73 is connected in series while applying a reference pressure of about 5 Kgf / cm2 based on a pressurized dissolution tank 72 composed of 8 tubes each having an internal diameter of 2 mm and a length of 6 m.
  • the change in flow resistance and hydrogen solubility was compared by increasing the number of steps. It can be seen that at a constant water pressure, the solubility of hydrogen increases as the number of stages connected in series increases, but the flow rate decreases due to flow resistance.
  • the second melting unit 70 is configured to combine the pressurized dissolution tank 72 in three stages so as to increase the flow rate while generating flow resistance.
  • the hydrogen water that has been manufactured through the above-described process is transported in real time and used immediately, or is linked to the hydrogen water packaging equipment 90 or the like and placed in a PET bottle or pouch for packaging.
  • the hydrogen water generator according to the present invention is controlled by the control unit 100 so as to be rationally interlocked with the external packaging equipment 90.
  • hydrogen water is supplied to the packaging facility 90 through the pressure sensor 104.
  • the pressure sensor 104 measures the pressure in the flow path in real time, and the control unit 100 receives the pressure measurement value of the pressure sensor 104 and determines that the flow of the normal flow path is interrupted and the internal pressure increases.
  • the flow path is changed, but the open water solenoid valve 5 is closed, and at the same time, the circulation solenoid valve 4 is opened to return the hydrogen water in the flow path to the first dissolution unit 60. .
  • the control unit 100 closes the purified water inflow solenoid valve 1 into which purified water flows, and at the same time stops the electric treatment water purification apparatus 10 to block the additional inflow.
  • the hydrogen generation unit 50 is continuously operated to maintain the dissolved hydrogen concentration inside the circulation channel.
  • the hydrogen water generator can be additionally provided with a gas-liquid separator (not shown) that can release only gas. Is natural.
  • control unit 100 automatically returns to normal operation in the same manner. This makes it possible to implement a rational process by eliminating the inconvenience of controlling manually by the manual operation to the sudden situation that occurs from time to time.
  • the hydrogen water generator according to the present invention is a facility for producing drinking water, it is preferable to periodically clean the internal pipe of the flow path.
  • the cleaning liquid stored in the cleaning liquid storage tank 80 can be used to clean the internal pipe of the hydrogen water generator.
  • As the cleaning liquid citric acid, vinegar, hypochlorous acid, etc.
  • a variety of chemical products can be selected and used as long as they are substances that have a cleaning function but are harmless to the human body.
  • control unit 100 closes the water inlet solenoid valve 1, shuts off the inflow of purified water, opens the cleaning solenoid valve 3, and allows the cleaning liquid to flow into the internal conduit of the flow path. Then, the cleaning liquid is controlled to be discharged through the cleaning solenoid valve 6 after flowing through the pressurizing pump 20, the deaeration unit 30, the first dissolution unit 60, and the second dissolution unit 70. The At this time, cleaning operation time and operation control are executed by the control unit 100.
  • hydrogen water can be produced in real time through the embodiment according to the present invention, but the combination and increase / decrease of the configuration of the hydrogen generation unit 50, the first dissolution unit 60, and the second dissolution unit 70 can be increased.
  • the electric treatment water purifier can be applied to adjust the hydrogen water production flow rate and dissolved hydrogen concentration, and can control the hydrogen water production process through real-time control of the control unit 100 and can be linked to the hydrogen water generator of the present invention.
  • a real-time large-capacity hydrogen water generator that can control the wrapping equipment 90 and the packaging equipment 90 is realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】安全性と経済性を確保しつつ水素を高濃度に含有する良質な水素水をリアルタイムに供給することができる水素水生成器を提供する。 【解決手段】リアルタイム大容量水素水生成器は、浄水内の溶存酸素を脱気する脱気ユニット30と、交差的に稼働が可能な複数の水素発生器を含み、水素発生器の各々が脱気ユニット30を通過した浄水の一部を電気分解して水素気体を発生させる水素発生ユニット50と、脱気ユニット30を通過した浄水の残部で水素気体を溶解して水素水を作る第1溶解ユニット60と、第1溶解ユニット60から供給された水素水の水素気体濃度をより高める第2溶解ユニット70と、脱気ユニット30と連結した入水ラインから第2溶解ユニット70と連結した出水ラインまで内部流路を通った浄水および水素水の流れ、および水素水の製造を制御する制御ユニット100を含む。

Description

リアルタイム大容量水素水生成器
本発明は、リアルタイムに水素水を生成し、供給する大容量の水素水生成器に関するものであり、特に、水素水を大量に生成するための水素発生ユニットと溶存水素濃度をより高めるための脱気ユニットおよび溶解ユニットを備えるリアルタイム大容量水素水生成器に関するものである。
水素水は、水素が豊富に含まれた水として、体内で活性酸素を選択的に除去する効果と、身体のバランスを健康に保つ作用をもつことで知られており、健康管理および老化防止と美容分野等に水素水を活用するための多様な応用および研究が行われている。
水素は、基本的に無色、無臭、無味であり強力な還元力を保有する元素である。溶存水素水は、酸化還元電位(ORP)が陰電位(-mv)に位置し水素を大量に含むよう製造されたものであり、中性のpH値を持ち、体内吸収が速いのみならず、強力な還元作用により、疾病治療と健康増進に寄与している。
家庭内での使用を始め商業的な応用分野まで水素水の用途が拡大しているが、水に溶けにくいという水素本来の特性と、リアルタイムに大容量の水素水を製造するための技術適用の難しさ、そして、高価な水素水製造費用等が課題となっている。このような課題を克服するため、安全性と経済性を確保しつつ水素を高濃度に含有する良質な水素水をリアルタイムに供給できる、効率的な水素水生成器の開発が要求されている。
韓国特許第10-1370129号公報
リアルタイムに高濃度・大容量の水素水を供給する製造装置は、水素が豊富に含まれる水素水を飲料水あるいは商業的用途に合わせて提供するためのものであり、この実現のためには、高純度の水素を発生させる水素発生ユニットと、発生した水素気体を浄水と気液混合し溶解度を高めるための溶解ユニットとが必要である。
水素水製造のための水素気体を発生させる方法で水を電気分解する方法、マグネシウムなど水との化学反応を起こす素材を使用する方法、市販されている水素気体を使用する方法等がある。しかし、このような方法を利用し発生させた水素気体を用いて水素水を製造するには、水素気体の量があまりに少ない。さらに、水素気体を効果的に水に溶かすための水素溶解技術の不備、そして、中性の水素イオン濃度(pH)を好む水素水の一般的要求特性を充足させるには多くの困難があった。
本発明が解決しようとする課題は、水素水製造のため供給される浄水に含まれる溶存酸素を事前に除去するための脱気ユニットと、水を電気分解し水素気体を発生させるための量子交換膜(PEM:Proton Exchange Membrane)方式の水素発生ユニットと、生成された水素気体を効果的に水に溶解させるための第1および第2の溶解ユニットと、前述したユニットを制御する制御ユニットを備え、リアルタイムに水素水を大量に生産し、供給することができる大容量水素水生成器を提供することである。
本発明の一態様におけるリアルタイム大容量水素水生成器は、浄水内の溶存酸素を脱気する脱気ユニットと、交差的に稼働が可能な複数の水素発生器を含み、前記水素発生器の各々が前記脱気ユニットを通過した浄水の一部を電気分解して水素気体を発生させる水素発生ユニットと、前記脱気ユニットを通過した浄水の残部で前記水素気体を溶解して水素水を作る第1溶解ユニットと、前記第1溶解ユニットから供給された水素水の水素気体濃度をより高める第2溶解ユニットと、前記脱気ユニットと連結した入水ラインから前記第2溶解ユニットと連結した出水ラインまで内部流路を通った浄水および水素水の流れ、および水素水の製造を制御する制御ユニットを含む。
一実施形態により、前記脱気ユニットが、疏水性高分子素材で作られた中空糸形態の気体分離膜を含み、浄水が前記気体分離膜を通る過程において真空ポンプによる圧力差によって前記浄水内の気体が除去される。
一実施形態により、前記水素発生ユニットが、量子交換膜と白金電極を採用したPEM方式の水素発生器を並列に連結して水素発生量を増加させる構造を含み、前記構造が、交差的な稼働が可能な二組で構成される。
一実施形態により、前記第1溶解ユニットが、前記水素発生ユニットから供給される水素と前記脱気ユニットを経て供給される浄水を気液混合するためのベンチュリーチューブと、前記ベンチュリーチューブの下流に配置され、乱流を形成しながら水素気体の気泡をより小さくするために、互いに異なる形状をもつ複数のバッフルを含む。
一実施形態により、前記第2溶解ユニットが、段階的に直列および並列の組み合わせとなるよう構成された多数の加圧溶解タンクと前記多数の加圧溶解タンクに水素水の高圧流を形成するためのブースターポンプを含み、前記多数の加圧溶解タンク各々は、外部筒内部にキャピラリーチューブを並列につないで、数本の流路を形成し、前記流路外の残りの部分をシーリング(Sealing)処理して形成されており、前記キャピラリーチューブは、1~4mmの内径および1~10mの長さを有する。
一実施形態により、前記リアルタイム大容量水素水生成器は、前記入水ラインに設置され、前記入水ラインを上流側の電処理浄水装置に選択的に連結する入水用ソレノイドバルブと、前記出水ラインに設置され前記出水ラインを下流側の水素水包装設備に選択的に連結する出水用ソレノイドバルブと、前記内部流路に設置された循環用ソレノイドバルブと、前記内部流路内の圧力をリアルタイムに測定する圧力センサーをさらに含み、前記制御ユニットが、前記電処理浄水装置および前記包装設備と連係して水素水の製造をリアルタイムに制御するように、前記入水用ソレノイドバルブと前記出水用ソレノイドバルブを制御し、また、前記圧力センサーの圧力測定値を受け、内部圧力が設定値を超過したときに前記出水用ソレノイドバルブおよび前記入水用ソレノイドバルブを閉じるとともに前記内部流路に設置された循環用ソレノイドバルブを開けて前記水素水を前記第1溶解ユニット側にリターンさせ、さらには、前記内部流路の洗浄のために前記入水用ソレノイドバルブを閉じて浄水の流入を遮断し、洗浄液供給ラインに設置された洗浄用ソレノイドバルブを開けて洗浄液を前記内部流路に流入させた後に、洗浄液が前記脱気ユニット、前記第1溶解ユニット、前記第2溶解ユニットを経て流れるように制御する。
本発明によれば、リアルタイムに高濃度大容量の水素水を供給する製造装置が具現される。本発明による水素水生成器は、高純度の水素を発生させる水素発生ユニットと、発生した水素気体を浄水と気液混合し、溶解度を高めるための溶解ユニットとを利用し、水素が豊富に含まれた水素水を飲料水または商業的用途に製造し、提供することが可能になる。
本発明による水素水生成器を説明するための図 本発明による水素水生成器の脱気ユニットの構造を説明するための図 本発明による水素水生成器の第1溶解ユニットを説明するための図 本発明による水素水生成器の第2溶解ユニットを説明するための図 本発明による水素水生成器の制御ユニットを説明するための図 本発明による水素水生成器の制御方法を説明するための図 脱気ユニットによる溶存水素濃度の変化をあらわすグラフ 脱気ユニットによる溶存水素濃度の変化をあらわすグラフ 加圧溶解タンクが段階的・並列に組み合わさったときの水素溶解度と流量、流圧の関係を示すためのグラフ 加圧溶解タンクが段階的・並列に組み合わさったときの水素溶解度と流量、流圧の関係を示すためのグラフ 加圧溶解タンクが段階的・並列に組み合わさったときの水素溶解度と流量、流圧の関係を示すためのグラフ
以下、本発明の望ましい実施形態について、添付した図面を参照ながら説明する。
なお実施形態は、本発明の事象が充分に伝わるようにするための例として提供されるものであり、従って、本発明は以下に説明される実施形態に限定されず、他の形態で具現されることもある。そして、添付した図面では、構成要素の幅、長さ、厚さ等は、便宜のため誇張して表現されることもある。これらの図面は、本発明の望ましい実施形態を例示するものであり、発明の詳細な説明とともに、本発明の技術事象をより理解させるためのものであり、本発明はそのような図面に記載された事項にのみ限定して解釈されてはならないものである。
図1は、本発明による水素水生成器を説明するための構成図であり、図2は、本発明による水素水生成器の脱気ユニットの構造を説明するための図面であり、図3は、本発明による水素水生成器の第1溶解ユニットを説明するための図面であり、図4は、本発明による水素水生成器の第2溶解ユニットを説明するための図面であり、図5は、本発明による水素水生成器の制御ユニットを説明するための図面であり、図6は、本発明による水素水生成器の制御方法を説明するための図面である。
図1乃至図6を参照すると、本発明の一実施形態による水素水生成器は、加圧ポンプ20、脱気ユニット30、純水浄水ユニット40、水素発生ユニット50、第1溶解ユニット60、第2溶解ユニット70、洗浄液貯蔵タンク80および制御ユニット100を含む。
前記加圧ポンプ20は、上流から供給される浄水を加圧し、下流側に供給する役割をする。また、前記脱気ユニット30は、加圧ポンプ20から供給される浄水の溶存酸素を除去する役割をする。前記脱気ユニット30を通過した浄水は2つのラインに分離される。一方のライン(第1ライン)の浄水は、純水浄水ユニット40を経てフィルタリングされ、純水、即ち、水素気体発生のための電気分解用専用水として貯蔵された後、水素発生ユニット50に供給される。他方のライン(第2ライン)の浄水は、水素気体の溶解手段として供給される。
前記純水浄水ユニット40は、浄水をフィルタリングし電気分解用純水を得るための逆浸透圧フィルターおよびD.Iフィルターと、電気分解用純水を貯蔵する純水貯蔵タンクを含む。前記水素発生ユニット50は、量子交換膜(PEM:Proton Exchange Membrane)と白金電極を採用した水素発生器を2個組で並列連結・具備し、前記純水浄水ユニット40を通じ供給された純水から水素気体を分離し、水素気体溶解手段に供給する。
前記水素気体溶解手段は、前記水素発生ユニット50から発生した水素気体を前記脱気ユニット30から供給された浄水に混合し、1次に溶解させるための第1溶解ユニット60と、前記水素気体を前記浄水に更に溶解させ、より高濃度の水素水を得られるようにするための加圧用ブースターポンプと加圧溶解タンクを具備した第2溶解ユニット70を含む。
さらに、前記水素水生成器の最上流側の入水ラインの前端には、電処理浄水装置10が配置され、前記水素水生成器の最下流側である出水ライン後端には、水素水包装設備90が配置される。さらに、前記水素水生成器は前端入水ラインに前記電処理浄水装置10との選択的連結のため入水用ソレノイドバルブ1を具備し、後端出水ラインに前記水素水包装設備90との選択的連結のための出水用ソレノイドバルブ5を具備する。
さらに、前記水素水生成器は、前記浄水または水素水が流れるラインに洗浄液を供給するための洗浄ユニットを追加で含んでおり、前記洗浄ユニットは洗浄液貯蔵タンク80および前記洗浄液貯蔵タンク80を前記浄水あるいは水素水が流れる内部流路配管ラインに連結する洗浄液供給ラインを含む。また、前記水素水生成器は制御ユニット100を含み、前記制御ユニット100は前記水素水生成器のリアルタイム制御および電処理浄水装置10と水素水包装設備90の連係の制御、そして、洗浄液貯蔵タンク80の洗浄液を使用し周期的に行われる水素水生成器の内部流路洗浄作業等を制御する。
図1を参照して詳しく説明すると、本発明による水素水生成器においては、前記加圧ポンプ20は、前記電処理浄水装置10から浄水され供給された浄水を前記脱気ユニット30へ移送する過程で選択的に稼働する。前記制御ユニット100の水素水製造実行命令により、入水用ソレノイドバルブ1を通じて流入する浄水の圧力を圧力センサー101がリアルタイムに測定し、この測定値に応じて前記加圧ポンプ20の稼働可否がON/OFF制御される。これとともに、前記水素水生成器は、流量センサー103を前記第2溶解ユニット70の下流側に別途に具備し、前記流量センサー103は製造される水素水の流量をリアルタイムに測定し、もし、既に設定された水素水製造流量を上回る流量が流入する場合には、バルブ開閉の程度調節が可能な電動式ソレノイドバルブ2を通じ、流量の一部を還流させることによって、設定された水素水製造流量をリアルタイムに制御するように構成されている。
一方、浄水は水中に酸素が含まれているが、これを溶存酸素といい、我々が毎日飲む水道水の中には約5~10ppm程度の溶存酸素が入っていることが知られている。このような溶存酸素が水中に含まれていれば、溶存酸素は水素水を製造するために投入される水素と結合し、水に変わるので、水に溶けるべき水素の溶解度を低減させる結果を生む。
水素は水に溶解されにくい気体として知られており、理論的な溶存飽和濃度(DH)が約1.6ppm程度で、大変低いほうだと言える。そのため最大に理想的な水素水製造要件を保障するために、前記脱気ユニット30は、高分子素材を中空糸の形態に製造した後、数本を束の形態にし、総表面積を大きくする構造をもつことが望ましい。
図2を参照して説明すると、前記脱気ユニット30は、円筒形の容器内側に配置された中空糸型気体分離膜31と、前記中空糸型気体分離膜31の両端を保つように、円筒形の容器の両側端をポーティング処理し締め切ったウレタンシーリング部32、32を含む。前記脱気ユニット30は前記ウレタンシーリング部32の断面を通じて前記中空糸型の気体分離膜31の内部に浄水を流入するように構成される。このとき、真空ポンプ33の稼働により形成された真空によって、前記気体分離膜31には内外部の圧力差が発生し、水中に溶けていた溶存酸素が泡になり前記気体分離膜31の外部に流れ出てくる。前記気体分離膜31は、疏水性高分子素材を利用して形成されたものであり、側方向に水は通過させず、気体だけを排出させる選択的分離機能を有する。
このとき、前記真空ポンプ33によって形成される前記脱気ユニット30内部の真空度と、前記気体分離膜31の内部を通り過ぎる浄水の流量(流速)によって、溶存酸素除去効率が増減する。
前記脱気ユニット30による溶存水素濃度変化試験結果は、図7および図8に図示したとおりである。
図7および図8を参照すると、一定の流量が流入する状態では、内部真空度が増加するほど酸素の脱気が促進されるので、水素を水に溶解させ製造した水素水の溶存水素濃度が上昇するようになり、真空度を一定に維持しながら流量を増加させると流速が速くなるので、製造された水素水の溶存水素濃度が低くなることが分かる。これを基にして、合理的な真空度と流量を設定し、最適化された水素水生成器を実現することができることを示す。
溶存水素濃度を測定した試薬としては、還元指示溶液として使用される日本のMIZ株式会社のMethylene Blue Solution溶液を使用し、真空度別溶存水素濃度の変化を調べるための基準流量は3Liter/minに設定し、流量別溶存水素濃度を調べるための基準真空度は0.1Torrに設定して実験を実施した。
再び図1を参照すると、前記脱気ユニット30を通過した浄水は、二つのラインに分離され、一方のラインを通じて、前記浄水の一部が前記純水浄水ユニット40を経て前記水素発生ユニット50に流入し、もう一方のラインを通じて、前記浄水の残りの部分が前記第1次溶解ユニット60に供給される。
前記純水浄水ユニット40は、水を電気分解し水素を発生させる前記水素発生ユニット50に電気分解用専用水、即ち、イオン低減純水を供給する。前記電処理浄水装置10の浄水過程を経た浄水にはCa、Mg等の残余イオン成分がまだ除去されず、含まれることがある。このような成分が前記水素発生ユニット50を構成する白金電極板52にスケールを形成させ、水素発生効率を低下させるので、前記純水浄水ユニット40は、Ca、Mg等の残余イオン成分を除去し純水を得るための構造として、逆浸透圧メンブレンフィルター(Reverse Osmosis Membrane Filter)と残余イオン成分除去のためのD.Iフィルター(DE-Ionization Filter)を含み、さらに、前記純水を貯蔵するタンクを含む。
前記水素発生ユニット50は、前記純水浄水ユニット40を経て流入する純水の供給を受け、これを電気分解し水素気体を発生させる。前記水素発生ユニット50から発生した水素気体は、前記第1溶解ユニット60に供給され、前記第1溶解ユニット60は、上のように水素気体を前記水素発生ユニット50から受けると同時に、前記脱気ユニット30を経て流入する浄水の供給も受ける。前記第1溶解ユニット60は浄水と水素気体の気液混合過程を通じ、1次水素水を製造する。
ここで、前記水素発生ユニット50は、PEM方式の水素発生器を複数に並列連結して具備するが、これは大容量の水素水を製造するために必要な水素量を充足させるためであり、あわせて、水素水製造工程が長時間連続稼働を必要とすることもあることから、選択的な交差稼働が可能となるようにA槽およびB槽の2つの槽を具備する。
一方、前記制御ユニット100は、前記水素発生ユニット50に具備された2個組の水素発生器のうちひとつを先ず稼働させ、一定時間経過後、自動的にもうひとつを稼働させる。さらに、前記制御ユニット100は2個組の水素発生器の稼働を交差的に制御することができる。これは、電気分解反応時、発熱反応による水素発生器内部温度の上昇に対応するための平時の目的と安定的に連続稼働しなければならない大容量水素水生成器の特性上、A槽とB槽のうち何れかの故障発生にも対応するためである。さらに、複数の水素発生器に認められている稼働電圧をリアルタイムに測定し、設定された基準値と比較することで、各水素発生器の特性低下および作動不可状態を診断し、それに相応するエラーコードを放出および設定された措置を実行するよう制御される。
次に、前記第1溶解ユニット60の作動について、図3を参照して説明する。
前記第1溶解ユニット60は前記水素発生ユニット50から供給される水素と前記脱気ユニット30を通り供給される浄水を気液混合するためのベンチュリーチューブ61と、前記ベンチュリーチューブ61の下流に配置された複数のバッフル62a、62bを含む。複数のバッフル62aは小さな中央ホールが形成された第1バッフル62aと、前記中央ホールよりも小さな多数のホールが形成された第2バッフル62bを順番に含む。前記第1バッフル62aと前記第2バッフル62bは互いに異なる形状を持ちながら連続して、そして交互に配置される。水素気体が混合した浄水は、互いに異なる形状をもつバッフル62a、62b、即ち、第1バッフル62aと第2バッフル62bが反復して配置された管路を通過しながら乱流の流れを形成し、この乱流によって、水素気体が浄水に数回に渡って混合し、分けられる過程を繰り返し、浄水の中に充分な量として溶解される。
さらに詳しく説明すると、水に溶けにくい水素気体を水に溶解するためは、流体は速く流れると圧力が減り、ゆっくり流れると圧力が増加するというベルヌーイの定理を活用したベンチュリーチューブ61を通って、先ず水素気体を水と混合させた後、いくつかの微細なホールが具備された形態のバッフル62と、中央部位に一個のホールを持つ互いに異なる形態のバッフル62を具備し、代わる代わる複数個に配置した管路を通過するようにし、乱流を形成しながらも水素気泡の大きさをより微細に分ける機能を付与することで水素の溶解度を上昇させる。このような構成は、水素水製造のために供給される浄水の流量と圧力によって、前記ベンチュリーチューブ61の流路中央に形成されるホール(Hole)の直径と管路の直径、前記バッフル62に形成されるホール(Hole)の数字と直径および管路の直径、そして反復配置するバッフル62の数量等が増減され、実現することができる。
しかし、このような変更は、前記ベンチュリーチューブ61を具備し、気液混合し、前記の互いに異なるバッフル62の形態を具備し、水素の溶解度を上昇させる構造を含むとするならば、本発明の技術的事象を逸するものではないとみなければならない。
前述した過程を通じ製造された1次水素水は、大気圧の条件で製造されたものとして、充分に安定した溶存水素濃度(DH:Dissolving Hydrogen)を示す。しかし本発明の一実施形態による水素水生成器は、より過飽和した溶存水素濃度をもつ水素水の製造のため、さらに第2溶解ユニット70を含む。
図4を参照すると、前記水素水生成器は、前記第1溶解ユニット60を通じて製造された1次水素水をより高濃度の水素水にするために、さらに第2溶解ユニット70を含む。前記第2溶解ユニット70はブースターポンプ71と加圧溶解タンク72を含み、前記ブースターポンプ71と前記加圧溶解タンク72を利用し水素過飽和状態の水素を生成するようになっている。前記第2溶解ユニット70は、気体の溶解度は圧力に比例するというヘンリーの法則を適用し、管路を通る1次水素水に強い圧力とともに水素雰囲気からの滞留時間を延長するものとして、より一層、水素の溶解度を高めるための構造を持つ。
前記ブースターポンプ71は、前記制御ユニット100の実行命令により速度の加減を制御することができるインバーター装置を具備する。従って、前記ブースターポンプ71は、圧力センサー102(図1参照)により測定される加圧溶解タンク72前端の圧力値に従い、前記制御ユニット100による加減速がなされるので、設定圧力によってリアルタイム制御される。
一方、前記の加圧溶解タンク72は、1次水素水の溶解度をより高めるための構造として、円柱型の外部筒、内部に細くて長い多数のキャピラリーチューブ73を並列に配列して含んでいる。これら多数のキャピラリーチューブ73が多数の流路を形成し、流路外の残りの部分はシーリング(Sealing)処理される。流入される1次水素水は、断面積がとても狭いキャピラリーチューブ73を通過しながら、適切な流れ抵抗が発生する。流れ抵抗の大きさを大きくすると流路の圧力が増加し、流れ抵抗を小さくすると流路の圧力が低くなる現象を利用して水素の溶解度を高めるためであり、このような加圧溶解タンク72を段階的に直列および並列に組み合わせると、流路内部の圧力と水素水製造流量を合理的に調節できるようになる。
前記キャピラリーチューブ73は、流路内部の圧力によって水素の溶解度を増減させる重要な要素であって、水素水の流れの大きな阻害が無く充分な水素溶解度を得るために、内径が0.5~5mmの範囲を有するものが望ましい。さらに望ましくは、前記キャピラリーチューブ73が1~4mmの内径を有する。
図9ないし図10を参照し、加圧溶解タンク72が段階的、および並列に組み合わさったときの水素溶解度と流量、流圧の関係を調べると、次のとおりである。
まず図9を参照すると、キャピラリーチューブ73の内部直径が2mmで長さが6mのチューブ8本を組み合わせ構成した加圧溶解タンク72を基本にして約5Kgf/cm2の基準圧力を加えながら直列に連結した段数を増加させ、流れ抵抗と水素溶解度の変化を比較した。一定の水圧では直列に連結した段数の増加に従って水素の溶解度は増加するが流れ抵抗によって流量は減少するのが分かる。
次に図10を参照すると、前記加圧溶解タンク72を3段階に直連結して圧力を増加させると水素の溶解度と流量が一緒に増加するのが分かり、一定水圧を上回れば水素溶解度が次第に緩慢に増加するのを観察した。これは、一定の圧力を超えれば圧力が増加しても水素の溶解度はこれ以上比例して増加しないという特性を類推させる。
以上の実験を通して、水素の溶解度は圧力の増加と比例関係にあるのを確認し、流れ抵抗だけを増加させれば水素水の製造流量が減少するので、前記の加圧溶解タンク72を段階的、および並列に組み合わせて構成すれば、水素水の溶存水素濃度と製造流量を全て充足できる構成が可能であることを示している。
図4に示したとおり、前記第2溶解ユニット70は加圧溶解タンク72を3段階に組み合わせ、流れ抵抗を発生させながら流量を増加させることができるように構成される。
次に図11を参照すると、圧力の上昇に従って水素溶解度と流量が比例して上昇するのが分かる。さらに、水圧が一定値を超過すれば、それ以降は緩慢な上昇傾向が現れるが、これは最適な流れ抵抗と流量を合理的に設定し高濃度の水素水を製造することができることを示している。
前述した過程を経て製造が完了した水素水はリアルタイムに移送され、即時に使用されるか、水素水包装設備90等と連係してPET瓶やパウチ等に入れられて包装される。本発明による水素水生成器は、前記制御ユニット100によって外部包装設備90と合理的に連動するよう制御される。
再び図1を参照すると、水素水は圧力センサー104を通り前記包装設備90に供給されるが、このとき、水素水が供給され前記包装設備90が正常に稼働するときは水素水の流れが続くが、もしも包装設備90の稼働が中止する場合には、水素水の流れが滞るようになるので、前記水素水生成器は、前記制御ユニット100を通り自動的に水素水が排出される出口を閉じる一方、水素水の内部流路を循環流路になるように前記内部流路に設置されたバルブを制御する。前記圧力センサー104は、流路内部の圧力をリアルタイムに測定し、前記制御ユニット100は、前記圧力センサー104の圧力測定値を受け、正常な流路の流れが遮断され内部圧力が上昇すると判断すれば、流路の転換を実行するようになるが、開いている出水用ソレノイドバルブ5を閉じ、同時に循環用ソレノイドバルブ4を開けて流路内の水素水を前記第1溶解ユニット60にリターンさせる。このとき、前記制御ユニット100は浄水が流入する浄水流入用ソレノイドバルブ1を閉じると同時に前記電処理浄水装置10を停止させ、追加流入を遮断する。このような流路転換時にも、前記水素発生ユニット50に持続的に作動し循環流路内部の溶存水素濃度を維持する。
水素気体流入による循環流路内部の、かさの増加を解消するために、前記水素水生成器が気体だけを放出することができる気液分離機(未図示)を追加で具備することができるのは当然である。
さらに、前記圧力センサー104の測定値が正常に復帰すれば、前記制御ユニット100によって同様に、自動的に正常運転復帰が成されるので、前記のような自動循環流路構成は、製品生産工程において随時発生する突発状況に逐次手動操作で制御する不便さを除去し合理的な工程を具現できるようにしてくれる。
これに加え、本発明による水素水生成器は、飲料水を製造する設備なので、定期的に流路の内部管路を洗浄してあげるのが良い。前記洗浄液貯蔵タンク80に貯蔵されている洗浄液を使用し水素水生成器の流路内部管路を洗浄することができ、洗浄液としてはクエン酸や酢、または次亜塩素酸等、殺菌作用やスケール洗浄機能を保有しつつも人体に無害な物質ならば、多様な種類の化学製品を選択し使用することができる。
流路の内部管路を洗浄するために、前記制御ユニット100は、入水用ソレノイドバルブ1を閉じ、浄水の流入を遮断し、洗浄用ソレノイドバルブ3を開け洗浄液を流路の内部管路に流入させた後、前記洗浄液が前記加圧ポンプ20、前記脱気ユニット30、前記第1溶解ユニット60、前記第2溶解ユニット70を経て流れた後、洗浄用ソレノイドバルブ6を通じ排出されるよう制御される。このとき、前記制御ユニット100によって洗浄動作時間および運転制御が実行される。
以上のように、本発明による実施形態を通して水素水をリアルタイムに製造することができるが、前記の水素発生ユニット50と前記第1溶解ユニット60、前記第2溶解ユニット70の構成の組み合わせと増減を適用し水素水の製造流量および溶存水素濃度を調節することができ、前記制御ユニット100のリアルタイム制御を通して水素水製造工程の制御はもちろん、本発明の水素水生成器と連係できる前記電処理浄水装置10と前記包装設備90を連動し制御できるリアルタイム大容量水素水生成器が実現される。
図7および図8は、前述した制御ユニットおよびその制御ユニットによる制御方法が示されている。
以上、本発明を好適な実施形態に基づいて説明したが、本発明の技術的思想はこれに限定されるものではなく、請求の範囲に記載された範囲内で変形や変更の実施が可能であることは本発明が属する技術分野における通常の知識を有する者には明白であり、そのような変形や変更は、請求の範囲に属するといえる。
10 電処理浄水装置
20 加圧ポンプ
30 脱気ユニット
31 中空糸型気体分離膜
32 ウレタンシーリング部
33 真空ポンプ
40 純水浄水ユニット
50 水素発生ユニット
60 第1溶解ユニット
61 ベンチュリーチューブ
62 バッフル
70 第2溶解ユニット
71 ブースターポンプ
72 加圧溶解タンク
73 キャピラリーチューブ
80 洗浄液貯蔵タンク
90 包装設備
100 制御ユニット

Claims (5)

  1. 浄水内の溶存酸素を脱気する脱気ユニットと、
    交差的に稼働が可能な複数の水素発生器を含み、前記水素発生器の各々が前記脱気ユニットを通過した浄水の一部を電気分解して水素気体を発生させる水素発生ユニットと、
    前記脱気ユニットを通過した浄水の残部で前記水素気体を溶解して水素水を作る第1溶解ユニットと、
    前記第1溶解ユニットから供給された水素水の水素気体濃度をより高める第2溶解ユニットと、
    前記脱気ユニットと連結した入水ラインから前記第2溶解ユニットと連結した出水ラインまで内部流路を通った浄水および水素水の流れ、および水素水の製造を制御する制御ユニット、
    を含むリアルタイム大容量水素水生成器。
  2. 前記脱気ユニットが、疏水性高分子素材で作られた中空糸形態の気体分離膜を含み、浄水が前記気体分離膜を通る過程において真空ポンプによる圧力差によって前記浄水内の気体が除去されることを特徴とする、
    請求項1に記載のリアルタイム大容量水素水生成器。
  3. 前記水素発生ユニットが、量子交換膜と白金電極を採用したPEM方式の水素発生器を並列に連結して水素発生量を増加させる構造を含み、前記構造が、交差的な稼働が可能な二組で構成されていることを特徴とする、
    請求項1に記載のリアルタイム大容量水素水生成器。
  4. 前記第1溶解ユニットが、前記水素発生ユニットを経て得られた水素と前記脱気ユニットを経て供給される浄水を気液混合するためのベンチュリーチューブと、前記ベンチュリーチューブの下流に配置され、乱流を形成しながら水素気体の気泡をより小さく分けるための複数のバッフルを含み、前記複数のバッフルは互いに異なる形状で隣り合うバッフルを含み、
    前記第2溶解ユニットが、段階的に直列および並列に組み合わせられた多数の加圧溶解タンクと、前記多数の加圧溶解タンクに水素水の高圧流を形成するためのブースターポンプを含み、前記多数の加圧溶解タンクの各々は外部筒の内部にキャピラリーチューブを並列に連結して数本の流路を形成し、前記流路外の残りの部分をシーリング処理して形成し、前記キャピラリーチューブは1~4mmの内径および1~10mの長さを有することを特徴とする、
    請求項1に記載のリアルタイム大容量水素水生成器。
  5. 前記入水ラインに設置され、前記入水ラインを上流側の電処理浄水装置に選択的に連結する入水用ソレノイドバルブと、前記出水ラインに設置され前記出水ラインを下流側の水素水包装設備に選択的に連結する出水用ソレノイドバルブと、前記内部流路に設置された循環用ソレノイドバルブと、前記内部流路内の圧力をリアルタイムに測定する圧力センサーをさらに含み、
    前記制御ユニットが、前記電処理浄水装置および前記包装設備と連係して水素水の製造をリアルタイムに制御するように、前記入水用ソレノイドバルブと前記出水用ソレノイドバルブを制御し、また、前記圧力センサーの圧力測定値を受け、内部圧力が設定値を超過したときに前記出水用ソレノイドバルブおよび前記入水用ソレノイドバルブを閉じるとともに前記内部流路に設置された循環用ソレノイドバルブを開けて前記水素水を前記第1溶解ユニット側にリターンさせ、さらには、前記内部流路の洗浄のために前記入水用ソレノイドバルブを閉じて浄水の流入を遮断し、洗浄液供給ラインに設置された洗浄用ソレノイドバルブを開けて洗浄液を前記内部流路に流入させた後に、洗浄液が前記脱気ユニット、前記第1溶解ユニット、前記第2溶解ユニットを経て流れるように制御することを特徴とする、
    請求項1に記載のリアルタイム大容量水素水生成器。
PCT/JP2017/023464 2017-01-09 2017-06-27 リアルタイム大容量水素水生成器 WO2018127986A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0002721 2017-01-09
KR1020170002721A KR101741969B1 (ko) 2017-01-09 2017-01-09 실시간 대용량 수소수 제조장치

Publications (1)

Publication Number Publication Date
WO2018127986A1 true WO2018127986A1 (ja) 2018-07-12

Family

ID=59052456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023464 WO2018127986A1 (ja) 2017-01-09 2017-06-27 リアルタイム大容量水素水生成器

Country Status (2)

Country Link
KR (1) KR101741969B1 (ja)
WO (1) WO2018127986A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872137A (zh) * 2018-08-31 2020-03-10 优氢科技股份有限公司 降低液体导电度的过滤结构及其产氢设备及其应用以及运用该过滤结构的过滤方法
KR102011774B1 (ko) * 2018-12-11 2019-08-19 (주)휴앤스 비저수식 수소수 생성 장치
KR102438874B1 (ko) 2020-09-03 2022-09-01 김부열 양자에너지가 조사되는 수소, 원자수소, 수소화이온 생성장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171600A (ja) * 1997-06-24 1999-03-16 Furontetsuku:Kk 洗浄液の製造方法およびそのための装置
WO2010044272A1 (ja) * 2008-10-17 2010-04-22 有限会社スプリング 溶存水素飲料水の製造装置及びその製造方法
JP3161567U (ja) * 2010-04-27 2010-08-05 株式会社バイオリサーチ 飲料用水素含有水の製造装置
WO2010134387A1 (ja) * 2009-05-21 2010-11-25 株式会社シェフコ 飲料用水素含有水を製造する方法
JP2013500148A (ja) * 2009-07-24 2013-01-07 ハン ソン イ 微生物および異物の混入遮断のための密閉型電解水素含有冷・温水浄水器および浄水方法
WO2015182606A1 (ja) * 2014-05-27 2015-12-03 株式会社光未来 気体溶解装置及び気体溶解方法
JP2016077987A (ja) * 2014-10-20 2016-05-16 株式会社ドクターズ・マン 水素水供給装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757110B2 (ja) * 2011-03-09 2015-07-29 三浦工業株式会社 水処理方法及び水処理システム
KR101370129B1 (ko) * 2013-09-24 2014-03-26 (주)이노게이트 용존 수소농도 조절기능을 갖는 수소환원수 제조장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171600A (ja) * 1997-06-24 1999-03-16 Furontetsuku:Kk 洗浄液の製造方法およびそのための装置
WO2010044272A1 (ja) * 2008-10-17 2010-04-22 有限会社スプリング 溶存水素飲料水の製造装置及びその製造方法
WO2010134387A1 (ja) * 2009-05-21 2010-11-25 株式会社シェフコ 飲料用水素含有水を製造する方法
JP2013500148A (ja) * 2009-07-24 2013-01-07 ハン ソン イ 微生物および異物の混入遮断のための密閉型電解水素含有冷・温水浄水器および浄水方法
JP3161567U (ja) * 2010-04-27 2010-08-05 株式会社バイオリサーチ 飲料用水素含有水の製造装置
WO2015182606A1 (ja) * 2014-05-27 2015-12-03 株式会社光未来 気体溶解装置及び気体溶解方法
JP2016077987A (ja) * 2014-10-20 2016-05-16 株式会社ドクターズ・マン 水素水供給装置

Also Published As

Publication number Publication date
KR101741969B1 (ko) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018127986A1 (ja) リアルタイム大容量水素水生成器
WO2017084605A1 (zh) 超饱和氢气溶液的制备装置及其制备方法
JP4228732B2 (ja) 超純水製造システム
WO2012133664A1 (ja) 超純水製造システム及び超純水の製造方法
WO2008053700A1 (fr) Procédé de désalinisation, appareil correspondant et générateur de bulles
KR101409649B1 (ko) 수소화장품 제조장치
JP2011098324A (ja) 静止ミキサ及びその製造方法並びにその静止ミキサを用いた水処理装置
KR101683533B1 (ko) 수소수 제조장치
JP4843339B2 (ja) オゾン水供給装置
JP4439674B2 (ja) 脱イオン水製造装置
JP2001259376A (ja) 脱イオン水製造装置
AU2010269803A1 (en) Closed circuit desalination retrofit for improved performance of common reverse osmosis systems
CN108928965B (zh) 一种水处理***以及***
CN202437767U (zh) 一种用电解式臭氧生产的多功能一体机
TW201219318A (en) Water purification device and disinfection/sterilization method for water purification device
JP2010253364A (ja) 純水生成装置
WO2013008721A1 (ja) オゾン水供給装置及びオゾン水供給方法
RU2006121054A (ru) Способ концентрирования водных растворов биологически активных веществ и установка для его реализации
CN208082247U (zh) 具有消氢装置的臭氧水消毒***
CN207221708U (zh) 一种***辅助装置及***
CN210065337U (zh) 净水设备
WO2012157668A1 (ja) 濾過処理装置及び濾過処理装置の洗浄方法
CN215855250U (zh) 一种可回收的水路***及***
WO2024034208A1 (ja) 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法
JP4065738B2 (ja) オゾン水生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP