WO2018126512A1 - 寻呼信号发送方法、寻呼信号接收方法、装置及*** - Google Patents

寻呼信号发送方法、寻呼信号接收方法、装置及*** Download PDF

Info

Publication number
WO2018126512A1
WO2018126512A1 PCT/CN2017/073510 CN2017073510W WO2018126512A1 WO 2018126512 A1 WO2018126512 A1 WO 2018126512A1 CN 2017073510 W CN2017073510 W CN 2017073510W WO 2018126512 A1 WO2018126512 A1 WO 2018126512A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
time
paging
signal
frequency resource
Prior art date
Application number
PCT/CN2017/073510
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US16/476,167 priority Critical patent/US10813079B2/en
Priority to CN201780000041.2A priority patent/CN107079404B/zh
Publication of WO2018126512A1 publication Critical patent/WO2018126512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present disclosure relate to the field of communications, and in particular, to a paging signal sending method, a paging signal receiving method, apparatus, and system.
  • a base station uses an omni-directional transmission technology to periodically send a paging indication (Paging Indication) to a terminal in a cell, so that the terminal in a dormant state receives discontinuous reception (Discontinuous Reception). After receiving the paging indication in the DRX) period, the corresponding paging message is obtained from the base station.
  • Paging Indication a paging indication
  • Discontinuous Reception discontinuous reception
  • the base station and the terminal use a high frequency band of 6 GHz or higher.
  • the base station will use beam scanning.
  • the way to send a signal to the terminal For example, when a base station sends a paging signal to a terminal in a cell by using a beam scanning manner, the base station completes scanning of the entire cell by changing a beam direction of the scanning beam.
  • the duration required for the base station to completely scan the cell for one week is one beam scanning period.
  • the terminal wakes up every other DRX cycle. To ensure that the terminal can receive the scanning beam in time, the terminal needs to configure the wake-up time longer than or equal to one beam scanning period, which results in a longer wake-up time of the terminal, which is not conducive to power saving.
  • the embodiment of the present disclosure provides a paging signal sending method and paging signal receiving.
  • Method, device and system The technical solution is as follows:
  • a paging signal sending method comprising:
  • the access network device generates a paging signal
  • the access network device simultaneously sends the paging signal to the terminal by using n scanning beams on the n sub-bands, and the beam scanning area of the scanning beam corresponding to each of the sub-bands is different, and n is greater than 1 Integer.
  • the collection of beam scanning areas of the n scanning beams is a range of cells covered by the access network device.
  • the n is determined by the number of sending and receiving nodes TRP, and/or the n is determined by the number of terminals located in a cell coverage area of the access network device.
  • the paging signal occupies a first time-frequency resource on the sub-band
  • the paging signal occupies the first time-frequency resource and the second time-frequency resource on the sub-band.
  • the first time-frequency resource is used to carry a paging signal corresponding to the first terminal and/or the second terminal;
  • the second time-frequency resource is used to carry a paging signal corresponding to the second terminal
  • the first terminal is a terminal that does not support a preset frequency band
  • the second terminal is a terminal that supports the preset frequency band, and the frequency band of the second time-frequency resource belongs to the preset frequency band.
  • the paging signal includes a paging indication and a paging message
  • the paging indication and paging message of the first terminal and the paging indication of the second terminal are carried on the first time-frequency resource, and the paging message of the second terminal is carried in the second time Frequency resource
  • the first terminal paging indication and the paging message are carried on the first time-frequency resource, and the paging indication and the paging message of the second terminal are carried on the second time-frequency resource.
  • the method further includes:
  • the access network device sends the resource location of the first time-frequency resource to the first terminal and the second terminal by minimizing system information
  • the access network device sends the resource location of the second time-frequency resource to the second terminal by using other system information.
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries a synchronization signal, where m is a positive integer greater than one;
  • the paging signal is carried in a time-frequency resource in each of the synchronization information blocks located after a time domain position of the synchronization signal;
  • the paging signal is carried in each of the synchronization information blocks, and the paging signal is in the same time domain position as the synchronization signal;
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks;
  • the frequency band of the first time-frequency resource belongs to a frequency band of the synchronization information block, and the frequency band of the second time-frequency resource does not belong to a frequency band of the synchronization information block.
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks,
  • the access network device simultaneously sends the paging signal to the terminal by using n scanning beams on the n sub-bands, including:
  • the access network device simultaneously transmits the synchronization signal and the broadcast signal carried on the m pieces of the synchronization information block by using n first scanning beams on the n sub-bands, and simultaneously in the n said sub-segments
  • the paging signal transmitted on the m time-frequency resources is sent to the terminal by using n second scanning beams.
  • the paging signal includes a paging indication and a paging message
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries Synchronization signal, m is a positive integer greater than one;
  • the paging indication is carried in a time-frequency resource located in each of the synchronization information blocks located after a time domain position of the synchronization signal, where the paging message is carried in a time domain location of the m synchronization information blocks. After the m time-frequency resources.
  • the method further includes:
  • the access network device sends system information to the terminal, where the system information carries a paging period (Paging Occasion, PO) corresponding to the paging signal, and the PO is occupied by the paging signal.
  • Paging Occasion, PO a paging period corresponding to the paging signal
  • PO paging Occasion
  • a paging signal receiving method comprising:
  • a paging signal sent by the access network device where the paging signal is sent by the access network device by using n scanning beams on the n sub-bands, and the scanning beam corresponding to each of the sub-bands
  • the beam scanning area is different, and n is a positive integer greater than one.
  • the collection of the beam scanning areas of the n scanning beams is covered by the access network device. Cover the scope of the community.
  • the n is determined by the number of sending and receiving nodes TRP, and/or the n is determined by the number of terminals located in a cell coverage area of the access network device.
  • the paging signal occupies a first time-frequency resource on the sub-band
  • the paging signal occupies the first time-frequency resource and the second time-frequency resource on the sub-band.
  • the terminal receives the paging signal sent by the access network device, including:
  • the terminal receives the paging signal on the first time-frequency resource
  • the terminal receives the paging signal on the first time-frequency resource and/or the second time-frequency resource;
  • the first terminal is a terminal that does not support a preset frequency band
  • the second terminal is a terminal that supports the preset frequency band, and the frequency band of the second time-frequency resource belongs to the preset frequency band.
  • the paging signal includes a paging indication and a paging message
  • the paging indication and paging message of the first terminal and the paging indication of the second terminal are carried on the first time-frequency resource, and the paging message of the second terminal is carried in the second time Frequency resource
  • the first terminal paging indication and the paging message are carried on the first time-frequency resource, and the paging indication and the paging message of the second terminal are carried on the second time-frequency resource.
  • the method further includes:
  • the terminal receives a resource location of the first time-frequency resource that is sent by the access network device by minimizing system information
  • the terminal receives the resource location of the first time-frequency resource that is sent by the access network device by minimizing system information, and receives the other device through the access network device.
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries a synchronization signal, where m is a positive integer greater than one;
  • the paging signal is carried in a time-frequency resource in each of the synchronization information blocks located after a time domain position of the synchronization signal;
  • the paging signal is carried in each of the synchronization information blocks, and the paging signal is in the same time domain position as the synchronization signal;
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks;
  • the frequency band of the first time-frequency resource belongs to a frequency band of the synchronization information block, and the frequency band of the second time-frequency resource does not belong to a frequency band of the synchronization information block.
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks,
  • Receiving, by the terminal, the paging signal sent by the access network device includes:
  • the terminal Receiving, by the access network device, the synchronization signal and the broadcast signal carried on the m pieces of the synchronization information block, the terminal receiving the bearer transmitted by the access network device on the m time-frequency resources Paging signal
  • the synchronization signal and the broadcast signal carried on the m pieces of the synchronization information block are simultaneously transmitted on the n sub-bands by using n first scanning beams, and are searched on the m time-frequency resources.
  • the call signal is transmitted simultaneously on n of the sub-bands using n second scanning beams.
  • the paging signal includes a paging indication and a paging message
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries Synchronization signal, m is a positive integer greater than one;
  • the paging indication is carried in a time-frequency resource located in each of the synchronization information blocks located after a time domain position of the synchronization signal, where the paging message is carried in a time domain location of the m synchronization information blocks. After the m time-frequency resources.
  • the terminal is an ultra-reliable and low Latency Communication (uRLLC) terminal.
  • uRLLC ultra-reliable and low Latency Communication
  • Receiving, by the terminal, a paging signal sent by the access network device including:
  • the method further includes:
  • Receiving, by the terminal, a paging signal sent by the access network device including:
  • the terminal receives the paging signal according to the PO.
  • a paging signal transmitting apparatus comprising:
  • a generating unit configured to generate a paging signal
  • the sending unit is configured to send the paging signal to the terminal by using n scanning beams on the n sub-bands at the same time, and the beam scanning area of the scanning beam corresponding to each of the sub-bands is different, and n is greater than 1 Integer.
  • the collection of the beam scanning areas of the n scanning beams is a range of cells covered by the access network device.
  • the n is determined by the number of sending and receiving nodes TRP, and/or the n is determined by the number of terminals located in a cell coverage area of the access network device.
  • the paging signal occupies a first time-frequency resource on the sub-band
  • the paging signal occupies the first time-frequency resource and the second time-frequency resource on the sub-band.
  • the first time-frequency resource is used to carry a paging signal corresponding to the first terminal and/or the second terminal;
  • the second time-frequency resource is used to carry a paging signal corresponding to the second terminal
  • the first terminal is a terminal that does not support a preset frequency band
  • the second terminal is a terminal that supports the preset frequency band, and the frequency band of the second time-frequency resource belongs to the preset frequency band.
  • the paging signal includes a paging indication and a paging message
  • the paging indication and paging message of the first terminal and the paging indication of the second terminal are carried on the first time-frequency resource, and the paging message of the second terminal is carried in the second time Frequency resource
  • the first terminal paging indication and the paging message are carried on the first time-frequency resource, and the paging indication and the paging message of the second terminal are carried on the second time-frequency resource.
  • the sending unit is further configured to send the resource location of the first time-frequency resource to the first terminal and the second terminal by minimizing system information;
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries a synchronization signal, where m is a positive integer greater than one;
  • the paging signal is carried in a time-frequency resource in each of the synchronization information blocks located after a time domain position of the synchronization signal;
  • the paging signal is carried in each of the synchronization information blocks, and the paging signal is in the same time domain position as the synchronization signal;
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks;
  • the frequency band of the first time-frequency resource belongs to a frequency band of the synchronization information block, and the frequency band of the second time-frequency resource does not belong to a frequency band of the synchronization information block.
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks,
  • the sending unit is configured to simultaneously transmit the synchronization signal and the broadcast signal carried on the m pieces of the synchronization information block by using n first scanning beams on the n sub-bands, and simultaneously at n
  • the paging signal is transmitted on the m time-frequency resources to the terminal by using n second scanning beams.
  • the paging signal includes a paging indication and a paging message
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries Synchronization signal, m is a positive integer greater than one;
  • the paging indication is carried in a time-frequency resource located in each of the synchronization information blocks located after a time domain position of the synchronization signal, where the paging message is carried in a time domain location of the m synchronization information blocks. After the m time-frequency resources.
  • the sending unit is further configured to send system information to the terminal, where the system information carries a paging period PO corresponding to the paging signal, where the PO is occupied by the paging signal
  • the time domain length of the time-frequency resource is determined.
  • a paging signal receiving apparatus comprising:
  • the receiving unit is configured to receive a paging signal sent by the access network device, where the paging signal is that the access network device simultaneously sends n scanning beams on the n sub-bands, and each of the sub-bands corresponds to The beam scanning area of the scanning beam is different, and n is a positive integer greater than one.
  • the collection of the beam scanning areas of the n scanning beams is a range of cells covered by the access network device.
  • the n is determined by the number of sending and receiving nodes TRP, and/or the n is determined by the number of terminals located in a cell coverage area of the access network device.
  • the paging signal occupies a first time-frequency resource on the sub-band
  • the paging signal occupies the first time-frequency resource and the second time-frequency resource on the sub-band.
  • the receiving unit is further configured to: if the terminal is a first terminal, receive the paging signal on the first time-frequency resource;
  • the receiving unit is further configured to: if the terminal is a second terminal, receive the paging signal on the first time-frequency resource and/or the second time-frequency resource;
  • the first terminal is a terminal that does not support a preset frequency band
  • the second terminal is a terminal that supports the preset frequency band, and the frequency band of the second time-frequency resource belongs to the preset frequency band.
  • the paging signal includes a paging indication and a paging message
  • the paging indication and paging message of the first terminal and the paging indication of the second terminal are carried on the first time-frequency resource, and the paging message of the second terminal is carried in the second time Frequency resource
  • the first terminal paging indication and the paging message are carried on the first time-frequency resource, and the paging indication and the paging message of the second terminal are carried on the second time-frequency resource.
  • the receiving unit is further configured to: if the terminal is the first terminal, receive a resource location of the first time-frequency resource that is sent by the access network device by minimizing system information;
  • the terminal is the second terminal, receiving, by the access network device, a resource location of the first time-frequency resource that is sent by using a minimum system information, and receiving, by using the access network device, sending, by using another system information The resource location of the second time-frequency resource.
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries a synchronization signal, where m is a positive integer greater than one;
  • the paging signal is carried in a time-frequency resource in each of the synchronization information blocks located after a time domain position of the synchronization signal;
  • the paging signal is carried in each of the synchronization information blocks, and the paging signal is in the same time domain position as the synchronization signal;
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks;
  • the frequency band of the first time-frequency resource belongs to a frequency band of the synchronization information block, and the frequency band of the second time-frequency resource does not belong to a frequency band of the synchronization information block.
  • the paging signal is carried in m time-frequency resources located after the time domain locations of the m synchronization information blocks,
  • the receiving unit is configured to receive, after receiving the synchronization signal and the broadcast signal carried by the access network device on the m pieces of the synchronization information block, receiving the bearer sent by the access network device in the m a paging signal on a time-frequency resource;
  • the synchronization signal and the broadcast signal carried on the m pieces of the synchronization information block are simultaneously transmitted on the n sub-bands by using n first scanning beams, and are searched on the m time-frequency resources.
  • the call signal is transmitted simultaneously on n of the sub-bands using n second scanning beams.
  • the paging signal includes a paging indication and a paging message
  • each of the subbands includes m synchronization information blocks located in consecutive m time domain units, where the synchronization information block carries Synchronization signal, m is a positive integer greater than one;
  • the paging indication is carried in a time-frequency resource located in each of the synchronization information blocks located after a time domain position of the synchronization signal, where the paging message is carried in a time domain location of the m synchronization information blocks. After the m time-frequency resources.
  • the terminal is a uRLLC terminal
  • the receiving unit is further configured to:
  • the receiving unit is further configured to receive system information sent by the access network device, where the system information carries a paging period PO corresponding to the paging signal, where the PO is Determining the time domain length of the time-frequency resource occupied by the paging signal;
  • a fifth aspect provides an access network device, where the access network device includes:
  • transceiver coupled to the processor
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the paging signals are sent to the terminal by using n scanning beams on the n sub-bands, and the beam scanning areas of the scanning beams corresponding to each of the sub-bands are different, and n is a positive integer greater than 1.
  • a terminal comprising:
  • transceiver coupled to the processor
  • a memory for storing processor executable instructions
  • processor is configured to:
  • n is a positive integer greater than one.
  • a paging system comprising: an access network device and a terminal;
  • the access network device includes a paging signal transmitting apparatus according to the third aspect
  • the terminal includes the paging signal receiving apparatus according to the fourth aspect
  • the access network device includes the access network device as described in the fifth aspect;
  • the terminal includes the terminal as described in the sixth aspect.
  • the paging signal is transmitted to the terminal by using n scanning beams different in the beam scanning area of the n sub-bands, thereby reducing the transmission delay of the paging signal; meanwhile, compared with adopting The single scan beam completely scans the cell.
  • the access network device uses n scan beams to simultaneously scan, thereby reducing the beam scanning period required for the complete scan cell to 1/n of the corresponding beam scan period of the single scan beam.
  • the wake-up duration of the terminal configuration is reduced, thereby increasing the time that the terminal is in the sleep state, which is beneficial to the terminal to save power.
  • FIG. 1 is a schematic structural diagram of a mobile communication system provided by an embodiment
  • FIG. 2 is a schematic diagram of an access network device performing beam scanning on a cell
  • FIG. 3A is a flowchart showing a paging signal sending method provided by an embodiment
  • FIG. 3B is a schematic diagram of an implementation of a paging signal sending method shown in FIG. 3A; FIG.
  • FIG. 4A is a schematic diagram of a paging signal carrying manner provided by an embodiment
  • 4B is a schematic diagram of a paging signal carrying manner provided by another embodiment
  • 4C is a schematic diagram of a paging signal carrying manner provided by still another embodiment
  • 4D is a schematic diagram of a bearer indication and a paging message carrying manner in a paging signal
  • 4E is a schematic diagram of a paging signal carrying manner provided by still another embodiment
  • 4F is a flowchart showing a paging signal sending method provided by another embodiment
  • 4G is a schematic diagram of a paging signal carrying manner provided by still another embodiment
  • 4H is a flow chart showing a process of receiving a paging signal by a terminal
  • 4I is a flowchart showing a paging signal sending method provided by still another embodiment
  • FIG. 5 is a schematic structural diagram of a paging system according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an access network device according to an exemplary embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present invention.
  • a “module” as referred to herein generally refers to a program or instruction stored in a memory that is capable of performing certain functions;
  • "unit” as referred to herein generally refers to a functional structure that is logically divided, the "unit” It can be implemented by pure hardware or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” generally indicates the contextual association Like an "or" relationship.
  • FIG. 1 is a schematic structural diagram of a mobile communication system provided by an embodiment.
  • the mobile communication system can be a 5G system, also known as a new radio (NR) system.
  • the mobile communication system includes an access network device 120 and a terminal 140.
  • Access network device 120 can be a base station.
  • the base station may be a base station employing a centralized distributed architecture in a 5G system, such as a gNB.
  • the access network device 120 adopts a centralized distributed architecture, it generally includes a central unit (CU) and at least two distributed units (DUs).
  • a centralized data unit is provided with a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a Media Access Control (MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • a physical (physical, PHY) layer protocol stack is provided in the unit, and the specific implementation manner of the access network device 120 is not limited in the embodiment of the present disclosure.
  • the access network device 120 further includes a transceiver, which is a multiple-input multiple-output (MIMO) antenna that supports beamforming.
  • the transceiver is a beam scanning type such
  • the access network device 120 and the terminal 140 establish a wireless connection through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air (NR); or the wireless air interface may also be based on 5G. Wireless air interface for the next generation of mobile communication network technology standards.
  • 5G fifth generation mobile communication network technology
  • NR new air
  • Wireless air interface for the next generation of mobile communication network technology standards.
  • Terminal 140 may be a device that provides voice and/or data connectivity to a user.
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Subscriber Unit Subscriber Station, Mobile Station, Mobile, Remote Station, Access Point, Remote Terminal , Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • multiple access network devices 120 and/or multiple terminals 140 may be included, and one access network device 120 and one terminal 140 are shown in FIG.
  • this embodiment does not limit this.
  • the access network equipment and the terminal will use the high frequency band above 6 GHz.
  • the attenuation of the high frequency signal is large, which in turn leads to a small coverage of the high frequency signal.
  • the access network device will use the beam scanning method to send high-frequency signals to the terminals in the managed cell.
  • the access network device sets a beam scanning node such as a Transmission Reception Point (TRP) for the managed cell, and uses the beam scanning node to transmit a scanning beam, thereby changing the scanning.
  • the beam direction of the beam completes the beam scanning of the entire cell.
  • the scanning position is taken as a scanning starting point, and the scanning is performed in a clockwise direction (changing continuously). Scanning the beam direction of beam 221), that is, scanning the entire cell.
  • TRP Transmission Reception Point
  • the time-frequency unit corresponding to each block indicates a scanning beam including a paging signal, and each block corresponds to a different beam direction of the scanning beam,
  • the beam scanning period required for a complete scan of the access network device for one week is 16 time domain units.
  • the terminal 240 When the terminal 240 wakes up from the DRX cycle and receives a paging signal belonging to itself, it responds to the paging signal, thereby completing the entire paging process. However, if the terminal 240 wakes up from the DRX cycle and the scan beam 221 just sweeps through the terminal 240, the terminal 240 needs to maintain the awake state until the next scan cycle to receive the paging signal in time, resulting in the terminal 240 in each DRX cycle. It is necessary to maintain a long awake state (the wake-up duration is greater than or equal to one beam scanning period, that is, greater than or equal to 16 time domain units), which is not conducive to terminal power saving.
  • FIG. 3A shows a flowchart of a paging signal sending method provided by an embodiment.
  • This embodiment is exemplified by applying the paging signal transmission method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • step 301 the access network device generates a paging signal.
  • the paging signal includes a paging indication (Paging Indication) and/or a paging (Paging) message.
  • the paging indicator is used to indicate whether the terminal is paged, and the paging message includes information such as a calling party identifier and a paging time.
  • the paging signal generated by the access network device is carried in a synchronization information block (SS Block) or after the synchronization information block, so that the terminal completes synchronization according to the synchronization signal in the synchronization information block.
  • SS Block synchronization information block
  • the page is further responded to according to the paging signal.
  • the access network device simultaneously transmits paging signals to the terminal using n scanning beams on n sub-bands, where n is a positive integer greater than one.
  • the terminal is a generic indicator and is used to indicate at least one terminal.
  • the paging signal is extended to the n sub-bands, and the scanning beam is used on each sub-band to simultaneously send the paging signal to the terminal in the covered cell.
  • the n sub-bands are consecutive n sub-bands.
  • the beam scanning areas of the scanning beams corresponding to each sub-band are different, and the collection of the beam scanning areas of the respective scanning beams is a range of cells covered by the access network device.
  • the beam scanning area of the scanning beam corresponding to each sub-band occupies 1/n of the coverage of the access network device.
  • the paging signal is extended to four sub-bands, and the scanning beams corresponding to the respective sub-bands are the first scanning beam 321, the second scanning beam 322, the third scanning beam 323, and the fourth. Scan beam 324.
  • the first scanning beam 321 corresponds to the beam scanning area 1 (the upper right corner is 90° sector area)
  • the second scanning beam 322 corresponds to the beam scanning area 2 (the right lower corner is 90° sector area)
  • the third scanning beam 323 corresponds to the beam scanning area 3 (90° sector area in the lower left corner)
  • the fourth scanning beam 324 corresponds to the beam scanning area 4 (the upper left corner is 90° sector area), that is, the beam scanning area of each scanning beam occupies 1/4 of the complete beam scanning area.
  • the access network device Since the coverage of a single scanning beam is limited, in order to achieve complete coverage of each beam scanning area, the access network device needs to constantly change the scanning direction of the scanning beam on each sub-band. That is, for the same beam scanning area, the access network device can scan the current beam scanning area using different scanning beams in different time domain units, but scan the current beam using one scanning beam in the same time domain unit. The area is scanned.
  • the scanning directions of the scanning beams on the respective sub-bands are the same.
  • the scanning directions of the respective scanning beams are all clockwise.
  • the scanning end position of the i-th scanning beam and the boundary of the fan beam scanning area corresponding to the (i+1)th scanning beam among the n scanning beams Coincident, i ⁇ n; the scanning end position of the i-th scanning beam coincides with the boundary of the corresponding scanning beam scanning area of the first scanning beam, i n.
  • the beam scanning period can be greatly reduced compared with the beam scanning method adopted by the access network device in FIG.
  • the access network device simultaneously uses four scanning beams for beam scanning on four sub-bands, and each sub-band requires four time domain units to perform complete scanning on the respective beam scanning areas.
  • Access network A total of four time domain units are required to complete the complete beam scanning of the covered cell, and the access network device in FIG. 2(b) needs to use 16 time domain units to perform complete beam scanning and beam scanning on the covered cell. The cycle is reduced to 1/4.
  • the time domain unit required for the complete scanning of the beam scanning area by the sub-band is related to the range of the beam scanning area, and the range of the beam scanning area is larger, and the time required for the sub-band to complete the scanning of the beam scanning area is required.
  • only four time domain units are required for the complete scanning of the beam scanning area. The description is not intended to limit the disclosure.
  • the terminal can be in a longer sleep state, which is beneficial to the terminal to save power.
  • step 303 the terminal receives the paging signal sent by the access network device.
  • the terminal located in the cell covered by the access network device wakes up from the DRX cycle, and when the scan beam is scanned to the terminal, the terminal receives the corresponding paging signal.
  • the paging signal is that the access network device simultaneously transmits n scanning beams on the n sub-bands, and the beam scanning area of the scanning beam corresponding to each sub-band is different, and n is a positive integer greater than 1.
  • the terminal 341 located in the beam scanning area 1 wakes up from the DRX cycle, and when the first scanning beam 321 scans to the terminal, the terminal receives the corresponding paging signal.
  • the terminal determines whether there is a paging according to the paging indication in the paging signal, and if there is a paging, the terminal acquires a corresponding paging message from the paging signal. And responding to the paging; if there is no paging, the terminal discards the paging signal and enters a sleep state.
  • the paging signal sending method provided by the embodiment of the present disclosure, after the access network device generates the paging signal, the paging signal is sent to the terminal by using n different scanning beams of the beam scanning regions of the n subbands. Therefore, the transmission delay of the paging signal is reduced. At the same time, the beam scanning period required for the access network device to completely scan the covered cell is reduced, so that the wake-up duration of the terminal configuration is reduced, thereby increasing the time when the terminal is in the dormant state. It is conducive to terminal power saving.
  • steps 301 and 302 can be separately implemented as an embodiment of a paging signal sending method on the access network device side, and the step 303 can be separately implemented as an embodiment of the paging signal receiving method on the terminal side. This is not limited.
  • the access network device uses four scanning beams to transmit a paging signal to the terminal in four sub-bands as an example.
  • the sub-band used when the access network device sends the paging signal and
  • the number n of scanning beams is determined by the number of TRPs and/or by the number of terminals located within the cell coverage of the access network device. Wherein, the maximum value of n does not exceed the total number of TRPs.
  • the number of subbands and scanning beams used by the access network device to send the paging signal is proportional to the number of TRPs, that is, the more TRPs are set in the access network device, and the paging is sent.
  • the more sub-bands and scanning beams that can be used in the signal the smaller the beam scanning area corresponding to each scanning beam, and the smaller the beam scanning period required for the access network device to completely scan the covered cells.
  • the access network device when four TRPs are set in the access network device, the access network device can simultaneously send paging signals to the terminal by using four scanning beams on four sub-bands, and the beam scanning area corresponding to each scanning beam is 90°.
  • the access network device determines the number of used subbands and scanning beams according to the number of terminals in the range of the covered cell.
  • the access network device uses the partial TRP to send a paging signal on the corresponding sub-band, thereby reducing power consumption under the premise of ensuring paging quality;
  • the access network device uses all TRPs to send paging signals on the corresponding sub-bands, thereby reducing paging delay and improving paging quality.
  • the access network device further determines the number of used subbands and scanning beams according to the delay requirement of the terminal in the cell. For example, when the delay requirement of the terminal in the cell is lower than the predetermined delay requirement (that is, the terminal is a low-latency demand terminal), the access network device uses the partial TRP to send a paging signal on the corresponding sub-band, thereby ensuring paging. The power consumption is reduced under the premise of quality; when the delay requirement of the terminal in the cell is higher than the predetermined delay requirement (that is, the terminal is a high-latency demand terminal), the access network device uses all TRPs to send a paging signal on the corresponding sub-band, thereby Reduce paging delay and improve paging quality.
  • each sub-band includes m synchronization information blocks in consecutive m time domain units, and the synchronization information block carries a synchronization signal, and the paging signal generated by the access network device is carried. In the sync block.
  • the subband includes four synchronization information blocks 40 located in four consecutive time domain units, and each synchronization information block 40 includes a synchronization signal 41, a broadcast signal 42, and a paging signal 43.
  • the first time-frequency resource 431 occupied by the paging signal 43 is located after the time domain position of the synchronization signal 41 in the synchronization information block 40, so that when the terminal receives the synchronization information block 40, it firstly according to the synchronization signal 41 in the synchronization information block 40. Synchronization is performed, and then a paging response is made based on the paging signal 43.
  • the paging signal 43 is carried in each synchronization information block 40, and the paging signal 43 has the same time domain position as the synchronization signal 41 and the broadcast signal 42, that is, the synchronization signal 41.
  • the broadcast signal 42 and the paging signal 43 are distributed at different frequency domain locations in the same time domain location.
  • the frequency band of the first time-frequency resource occupied by the paging signal 43 belongs to the frequency band of the synchronization information block 40.
  • the first terminal ie, the narrow bandwidth terminal
  • the first time-frequency resource carries the paging signal corresponding to the first terminal, because the frequency band supported by the first terminal is the same as the frequency band of the synchronization information block.
  • the first terminal is capable of receiving the corresponding paging signal on the first time-frequency resource; and for the second terminal supporting the preset frequency band (ie, the broadband terminal), the frequency band supported by the second terminal is greater than the synchronization information block.
  • the frequency band therefore, when the first time-frequency resource carries the paging signal corresponding to the second terminal, the second terminal can also receive the corresponding paging signal on the first time-frequency resource.
  • the preset frequency band is set according to a communication standard.
  • the access network device can carry all the paging signals in the first time-frequency resource of the frequency band to which the synchronization information block belongs in the manner shown in FIG. 4A, and ensure that both the narrow bandwidth terminal and the broadband terminal can obtain the synchronization information block.
  • the paging signal is obtained, and the reliability of the paging signal transmission and reception is improved.
  • the terminal needs to maintain a longer awake state to receive the paging signal.
  • the paging signal 43 occupies the first time-frequency resource 431 and the second time-frequency resource 432 on the sub-band.
  • the frequency band of the first time-frequency resource 431 is smaller than or greater than the frequency band of the second time-frequency resource 432, and the first time-frequency resource 431 and the second time-frequency resource 432 are consecutive, and the frequency band of the first time-frequency resource 431 belongs to the synchronization information block.
  • the frequency band of 40, the frequency band of the second time-frequency resource 432 does not belong to the frequency band of the synchronization information block 40, and the second time-frequency resource 432 frequency band belongs to the preset frequency band supported by the second terminal.
  • the first time-frequency resource The frequency band of 431 and the second time-frequency resource 432 is discontinuous, that is, the second time-frequency resource 432 is located above the frequency domain of the broadcast signal 42 in FIG. 4C, which is not limited by the disclosure.
  • the first time-frequency resource 431 is configured to carry the paging signal corresponding to the first terminal and/or the second terminal, and the second time-frequency resource 432 is only And configured to carry a paging signal corresponding to the second terminal.
  • the access network device sends the resource location of the first time-frequency resource to the first terminal and the second terminal by using Minimum System Information (Minimum SI), and correspondingly, the first terminal and the second terminal receive The system information is minimized, so that the paging signal carried in the first time-frequency resource is obtained according to the resource location carried in the minimum system information; and at the same time, the second terminal supporting the broadband can acquire the second-time resource in the second time-frequency resource.
  • the paging signal the access network device sends the resource location of the second time-frequency resource to the second terminal by using other system information (Other System Information, Other SI), and correspondingly, the second terminal receives the other system information, and acquires other systems.
  • the access network device preferentially carries the paging signal corresponding to the first terminal in the first time-frequency resource 431, and is in the first time-frequency.
  • the paging signal corresponding to the second terminal is carried in the first time-frequency resource 431
  • the paging signal corresponding to the remaining second terminal is carried in the second time-frequency resource 432.
  • the first terminal acquires a paging signal from the first time-frequency resource on the sub-band
  • the second terminal acquires the paging signal from the first time-frequency resource and/or the second time-frequency resource on the sub-band .
  • the access network device sets the paging indication PI 1 and paging of the first terminal.
  • the message Paging 1 is carried on the first time-frequency resource 431
  • the paging indicator PI 2 and the paging message Paging 2 of the second terminal are carried on the second time-frequency resource 432.
  • the access network device since the time-frequency resource occupied by the paging indicator is far less than the time-frequency resource occupied by the paging message, the access network device will be the first as shown in FIG. 4D(b).
  • the paging indicator PI 1 and the paging message Paging 1 of the terminal and the paging indicator PI 2 of the second terminal are carried on the first time-frequency resource 431, and the paging message Paging 2 of the second terminal is carried in the second time-frequency resource.
  • the access network device carries the paging signal to the two time-frequency resources in the manner shown in FIG. 4B, thereby increasing the frequency domain of the time-frequency resource carrying the paging signal, and reducing the paging signal carrying the paging signal.
  • the time domain of the time-frequency resource compared to the paging signal carrying mode shown in FIG. 4A, when the paging amount is large, the beam scanning period of the access network device is small, and the paging signal has a small delay
  • the terminal only needs Keeping the awake state for a short time to receive the paging signal is beneficial to the terminal to save power.
  • the time-frequency resources (including the first time-frequency resource and/or the second time-frequency resource) carrying the paging signal are all located inside the synchronization information block, that is, the paging signal and The sync block is sent at the same time.
  • the time-frequency resource is wasted.
  • the paging signal is carried in m time-frequency resources located after the time domain position of the m synchronization information blocks, and m synchronization information blocks per i group Corresponding to a group of m time-frequency resources, i is a positive integer greater than zero.
  • the first time-frequency resource 431 and the second time-frequency resource 432 carrying the paging signal 43 are carried in the time domain locations of the four synchronization information blocks 40.
  • the first time-frequency resource 431 is configured to carry the paging signal corresponding to the first terminal and/or the second terminal, and the second time-frequency resource 432 is only used to carry the paging signal corresponding to the second terminal.
  • the specific bearer mode is similar to the bearer mode shown in FIG. 4C, and details are not described herein again.
  • the access network device when the paging signal bearer mode shown in FIG. 4E is adopted, the access network device sends the synchronization information block and the paging signal by using different scanning beams.
  • the above steps 302 and 303 may be replaced with the following steps.
  • step 304 the access network device simultaneously transmits the synchronization signal and the broadcast signal carried on the m synchronization information blocks on the n sub-bands using n first scanning beams.
  • the access network device For each of the n subbands, the access network device transmits the synchronization signal and the broadcast signal carried on the m synchronization information blocks to the terminal by using the first scanning beam on the subband.
  • step 305 the terminal receives the synchronization signal and the broadcast signal carried by the access network device and carried on the m synchronization information blocks.
  • the terminal receives the synchronization signal and the broadcast signal carried by the access network device and carried on the m synchronization information blocks on the sub-band, so as to perform synchronization according to the synchronization signal.
  • step 306 the access network device simultaneously transmits n paging signals on the m time-frequency resources to the terminal by using n second scanning beams on the n sub-bands.
  • the access network device uses the first scan beam to send the synchronization signal and the broadcast signal (on the synchronization information block), that is, enable n on the n subbands.
  • the second scanning beam transmits a paging signal carried on the time-frequency resource to the terminal, that is, the access network device sends a group of paging signals after transmitting a group of synchronization information blocks;
  • the access network device When the paging in the system is sparse, the access network device sends the i groups of m synchronization information blocks to the terminal by using the first scanning beam, and then enables the second scanning beam to be transmitted to the terminal on the m time-frequency resources on the n sub-bands.
  • the paging signal that is, the access network device sends a group of paging signals after transmitting the i group synchronization information block, thereby avoiding waste of time-frequency resources caused by frequent paging signals when paging is sparse.
  • step 307 the terminal receives a paging signal that is sent by the access network device and is carried on the m time-frequency resources.
  • the paging signal carried on the m time-frequency resources is sent by the access network device by using n second scanning beams on the n sub-bands.
  • the terminal responds to the paging according to the paging signal carried in the time-frequency resource.
  • the access network device carries the paging signal after the time domain position of the synchronization information block in the manner shown in FIG. 4E, and uses the scanning beam transmission separately, so as to avoid the paging sparse case, the access network device sends each time.
  • the time-frequency resources caused by the paging signals are all wasted; at the same time, compared with the bearer modes shown in FIG. 4A to FIG. 4C, the time-frequency resources carrying the paging signals in FIG. 4E occupy a smaller time domain length.
  • the wake-up duration of the terminal configuration is also reduced accordingly, thereby further improving the power saving performance of the terminal.
  • each sub-band includes a continuous m time domain.
  • m synchronization information blocks in the unit, and the paging indication in the paging signal is carried in the time-frequency resource located in the synchronization information block after the time domain position of the synchronization signal, and the paging message in the paging signal is
  • the bearer is carried in m time-frequency resources located after the time domain location of the m sync blocks.
  • each of the sub-bands includes four synchronization information blocks 40 located in four consecutive time domain units, and each synchronization information block 40 carries a synchronization signal 41 and a broadcast signal 42.
  • the access network device carries the paging indicator 44 in the paging signal in the time-frequency resource after the time domain position of the synchronization signal 41, and carries the paging message 45 in the paging signal.
  • the access network device carries the paging indicator 44 in the paging signal in the time-frequency resource after the time domain position of the synchronization signal 41, and carries the paging message 45 in the paging signal.
  • the above step 303 includes the following steps.
  • step 303A the terminal detects whether a paging indication corresponding to the terminal is carried in the synchronization information block.
  • the terminal After receiving the synchronization information block sent by the access network device on the sub-band, the terminal parses the synchronization information block and further detects whether it includes its own paging indication. If the paging indication including itself is detected, the following steps 303B and 303C are performed, The corresponding paging message is obtained in one step; if the paging indication that does not include itself is detected, the following step 303D is performed.
  • step 303B if the paging information corresponding to the terminal is carried in the synchronization information block, the terminal determines the PO corresponding to the paging signal as the first time domain length, and the first time domain length is m synchronization information blocks and m The sum of the time domain lengths corresponding to the time-frequency resources.
  • the terminal When it is detected that the paging information is carried in the synchronization information block, the terminal knows that there is a paging message of its own. In order to ensure that the paging message can be received in time, the terminal needs to remain awake after receiving the synchronization information block. . Therefore, the terminal determines the PO corresponding to the paging signal as the first time domain length, that is, keeps the awake state in the first time domain length, thereby ensuring that the paging carried in the m time-frequency resources after acquiring the m synchronization information blocks in time is ensured. Message.
  • the terminal when it is detected that the paging information is carried in the synchronization information block, the terminal determines that the PO corresponds to the four synchronization information blocks 40 and the four time-frequency resources corresponding to the synchronization information block 40.
  • step 303C the terminal acquires a paging message carried in the m time-frequency resources.
  • the terminal maintains the awake state under the PO, and acquires the paging message carried in the m time-frequency resources after the synchronization information block, so that the paging is completed according to the paging message of the terminal.
  • step 303D if the paging indicator corresponding to the terminal is not carried in the synchronization information block, the terminal determines the PO corresponding to the paging signal as the second time domain length, and the second time domain length is corresponding to the m synchronization information blocks. Time domain length.
  • the terminal When it is detected that the paging information is not carried in the synchronization information block, the terminal knows that there is no paging message subsequently, and determines the PO corresponding to the paging signal as the time domain length corresponding to the m synchronization information blocks (ie, The second time domain length), so that after receiving m synchronization information blocks, the sleep state is entered, and the power saving effect is achieved.
  • the access network device configures only m time-frequency resources (bearing paging messages) after the time domain location of the synchronization information block for the low-latency terminal in the communication system; and accesses the high-latency terminal in the communication system.
  • the network device only carries the paging indication corresponding to the high-latency terminal in the synchronization information block.
  • the network device obtains the corresponding information from the access network device by using the beam request.
  • the paging message is completed, thereby completing the paging response, which is not limited by the embodiment of the present disclosure.
  • Step 308 and 309 are further included before step 301, and step 303 is replaced with step 309.
  • step 308 the access network device sends system information to the terminal, where the system information carries the PO corresponding to the paging signal, and the PO is determined by the time domain length of the time-frequency resource occupied by the paging signal.
  • the terminal After the terminal enters the cell covered by the access network device, it receives the system information sent by the access network device, where the system information includes the PO corresponding to the paging signal.
  • the PO corresponding to the paging signal is the time domain length of the time-frequency resource occupied by the first time-frequency resource to the fourth time-frequency resource for carrying the paging signal.
  • step 309 the terminal receives system information sent by the access network device.
  • the terminal after receiving the system information sent by the access network device, acquires the PO included in the system information, and configures a receiving window (ie, a wake-up duration) according to the size of the PO, where the receiving window is greater than the PO.
  • a receiving window ie, a wake-up duration
  • step 301 the access network device generates a paging signal.
  • the access network device simultaneously transmits paging signals to the terminal using n scanning beams on n sub-bands, where n is a positive integer greater than one.
  • step 310 the terminal receives the paging signal sent by the access network device according to the PO.
  • the terminal receives the paging signal sent by the access network device according to the configured receiving window, that is, the terminal maintains the awake state during the receiving window, and receives the paging signal sent by the access network device by using the beam scanning.
  • the step of using the access network device as the execution subject may be separately implemented as an embodiment of the paging signal sending method on the access network device side, and the step of using the terminal as the execution subject may be separately implemented.
  • FIG. 5 is a schematic structural diagram of a paging system according to an embodiment of the present disclosure.
  • the paging system includes a paging signal transmitting device 510 and a paging signal receiving device 520.
  • the paging signal transmitting device 510 can be implemented as all or part of the access network device by software, hardware, and a combination of the two.
  • the paging signal receiving device 520 can be implemented as all or part of the terminal by software, hardware, and a combination of the two. .
  • the paging signal transmitting device 510 may include a generating unit 511 and a transmitting unit 512.
  • the generating unit 511 is configured to implement the functions of the foregoing step 301 and functions related to the generating step;
  • the sending unit 512 is configured to implement the functions of the above steps 302, 304, 306 or 308, and the functions related to the transmitting step.
  • the paging signal receiving device 520 may include: a receiving unit 521;
  • the receiving unit 521 is configured to implement the functions of the above steps 303 (including 303A to 303D), 305, 307, 309 or 310, and the functions related to the receiving step.
  • FIG. 6 is a schematic structural diagram of an access network device according to an exemplary embodiment of the present invention.
  • the access network device includes: a processor 61 , a receiver 62 , a transmitter 63 , a memory 64 , and a bus 65 . .
  • the processor 61 includes one or more processing cores, and the processor 61 executes various functional applications and information processing by running software programs and modules.
  • the receiver 62 and the transmitter 63 can be implemented as a communication component.
  • the communication component can be a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and/or decoding information. Adjust and receive or send this information via wireless signal.
  • the memory 64 is coupled to the processor 61 via a bus 65.
  • Memory 64 can be used to store software programs as well as modules.
  • the memory 64 can store at least one of the application modules 66 described by the functions.
  • the application module 66 can include a generation module 661 and a transmission module 662.
  • the processor 61 is configured to execute the generating module 661 to implement the functions related to the generating step in the foregoing various method embodiments; the processor 61 is configured to execute the transmitting module 662 to implement the functions related to the transmitting step in the foregoing various method embodiments.
  • memory 64 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Optical Disk Optical Disk
  • FIG. 7 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present invention.
  • the terminal includes a processor 71, a receiver 72, a transmitter 73, a memory 74, and a bus 75.
  • the processor 71 includes one or more processing cores, and the processor 71 runs a software program And modules to perform various functional applications and information processing.
  • the receiver 72 and the transmitter 73 can be implemented as a communication component, and the communication component can be a communication chip, and the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and demodulating information, and The information is received or transmitted via a wireless signal.
  • the memory 74 is coupled to the processor 71 via a bus 75.
  • Memory 74 can be used to store software programs as well as modules.
  • the memory 74 can store the application module 76 as described for at least one function.
  • the application module 76 can include a receiving module 761.
  • the processor 71 is configured to execute the receiving module 761 to implement the functions of the receiving steps in the various method embodiments described above.
  • memory 74 can be implemented by any type of volatile or non-volatile memory device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Disk Disk or Optical Disk
  • the functions described in the embodiments of the present disclosure can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种寻呼信号发送方法、寻呼信号接收方法、装置及***,涉及通信领域,所述寻呼信号发送方法包括:接入网设备生成寻呼信号;接入网设备同时在n个子带上采用n个扫描波束向终端发送寻呼信号,每个子带对应的扫描波束的波束扫描区域不同,n为大于1的正整数。本公开实施例中,接入网设备采用n个扫描波束同时进行扫描,从而将完整扫描小区所需的波束扫描周期降低至单扫描波束对应波束扫描周期的1/n,使得终端配置的唤醒时长得以降低,进而增加了终端处于休眠状态的时间,有利于终端省电。

Description

寻呼信号发送方法、寻呼信号接收方法、装置及***
本申请要求于2017年1月6日提交中国专利局、申请号为PCT/CN2017/070474、发明名称为“寻呼信号发送方法、寻呼信号接收方法、装置及***”的国际专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信领域,特别涉及一种寻呼信号发送方法、寻呼信号接收方法、装置及***。
背景技术
在长期演进(Long-Term Evolution,LTE)***中,基站采用全向发送技术周期性的向小区内的终端发送寻呼指示(Paging Indication),以便处于休眠状态的终端在非连续接收(Discontinuous Reception,DRX)周期内接收到该寻呼指示后,从基站处获取相应的寻呼消息。
而在第五代移动通信技术(the 5th generation mobile communication,5G)***中,基站和终端会采用6GHz以上的高频频段,为了解决高频信号覆盖差且衰减大的问题,基站将采用波束扫描的方式向终端发送信号。比如,基站采用波束扫描的方式向小区中的终端发送寻呼信号时,基站通过改变扫描波束的波束方向完成对整个小区的扫描。其中,基站完整扫描小区一周所需的时长为一个波束扫描周期。终端会每隔一个DRX周期唤醒一次,为了确保终端能够及时接收到扫描波束,终端需要配置大于或等于一个波束扫描周期的唤醒时长,导致终端的唤醒时长较长,不利于终端省电。
发明内容
为了解决终端需要配置大于或等于一个波束扫描周期的唤醒时长,导致终端的唤醒时长较长,不利于终端省电的问题,本公开实施例提供了一种寻呼信号发送方法、寻呼信号接收方法、装置及***。所述技术方案如下:
第一方面,提供了一种寻呼信号发送方法,该方法包括:
接入网设备生成寻呼信号;
所述接入网设备同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
可选的,n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
可选的,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
可选的,所述寻呼信号占用所述子带上的第一时频资源;
或,
所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
可选的,所述第一时频资源用于承载第一终端和/或第二终端对应的寻呼信号;
所述第二时频资源用于承载第二终端对应的寻呼信号;
其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息;
所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
或,
所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
可选的,所述方法还包括:
所述接入网设备通过最小化***信息向所述第一终端和所述第二终端发送所述第一时频资源的资源位置;
所述接入网设备通过其他***信息向所述第二终端发送所述第二时频资源的资源位置。
可选的,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
或,
所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
或,
所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
可选的,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
所述接入网设备同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,包括:
所述接入网设备同时在n个所述子带上采用n个第一扫描波束发送承载在所述m个所述同步信息块上的同步信号和广播信号后,同时在n个所述子带上采用n个第二扫描波束向所述终端发送承载在所述m个时频资源上的寻呼信号。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
可选的,所述方法,还包括:
所述接入网设备向所述终端发送***信息,所述***信息携带有所述寻呼信号对应的寻呼时段(Paging Occasion,PO),所述PO是由所述寻呼信号占用的时频资源的时域长度确定的。
第二方面,提供了一种寻呼信号接收方法,该方法包括:
终端接收接入网设备发送的寻呼信号,所述寻呼信号是所述接入网设备同时在n个子带上采用n个扫描波束发送的,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
可选的,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆 盖小区的范围。
可选的,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
可选的,所述寻呼信号占用所述子带上的第一时频资源;
或,
所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
可选的,所述终端接收接入网设备发送的寻呼信号,包括:
若所述终端为第一终端,所述终端在所述第一时频资源上接收所述寻呼信号;
若所述终端为第二终端,所述终端在所述第一时频资源和/或所述第二时频资源上接收所述寻呼信号;
其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息;
所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
或,
所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
可选的,所述方法还包括:
若所述终端为所述第一终端,所述终端接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置;
若所述终端为所述第二终端,所述终端接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置,并接收通过所述接入网设备通过其他***信息发送的所述第二时频资源的资源位置。
可选的,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
或,
所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
或,
所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
可选的,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
所述终端接收接入网设备发送的寻呼信号包括:
所述终端接收所述接入网设备发送的承载在m个所述同步信息块上的同步信号和广播信号后,接收所述接入网设备发送的承载在所述m个时频资源上的寻呼信号;
其中,承载在m个所述同步信息块上的同步信号和广播信号是同时在n个所述子带上采用n个第一扫描波束发送的,承载在所述m个时频资源上的寻呼信号是同时在n个所述子带上采用n个第二扫描波束发送的。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
可选的,所述终端为超高可靠性与超低时延业务(ultra-Reliable and Low Latency Communication,uRLLC)终端,
所述终端接收接入网设备发送的寻呼信号,包括:
检测所述同步信息块中是否承载有所述终端对应的所述寻呼指示;
若所述同步信息块中承载有所述终端对应的所述寻呼指示,则将所述寻呼信号对应的寻呼时段PO确定为第一时域长度,所述第一时域长度为所述m个同步信息块和所述m个时频资源对应的时域长度之和;
获取所述m个时频资源中承载的所述寻呼消息。
可选的,所述方法还包括:
所述终端接收所述接入网设备发送的***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的;
所述终端接收接入网设备发送的寻呼信号,包括:
所述终端根据所述PO接收所述寻呼信号。
第三方面,提供了一种寻呼信号发送装置,该装置包括:
生成单元,被配置为生成寻呼信号;
发送单元,被配置为同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
可选的,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
可选的,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
可选的,所述寻呼信号占用所述子带上的第一时频资源;
或,
所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
可选的,所述第一时频资源用于承载第一终端和/或第二终端对应的寻呼信号;
所述第二时频资源用于承载第二终端对应的寻呼信号;
其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息;
所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
或,
所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。可选的,所述发送单元,还被配置为通过最小化***信息向所述第一终端和所述第二终端发送所述第一时频资源的资源位置;
通过其他***信息向所述第二终端发送所述第二时频资源的资源位置。
可选的,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
或,
所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
或,
所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
可选的,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
所述发送单元,被配置为同时在n个所述子带上采用n个第一扫描波束发送承载在所述m个所述同步信息块上的同步信号和广播信号后,同时在n个所述子带上采用n个第二扫描波束向所述终端发送承载在所述m个时频资源上的寻呼信号。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
可选的,所述发送单元,还被配置为向所述终端发送***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的。
第四方面,提供了一种寻呼信号接收装置,该装置包括:
接收单元,被配置为接收接入网设备发送的寻呼信号,所述寻呼信号是所述接入网设备同时在n个子带上采用n个扫描波束发送的,每个所述子带对应 的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
可选的,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
可选的,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
可选的,所述寻呼信号占用所述子带上的第一时频资源;
或,
所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
可选的,所述接收单元,还被配置为若所述终端为第一终端,在所述第一时频资源上接收所述寻呼信号;
所述接收单元,还被配置为若所述终端为第二终端,在所述第一时频资源和/或所述第二时频资源上接收所述寻呼信号;
其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息;
所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
或,
所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
可选的,所述接收单元,还被配置为若所述终端为所述第一终端,接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置;
若所述终端为所述第二终端,接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置,并接收通过所述接入网设备通过其他***信息发送的所述第二时频资源的资源位置。
可选的,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
或,
所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
或,
所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
可选的,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
所述接收单元,被配置为接收所述接入网设备发送的承载在m个所述同步信息块上的同步信号和广播信号后,接收所述接入网设备发送的承载在所述m个时频资源上的寻呼信号;
其中,承载在m个所述同步信息块上的同步信号和广播信号是同时在n个所述子带上采用n个第一扫描波束发送的,承载在所述m个时频资源上的寻呼信号是同时在n个所述子带上采用n个第二扫描波束发送的。
可选的,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
可选的,所述终端为uRLLC终端,
所述接收单元,还被配置为:
检测所述同步信息块中是否承载有所述终端对应的所述寻呼指示;
若所述同步信息块中承载有所述终端对应的所述寻呼指示,则将所述寻呼信号对应的寻呼时段PO确定为第一时域长度,所述第一时域长度为所述m个同步信息块和所述m个时频资源对应的时域长度之和;
获取所述m个时频资源中承载的所述寻呼消息。
可选的,所述接收单元,还被配置为接收所述接入网设备发送的***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的;
根据所述PO接收所述寻呼信号。
第五方面,提供了一种接入网设备,该接入网设备包括:
处理器;
与所述处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
生成寻呼信号;
同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
第六方面,提供了一种终端,该终端包括:
处理器;
与所述处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收接入网设备发送的寻呼信号,所述寻呼信号是所述接入网设备同时在n个子带上采用n个扫描波束发送的,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
第七方面,提供了一种寻呼***,该***包括:接入网设备和终端;
所述接入网设备包括如第三方面的寻呼信号发送装置;
所述终端包括如第四方面所述的寻呼信号接收装置;
或,
所述接入网设备包括如第五方面所述的接入网设备;
所述终端包括如第六方面所述的终端。
本公开实施例提供的技术方案的有益效果是:
接入网设备生成寻呼信号后,同时利用n个子带上波束扫描区域不同的n个扫描波束向终端发送该寻呼信号,从而降低了寻呼信号的发送时延;同时,相较于采用单扫描波束完整扫描小区,本公开实施例中,接入网设备采用n个扫描波束同时进行扫描,从而将完整扫描小区所需的波束扫描周期降低至单扫描波束对应波束扫描周期的1/n,使得终端配置的唤醒时长得以降低,进而增加了终端处于休眠状态的时间,有利于终端省电。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了一个实施例提供的移动通信***的结构示意图;
图2示出了接入网设备对小区进行波束扫描的示意图;
图3A示出了一个实施例提供的寻呼信号发送方法的流程图;
图3B是图3A所示寻呼信号发送方法的实施示意图;
图4A是一个实施例提供的寻呼信号承载方式的示意图;
图4B是另一个实施例提供的寻呼信号承载方式的示意图;
图4C是再一个实施例提供的寻呼信号承载方式的示意图;
图4D是寻呼信号中寻呼指示和寻呼消息的承载方式的示意图;
图4E是再一个实施例提供的寻呼信号承载方式的示意图;
图4F示出了另一个实施例提供的寻呼信号发送方法的流程图;
图4G是再一个实施例提供的寻呼信号承载方式的示意图;
图4H示出了终端接收寻呼信号过程的流程图;
图4I示出了再一个实施例提供的寻呼信号发送方法的流程图;
图5示出了本公开一个实施例提供的寻呼***的结构示意图;
图6示出了本发明一个示例性实施例提供的接入网设备的结构示意图;
图7示出了本发明一个示例性实施例提供的终端的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
在本文提及的“模块”通常是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”通常是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对 象是一种“或”的关系。
请参考图1,其示出了一个实施例提供的移动通信***的结构示意图。该移动通信***可以是5G***,又称新空口(new radio,NR)***。该移动通信***包括:接入网设备120和终端140。
接入网设备120可以是基站。例如,基站可以是5G***中采用集中分布式架构的基站,比如,gNB。当接入网设备120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入网设备120的具体实现方式不加以限定。接入网设备120还包括有收发器,该收发器为支持波束赋形的多进多出(Multiple-Input Multiple-Output,MIMO)天线,可选的,该收发器为TRP一类的波束扫描节点。
接入网设备120和终端140通过无线空口建立无线连接。可选地,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口(New Radio,NR);或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
终端140可以是指向用户提供语音和/或数据连通性的设备。终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端140可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户终端(User Equipment)。
需要说明的是,在图1所示的移动通信***中,可以包括多个接入网设备120和/或多个终端140,图1中以示出一个接入网设备120和一个终端140来举例说明,但本实施例对此不作限定。
在5G***中,接入网设备和终端将采用6GHz以上的高频频段,然而在高频频段下,高频信号的衰减大,进而导致高频信号的覆盖范围较小。为了解决高频信号覆盖差且衰减大的问题,5G***中,接入网设备将采用波束扫描的方式向所管理小区内的终端发送高频信号。
相关技术中,为了实现波束扫描,接入网设备为所管理的小区设置发送接收节点(Transmission Reception Point,TRP)一类的波束扫描节点,并利用该波束扫描节点发射扫描波束,进而通过改变扫描波束的波束方向完成对整个小区的波束扫描。比如,如图2(a)所示,接入网设备220采用波束扫描的方式向小区内的终端240发送寻呼信号时,以图示位置为扫描起点,沿顺时针方向扫描一周(不断改变扫描波束221的波束方向),即完成对整个小区的扫描。如图2(b)所示,时域(t)-频率(f)坐标轴中,各个方块对应的时频单元指示包含寻呼信号的扫描波束,各个方块对应扫描波束的波束方向不同,则接入网设备完整扫描一周所需的波束扫描周期为16个时域单元。
当终端240从DRX周期中唤醒,并接收到属于自身的寻呼信号时,即对该寻呼信号进行响应,从而完成整个寻呼过程。然而,若终端240从DRX周期唤醒,且扫描波束221刚好扫过终端240时,终端240需要保持唤醒状态至下一个扫描周期才能够及时接收到寻呼信号,导致在每个DRX周期中终端240需要保持较长的唤醒状态(唤醒时长大于或等于一个波束扫描周期,即大于或等于16个时域单元),不利于终端省电。
请参考图3A,其示出了一个实施例提供的寻呼信号发送方法的流程图。本实施例以该寻呼信号发送方法应用于图1所示的移动通信***中来举例说明。该方法包括:
在步骤301中,接入网设备生成寻呼信号。
可选的,该寻呼信号中包含寻呼指示(Paging Indication)和/或寻呼(Paging)消息。其中,寻呼指示用于指示终端是否被寻呼,寻呼消息中包含主叫方标识和寻呼时间等信息。
可选的,接入网设备生成的寻呼信号承载在同步信息块(Synchronization Signal Block,SS Block)的内部,或同步信息块之后,以便终端在根据同步信息块中的同步信号完成同步后,进一步根据寻呼信号响应寻呼。
在步骤302中,接入网设备同时在n个子带上采用n个扫描波束向终端发送寻呼信号,n为大于1的正整数。
其中,该终端为泛指,用于指示至少一个终端。
接入网设备生成寻呼信号后,将该寻呼信号扩展到n个子带上,并在各个子带上采用扫描波束同时向所覆盖小区内的终端发送给寻呼信号。可选地,该n个子带是连续的n个子带。
可选地,每个子带对应的扫描波束的波束扫描区域不同,且各个扫描波束的波束扫描区域的合集为接入网设备所覆盖小区的范围。示意性的,每个子带对应的扫描波束的波束扫描区域占接入网设备覆盖范围的1/n。
比如,如图3B(a)所示,寻呼信号扩展到4个子带上,各个子带对应的扫描波束分别为第一扫描波束321,第二扫描波束322,第三扫描波束323,第四扫描波束324。其中,第一扫描波束321对应波束扫描区域1(右上角90°扇形区域),第二扫描波束322对应波束扫描区域2(右下角90°扇形区域),第三扫描波束323对应波束扫描区域3(左下角90°扇形区域),第四扫描波束324对应波束扫描区域4(左上角90°扇形区域),即各个扫描波束的波束扫描区域占完整波束扫描区域的1/4。
由于单一扫描波束的覆盖范围有限,为了实现对各个波束扫描区域的完整覆盖,接入网设备需要不断改变各个子带上的扫描波束的扫描方向。也即,对于同一个波束扫描区域,接入网设备可以在不同时域单元中使用不同的扫描波束对当前波束扫描区域进行扫描,但在同一个时域单元中使用一个扫描波束对当前波束扫描区域进行扫描。
可选的,各个子带上扫描波束的扫描方向相同。比如,如图3B(a)所示,各个扫描波束的扫描方向均为顺时针方向。
在一种可能的实施方式中,当扫描波束的扫描方向均为顺时针方向时,n个扫描波束中,第i扫描波束的扫描结束位置与第i+1扫描波束对应扇形波束扫描区域的边界重合,i<n;第i扫描波束的扫描结束位置与第1扫描波束对应扇形波束扫描区域的边界重合,i=n。
由于n个子带同时采用n个扫描波束进行波束扫描,因此,与图2中接入网设备采用的波束扫描方式相比能够极大降低波束扫描周期。示意性的,如图3B(b)所示,接入网设备同时在4个子带上采用4个扫描波束进行波束扫描,当各个子带需要4个时域单元对各自波束扫描区域进行完整扫描时,接入网设 备总共需要4个时域单元即可实现对所覆盖小区的完整波束扫描,与图2(b)中接入网设备需要使用16个时域单元才能对所覆盖小区进行完整波束扫描,波束扫描周期缩减至1/4。
需要说明的是,子带对波束扫描区域进行完整扫描所需的时域单元与波束扫描区域的范围大小相关,波束扫描区域的范围越大,子带对波束扫描区域进行完整扫描所需的时域单元越长,波束扫描区域的范围越小,子带对波束扫描区域进行完整扫描所需的时域单元越小,本实施例仅以对波束扫描区域进行完整扫描需4个时域单元为例进行说明,并不对本公开构成限定。
采用上述方式向小区内的终端发送寻呼信号时,由于波束扫描周期降低为1/n,因此终端的寻呼时延得以降低;相应的,终端配置的唤醒时长也降低为原先的1/n,即终端能够处于更长的休眠状态,有利于终端省电。
在步骤303中,终端接收接入网设备发送的寻呼信号。
相应的,位于接入网设备所覆盖小区的终端从DRX周期唤醒,且扫描波束扫描至该终端时,终端即接收到相应的寻呼信号。其中,寻呼信号是接入网设备同时在n个子带上采用n个扫描波束发送的,每个子带对应的扫描波束的波束扫描区域不同,n为大于1的正整数
示意性的,如图3B(a)所示,位于波束扫描区域1的终端341从DRX周期唤醒,且第一扫描波束321扫描至该终端时,终端接接收到相应的寻呼信号。
可选的,接收到寻呼信号后,终端根据寻呼信号中的寻呼指示确定是否存在自身的寻呼,若存在自身的寻呼,终端则从寻呼信号中获取相应的寻呼消息,并响应寻呼;若不存在自身的寻呼,终端则丢弃该寻呼信号,并进入休眠状态。
综上所述,本公开实施例提供的寻呼信号发送方法中,接入网设备生成寻呼信号后,同时利用n个子带上波束扫描区域不同的n个扫描波束向终端发送该寻呼信号,从而降低了寻呼信号的发送时延;同时,接入网设备完整扫描所覆盖小区所需的波束扫描周期减小,使得终端配置的唤醒时长得以降低,进而增加了终端处于休眠状态的时间,有利于终端省电。
需要说明的是,上述步骤301和302可单独实现为接入网设备侧的寻呼信号发送方法的实施例,步骤303可单独实现为终端侧的寻呼信号接收方法的实施例,本实施例对此不作限定。
上述实施例中,以接入网设备同时在4个子带上采用4个扫描波束向终端发送寻呼信号为例进行说明,可选的,接入网设备发送寻呼信号时使用的子带及扫描波束的数量n由TRP的数量确定,和/或,由位于接入网设备所覆盖小区范围内的终端的数量确定。其中,n的最大值不超过TRP的总数。
在一种可能的实施方式中,接入网设备发送寻呼信号时使用的子带及扫描波束的数量与TRP的数量呈正比,即接入网设备中设置的TRP数量越多,发送寻呼信号时所能使用的子带及扫描波束越多,相应的,各个扫描波束对应的波束扫描区域越小,且接入网设备完整扫描所覆盖小区所需的波束扫描周期越小。
比如,当接入网设备中设置有4个TRP时,接入网设备可同时在4个子带上采用4个扫描波束向终端发送寻呼信号,每个扫描波束对应的波束扫描区域为90°扇形区域;当接入网设备中设置有3个TRP时,接入网设备可同时在3个子带上采用3个扫描波束向终端发送寻呼信号,每个扫描波束对应的波束扫描区域为120°扇形区域。
在另一种可能的实施方式中,接入网设备根据所覆盖小区范围内终端的数量确定采用的子带及扫描波束的数量。可选的,所覆盖小区范围内终端的数量小于预设数量时,接入网设备使用部分TRP在相应子带上发送寻呼信号,从而在保证寻呼质量的前提下降低功耗;所覆盖小区范围内终端的数量大于预设数量时,接入网设备使用全部TRP在相应子带上发送寻呼信号,从而减小寻呼时延,提高寻呼质量。
可选的,接入网设备还根据小区中终端的时延需求确定采用的子带及扫描波束的数量。比如,当小区中终端的延时需求低于预定延时需求时(即终端为低延时需求终端),接入网设备使用部分TRP在相应子带上发送寻呼信号,从而在保证寻呼质量的前提下降低功耗;当小区中终端的延时需求高于预定延时需求时(即终端为高延时需求终端),接入网设备使用全部TRP在相应子带上发送寻呼信号,从而减小寻呼时延,提高寻呼质量。
在一种可能的实施方式中,各个子带包括位于连续的m个时域单元内的m个同步信息块,该同步信息块上承载有同步信号,接入网设备生成的寻呼信号即承载在该同步信息块中。
示意性的,对于图3B(b)所示4个子带中的任一子带,如图4A所示, 该子带包括位于连续的4个时域单元内的4个同步信息块40,且各个同步信息块40中包括同步信号41、广播信号42以及寻呼信号43。
其中,寻呼信号43占用的第一时频资源431位于同步信息块40中同步信号41的时域位置之后,以便终端接收到同步信息块40时,首先根据同步信息块40中的同步信号41进行同步,然后根据寻呼信号43进行寻呼响应。
在其他可能的实施方式中,如图4B所示,寻呼信号43承载在每个同步信息块40中,且寻呼信号43与同步信号41以及广播信号42的时域位置相同,即同步信号41、广播信号42和寻呼信号43分布在同一时域位置的不同频域位置。
如图4A所示,寻呼信号43占用的第一时频资源的频带属于同步信息块40的频带。对于不支持预设频带的第一终端(即窄带宽终端),由于第一终端所支持的频带与同步信息块的频带相同,因此,当第一时频资源承载第一终端对应的寻呼信号时,第一终端即能够在该第一时频资源上接收相应的寻呼信号;而对于支持预设频带的第二终端(即宽带终端),由于第二终端所支持的频带大于同步信息块的频带,因此,当第一时频资源承载第二终端对应的寻呼信号时,第二终端也能够在该第一时频资源上接收相应的寻呼信号。其中,该预设频带根据通信标准设定。
由此可见,接入网设备可以采用图4A所示的方式将所有寻呼信号均承载在同步信息块所属频带的第一时频资源内,确保窄带宽终端和宽带终端均能够从同步信息块中获取寻呼信号,提高了寻呼信号收发的可靠性。
然而,若将所有终端(包括第一终端和第二终端)的寻呼信号均承载在第一时频资源中,随着寻呼信号内容的增多,同步信息块所占的时域也将增加。在寻呼量较大的情况下,接入网设备的波束扫描周期也将增大,导致寻呼信号的时延增加,相应的,终端需要保持更长时间的唤醒状态来接收寻呼信号。
为了解决上述问题,在一种可能的实施方式中,如图4C所示,寻呼信号43占用子带上的第一时频资源431以及第二时频资源432。其中,第一时频资源431的频带小于或大于第二时频资源432的频带,且第一时频资源431与第二时频资源432连续,第一时频资源431的频带属于同步信息块40的频带,第二时频资源432的频带不属于同步信息块40的频带,第二时频资源432频带属于第二终端所支持的预设频带。在其他可能的实施方式中,第一时频资源 431与第二时频资源432的频带不连续,即图4C中,第二时频资源432位于广播信号42的频域上方,本公开并不对此进行限定。
为了确保第一终端能够在自身支持的频带上接收到寻呼信号,第一时频资源431用于承载第一终端和/或第二终端对应的寻呼信号,而第二时频资源432仅用于承载第二终端对应的寻呼信号。
可选的,接入网设备通过最小化***信息(Minimum System Information,Minimum SI)向第一终端和第二终端发送第一时频资源的资源位置,相应的,第一终端和第二终端接收该最小化***信息,从而根据最小化***信息中携带的资源位置获取第一时频资源中承载的寻呼信号;同时,为了使支持宽带的第二终端能够获取第二时频资源中承载的寻呼信号,接入网设备通过其他***信息(Other System Information,Other SI)向第二终端发送第二时频资源的资源位置,相应的,第二终端接收该其他***信息,并获取其他***信息中携带的第二时频资源的资源位置。
可选的,当同时包含第一终端和第二终端的寻呼信号时,接入网设备优先将第一终端对应的寻呼信号承载在第一时频资源431中,并在第一时频资源431中存在空余时,将部分第二终端对应的寻呼信号承载在第一时频资源431中,将剩余部分第二终端对应的寻呼信号承载在第二时频资源432中。
相应的,第一终端即从子带上的第一时频资源中获取寻呼信号,第二终端即从子带上的第一时频资源和/或第二时频资源中获取寻呼信号。
在一种可能的实施方式中,如图4D(a)所示,当寻呼信号中包含寻呼指示和寻呼消息时,接入网设备将第一终端的寻呼指示PI 1和寻呼消息Paging 1承载在第一时频资源431上,将第二终端的寻呼指示PI 2和寻呼消息Paging 2承载在第二时频资源432上。
在另一种可能的实施方式中,由于寻呼指示所占的时频资源远小于寻呼消息所占的时频资源,因此,如图4D(b)所示,接入网设备将第一终端的寻呼指示PI 1和寻呼消息Paging 1以及第二终端的寻呼指示PI 2承载在第一时频资源431上,将第二终端的寻呼消息Paging 2承载在第二时频资源432上。
显然,接入网设备采用图4B所示的方式将寻呼信号承载到两个时频资源中,从而增大了承载寻呼信号的时频资源的频域,减小了承载寻呼信号的时频资源的时域;相较于图4A所示的寻呼信号承载方式,在寻呼量较大的情况下,接入网设备的波束扫描周期较小,寻呼信号的时延较小,相应的,终端仅需要 保持较短时间的唤醒状态来接收寻呼信号,有利于终端省电。
图4A至4C所示的寻呼信号承载方式中,承载寻呼信号的时频资源(包括第一时频资源和/或第二时频资源)均位于同步信息块内部,即寻呼信号与同步信息块同时发送。在寻呼稀疏的情况下,接入网设备每次发送同步信息块时均承载寻呼信号将造成时频资源浪费。
为了避免时频资源浪费,在另一种可能的实施方式中,寻呼信号承载在位于m个同步信息块的时域位置之后的m个时频资源中,且每i组m个同步信息块对应1组m个时频资源,i为大于0的正整数。示意性的,如图4E所示,承载寻呼信号43的第一时频资源431和第二时频资源432承载在位于4个同步信息块40的时域位置。
其中,第一时频资源431用于承载第一终端和/或第二终端对应的寻呼信号,第二时频资源432仅用于承载第二终端对应的寻呼信号。具体的承载方式与图4C所示的承载方式相似,本实施例在此不再赘述。
可选地,采用图4E所示的寻呼信号承载方式时,接入网设备将采用不同的扫描波束发送同步信息块以及寻呼信号。在一种可能的实施方式中,在图3A的基础上,如图4F所示,上述步骤302和步骤303可以被替换为如下步骤。
在步骤304中,接入网设备同时在n个子带上采用n个第一扫描波束发送承载在m个同步信息块上的同步信号和广播信号。
针对n个子带中的各个子带,接入网设备在该子带上采用第一扫描波束向终端发送承载在m个同步信息块上的同步信号以及广播信号。
在步骤305中,终端接收接入网设备发送的承载在m个同步信息块上的同步信号和广播信号。
相应的,终端在子带上接收到接入网设备发送的承载在m个同步信息块上的同步信号和广播信号,从而根据该同步信号进行同步。
在步骤306中,接入网设备同时在n个子带上采用n个第二扫描波束向终端发送承载在m个时频资源上的寻呼信号。
在一种可能的实施方式中,当***中寻呼频繁时,接入网设备采用第一扫描波束发送同步信号和广播信号(承载在同步信息块上)后,即在n个子带上启用n个第二扫描波束向终端发送承载在时频资源上的寻呼信号,即接入网设备每发送一组同步信息块后发送一组寻呼信号;
当***中寻呼稀疏时,接入网设备采用第一扫描波束向终端发送i组m个同步信息块后,在n个子带上启用第二扫描波束向终端发送承载在m个时频资源上的寻呼信号,即接入网设备每发送i组同步信息块后发送一组寻呼信号,从而避免寻呼稀疏时频繁发送寻呼信号造成的时频资源浪费。
在步骤307中,终端接收接入网设备发送的承载在m个时频资源上的寻呼信号。
其中,承载在m个时频资源上的寻呼信号是接入网设备同时在n个子带上采用n个第二扫描波束发送的。相应的,终端接收到该时频资源后,即根据时频资源中承载的寻呼信号响应寻呼。
显然,接入网设备采用图4E所示的方式将寻呼信号承载在同步信息块的时域位置之后,并单独采用扫描波束发射,避免了寻呼稀疏情况下,接入网设备每次发送同步信息块时均承载寻呼信号造成的时频资源浪费;同时,相较于图4A至4C所示的承载方式,图4E中承载寻呼信号的时频资源所占时域长度更小,终端配置的唤醒时长也相应减小,从而进一步提高了终端的省电性能。
针对通信***中uRLLC终端一类的低延时终端,为了确保此类低延时终端能够尽快响应寻呼信号,在另一种可能的实施方式中,每个子带包括位于连续的m个时域单元内的m个同步信息块,且寻呼信号中的寻呼指示承载在每个同步信息块中位于同步信号的时域位置之后的时频资源中,而寻呼信号中的寻呼消息则承载在位于m个同步信息块的时域位置之后的m个时频资源中。
示意性的,如图4G所示,每个子带上包括位于连续的4个时域单元内的4个同步信息块40,且各个同步信息块40中承载有同步信号41以及广播信号42。接入网设备在发送寻呼信号时,将寻呼信号中的寻呼指示44承载在同步信号41的时域位置之后的时频资源中,将寻呼信号中的寻呼消息45承载在位于4个同步信息块40的时域位置之后的4个时频资源中。
相应的,当uRLLC终端接收图4G所示的同步信号时,如图4H所示,上述步骤303包括如下步骤。
在步骤303A中,终端检测同步信息块中是否承载有终端对应的寻呼指示。
对于通信***中的uRLLC终端,接收到接入网设备在子带上发送的同步信息块后,终端即对该同步信息块上进行解析,并进一步检测是否包含自身的寻呼指示。若检测到包含自身的寻呼指示,则执行下述步骤303B和303C,进 一步获取相应的寻呼消息;若检测到不包含自身的寻呼指示,则执行下述步骤303D。
在步骤303B中,若同步信息块中承载有终端对应的寻呼指示,终端则将寻呼信号对应的PO确定为第一时域长度,第一时域长度为m个同步信息块和m个时频资源对应的时域长度之和。
当检测到同步信息块中承载有自身的寻呼指示时,终端即知悉后续还有自身的寻呼消息,为了确保能够及时接收到寻呼消息,终端需要在接收同步信息块后仍旧保持唤醒状态。因此,终端将寻呼信号对应的PO确定为第一时域长度,即在第一时域长度内保持唤醒状态,从而确保及时获取m个同步信息块之后m个时频资源中承载的寻呼消息。
示意性,如图4G所示,当检测到同步信息块中承载有自身的寻呼指示时,终端即将PO确定为4个同步信息块40以及同步信息块40之后4个时频资源对应的时域长度之和。
在步骤303C中,终端获取m个时频资源中承载的寻呼消息。
进一步的,终端在PO下保持唤醒状态,并获取同步信息块之后m个时频资源中承载的寻呼消息,从而根据自身的寻呼消息完成寻呼。
在步骤303D中,若同步信息块中未承载有终端对应的寻呼指示,终端则将寻呼信号对应的PO确定为第二时域长度,第二时域长度为m个同步信息块对应的时域长度。
当检测到同步信息块中未承载有自身的寻呼指示时,终端即知悉后续没有自身的寻呼消息,并将寻呼信号对应的PO确定为m个同步信息块对应的时域长度(即第二时域长度),从而在接收完m个同步信息块后进入休眠状态,达到省电的效果。
可选的,接入网设备仅为通信***中的低延时终端配置同步信息块时域位置之后的m个时频资源(承载有寻呼消息);对于通信***中的高延时终端,接入网设备仅在同步信息块中承载高延时终端对应的寻呼指示,相应的,高延时终端从同步信息块中解析到自身的寻呼指示后,通过波束请求的方式从接入网设备处获取相应的寻呼消息,从而完成寻呼响应,本公开实施例并不对此进行限定。
为了使终端知悉接收寻呼信号的时机,在图3A的基础上,如图4I所示, 上述步骤301之前还包括步骤308和309,步骤303被替换为步骤309。
在步骤308中,接入网设备向终端发送***信息,***信息携带有寻呼信号对应的PO,PO是由寻呼信号占用的时频资源的时域长度确定的。
终端进入接入网设备所覆盖的小区后,即接收到接入网设备发送的***信息,该***信息中包含寻呼信号对应的PO。
示意性的,图4A至4C所示,寻呼信号对应的PO即为用于承载寻呼信号的第1个时频资源至第4个时频资源所占用的时频资源的时域长度。
在步骤309中,终端接收接入网设备发送的***信息。
可选的,终端接收接入网设备发送的***信息后,获取该***信息中包含的PO,并根据PO的大小配置接收窗口(即唤醒时长),其中,该接收窗口大于PO。
在步骤301中,接入网设备生成寻呼信号。
在步骤302中,接入网设备同时在n个子带上采用n个扫描波束向终端发送寻呼信号,n为大于1的正整数。
在步骤310中,终端根据PO接收接入网设备发送的寻呼信号。
可选的,终端根据配置的接收窗口接收接入网设备发送的寻呼信号,即终端在该接收窗口期间保持唤醒状态,并接收接入网设备通过波束扫描发送的寻呼信号。
需要说明的是,上述各个实施例中,以接入网设备为执行主体的步骤可单独实现为接入网设备侧的寻呼信号发送方法的实施例,以终端为执行主体的步骤可单独实现为终端侧的寻呼信号接收方法的实施例;并且,本领域技术人员可以根据实际需求对上述实施例进行组合实施,本实施例对此不作限定。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
请参考图5,其示出了本公开一个实施例提供的寻呼***的结构示意图。其中,该寻呼***中包含寻呼信号发送装置510和寻呼信号接收装置520。寻呼信号发送装置510可以通过软件、硬件以及两者的组合实现成为接入网设备的全部或一部分,寻呼信号接收装置520可以通过软件、硬件以及两者的组合实现成为终端的全部或一部分。
寻呼信号发送装置510可以包括:生成单元511和发送单元512。
生成单元511用于实现上述步骤301的功能,以及与生成步骤相关的功能;
发送单元512用于实现上述步骤302、304、306或308的功能,以及与发送步骤相关的功能。
寻呼信号接收装置520可以包括:接收单元521;
接收单元521用于实现上述步骤303(包括303A至303D)、305、307、309或310的功能,以及与接收步骤相关的功能。
相关细节可参考图3A、3B、4A至4I所示的实施例。
请参考图6,其示出了本发明一个示例性实施例提供的接入网设备的结构示意图,该接入网设备包括:处理器61、接收器62、发射器63、存储器64和总线65。
处理器61包括一个或者一个以上处理核心,处理器61通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器62和发射器63可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器64通过总线65与处理器61相连。
存储器64可用于存储软件程序以及模块。
存储器64可存储至少一个功能所述的应用程序模块66。应用程序模块66可以包括:生成模块661和发送模块662。
处理器61用于执行生成模块661以实现上述各个方法实施例中有关生成步骤的功能;处理器61用于执行发送模块662以实现上述各个方法实施例中有关发送步骤的功能。
此外,存储器64可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
请参考图7,其示出了本发明一个示例性实施例提供的终端的结构示意图,该终端包括:处理器71、接收器72、发射器73、存储器74和总线75。
处理器71包括一个或者一个以上处理核心,处理器71通过运行软件程序 以及模块,从而执行各种功能应用以及信息处理。
接收器72和发射器73可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
存储器74通过总线75与处理器71相连。
存储器74可用于存储软件程序以及模块。
存储器74可存储至少一个功能所述的应用程序模块76。应用程序模块76可以包括:接收模块761。
处理器71用于执行接收模块761以实现上述各个方法实施例中有关接收步骤的功能。
此外,存储器74可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (49)

  1. 一种寻呼信号发送方法,其特征在于,所述方法包括:
    接入网设备生成寻呼信号;
    所述接入网设备同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
  3. 根据权利要求1所述的方法,其特征在于,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
  4. 根据权利要求1至3任一所述的方法,其特征在于,
    所述寻呼信号占用所述子带上的第一时频资源;
    或,
    所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一时频资源用于承载第一终端和/或第二终端对应的寻呼信号;
    所述第二时频资源用于承载第二终端对应的寻呼信号;
    其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
  6. 根据权利要求5所述的方法,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息;
    所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
    或,
    所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
  7. 根据权利要求4或5任一所述的方法,其特征在于,所述方法还包括:
    所述接入网设备通过最小化***信息向所述第一终端和所述第二终端发送所述第一时频资源的资源位置;
    所述接入网设备通过其他***信息向所述第二终端发送所述第二时频资源的资源位置。
  8. 根据权利要求4至6任一所述的方法,其特征在于,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
    或,
    所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
    或,
    所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
  9. 根据权利要求8所述的方法,其特征在于,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
    所述接入网设备同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,包括:
    所述接入网设备同时在n个所述子带上采用n个第一扫描波束发送承载在所述m个所述同步信息块上的同步信号和广播信号后,同时在n个所述子带上采用n个第二扫描波束向所述终端发送承载在所述m个时频资源上的寻呼信号。
  10. 根据权利要求4至6任一所述的方法,其特征在于,所述寻呼信号中 包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
  11. 根据权利要求4至10任一所述的方法,其特征在于,所述方法,还包括:
    所述接入网设备向所述终端发送***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的。
  12. 一种寻呼信号接收方法,其特征在于,所述方法包括:
    终端接收接入网设备发送的寻呼信号,所述寻呼信号是所述接入网设备同时在n个子带上采用n个扫描波束发送的,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
  14. 根据权利要求12所述的方法,其特征在于,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
  15. 根据权利要求12至14任一所述的方法,其特征在于,
    所述寻呼信号占用所述子带上的第一时频资源;
    或,
    所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
  16. 根据权利要求15所述的方法,其特征在于,所述终端接收接入网设备发送的寻呼信号,包括:
    若所述终端为第一终端,所述终端在所述第一时频资源上接收所述寻呼信号;
    若所述终端为第二终端,所述终端在所述第一时频资源和/或所述第二时频资源上接收所述寻呼信号;
    其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
  17. 根据权利要求16所述的方法,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息;
    所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
    或,
    所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    若所述终端为所述第一终端,所述终端接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置;
    若所述终端为所述第二终端,所述终端接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置,并接收通过所述接入网设备通过其他***信息发送的所述第二时频资源的资源位置。
  19. 根据权利要求15至17任一所述的方法,其特征在于,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
    或,
    所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
    或,
    所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
    其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
  20. 根据权利要求19所述的方法,其特征在于,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
    所述终端接收接入网设备发送的寻呼信号包括:
    所述终端接收所述接入网设备发送的承载在m个所述同步信息块上的同步信号和广播信号后,接收所述接入网设备发送的承载在所述m个时频资源上的寻呼信号;
    其中,承载在m个所述同步信息块上的同步信号和广播信号是同时在n个所述子带上采用n个第一扫描波束发送的,承载在所述m个时频资源上的寻呼信号是同时在n个所述子带上采用n个第二扫描波束发送的。
  21. 根据权利要求15至17任一所述的方法,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
  22. 根据权利要求21所述的方法,其特征在于,所述终端为超高可靠性与超低时延业务uRLLC终端,
    所述终端接收接入网设备发送的寻呼信号,包括:
    检测所述同步信息块中是否承载有所述终端对应的所述寻呼指示;
    若所述同步信息块中承载有所述终端对应的所述寻呼指示,则将所述寻呼信号对应的寻呼时段PO确定为第一时域长度,所述第一时域长度为所述m个同步信息块和所述m个时频资源对应的时域长度之和;
    获取所述m个时频资源中承载的所述寻呼消息。
  23. 根据权利要求15至22任一所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述接入网设备发送的***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的;
    所述终端接收接入网设备发送的寻呼信号,包括:
    所述终端根据所述PO接收所述寻呼信号。
  24. 一种寻呼信号发送装置,其特征在于,所述装置包括:
    生成单元,被配置为生成寻呼信号;
    发送单元,被配置为同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
  25. 根据权利要求24所述的装置,其特征在于,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
  26. 根据权利要求24所述的装置,其特征在于,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
  27. 根据权利要求24至26任一所述的装置,其特征在于,
    所述寻呼信号占用所述子带上的第一时频资源;
    或,
    所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
  28. 根据权利要求27所述的装置,其特征在于,
    所述第一时频资源用于承载第一终端和/或第二终端对应的寻呼信号;
    所述第二时频资源用于承载第二终端对应的寻呼信号;
    其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
  29. 根据权利要求28所述的装置,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息;
    所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
    或,
    所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
  30. 根据权利要求27或28任一所述的装置,其特征在于,
    所述发送单元,还被配置为通过最小化***信息向所述第一终端和所述第二终端发送所述第一时频资源的资源位置;
    通过其他***信息向所述第二终端发送所述第二时频资源的资源位置。
  31. 根据权利要求27至29任一所述的装置,其特征在于,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
    或,
    所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
    或,
    所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
    其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
  32. 根据权利要求31所述的装置,其特征在于,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
    所述发送单元,被配置为同时在n个所述子带上采用n个第一扫描波束发 送承载在所述m个所述同步信息块上的同步信号和广播信号后,同时在n个所述子带上采用n个第二扫描波束向所述终端发送承载在所述m个时频资源上的寻呼信号。
  33. 根据权利要求27至29任一所述的装置,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
  34. 根据权利要求27至33任一所述的装置,其特征在于,
    所述发送单元,还被配置为向所述终端发送***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的。
  35. 一种寻呼信号接收装置,其特征在于,所述装置包括:
    接收单元,被配置为接收接入网设备发送的寻呼信号,所述寻呼信号是所述接入网设备同时在n个子带上采用n个扫描波束发送的,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
  36. 根据权利要求35所述的装置,其特征在于,所述n个扫描波束的波束扫描区域的合集为所述接入网设备所覆盖小区的范围。
  37. 根据权利要求35所述的装置,其特征在于,所述n是由发送接收节点TRP的数量确定的,和/或,所述n是由位于所述接入网设备所覆盖小区范围内的终端的数量确定。
  38. 根据权利要求35至37任一所述的装置,其特征在于,
    所述寻呼信号占用所述子带上的第一时频资源;
    或,
    所述寻呼信号占用所述子带上的所述第一时频资源和第二时频资源。
  39. 根据权利要求38所述的装置,其特征在于,
    所述接收单元,还被配置为若所述终端为第一终端,在所述第一时频资源上接收所述寻呼信号;
    所述接收单元,还被配置为若所述终端为第二终端,在所述第一时频资源和/或所述第二时频资源上接收所述寻呼信号;
    其中,所述第一终端为不支持预设频带的终端,所述第二终端为支持所述预设频带的终端,所述第二时频资源的频带属于所述预设频带。
  40. 根据权利要求39所述的装置,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息;
    所述第一终端的寻呼指示和寻呼消息以及所述第二终端的寻呼指示承载在所述第一时频资源上,所述第二终端的寻呼消息承载在所述第二时频资源上;
    或,
    所述第一终端寻呼指示和寻呼消息承载在所述第一时频资源上,所述第二终端的寻呼指示和寻呼消息承载在所述第二时频资源上。
  41. 根据权利要求39或40所述的装置,其特征在于,
    所述接收单元,还被配置为若所述终端为所述第一终端,接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置;
    若所述终端为所述第二终端,接收所述接入网设备通过最小化***信息发送的所述第一时频资源的资源位置,并接收通过所述接入网设备通过其他***信息发送的所述第二时频资源的资源位置。
  42. 根据权利要求38至40任一所述的装置,其特征在于,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼信号承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中;
    或,
    所述寻呼信号承载在每个所述同步信息块中,所述寻呼信号与所述同步信号的时域位置相同;
    或,
    所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中;
    其中,所述第一时频资源的频带属于所述同步信息块的频带,所述第二时频资源的频带不属于所述同步信息块的频带。
  43. 根据权利要求42所述的装置,其特征在于,当所述寻呼信号承载在位于m个所述同步信息块的时域位置之后的m个时频资源中时,
    所述接收单元,被配置为接收所述接入网设备发送的承载在m个所述同步信息块上的同步信号和广播信号后,接收所述接入网设备发送的承载在所述m个时频资源上的寻呼信号;
    其中,承载在m个所述同步信息块上的同步信号和广播信号是同时在n个所述子带上采用n个第一扫描波束发送的,承载在所述m个时频资源上的寻呼信号是同时在n个所述子带上采用n个第二扫描波束发送的。
  44. 根据权利要求38至40任一所述的装置,其特征在于,所述寻呼信号中包含寻呼指示和寻呼消息,每个所述子带包括位于连续的m个时域单元内的m个同步信息块,所述同步信息块上承载有同步信号,m为大于1的正整数;
    所述寻呼指示承载在每个所述同步信息块中位于所述同步信号的时域位置之后的时频资源中,所述寻呼消息承载在位于m个所述同步信息块的时域位置之后的所述m个时频资源中。
  45. 根据权利要求44所述的装置,其特征在于,所述终端为超高可靠性与超低时延业务uRLLC终端,
    所述接收单元,还被配置为:
    检测所述同步信息块中是否承载有所述终端对应的所述寻呼指示;
    若所述同步信息块中承载有所述终端对应的所述寻呼指示,则将所述寻呼信号对应的寻呼时段PO确定为第一时域长度,所述第一时域长度为所述m个同步信息块和所述m个时频资源对应的时域长度之和;
    获取所述m个时频资源中承载的所述寻呼消息。
  46. 根据权利要求38至45任一所述的装置,其特征在于,
    所述接收单元,还被配置为接收所述接入网设备发送的***信息,所述***信息携带有所述寻呼信号对应的寻呼时段PO,所述PO是由所述寻呼信号占用的时频资源的时域长度确定的;
    根据所述PO接收所述寻呼信号。
  47. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    生成寻呼信号;
    同时在n个子带上采用n个扫描波束向终端发送所述寻呼信号,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
  48. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收接入网设备发送的寻呼信号,所述寻呼信号是所述接入网设备同时在n个子带上采用n个扫描波束发送的,每个所述子带对应的所述扫描波束的波束扫描区域不同,n为大于1的正整数。
  49. 一种寻呼***,其特征在于,所述***包括:接入网设备和终端;
    所述接入网设备包括如权利要求24至34任一所述的寻呼信号发送装置;
    所述终端包括如权利要求35至46任一所述的寻呼信号接收装置;
    或,
    所述接入网设备包括如权利要求47所述的接入网设备;
    所述终端包括如权利要求48所述的终端。
PCT/CN2017/073510 2017-01-06 2017-02-14 寻呼信号发送方法、寻呼信号接收方法、装置及*** WO2018126512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/476,167 US10813079B2 (en) 2017-01-06 2017-02-14 Paging signal transmitting method, paging signal receiving method, device and system
CN201780000041.2A CN107079404B (zh) 2017-01-06 2017-02-14 寻呼信号发送方法、寻呼信号接收方法、装置及***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/070474 2017-01-06
CN2017070474 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018126512A1 true WO2018126512A1 (zh) 2018-07-12

Family

ID=62789026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073510 WO2018126512A1 (zh) 2017-01-06 2017-02-14 寻呼信号发送方法、寻呼信号接收方法、装置及***

Country Status (2)

Country Link
US (1) US10813079B2 (zh)
WO (1) WO2018126512A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171355A2 (ko) * 2016-03-28 2017-10-05 엘지전자 주식회사 시스템 정보를 획득하는 방법 및 장치
CN109246818B (zh) * 2017-05-04 2024-01-09 华为技术有限公司 寻呼方法和装置
CN115118314A (zh) * 2017-09-30 2022-09-27 北京小米移动软件有限公司 数据传输方法及装置
WO2019096855A1 (en) * 2017-11-14 2019-05-23 Sony Corporation Infrastructure equipment, wireless communications system, communications device and methods
CN111642009B (zh) * 2017-11-14 2022-07-12 Oppo广东移动通信有限公司 无线通信方法和设备
CN113099531B (zh) * 2018-02-13 2024-06-07 维沃移动通信有限公司 确定寻呼消息位置的方法、通信设备、网络侧、用户设备
CN110351761A (zh) * 2018-04-03 2019-10-18 华为技术有限公司 监听寻呼消息和发送指示信息的方法、装置及***
EP3813442B1 (en) * 2018-08-09 2023-03-01 LG Electronics, Inc. Method and apparatus for receiving signal in wireless communication system
WO2022077375A1 (zh) * 2020-10-15 2022-04-21 华为技术有限公司 一种通信方法及装置
CN114501631A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信号处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097406A1 (en) * 2010-02-03 2011-08-11 Qualcomm Incorporated Protocol for signalling during an access period information for selecting antenna beams
CN105027524A (zh) * 2013-03-06 2015-11-04 三星电子株式会社 在使用波束成形的无线通信***中发送和接收上行链路随机接入信道时隙的方法和装置
CN105379357A (zh) * 2013-03-15 2016-03-02 高通股份有限公司 在lte中采用波束成形来实现改善的随机接入规程
CN105812035A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 一种分级波束接入方法及装置
CN106170930A (zh) * 2013-05-21 2016-11-30 三星电子株式会社 用于在波束成形无线通信网络中发射/接收寻呼的设备和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60020106T2 (de) 1999-04-02 2006-03-09 Qualcomm, Inc., San Diego Anordnung und verfahren zur korrelierung signalmessungen auf verkehrskanalen in kommunikationssystemen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097406A1 (en) * 2010-02-03 2011-08-11 Qualcomm Incorporated Protocol for signalling during an access period information for selecting antenna beams
CN105027524A (zh) * 2013-03-06 2015-11-04 三星电子株式会社 在使用波束成形的无线通信***中发送和接收上行链路随机接入信道时隙的方法和装置
CN105379357A (zh) * 2013-03-15 2016-03-02 高通股份有限公司 在lte中采用波束成形来实现改善的随机接入规程
CN106170930A (zh) * 2013-05-21 2016-11-30 三星电子株式会社 用于在波束成形无线通信网络中发射/接收寻呼的设备和方法
CN105812035A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 一种分级波束接入方法及装置

Also Published As

Publication number Publication date
US10813079B2 (en) 2020-10-20
US20190357170A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
CN107079404B (zh) 寻呼信号发送方法、寻呼信号接收方法、装置及***
WO2018126512A1 (zh) 寻呼信号发送方法、寻呼信号接收方法、装置及***
CN108702307B (zh) 用户设备状态配置的***和方法
WO2018192374A1 (zh) 一种站点唤醒方法及站点
WO2018076988A1 (zh) 唤醒方法和装置
WO2018165986A1 (zh) 同步信号块检测方法、同步信号块传输方法、装置及***
JP7439299B2 (ja) 通信方法および通信装置
TW201218662A (en) Standby time improvements for stations in a wireless network
WO2018227494A1 (zh) 测量间隔配置方法、装置、设备、终端及***
JP2009521187A (ja) より節電するためのマルチポール指示
US7953030B2 (en) Method and apparatus for controlling power consumption of stations on a CSMA/CA-based wireless LAN
WO2019191984A1 (zh) 一种信号发送方法、网络设备及终端设备
WO2022007623A1 (zh) 接入小区的方法和装置
EP3589031A1 (en) Communication method and apparatus for wireless local area network, and communication terminal
WO2023097810A1 (zh) 无线通信方法、终端和网络设备
WO2021134577A1 (zh) 一种数据传输方法及装置
CN111343615B (zh) 短距离通信的方法和设备
WO2023030449A1 (zh) 通信方法及装置
WO2018233646A1 (zh) 唤醒方法、接入点和站点
CN109302736B (zh) 无线局域网的睡眠控制方法及装置、存储介质、工作站、终端
WO2018177266A1 (zh) 数据传输的方法和装置
WO2018171591A1 (zh) 一种用来唤醒设备的方法及装置
US20240172121A1 (en) Method for determining transmission resource for power saving signal, terminal device, chip and storage medium
US20240147371A1 (en) Method for determining energy-saving signal monitoring occasion, terminal device and chip
WO2024051791A1 (zh) 通信方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890072

Country of ref document: EP

Kind code of ref document: A1