WO2018123708A1 - Lead frame member and method for manufacturing same, and semiconductor package - Google Patents

Lead frame member and method for manufacturing same, and semiconductor package Download PDF

Info

Publication number
WO2018123708A1
WO2018123708A1 PCT/JP2017/045451 JP2017045451W WO2018123708A1 WO 2018123708 A1 WO2018123708 A1 WO 2018123708A1 JP 2017045451 W JP2017045451 W JP 2017045451W WO 2018123708 A1 WO2018123708 A1 WO 2018123708A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
roughened
lead frame
layer
conductive substrate
Prior art date
Application number
PCT/JP2017/045451
Other languages
French (fr)
Japanese (ja)
Inventor
達也 中津川
良聡 小林
真 橋本
邦夫 柴田
Original Assignee
古河電気工業株式会社
古河精密金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河精密金属工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201780068101.4A priority Critical patent/CN109937479B/en
Priority to JP2018518662A priority patent/JP6479265B2/en
Priority to KR1020197013787A priority patent/KR102482396B1/en
Publication of WO2018123708A1 publication Critical patent/WO2018123708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Definitions

  • the present invention relates to a lead frame material suitable for use in a resin-encapsulated semiconductor device in which a semiconductor element and a lead frame having a surface treatment layer are electrically connected to each other and sealed with a mold resin.
  • the present invention relates to a manufacturing method and a semiconductor package.
  • This type of resin-encapsulated semiconductor device has a structure in which a semiconductor element and a lead frame that are electrically connected to each other by a wire or the like are sealed with a mold resin.
  • a resin-encapsulated semiconductor device is manufactured by subjecting a lead frame to a surface treatment such as exterior plating and forming a surface film with a Sn alloy such as a Sn—Pb alloy or a Sn—Bi alloy. Is common.
  • the technique for roughening the plating surface is to roughen the surface by subjecting the lead frame to roughening, and (1) the mold resin enters the irregularities of the roughened plating film to form a strong mechanical joint.
  • the effect (anchor effect), (2) improvement in chemical bonding due to improvement in the contact area between the mold resin and the plating surface are expected.
  • the present invention is a lead frame suitable for forming a lead frame surface capable of maintaining good resin adhesion even when a high-temperature and high-humidity test is performed under the severe conditions described above. It is an object to provide a material, a manufacturing method thereof, and a highly reliable semiconductor package.
  • the present inventors have intensively studied to solve the above-mentioned problems, and the cross-sectional shape of the projections of the roughened particles constituting the roughened layer of the roughened film formed on the conductive substrate is resin adhesion.
  • Good adhesion caused by the so-called anchor effect, which is caused by filling and forming the resin on the uneven surface (particularly the concave portion) due to the protrusions formed on the surface of the lead frame material. It was investigated whether it could be maintained even when the high temperature and high humidity test was conducted under the above severe conditions.
  • the inventors measured the protrusion forming the roughened layer of the roughened film formed on the conductive substrate, the maximum width when measured in the cross section in the thickness direction of the roughened film, the maximum width
  • the maximum width By controlling to have a shape that is 1 to 5 times the minimum width when measured at the lower part located on the conductive substrate side relative to the measurement position, the minimum width of the projection of roughened particles in particular It was found that the peeling phenomenon caused by the shearing of the resin, which is likely to occur due to the stress concentration due to the expansion or contraction of the resin, can be effectively suppressed.
  • the gist configuration of the present invention is as follows.
  • a roughened film comprising a conductive substrate and at least one roughened layer formed of protrusions of a plurality of roughened particles directly or via an intermediate layer on at least one surface of the conductive substrate.
  • the protrusion has a maximum width when measured in a cross section in the thickness direction of the roughened film, and a minimum width when measured at a lower portion located on the conductive substrate side than the measurement position of the maximum width.
  • a lead frame material having a shape that is 1 to 5 times as large as the above.
  • the roughening layer is made of copper, copper alloy, nickel, nickel alloy, palladium, palladium alloy, silver, silver alloy, tin, tin alloy, zinc, zinc alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium.
  • a surface film including at least one surface coating layer is further provided on at least a part of the surface of the roughened film, and the surface coating layer includes palladium, palladium alloy, rhodium, rhodium alloy, ruthenium, The ruthenium alloy, platinum, platinum alloy, iridium, iridium alloy, gold, gold alloy, silver, or a metal or alloy selected from the group of silver alloys, according to any one of (1) to (3) above Lead frame material.
  • the lead frame material according to (4), wherein the intermediate layer is nickel, nickel alloy, cobalt, cobalt alloy, copper, or copper alloy.
  • a roughened film including at least one roughened layer formed of protrusions of a plurality of roughened particles is formed by electroplating directly or via an intermediate layer on at least one surface of the conductive substrate.
  • the protrusion has a maximum width when measured in the cross section in the thickness direction of the roughened film, and the protrusion is measured at a lower portion located on the conductive substrate side than the measurement position of the maximum width.
  • a semiconductor package comprising the lead frame material according to any one of (1) to (5) above.
  • the lead frame material of the present invention comprises a conductive substrate and at least one roughened layer formed of a plurality of roughened particle projections directly or via an intermediate layer on at least one surface of the conductive substrate.
  • a roughened film including the protrusion, and the protrusion has a maximum width when measured in a cross-section in the thickness direction of the roughened film, the lower side being positioned closer to the conductive substrate than the measurement position of the maximum width
  • FIG. 1 is a schematic cross-sectional view of a representative lead frame material according to the present invention.
  • FIG. 2 is a diagram for explaining a method of calculating the specific surface area of the roughened layer.
  • FIG. 3 is a diagram for explaining the maximum width Wmax and the minimum width Wmin of the protrusions constituting one roughened layer.
  • FIG. 4 is a schematic cross-sectional view of another lead frame material according to the present invention.
  • FIG. 5 is a diagram for explaining the maximum width Wmax and the minimum width Wmin of the protrusions constituting the two roughened layers.
  • FIG. 1 is a schematic cross-sectional view of a typical lead frame material according to the present invention.
  • Reference numeral 1 in FIG. 1 denotes a conductive substrate
  • 2 denotes a roughened layer
  • 3 denotes a roughened film
  • 4 denotes a protrusion.
  • And 10 is a lead frame material.
  • the lead frame material 10 of the present invention includes a conductive substrate 1 and a roughened film 3 including at least one roughened layer 2.
  • the conductive substrate 1 may be any material having conductivity, and examples thereof include copper, copper alloy, iron, iron alloy, aluminum, and aluminum alloy, and copper alloy, iron alloy, and aluminum alloy are preferable.
  • the lead frame material it is particularly preferable to use a copper alloy having a good balance between conductivity and strength, since the lead frame material is required to have strength capable of withstanding deformation such as bending during bonding with a semiconductor element.
  • copper alloy for example, “C14410 (Cu-0.15Sn, manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC (registered trademark) -3)” which is a CDA (Copper Development Association) listed alloy, “C19400” (Cu-Fe alloy material, Cu-2.3Fe-0.03P-0.15Zn) "," C18045 (Cu-0.3Cr-0.25Sn-0.2Zn, manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC (registered trademark) -64T) ",” C50710 (Cu-2.0Sn-0.2Ni-0.05P), manufactured by Furukawa Electric Co., Ltd., trade name: MF202 ",” C70250 (Cu-3Ni-0.65Si) -0.15Mg), manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC (registered trademark) -7025 ", and the like.
  • CDA Copper Development Association
  • the unit of the numbers shown immediately before each element is “mass%”. Like these copper alloys, copper having a tensile strength of 350 to 800 N / mm 2 , preferably 500 to 800 N / mm 2 and a conductivity of 30 to 90% IACS, preferably 50 to 80% IACS It is preferred to use alloy strips.
  • the above-mentioned “% IACS” represents the conductivity when the resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.
  • “50% The conductivity of “IACS” means 50% of the conductivity of universal standard annealed copper.
  • the conductive substrate 1 containing such an iron alloy has a low conductivity, but does not require a high conductivity, and can be applied to a lead frame material 10 for the purpose of transmitting electrical signals.
  • an aluminum alloy for example, an Al—Mg alloy such as A5052 can be used. Since the resin-encapsulated semiconductor device easily retains heat due to the mold resin, it is important to dissipate the internal heat through the conductive substrate.
  • the heat dissipation effect can be improved as compared with the case where the roughened film is not formed, and the conductive substrate is thin to 0.05 mm. It became possible. If the thickness of the conductive substrate is less than 0.05 mm, sufficient heat dissipation cannot be achieved. On the other hand, if the thickness of the conductive substrate is 2 mm or more, miniaturization of the semiconductor device cannot be achieved. For this reason, the thickness of the conductive substrate 1 is preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm.
  • the roughened film 3 is at least one roughened layer 2 formed of a plurality of roughened particle projections 4 directly or via an intermediate layer (not shown) on at least one surface of the conductive substrate 1. It is configured.
  • the roughened film 3 may be composed of at least one roughened layer 2, but it is preferable that the roughened film 3 is composed of one to three roughened layers 2 in view of the complexity of the manufacturing process.
  • the roughening film 3 is formed by two layers in which one or more factors such as composition and formation conditions are different from those of the first roughening layer 2-1 after forming the first roughening layer 2-1.
  • the specific surface area can be effectively increased with a relatively thin film thickness by forming the roughened layer 2-2 of the first layer on the first roughened layer 2-1, by so-called multiple roughening. This is preferable because it can be performed (see FIG. 4).
  • the film thickness of the roughened film 3 is not measured locally, but at least by the fluorescent X-ray method (for example, a film thickness measuring device such as SFT9400 (trade name) manufactured by SII). The average film thickness when measured at three arbitrary points at 0.2 mm or more is used.
  • the roughened film 3 is composed of a plurality of roughened layers 2, the total thickness of all the layers is defined as the thickness of the roughened film 3.
  • the film thickness of the roughening film 3 is not particularly limited, but the larger the film thickness, the larger the unevenness due to the roughening. Therefore, in order to increase the roughened shape, the lower limit value of the film thickness of the roughened film 3 is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 0.8 ⁇ m or more. On the other hand, when the film thickness of the roughened film 3 exceeds 3 ⁇ m, there is a concern that the roughened film 3 may drop off during transportation, so-called “powder falling”. For this reason, the upper limit of the film thickness of the roughening film 3 is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and still more preferably 1.5 ⁇ m or less.
  • the roughened layer 2 is formed of a plurality of roughened particle projections 4.
  • the roughening layer 2 may be formed by various methods such as wet plating and dry plating, but is preferably formed by electroplating from the viewpoint that it can be formed easily and inexpensively.
  • the roughening layer 2 is made of, for example, copper, copper alloy, nickel, nickel alloy, palladium, palladium alloy, silver, silver alloy, tin, tin alloy, zinc, zinc alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium and iridium.
  • it comprises a metal or alloy selected from the group of alloys.
  • the roughened layer 2 is preferably made of copper, copper alloy, nickel or nickel from the viewpoint of improving adhesion to the surface film. More preferably, an alloy is included.
  • the copper alloy include a copper-tin alloy, a copper-zinc alloy
  • examples of the nickel alloy include a nickel-zinc alloy and a nickel-tin alloy.
  • the main feature of the structure of the present invention is to optimize the cross-sectional shape of the projections 4 of the roughened particles constituting the roughened layer 2, more specifically, the projections 4 are formed as shown in FIG.
  • the maximum width Wmax when measured in the cross section in the thickness direction of the roughened film 3 is the maximum when measured at the lower portion located on the conductive substrate 1 side than the Wmax measurement position of the maximum width.
  • the control is to have a shape that is 1 to 5 times the small width Wmin.
  • the shear strength (bonding strength) of the resin in the shear test is high, and good resin adhesion is obtained.
  • a high temperature and high humidity durability test such as a high temperature and high humidity test under harsh conditions that are allowed to stand for 168 hours in an environment of 85 ° C. and 85% humidity
  • roughening with the same surface roughness is performed. It has been found that some of the layers have a shear strength that greatly decreases and cannot maintain good resin adhesion.
  • the present inventors proceeded with further detailed investigations.
  • the ratio of the maximum width to the minimum width of the projections of the roughened particles forming the roughened layer of the roughened film was 1 to 5, that is, the protrusions were
  • the maximum width when measured in the cross section in the thickness direction of the roughened film is 1 to 5 times the minimum width when measured at the lower portion located on the conductive substrate side from the measurement position of the maximum width.
  • the roughened layer having the same degree of surface roughness it is left to stand for 168 hours in an environment of high temperature and high humidity, for example, at a temperature of 85 ° C. and a humidity of 85%. It has been found that even after a high-temperature and high-humidity test under harsh conditions, good resin adhesion can be maintained with almost no decrease in the shear strength (bonding strength) of the resin.
  • the maximum width is 1 times the minimum width, which means that the maximum width and the minimum width are the same, and the shape of the projection may be a substantially cylindrical or prismatic shape.
  • the maximum width of the protrusion exceeds 5 times the minimum width, the stress concentration due to the expansion and contraction of the resin increases at the minimum width of the protrusion forming the roughened layer, so the anchor effect is effective. Cannot be exerted easily, and breakage tends to occur at the minimum width portion of the protrusion. Therefore, the protrusion has a maximum width of 1 to 5 times the minimum width.
  • the mold resin not only exhibits an anchoring effect, but the shear strength of the lead frame material is improved by making the resin less likely to break at the minimum portion of the protrusion forming the roughened layer.
  • the ratio of the maximum width to the minimum width of the protrusion is preferably 1.1 to 4.9 times, preferably 1.2 to It is more preferably 4.8 times, further preferably 1.5 to 4.0 times, and most preferably 1.5 to 3.0 times.
  • it is the shape of the surface in a protrusion, it may be sharply sharp or round and smooth, and the ratio of the maximum width and the minimum width of the protrusion is important.
  • the maximum width and the minimum width of the protrusions in the present invention are prepared by processing a lead frame material on which a roughened layer is formed by a method such as Focused Ion Beam (FIB) or mechanical polishing, for example, Next, the roughened layer of the vertical cross-section sample is subjected to cross-sectional observation with an optical microscope, a scanning electron microscope, etc., and the line segment is translated from the surface of the conductive substrate toward the surface of the roughened layer to roughen the surface.
  • FIB Focused Ion Beam
  • the width is measured for each protrusion, and the maximum value (maximum width) Wmax and the minimum value (minimum width) Wmin are determined. More specifically, as shown in FIG. 3, a perpendicular line is drawn from the conductive substrate 1 in the direction of the roughened layer, and a line parallel to the substrate (parallel line) is scanned in the direction from the apex toward the conductive substrate 1.
  • the width indicating the maximum value of the protrusion 4 when the protrusion is made is set as Wmax, and the minimum value of the protrusion 4 when the parallel line is further scanned in the direction from the position of the maximum width Wmax toward the conductive substrate 1 is set.
  • the width shown is determined as Wmin as the minimum width.
  • the value of the ratio Wmax / Wmin needs to be 1 to 5.
  • the minimum width Wmin of the protrusion 4 is measured at a lower portion located on the conductive substrate 1 side than the measurement position of the maximum width Wmax of the protrusion 4 when measured in the cross section in the thickness direction of the roughened film 3.
  • the roughened layer 2 is basically formed three-dimensionally, so that the roughened layer 2 for measuring the maximum width Wmax and the minimum width Wmin of the protrusion 4 is one layer. 5 or two or more roughened layers (for example, two roughened layers 2-1 and 2-2 in FIG. 5), and the projection 4
  • the case where the maximum width Wmax and the minimum width Wmin can be measured is used as a measurement object.
  • the conductive substrate 1 In the case of the roughened layer 2 that appears to float, the roughened layer that cannot be measured in the present invention is used.
  • the maximum width Wmax and the minimum width Wmin of each of the ten protrusions 4 existing in one roughened layer 2 are measured in an arbitrary cross section, and the ratio Wmax of the maximum width Wmax to the minimum width Wmin is measured. / Wmin is calculated, and the lead frame material 10 having the roughened layer 2 whose average ratio is 1 to 5 times is defined as the lead frame material of the present invention.
  • the size of the minimum width Wmin of the projection 4 forming the roughened layer 2 in the present invention is not particularly specified, but if the minimum width Wmin is too small, the resin is a projection of the roughened layer 2. On the other hand, if the minimum width Wmin is too large, the effect of increasing the shear strength tends to be small. Therefore, the minimum width Wmin of the protrusion 4 is preferably in the range of 0.2 ⁇ m to 3 ⁇ m on average, and more preferably in the range of 0.5 ⁇ m to 1 ⁇ m.
  • the distance between the protrusions 4 and 4 is not particularly limited, but the average distance between the vertices of the protrusions 4 and 4 is preferably in the range of 0.2 to 20 ⁇ m, and preferably 0.5 to 10 ⁇ m. A range is more preferred.
  • the lead frame material 10 of the present invention has a roughened layer 2 with respect to a conductive substrate (hereinafter also simply referred to as “substrate”) 1.
  • the roughened layer 2 preferably has a specific surface area of 110% or more. This is because the anchor effect cannot be sufficiently obtained when the specific surface area is less than 110%.
  • the specific surface area should be 500% or less. Is preferred.
  • the line segment length of the outermost layer of the roughened coating 3 (in FIG. 2)
  • the percentage of the ratio A / B divided by the (straight) length of the surface of the conductive substrate 1 becomes the specific surface area (%), for example, non-contact interference It can be measured using a measuring device such as a microscope (for example, manufactured by Bruker AXS).
  • the roughened layer may be formed in at least a part of the resin-molded portion in the present invention, and the roughened layer 2 may be partially formed as well as the entire surface treatment. Good.
  • the lead frame material 10 is preferably at least 1/5 or more of the portion to be resin-molded, and more preferably has an area of 1/2 or more, thereby exhibiting an effect of improving adhesion.
  • the roughened layer 2 is formed on the entire surface to be resin-molded.
  • the shape of the partially provided roughening layer 2 can take various forms such as a stripe shape, a spot shape, and a ring shape.
  • the roughened layer 2 can be formed only on one side.
  • the lead frame material 10 of the present invention forms an intermediate layer between the conductive substrate 1 and the roughened film 3 in order to suppress diffusion of composition components constituting the conductive substrate 1 and improve adhesion. May be.
  • the intermediate layer include nickel, nickel alloy, cobalt, cobalt alloy, copper, and copper alloy.
  • the lead frame material 10 of the present invention preferably further includes a surface film including at least one surface coating layer directly or via an intermediate layer on at least a part of the surface of the roughened film 3.
  • the surface coating layer includes a metal or alloy selected from the group of palladium, palladium alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, platinum, platinum alloy, iridium, iridium alloy, gold, gold alloy, silver and silver alloy. It is preferable.
  • Examples of various alloys constituting the surface coating layer include palladium-silver alloys as palladium alloys, rhodium-palladium alloys as rhodium alloys, ruthenium-iridium alloys as ruthenium alloys, platinum-gold alloys and iridium alloys as platinum alloys. Examples thereof include platinum-iridium alloys, gold alloys such as gold-silver alloys, and silver alloys such as silver-tin alloys.
  • One type of surface film may be used, but two or more layers are preferable.
  • the surface coating layer constituting the surface coating is two or more layers
  • Pd / Au, Rh / Au, Pd / Ag / Au, Pd are arranged in the order of lamination from the roughened coating 3 side.
  • / Rh / Au, Ru / Pd / Au, and the like are arranged in the order of lamination from the roughened coating 3 side.
  • Rh / Au, Ru / Pd / Au, and the like By forming the surface film layer on the roughened film in this way, the heat resistance against heat generation of the lead frame is improved, and the strength of the projections of the roughened particles that form the roughened layer of the roughened film. Can be improved, the protrusions can be prevented from breaking, and an anchor effect can be exhibited.
  • the roughened layer is two layers of copper and nickel, and the surface film layer is two layers of Pd / Au or two layers of Rh / Au,
  • the lower roughened layer is copper and the upper roughened layer is nickel, whereas the surface film layer is composed of Pd and the upper surface coated layer is Au.
  • the two layers or the lower surface coating layer is Rh and the upper surface coating layer is two layers of Au. If the thickness of these surface coatings is too large, the surface irregularities of the roughened film 3 may be filled, and the effects of the present invention described above may not be sufficiently exhibited.
  • the surface film is mainly composed of a noble metal material.
  • the film thickness of each surface coating layer is 1 micrometer or less as a total film thickness (film thickness of a surface film) of the laminated
  • a conductive substrate 1 is prepared, and a cathode electrolytic degreasing process and a pickling process are performed on the conductive substrate 1.
  • a roughened film 3 including at least one roughened layer 2 is formed by electroplating, and then further electroplated as necessary.
  • the lead frame material 10 can be manufactured by forming a surface film including at least one surface coating layer.
  • Table 1 shows cathode electrolytic degreasing conditions
  • Table 2 shows pickling conditions
  • Table 3 shows various intermediate layer forming conditions
  • Table 4 shows various roughening layer 2 forming conditions
  • 5 shows conditions for forming various surface coating layers.
  • the roughened layer 2 is preferably formed by an electroplating method because the shape of the protrusions can be controlled relatively easily by current density, stirring, temperature, treatment time, and the like, and is simple.
  • the intermediate layer and the surface coating layer are also preferably formed by a wet plating method such as an electroplating method from the viewpoint of productivity, but may be manufactured by a dry plating method or other manufacturing methods, and there is a particular limitation. do not do.
  • the roughened film is composed of two roughened layers by forming an upper roughened layer in addition to the lower roughened layer, In Examples 22 to 24, an intermediate layer is further formed between the conductive substrate and the roughened film. In Examples 29 and 30, the roughened film is added to the lower roughened layer. In addition, an upper roughened layer is formed to form two roughened layers, and a surface film including two layers of a lower surface covering layer and an upper surface covering layer is further formed.
  • Comparative Example 1 Although the specific surface area of the roughened layer is as large as 550%, the ratio of the maximum width of the protrusions forming the roughened layer to the minimum width is not controlled, and is outside the scope of the present invention.
  • a test piece of a lead frame material (5.2 times) was produced.
  • a resin mold was injected with a transfer mold test apparatus (product name: Model FTS) manufactured by Kotaki Seiki Co., Ltd. under conditions of a mold temperature of 130 ° C., a holding time after molding of 90 seconds, and an injection pressure of 6.865 MPa. Molding was performed to form a pudding-like test piece having a contact area of 10 mm2.
  • a transfer mold test apparatus product name: Model FTS
  • Molding was performed to form a pudding-like test piece having a contact area of 10 mm2.
  • Each test piece was put into a high-temperature and high-humidity test (maintained at 85 ° C. and 85% RH for 168 hours), and the test piece was evaluated for the resin adhesion and the powder falling off under the following conditions. Table 7 shows the evaluation results.
  • Table 7 shows the evaluation results of the resin adhesion.
  • the evaluation of the resin adhesion shown in Table 7 is “A” when the shear strength (peel strength) is 9.8 MPa or more on the average and the shear strength (peel strength) is excellent.
  • the resin adhesion is “B”, and when the shear strength (peel strength) is less than 4.9 MPa on the average, the resin adhesion is Shown as “C” as inferior.
  • the resin adhesion was evaluated by measuring both “initial shear strength” and “shear strength after high temperature and high humidity test”.
  • the “shear strength after the high-temperature and high-humidity test” is a value after each test piece is resin-molded and left for 168 hours in an environment at a temperature of 85 ° C. and a humidity of 85%.
  • the “initial shear strength” is the shear strength immediately after each test piece is resin-molded (before the high temperature and high humidity test).
  • Powderiness was evaluated by visual evaluation. The evaluation results are shown in Table 7.
  • the powder falling property shown in Table 7 is “A (excellent)” when powder falling from the surface is not recognized, “B (good)” when powder falling slightly occurs, A case where a great number of drops occur is indicated as “C (impossible)”, and “A” and “B” are levels for practical use.
  • the specific surface area of the roughened layer is very large as 550%, the ratio of the maximum width of the protrusions forming the roughened layer to the minimum width is not controlled, and is outside the range of the present invention (5.2 times)
  • the initial shear strength is “A” and the resin adhesion is excellent, but the shear strength after the high-temperature and high-humidity test is “C”, and the resin adhesion is greatly deteriorated.
  • the powder-off property was inferior to “C”, and was not at a practical level.
  • the lead frame material of the present invention is subjected to a high temperature and high humidity durability test, for example, when a high temperature and high humidity test is performed under harsh conditions of leaving for 168 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, Good resin adhesion to the lead frame can be maintained with almost no deterioration, and a semiconductor package constructed using this lead frame material can achieve high reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

A lead frame member (10) is provided with an electrically conductive substrate (1) and a roughened film (3) which includes at least one roughened layer (2) formed of a plurality of roughened particle projections (4) on at least one side of the electrically conductive substrate (1), either directly or with an intermediate layer interposed therebetween. The projections (4) have a shape such that a maximum width measured at a thickness-direction cross section of the roughened film (3) is 1 to 5 times a minimum width measured at a lower portion positioned on the electrically conductive substrate (1) side below the position at which the maximum width is measured.

Description

リードフレーム材およびその製造方法ならびに半導体パッケージLead frame material, manufacturing method thereof, and semiconductor package
 本発明は、半導体素子と、表面処理層を有するリードフレームとを互いに電気的に接続し、これらをモールド樹脂で封止してなる樹脂封止型半導体装置に用いるのに好適なリードフレーム材およびその製造方法ならびに半導体パッケージに関する。 The present invention relates to a lead frame material suitable for use in a resin-encapsulated semiconductor device in which a semiconductor element and a lead frame having a surface treatment layer are electrically connected to each other and sealed with a mold resin. The present invention relates to a manufacturing method and a semiconductor package.
 この種の樹脂封止型半導体装置は、ワイヤなどによって互いに電気的に接続された半導体素子とリードフレームとをモールド樹脂で封止した構造を有している。このような樹脂封止型半導体装置は、リードフレームに、外装めっきのような表面処理を施して、例えばSn-Pb合金又はSn-Bi合金などのSn合金で表面皮膜を形成して製造するのが一般的である。 This type of resin-encapsulated semiconductor device has a structure in which a semiconductor element and a lead frame that are electrically connected to each other by a wire or the like are sealed with a mold resin. Such a resin-encapsulated semiconductor device is manufactured by subjecting a lead frame to a surface treatment such as exterior plating and forming a surface film with a Sn alloy such as a Sn—Pb alloy or a Sn—Bi alloy. Is common.
 ここで、近年では、組み付け工程の簡略化およびコストダウンのために、予めリードフレームの表面に、プリント基板へのはんだなどによる実装において、はんだとの濡れ性を高めるような仕様のめっき(例えばNi/Pd/Au)を施しているリードフレーム(Pre-Plated Frame)が採用され始めている(例えば、特許文献1参照)。 Here, in recent years, in order to simplify the assembly process and reduce the cost, plating having a specification that improves wettability with solder in advance on the surface of the lead frame by solder or the like on the printed circuit board (for example, Ni / Pd / Au) is beginning to be adopted (Pre-Plated Frame) (for example, see Patent Document 1).
 また、一方で、樹脂封止型半導体装置におけるリードフレームとモールド樹脂との密着性を高めるために、リードフレームのめっき表面を粗化する技術が提案されている(例えば、特許文献2参照)。 On the other hand, in order to improve the adhesion between the lead frame and the mold resin in the resin-encapsulated semiconductor device, a technique for roughening the plating surface of the lead frame has been proposed (for example, see Patent Document 2).
 めっき表面を粗化する技術は、リードフレームに粗化めっきを施して表面を粗化することによって、(1)モールド樹脂が粗化されためっき皮膜の凹凸に入り込み強固な機械的接合を形成する効果(アンカー効果)、(2)モールド樹脂とめっき表面の接触面積が向上することによる化学的接合の向上、などを期待するものである。 The technique for roughening the plating surface is to roughen the surface by subjecting the lead frame to roughening, and (1) the mold resin enters the irregularities of the roughened plating film to form a strong mechanical joint. The effect (anchor effect), (2) improvement in chemical bonding due to improvement in the contact area between the mold resin and the plating surface are expected.
 リードフレームの表面を粗化することにより、リードフレームに対するモールド樹脂の密着性が向上し、リードフレームとモールド樹脂との間の剥離が抑制される結果、樹脂封止型半導体装置の信頼性を向上させることができる。 By roughening the surface of the lead frame, the adhesion of the mold resin to the lead frame is improved, and the separation between the lead frame and the mold resin is suppressed. As a result, the reliability of the resin-encapsulated semiconductor device is improved. Can be made.
特開平4-115558号公報Japanese Patent Laid-Open No. 4-115558 特開平6-029439号公報Japanese Unexamined Patent Publication No. 6-029439
 リードフレームの表面を粗化することによって、確かに従来の樹脂封止型半導体装置に比べると、リードフレームに対するモールド樹脂の密着性を向上させることができる。しかしながら、近年、信頼性に対する要求レベルが以前に比べてより一層厳しくなってきており、高温高湿の耐久性試験、例えば温度85℃、湿度85%の環境にて168時間放置する過酷な条件下で高温高湿試験を行なった場合であっても、信頼性の合格基準をクリアする必要がある。一方、特許文献1のようにリードフレームの表面を単に粗化しただけの従来の構成は、樹脂とリードフレームとの間に隙間が生じ、信頼性の合格基準をクリアできない場合があった。これは、樹脂封止型半導体装置として、近年ではQFN(Quad Flat Non-Leaded Package)タイプ及びSOP(Small Outline Package)タイプ等のパッケージが多く用いられるようになったことに基づき、リードフレームに対する樹脂の密着性に対する要求レベルがより一層高くなってきたためと考えられる。このように樹脂封止型半導体装置では、リードフレームに対する樹脂の密着性に関しては、上述したような過酷な条件下であっても良好な密着性を維持することが求められようになってきたことから、更に改善する必要があった。 By roughening the surface of the lead frame, it is possible to improve the adhesion of the mold resin to the lead frame as compared with the conventional resin-encapsulated semiconductor device. However, in recent years, the required level for reliability has become more severe than before, and durability tests of high temperature and high humidity, for example, severe conditions of leaving for 168 hours in an environment of temperature 85 ° C. and humidity 85% Even if a high-temperature and high-humidity test is performed, it is necessary to clear the acceptance criteria for reliability. On the other hand, in the conventional configuration in which the surface of the lead frame is simply roughened as in Patent Document 1, there is a case where a gap is generated between the resin and the lead frame, and the acceptance criteria for reliability may not be cleared. This is because, as resin-encapsulated semiconductor devices, packages such as the QFN (Quad Flat Non-Leaded Package) type and the SOP (Small Outline Package) type have recently been used. This is thought to be because the level of demand for the adhesiveness of this material has become even higher. As described above, in the resin-encapsulated semiconductor device, regarding the adhesiveness of the resin to the lead frame, it has been required to maintain good adhesiveness even under the severe conditions described above. Therefore, it was necessary to further improve.
 本発明は、特に上述したような過酷な条件下で高温高湿試験を行なった場合であっても、良好な樹脂密着性を維持することができるリードフレーム表面を形成するのに好適なリードフレーム材およびその製造方法ならびに高信頼性を有する半導体パッケージを提供することを課題とする。 The present invention is a lead frame suitable for forming a lead frame surface capable of maintaining good resin adhesion even when a high-temperature and high-humidity test is performed under the severe conditions described above. It is an object to provide a material, a manufacturing method thereof, and a highly reliable semiconductor package.
 本発明者らは、上記課題を解決するための鋭意検討を行ない、導電性基体上に形成される粗化皮膜の粗化層を構成する粗化粒子の突起物の断面形状が、樹脂密着性に大きく影響すると考え、リードフレーム材の表面に形成した突起物に起因した凹凸表面(特に凹部)に樹脂が充填形成されることによって生じる、いわゆるアンカー効果に起因して生じる良好な密着性が、上記過酷な条件下で高温高湿試験を行なった場合であっても維持できるか否かについて調査した。 The present inventors have intensively studied to solve the above-mentioned problems, and the cross-sectional shape of the projections of the roughened particles constituting the roughened layer of the roughened film formed on the conductive substrate is resin adhesion. Good adhesion caused by the so-called anchor effect, which is caused by filling and forming the resin on the uneven surface (particularly the concave portion) due to the protrusions formed on the surface of the lead frame material. It was investigated whether it could be maintained even when the high temperature and high humidity test was conducted under the above severe conditions.
 そして、本発明者らは、導電性基体上に形成された粗化皮膜の粗化層を形成する突起物を、粗化皮膜の厚さ方向断面で測定したときの最大幅が、最大幅の測定位置よりも導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有するように制御することによって、特に粗化粒子の突起物の最小幅の箇所において、樹脂の膨張や収縮等により応力が集中してしまうことによって生じやすい、樹脂の剪断による剥離現象を有効に抑制できるという知見を得た。この結果、アンカー効果に起因した良好な密着性を粗化層によって最大限に引き出すことができ、さらに、粗化層を形成する突起物を上記の形状に制御することによって、従来では耐えられなかった、高温高湿の耐久性試験、例えば温度85℃、湿度85%の環境にて168時間放置する過酷な条件下で高温高湿試験を行なった場合であっても、リードフレームに対する良好な樹脂密着性を維持できることを見出した。 Then, the inventors measured the protrusion forming the roughened layer of the roughened film formed on the conductive substrate, the maximum width when measured in the cross section in the thickness direction of the roughened film, the maximum width By controlling to have a shape that is 1 to 5 times the minimum width when measured at the lower part located on the conductive substrate side relative to the measurement position, the minimum width of the projection of roughened particles in particular It was found that the peeling phenomenon caused by the shearing of the resin, which is likely to occur due to the stress concentration due to the expansion or contraction of the resin, can be effectively suppressed. As a result, good adhesion due to the anchor effect can be maximized by the roughened layer, and further, by controlling the protrusions forming the roughened layer to the above shape, it cannot be endured conventionally. Even when a high temperature and high humidity durability test is conducted, for example, when a high temperature and high humidity test is performed under harsh conditions of 168 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, it is a good resin for the lead frame. It has been found that adhesion can be maintained.
 すなわち、本発明の要旨構成は以下のとおりである。
(1)導電性基体と、該導電性基体の少なくとも片面上に、直接または中間層を介して複数の粗化粒子の突起物で形成された少なくとも1層の粗化層を含む粗化皮膜と、を備え、
 前記突起物は、前記粗化皮膜の厚さ方向断面で測定したときの最大幅が、該最大幅の測定位置よりも前記導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有するリードフレーム材。
(2)前記導電性基体は、銅、銅合金、鉄、鉄合金、アルミニウムまたはアルミニウム合金である、上記(1)に記載のリードフレーム材。
(3)前記粗化層は、銅、銅合金、ニッケル、ニッケル合金、パラジウム、パラジウム合金、銀、銀合金、錫、錫合金、亜鉛、亜鉛合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウムおよびイリジウム合金の群から選択される金属または合金を含む、上記(1)または(2)に記載のリードフレーム材。
(4)前記粗化皮膜の表面の少なくとも一部の上に、少なくとも1層の表面被覆層を含む表面皮膜をさらに備え、前記表面被覆層が、パラジウム、パラジウム合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、白金、白金合金、イリジウム、イリジウム合金、金、金合金、銀および銀合金の群から選択される金属または合金を含む、上記(1)~(3)のいずれか1つに記載のリードフレーム材。
(5)前記中間層は、ニッケル、ニッケル合金、コバルト、コバルト合金、銅または銅合金である、上記(4)に記載のリードフレーム材。
(6)導電性基体の少なくとも片面上に、直接または中間層を介して、電気めっきにより複数の粗化粒子の突起物で形成された少なくとも1層の粗化層を含む粗化皮膜を形成する工程を含み、前記突起物は、前記粗化皮膜の厚さ方向断面で測定したときの最大幅が、該最大幅の測定位置よりも前記導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有するリードフレーム材の製造方法。
(7)上記(1)~(5)のいずれか1つに記載のリードフレーム材を有する半導体パッケージ。
That is, the gist configuration of the present invention is as follows.
(1) A roughened film comprising a conductive substrate and at least one roughened layer formed of protrusions of a plurality of roughened particles directly or via an intermediate layer on at least one surface of the conductive substrate. With
The protrusion has a maximum width when measured in a cross section in the thickness direction of the roughened film, and a minimum width when measured at a lower portion located on the conductive substrate side than the measurement position of the maximum width. A lead frame material having a shape that is 1 to 5 times as large as the above.
(2) The lead frame material according to (1), wherein the conductive substrate is copper, copper alloy, iron, iron alloy, aluminum, or aluminum alloy.
(3) The roughening layer is made of copper, copper alloy, nickel, nickel alloy, palladium, palladium alloy, silver, silver alloy, tin, tin alloy, zinc, zinc alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium. And the lead frame material according to (1) or (2) above, comprising a metal or alloy selected from the group of iridium alloys.
(4) A surface film including at least one surface coating layer is further provided on at least a part of the surface of the roughened film, and the surface coating layer includes palladium, palladium alloy, rhodium, rhodium alloy, ruthenium, The ruthenium alloy, platinum, platinum alloy, iridium, iridium alloy, gold, gold alloy, silver, or a metal or alloy selected from the group of silver alloys, according to any one of (1) to (3) above Lead frame material.
(5) The lead frame material according to (4), wherein the intermediate layer is nickel, nickel alloy, cobalt, cobalt alloy, copper, or copper alloy.
(6) A roughened film including at least one roughened layer formed of protrusions of a plurality of roughened particles is formed by electroplating directly or via an intermediate layer on at least one surface of the conductive substrate. The protrusion has a maximum width when measured in the cross section in the thickness direction of the roughened film, and the protrusion is measured at a lower portion located on the conductive substrate side than the measurement position of the maximum width. For producing a lead frame material having a shape which is 1 to 5 times as large as the minimum width.
(7) A semiconductor package comprising the lead frame material according to any one of (1) to (5) above.
 本発明のリードフレーム材は、導電性基体と、該導電性基体の少なくとも片面上に、直接または中間層を介して複数の粗化粒子の突起物で形成された少なくとも1層の粗化層を含む粗化皮膜と、を備え、前記突起物は、前記粗化皮膜の厚さ方向断面で測定したときの最大幅が、該最大幅の測定位置よりも前記導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有することによって、高温高湿の耐久性試験、例えば温度85℃、湿度85%の環境にて168時間放置する過酷な条件下で高温高湿試験を行なった場合であっても、リードフレームに対する良好な樹脂密着性をほとんど劣化させることなく維持することができ、このリードフレーム材を用いて構成した半導体パッケージは、高い信頼性を実現することができる。 The lead frame material of the present invention comprises a conductive substrate and at least one roughened layer formed of a plurality of roughened particle projections directly or via an intermediate layer on at least one surface of the conductive substrate. A roughened film including the protrusion, and the protrusion has a maximum width when measured in a cross-section in the thickness direction of the roughened film, the lower side being positioned closer to the conductive substrate than the measurement position of the maximum width By having a shape that is 1 to 5 times the minimum width when measured in a part, the durability test of high temperature and high humidity, for example, harsh conditions of leaving for 168 hours in an environment of temperature 85 ° C and humidity 85% Even when a high-temperature and high-humidity test is performed under this condition, good resin adhesion to the lead frame can be maintained with almost no deterioration, and the semiconductor package constructed using this lead frame material has high reliability. Realize Rukoto can.
図1は、本発明に従う代表的なリードフレーム材の概略断面図である。FIG. 1 is a schematic cross-sectional view of a representative lead frame material according to the present invention. 図2は、粗化層の比表面積を算出する方法を説明するための図である。FIG. 2 is a diagram for explaining a method of calculating the specific surface area of the roughened layer. 図3は、1層の粗化層を構成する突起物の最大幅Wmaxと最小幅Wminを説明するための図である。FIG. 3 is a diagram for explaining the maximum width Wmax and the minimum width Wmin of the protrusions constituting one roughened layer. 図4は、本発明に従う別のリードフレーム材の概略断面図である。FIG. 4 is a schematic cross-sectional view of another lead frame material according to the present invention. 図5は、2層の粗化層を構成する突起物の最大幅Wmaxと最小幅Wminを説明するための図である。FIG. 5 is a diagram for explaining the maximum width Wmax and the minimum width Wmin of the protrusions constituting the two roughened layers.
 次に、本発明に従うリードフレーム材について、具体的な実施形態の例を挙げ、図面を参照しながら以下で説明する。図1は、本発明に従う代表的なリードフレーム材の概略断面を示したものであり、図1中の符号1は導電性基体、2は粗化層、3は粗化皮膜、4は突起物、そして10はリードフレーム材である。本発明のリードフレーム材10は、導電性基体1と、少なくとも1層の粗化層2を含む粗化皮膜3とを備えている。 Next, the lead frame material according to the present invention will be described below with reference to the drawings by giving examples of specific embodiments. FIG. 1 is a schematic cross-sectional view of a typical lead frame material according to the present invention. Reference numeral 1 in FIG. 1 denotes a conductive substrate, 2 denotes a roughened layer, 3 denotes a roughened film, and 4 denotes a protrusion. , And 10 is a lead frame material. The lead frame material 10 of the present invention includes a conductive substrate 1 and a roughened film 3 including at least one roughened layer 2.
(導電性基体)
 導電性基体1は、導電性を有する材料であればよく、例えば、銅、銅合金、鉄、鉄合金、アルミニウムまたはアルミニウム合金等が挙げられ、銅合金、鉄合金、またはアルミニウム合金が好ましい。リードフレーム材には、半導体素子との接合の際に曲げ加工等の変形に耐え得る強度が必要とされるために導電率と強度のバランスのよい銅合金の使用が特に好ましい。その中でも、銅合金としては、例えば、CDA(Copper Development Association)掲載合金である「C14410(Cu-0.15Sn、古河電気工業社製、商品名:EFTEC(登録商標)-3)」、「C19400(Cu-Fe系合金材料、Cu-2.3Fe-0.03P-0.15Zn)」、「C18045(Cu-0.3Cr-0.25Sn-0.2Zn、古河電気工業社製、商品名:EFTEC(登録商標)-64T)」、「C50710(Cu-2.0Sn-0.2Ni-0.05P)、古河電気工業社製、商品名:MF202」、「C70250(Cu-3Ni-0.65Si-0.15Mg)、古河電気工業社製、商品名:EFTEC(登録商標)-7025」等を挙げることができる。なお、各元素の直前に示す数字の単位はいずれも「質量%」である。これらの銅合金のように、引張り強さが350~800N/mm、好ましくは500~800N/mmであり、かつ、導電率が30~90%IACS、好ましくは50~80%IACSの銅合金の条材を使用することが好ましい。なお、上記の「%IACS」は、万国標準軟銅(International  Annealed  Copper  Standard)の抵抗率1.7241×10-8Ωmを100%IACSとした場合の導電率を表したものであり、例えば「50%IACS」の導電率は、万国標準軟銅の導電率の50%であることを意味する。
 また、鉄合金の場合は、例えば42アロイ(Fe-42質量%Ni)やステンレス鋼などが挙げられる。このような鉄合金を含む導電性基体1は、導電率はそれほど高くないが、導電率がそれほど要求されず、電気信号の伝達を目的とするようなリードフレーム材10に適用することができる。
 さらに、アルミニウム合金の場合は、例えばA5052などのAl-Mg系合金が挙げられる。
 樹脂封止型半導体装置は、モールド樹脂により内部に熱がこもりやすいため、導電性基体を伝って内部の熱を放熱することが重要となる。本発明では、導電性基体の表面に粗化皮膜を形成することにより、粗化皮膜が形成されていない場合に比べて放熱効果を向上させることができるとともに、0.05mmまで導電性基体の薄板化が可能になった。導電性基体の厚さが0.05mmより薄いと十分な放熱が達成できず、一方、導電性基体の厚さが2mm以上では、半導体装置の小型化が達成できない。このため導電性基体1の厚さは、0.05~2mmが好ましく、0.1~1mmがより好ましい。
(Conductive substrate)
The conductive substrate 1 may be any material having conductivity, and examples thereof include copper, copper alloy, iron, iron alloy, aluminum, and aluminum alloy, and copper alloy, iron alloy, and aluminum alloy are preferable. For the lead frame material, it is particularly preferable to use a copper alloy having a good balance between conductivity and strength, since the lead frame material is required to have strength capable of withstanding deformation such as bending during bonding with a semiconductor element. Among them, as the copper alloy, for example, “C14410 (Cu-0.15Sn, manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC (registered trademark) -3)” which is a CDA (Copper Development Association) listed alloy, “C19400” (Cu-Fe alloy material, Cu-2.3Fe-0.03P-0.15Zn) "," C18045 (Cu-0.3Cr-0.25Sn-0.2Zn, manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC (registered trademark) -64T) "," C50710 (Cu-2.0Sn-0.2Ni-0.05P), manufactured by Furukawa Electric Co., Ltd., trade name: MF202 "," C70250 (Cu-3Ni-0.65Si) -0.15Mg), manufactured by Furukawa Electric Co., Ltd., trade name: EFTEC (registered trademark) -7025 ", and the like. The unit of the numbers shown immediately before each element is “mass%”. Like these copper alloys, copper having a tensile strength of 350 to 800 N / mm 2 , preferably 500 to 800 N / mm 2 and a conductivity of 30 to 90% IACS, preferably 50 to 80% IACS It is preferred to use alloy strips. The above-mentioned “% IACS” represents the conductivity when the resistivity 1.7241 × 10−8 Ωm of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS. For example, “50% The conductivity of “IACS” means 50% of the conductivity of universal standard annealed copper.
In the case of an iron alloy, for example, 42 alloy (Fe-42 mass% Ni), stainless steel, and the like can be mentioned. The conductive substrate 1 containing such an iron alloy has a low conductivity, but does not require a high conductivity, and can be applied to a lead frame material 10 for the purpose of transmitting electrical signals.
Further, in the case of an aluminum alloy, for example, an Al—Mg alloy such as A5052 can be used.
Since the resin-encapsulated semiconductor device easily retains heat due to the mold resin, it is important to dissipate the internal heat through the conductive substrate. In the present invention, by forming a roughened film on the surface of the conductive substrate, the heat dissipation effect can be improved as compared with the case where the roughened film is not formed, and the conductive substrate is thin to 0.05 mm. It became possible. If the thickness of the conductive substrate is less than 0.05 mm, sufficient heat dissipation cannot be achieved. On the other hand, if the thickness of the conductive substrate is 2 mm or more, miniaturization of the semiconductor device cannot be achieved. For this reason, the thickness of the conductive substrate 1 is preferably 0.05 to 2 mm, more preferably 0.1 to 1 mm.
(粗化皮膜)
 粗化皮膜3は、導電性基体1の少なくとも片面上に、直接または中間層(図示せず)を介して複数の粗化粒子の突起物4で形成された少なくとも1層の粗化層2で構成されている。
 また、粗化皮膜3は、少なくとも1層の粗化層2で構成されていればよいが、製造工程の煩雑性などを考慮すると、1~3層の粗化層2で構成すること好ましい。粗化皮膜3の形成方法は、1層目の粗化層2-1を形成後に、組成や形成条件等の1つ以上のファクタが1層目の粗化層2-1とは異なる2層目の粗化層2-2を1層目の粗化層2-1上に積層形成する、いわゆる多重粗化によって形成することにより、比較的薄い膜厚で比表面積を有効に増大させることができるためより好適である(図4参照)。なお、本発明では、粗化皮膜3の膜厚は、局所的に測定するのではなく、少なくとも蛍光X線法(例えばSII社製のSFT9400(商品名)などの膜厚測定装置)によりコリメータ径0.2mm以上で任意の3点で測定したときの平均的な膜厚で表すこととする。また、粗化皮膜3が複数の粗化層2で構成されている場合には、全層の総厚を粗化皮膜3の厚さと定義するものとする。
 また、粗化皮膜3の膜厚は特に制限れるものではないが、膜厚が大きければ大きいほど粗化による凹凸が大きくなる傾向にある。そのため、粗化形状を大きくするために粗化皮膜3の膜厚の下限値は、好ましくは0.2μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上である。一方、粗化皮膜3の膜厚が3μmを超えると、搬送時の粗化皮膜3の脱落、いわゆる「粉落ち」が多くなる懸念がある。このため、粗化皮膜3の膜厚の上限値は、好ましくは3μm以下、より好ましくは2μm以下、さらに好ましくは1.5μm以下である。
(Roughening film)
The roughened film 3 is at least one roughened layer 2 formed of a plurality of roughened particle projections 4 directly or via an intermediate layer (not shown) on at least one surface of the conductive substrate 1. It is configured.
In addition, the roughened film 3 may be composed of at least one roughened layer 2, but it is preferable that the roughened film 3 is composed of one to three roughened layers 2 in view of the complexity of the manufacturing process. The roughening film 3 is formed by two layers in which one or more factors such as composition and formation conditions are different from those of the first roughening layer 2-1 after forming the first roughening layer 2-1. The specific surface area can be effectively increased with a relatively thin film thickness by forming the roughened layer 2-2 of the first layer on the first roughened layer 2-1, by so-called multiple roughening. This is preferable because it can be performed (see FIG. 4). In the present invention, the film thickness of the roughened film 3 is not measured locally, but at least by the fluorescent X-ray method (for example, a film thickness measuring device such as SFT9400 (trade name) manufactured by SII). The average film thickness when measured at three arbitrary points at 0.2 mm or more is used. When the roughened film 3 is composed of a plurality of roughened layers 2, the total thickness of all the layers is defined as the thickness of the roughened film 3.
Moreover, the film thickness of the roughening film 3 is not particularly limited, but the larger the film thickness, the larger the unevenness due to the roughening. Therefore, in order to increase the roughened shape, the lower limit value of the film thickness of the roughened film 3 is preferably 0.2 μm or more, more preferably 0.5 μm or more, and further preferably 0.8 μm or more. On the other hand, when the film thickness of the roughened film 3 exceeds 3 μm, there is a concern that the roughened film 3 may drop off during transportation, so-called “powder falling”. For this reason, the upper limit of the film thickness of the roughening film 3 is preferably 3 μm or less, more preferably 2 μm or less, and still more preferably 1.5 μm or less.
[粗化層]
 粗化層2は、複数の粗化粒子の突起物4で形成されている。
 粗化層2の形成方法としては、湿式めっきや乾式めっきなど種々の方法が挙げられるが、簡便かつ安価に形成できるなどの観点から、特に電気めっきにより形成することが好ましい。
 粗化層2は、例えば銅、銅合金、ニッケル、ニッケル合金、パラジウム、パラジウム合金、銀、銀合金、錫、錫合金、亜鉛、亜鉛合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウムおよびイリジウム合金の群から選択される金属または合金を含むことが好ましい。粗化層2は、特に粗化皮膜3上に、さらに後述する表面皮膜(図示せず)を形成する場合には、表面皮膜に対する密着性を向上させる観点から、銅、銅合金、ニッケルまたはニッケル合金を含むことがより好ましい。銅合金としては銅-錫合金、銅-亜鉛合金、ニッケル合金としてはニッケル-亜鉛合金、ニッケル-錫合金などが挙げられる。
[Roughening layer]
The roughened layer 2 is formed of a plurality of roughened particle projections 4.
The roughening layer 2 may be formed by various methods such as wet plating and dry plating, but is preferably formed by electroplating from the viewpoint that it can be formed easily and inexpensively.
The roughening layer 2 is made of, for example, copper, copper alloy, nickel, nickel alloy, palladium, palladium alloy, silver, silver alloy, tin, tin alloy, zinc, zinc alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium and iridium. Preferably it comprises a metal or alloy selected from the group of alloys. In the case of forming a surface film (not shown), which will be described later, on the roughened film 3, the roughened layer 2 is preferably made of copper, copper alloy, nickel or nickel from the viewpoint of improving adhesion to the surface film. More preferably, an alloy is included. Examples of the copper alloy include a copper-tin alloy, a copper-zinc alloy, and examples of the nickel alloy include a nickel-zinc alloy and a nickel-tin alloy.
 そして、本発明の構成上の主な特徴は、粗化層2を構成する粗化粒子の突起物4の断面形状の適正化を図ること、より具体的には、突起物4を、図3に示すように、粗化皮膜3の厚さ方向断面で測定したときの最大幅Wmaxが、該最大幅のWmax測定位置よりも導電性基体1側に位置する下側部分で測定したときの最小幅Wminに対して1~5倍となる形状を有するように制御することにある。 The main feature of the structure of the present invention is to optimize the cross-sectional shape of the projections 4 of the roughened particles constituting the roughened layer 2, more specifically, the projections 4 are formed as shown in FIG. As shown in FIG. 4, the maximum width Wmax when measured in the cross section in the thickness direction of the roughened film 3 is the maximum when measured at the lower portion located on the conductive substrate 1 side than the Wmax measurement position of the maximum width. The control is to have a shape that is 1 to 5 times the small width Wmin.
 これは、本発明者らが鋭意研究した結果、仮に粗化層が同じ表面粗度で形成されていれば、シェア試験における樹脂のシェア強度(接合強度)は高く、良好な樹脂密着性が得られるが、高温高湿の耐久性試験、例えば温度85℃、湿度85%の環境にて168時間放置する過酷な条件下で高温高湿試験を行なった後では、同じ表面粗度をもつ粗化層の中には、シェア強度が大きく低下して、良好な樹脂密着性を維持できないものが存在することが判明した。この点について調査をさらに進めた結果、粗化層を形成する粗化粒子の突起物の断面形状に大きく影響を受けるという知見を得、特に突起物の最小幅である箇所で、樹脂の熱膨張や収縮による応力が集中してしまい、密着性が低くなることが分かった。 As a result of intensive studies by the present inventors, if the roughened layer is formed with the same surface roughness, the shear strength (bonding strength) of the resin in the shear test is high, and good resin adhesion is obtained. However, after performing a high temperature and high humidity durability test such as a high temperature and high humidity test under harsh conditions that are allowed to stand for 168 hours in an environment of 85 ° C. and 85% humidity, roughening with the same surface roughness is performed. It has been found that some of the layers have a shear strength that greatly decreases and cannot maintain good resin adhesion. As a result of further investigation on this point, it was found that the cross-sectional shape of the projections of the roughened particles forming the roughened layer is greatly affected, and the thermal expansion of the resin particularly at the location where the minimum width of the projections It was found that the stress due to the shrinkage was concentrated and the adhesion was lowered.
 このため、本発明者らはさらに詳細な検討を進めたところ、粗化皮膜の粗化層を形成する粗化粒子の突起物の最大幅と最小幅の比率を1~5、つまり突起物を、粗化皮膜の厚さ方向断面で測定したときの最大幅が、該最大幅の測定位置よりも導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有するように制御することにより、同じ程度の表面粗度を持つ粗化層の中でも、高温高湿の耐久性試験、例えば温度85℃、湿度85%の環境にて168時間放置する過酷な条件下で高温高湿試験を行なった後でも、樹脂のシェア強度(接合強度)はほとんど低下することなく、良好な樹脂密着性が維持できることを見出したものである。 For this reason, the present inventors proceeded with further detailed investigations. As a result, the ratio of the maximum width to the minimum width of the projections of the roughened particles forming the roughened layer of the roughened film was 1 to 5, that is, the protrusions were The maximum width when measured in the cross section in the thickness direction of the roughened film is 1 to 5 times the minimum width when measured at the lower portion located on the conductive substrate side from the measurement position of the maximum width. In the roughened layer having the same degree of surface roughness, it is left to stand for 168 hours in an environment of high temperature and high humidity, for example, at a temperature of 85 ° C. and a humidity of 85%. It has been found that even after a high-temperature and high-humidity test under harsh conditions, good resin adhesion can be maintained with almost no decrease in the shear strength (bonding strength) of the resin.
 突起物において、最大幅が最小幅の1倍とは、最大幅と最小幅が同じであることを示しており、突起物の形状としては、ほぼ円柱状や角柱状の場合が挙げられる。一方、突起物の最大幅が最小幅の5倍を超えると、粗化層を形成する突起物の最小幅の箇所で、樹脂の膨張や収縮による応力の集中が増大するため、アンカー効果を有効に発揮することができず、突起物の最小幅の箇所において破断しやすくなる。このため、突起物は、最大幅が最小幅の1~5倍とする。また、モールド樹脂がアンカー効果を発揮するだけではなく、樹脂が粗化層を形成する突起物の最小部の箇所での破断を生じにくくすることにより、リードフレーム材に対し、シェア強度を向上させるだけではなく、垂直方向の引張強度もより一層向上させる必要がある場合には、突起物の最小幅に対する最大幅の比率が1.1~4.9倍とすることが好ましく、1.2~4.8倍とすることがより好ましく、1.5~4.0倍とすることがさらに好ましく、1.5~3.0倍とすることが最も好ましい。なお、突起物における表面の形状であるが、鋭く尖っていても丸く滑らかであってもよく、突起物の最大幅と最小幅の比が重要である。 In the projection, the maximum width is 1 times the minimum width, which means that the maximum width and the minimum width are the same, and the shape of the projection may be a substantially cylindrical or prismatic shape. On the other hand, if the maximum width of the protrusion exceeds 5 times the minimum width, the stress concentration due to the expansion and contraction of the resin increases at the minimum width of the protrusion forming the roughened layer, so the anchor effect is effective. Cannot be exerted easily, and breakage tends to occur at the minimum width portion of the protrusion. Therefore, the protrusion has a maximum width of 1 to 5 times the minimum width. In addition, the mold resin not only exhibits an anchoring effect, but the shear strength of the lead frame material is improved by making the resin less likely to break at the minimum portion of the protrusion forming the roughened layer. When the vertical tensile strength is required to be further improved, the ratio of the maximum width to the minimum width of the protrusion is preferably 1.1 to 4.9 times, preferably 1.2 to It is more preferably 4.8 times, further preferably 1.5 to 4.0 times, and most preferably 1.5 to 3.0 times. In addition, although it is the shape of the surface in a protrusion, it may be sharply sharp or round and smooth, and the ratio of the maximum width and the minimum width of the protrusion is important.
<突起物の最大幅と最小幅の定義について>
 本発明における突起物の最大幅と最小幅は、例えばFocused Ion Beam(FIB)や機械研磨等の方法により、粗化層が形成されたリードフレーム材を加工することによって垂直断面試料を作製し、次いで、垂直断面試料の粗化層について、光学顕微鏡や走査型電子顕微鏡等による断面観察を実施し、導電性基体の表面から粗化層の表面に向かって線分を平行移動させて、粗化層を形成する複数の突起物について、1個の突起物ごとに幅を測定し、最大値(最大幅)Wmaxと最小値(最小幅)Wminを決定する。より詳細に説明すると、図3に示すように、導電性基体1から粗化層の方向に垂線を引き、その頂点から導電性基体1に向かう方向に基体と平行な線(平行線)を走査させたときの突起物4の最大値を示す幅を最大幅としてWmaxとし、さらに最大幅Wmax位置から導電性基体1に向かう方向にさらに平行線を走査させたときの突起物4の最小値を示す幅を最小幅としてWminと決定する。そして、本発明では、その比率Wmax/Wminの値が1~5であることが必要である。
 なお、突起物4の最小幅Wminは、粗化皮膜3の厚さ方向断面で測定したときの突起物4の最大幅Wmaxの測定位置よりも導電性基体1側に位置する下側部分で測定したときの最小幅Wminを意味する。これは、シェア試験において導電性基体1側に位置する突起物4の下側部分(基端部分)の幅によって、シェア強度が左右されるという知見に基づくものである。なお、突起物4は任意の断面を観察するため、粗化層2の様々な位置にて観察される。これは、粗化層2は基本的には三次元的に形成されているのが常であるため、突起物4の最大幅Wmaxと最小幅Wminを測定する粗化層2としては、1層の粗化層2の場合や、図5に示すように2層以上の粗化層(例えば図5では2層の粗化層2-1、2-2)であって、かつ突起物4の最大幅Wmaxと最小幅Wminの測定ができる場合を測定対象とし、それ以外、例えば2層以上の粗化層であって粗化皮膜3の最表面輪郭が明確ではない場合や、導電性基体1から浮いて見えてしまう粗化層2の場合などは、本発明において測定の対象とはできない粗化層とする。これら手法によって、任意の断面にて、1つの粗化層2に存在する10個の突起物4について、それぞれの最大幅Wmaxと最小幅Wminを測定し、最大幅Wmaxの最小幅Wminに対する比率Wmax/Wminを算出し、それらの比率の平均値が1~5倍である粗化層2を有するリードフレーム材10を、本発明のリードフレーム材として定義する。
<Definition of maximum width and minimum width of protrusions>
The maximum width and the minimum width of the protrusions in the present invention are prepared by processing a lead frame material on which a roughened layer is formed by a method such as Focused Ion Beam (FIB) or mechanical polishing, for example, Next, the roughened layer of the vertical cross-section sample is subjected to cross-sectional observation with an optical microscope, a scanning electron microscope, etc., and the line segment is translated from the surface of the conductive substrate toward the surface of the roughened layer to roughen the surface. For a plurality of protrusions forming a layer, the width is measured for each protrusion, and the maximum value (maximum width) Wmax and the minimum value (minimum width) Wmin are determined. More specifically, as shown in FIG. 3, a perpendicular line is drawn from the conductive substrate 1 in the direction of the roughened layer, and a line parallel to the substrate (parallel line) is scanned in the direction from the apex toward the conductive substrate 1. The width indicating the maximum value of the protrusion 4 when the protrusion is made is set as Wmax, and the minimum value of the protrusion 4 when the parallel line is further scanned in the direction from the position of the maximum width Wmax toward the conductive substrate 1 is set. The width shown is determined as Wmin as the minimum width. In the present invention, the value of the ratio Wmax / Wmin needs to be 1 to 5.
Note that the minimum width Wmin of the protrusion 4 is measured at a lower portion located on the conductive substrate 1 side than the measurement position of the maximum width Wmax of the protrusion 4 when measured in the cross section in the thickness direction of the roughened film 3. Means the minimum width Wmin. This is based on the knowledge that the shear strength depends on the width of the lower portion (base end portion) of the protrusion 4 located on the conductive substrate 1 side in the shear test. In addition, since the protrusion 4 observes arbitrary cross sections, it is observed in various positions of the roughening layer 2. This is because the roughened layer 2 is basically formed three-dimensionally, so that the roughened layer 2 for measuring the maximum width Wmax and the minimum width Wmin of the protrusion 4 is one layer. 5 or two or more roughened layers (for example, two roughened layers 2-1 and 2-2 in FIG. 5), and the projection 4 The case where the maximum width Wmax and the minimum width Wmin can be measured is used as a measurement object. Otherwise, for example, when there are two or more roughened layers and the outermost surface contour of the roughened film 3 is not clear, the conductive substrate 1 In the case of the roughened layer 2 that appears to float, the roughened layer that cannot be measured in the present invention is used. By these methods, the maximum width Wmax and the minimum width Wmin of each of the ten protrusions 4 existing in one roughened layer 2 are measured in an arbitrary cross section, and the ratio Wmax of the maximum width Wmax to the minimum width Wmin is measured. / Wmin is calculated, and the lead frame material 10 having the roughened layer 2 whose average ratio is 1 to 5 times is defined as the lead frame material of the present invention.
<突起物の最小幅および突起物同士の間隔について>
 また、本発明における粗化層2を形成する突起物4の最小幅Wminの大きさにおいては、特に規定するものではないが、最小幅Wminが小さすぎると、樹脂が粗化層2の突起物4、4間の隙間に流れにくくなる傾向があり、一方、最小幅Wminが大きすぎると、シェア強度を増大させる効果が小さくなる傾向がある。このため、突起物4の最小幅Wminは、平均で0.2μm~3μmの範囲であることが好ましく、0.5μm~1μmの範囲であることがより好ましい。また、突起物4、4同士の間隔については、特に限定するものではないが、突起物4、4の頂点同士の平均間隔にして0.2~20μmの範囲が好ましく、0.5μm~10μmの範囲がさらに好ましい。
<Minimum width of protrusions and spacing between protrusions>
Further, the size of the minimum width Wmin of the projection 4 forming the roughened layer 2 in the present invention is not particularly specified, but if the minimum width Wmin is too small, the resin is a projection of the roughened layer 2. On the other hand, if the minimum width Wmin is too large, the effect of increasing the shear strength tends to be small. Therefore, the minimum width Wmin of the protrusion 4 is preferably in the range of 0.2 μm to 3 μm on average, and more preferably in the range of 0.5 μm to 1 μm. The distance between the protrusions 4 and 4 is not particularly limited, but the average distance between the vertices of the protrusions 4 and 4 is preferably in the range of 0.2 to 20 μm, and preferably 0.5 to 10 μm. A range is more preferred.
<粗化層の比表面積について>
 本発明のリードフレーム材10は、まず導電性基体(以下、単に「基体」ともいう。)1に対して粗化層2を有している。この粗化層2は、比表面積が110%以上であることが好ましい。これは、比表面積が110%未満であると、十分にアンカー効果を得ることができないためである。なお、比表面積の上限については特に規制するものではないが、比表面積が大きすぎると粗化の凹凸が大きくなりすぎて粗化層が脱落しやすくなるため、比表面積は500%以下とすることが好ましい。
<About the specific surface area of the roughened layer>
The lead frame material 10 of the present invention has a roughened layer 2 with respect to a conductive substrate (hereinafter also simply referred to as “substrate”) 1. The roughened layer 2 preferably has a specific surface area of 110% or more. This is because the anchor effect cannot be sufficiently obtained when the specific surface area is less than 110%. Although there is no particular restriction on the upper limit of the specific surface area, if the specific surface area is too large, the unevenness of the roughening becomes too large and the roughened layer tends to fall off, so the specific surface area should be 500% or less. Is preferred.
 なお、比表面積の算出方法としては、図2にリードフレーム材10の断面を示すように、リードフレーム材10の断面で見て、粗化皮膜3の最表層の線分長さ(図2では破線Aで示す。)を、導電性基体1の表面の(直線)長さ(図2では太実線B)で除した比率A/Bの百分率が比表面積(%)となり、例えば非接触式干渉顕微鏡等の測定装置(たとえばブルカー・エイ・エックス・エス社製)を用いて測定することができる。また、本発明における粗化層の形成箇所は、樹脂モールドされる部分の少なくとも一部に形成されていればよく、全面処理はもちろんのこと、部分的に粗化層2が形成されていてもよい。また、例えばリードフレーム材10が樹脂モールドされる部分の少なくとも1/5以上であることが好ましく、さらに好ましくは1/2以上の面積に形成されることで密着性向上効果を発揮することができる。樹脂モールドされる全面に粗化層2が形成されていることが最も好ましい。この部分的に設けられる粗化層2の形状としては、ストライプ状、スポット状、リング状など、様々な形態をとることが可能である。さらに、樹脂モールドが片面だけであるような製品においては、例えば片面のみ粗化層2を形成することも可能である。 In addition, as a calculation method of the specific surface area, as shown in the cross section of the lead frame material 10 in FIG. 2, the line segment length of the outermost layer of the roughened coating 3 (in FIG. 2) The percentage of the ratio A / B divided by the (straight) length of the surface of the conductive substrate 1 (thick solid line B in FIG. 2) becomes the specific surface area (%), for example, non-contact interference It can be measured using a measuring device such as a microscope (for example, manufactured by Bruker AXS). In addition, the roughened layer may be formed in at least a part of the resin-molded portion in the present invention, and the roughened layer 2 may be partially formed as well as the entire surface treatment. Good. Further, for example, the lead frame material 10 is preferably at least 1/5 or more of the portion to be resin-molded, and more preferably has an area of 1/2 or more, thereby exhibiting an effect of improving adhesion. . Most preferably, the roughened layer 2 is formed on the entire surface to be resin-molded. The shape of the partially provided roughening layer 2 can take various forms such as a stripe shape, a spot shape, and a ring shape. Furthermore, in a product in which the resin mold is only on one side, for example, the roughened layer 2 can be formed only on one side.
(中間層)
 また、本発明のリードフレーム材10は、導電性基体1と粗化皮膜3の間に、例えば導電性基体1を構成する組成成分の拡散抑制や密着性の改善のために中間層を形成してもよい。中間層は、例えばニッケル、ニッケル合金、コバルト、コバルト合金、銅または銅合金が挙げられる。
(Middle layer)
Further, the lead frame material 10 of the present invention forms an intermediate layer between the conductive substrate 1 and the roughened film 3 in order to suppress diffusion of composition components constituting the conductive substrate 1 and improve adhesion. May be. Examples of the intermediate layer include nickel, nickel alloy, cobalt, cobalt alloy, copper, and copper alloy.
(表面皮膜)
 また、本発明のリードフレーム材10は、粗化皮膜3の表面の少なくとも一部の上に、直接又は中間層を介して少なくとも1層の表面被覆層を含む表面皮膜をさらに備えることが好ましく、表面被覆層は、パラジウム、パラジウム合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、白金、白金合金、イリジウム、イリジウム合金、金、金合金、銀および銀合金の群から選択される金属または合金を含むことが好ましい。
(Surface film)
Further, the lead frame material 10 of the present invention preferably further includes a surface film including at least one surface coating layer directly or via an intermediate layer on at least a part of the surface of the roughened film 3. The surface coating layer includes a metal or alloy selected from the group of palladium, palladium alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, platinum, platinum alloy, iridium, iridium alloy, gold, gold alloy, silver and silver alloy. It is preferable.
[表面被覆層]
 表面被覆層を構成する各種合金としては、例えばパラジウム合金としてはパラジウム-銀合金、ロジウム合金としてはロジウム-パラジウム合金、ルテニウム合金としてはルテニウム-イリジウム合金、白金合金としては白金-金合金、イリジウム合金としては白金-イリジウム合金、金合金としては金-銀合金、銀合金としては銀-錫合金などが挙げられる。表面皮膜は1種類でもよいが、2層以上が好ましい。表面皮膜を構成する表面被覆層が2層以上である場合の代表的な層構成としては、粗化皮膜3側からの積層順で、Pd/Au、Rh/Au、Pd/Ag/Au、Pd/Rh/Au、Ru/Pd/Auなどが挙げられる。このように粗化皮膜の上に表面皮膜層を形成することにより、リードフレームの発熱に対して耐熱性が向上するとともに、粗化皮膜の粗化層を形成する粗化粒子の突起物の強度が向上し、突起物の破断を防ぎ、さらにアンカー効果を発揮することができる。また表面皮膜に対する密着性を向上させる観点から、粗化層が銅、ニッケルの2層に対して、表面皮膜層がPd/Auの2層又はRh/Auの2層であることがより好ましく、粗化層の層構成として下側粗化層が銅、上側粗化層がニッケルの2層に対して、表面皮膜層の層構成として下側表面皮膜層がPdで上側表面被覆層がAuの2層、又は下側表面皮膜層がRhで上側表面被覆層がAuの2層であることがさらに好ましい。
 これらの表面被覆の膜厚は、厚すぎると粗化皮膜3の表面凹凸を埋めてしまい、上述した本発明の効果を十分に発揮できなくなるおそれがある他、表面皮膜が主として貴金属材料で構成されていることからコストの上昇を招く可能性がある。このため、各表面被覆層の膜厚は、積層された表面被覆層の総膜厚(表面皮膜の膜厚)として1μm以下であることが好ましく、0.03以下であることがより好ましい。
[Surface coating layer]
Examples of various alloys constituting the surface coating layer include palladium-silver alloys as palladium alloys, rhodium-palladium alloys as rhodium alloys, ruthenium-iridium alloys as ruthenium alloys, platinum-gold alloys and iridium alloys as platinum alloys. Examples thereof include platinum-iridium alloys, gold alloys such as gold-silver alloys, and silver alloys such as silver-tin alloys. One type of surface film may be used, but two or more layers are preferable. As a typical layer configuration when the surface coating layer constituting the surface coating is two or more layers, Pd / Au, Rh / Au, Pd / Ag / Au, Pd are arranged in the order of lamination from the roughened coating 3 side. / Rh / Au, Ru / Pd / Au, and the like. By forming the surface film layer on the roughened film in this way, the heat resistance against heat generation of the lead frame is improved, and the strength of the projections of the roughened particles that form the roughened layer of the roughened film. Can be improved, the protrusions can be prevented from breaking, and an anchor effect can be exhibited. Further, from the viewpoint of improving the adhesion to the surface film, it is more preferable that the roughened layer is two layers of copper and nickel, and the surface film layer is two layers of Pd / Au or two layers of Rh / Au, As the layer structure of the roughened layer, the lower roughened layer is copper and the upper roughened layer is nickel, whereas the surface film layer is composed of Pd and the upper surface coated layer is Au. More preferably, the two layers or the lower surface coating layer is Rh and the upper surface coating layer is two layers of Au.
If the thickness of these surface coatings is too large, the surface irregularities of the roughened film 3 may be filled, and the effects of the present invention described above may not be sufficiently exhibited. In addition, the surface film is mainly composed of a noble metal material. The cost may increase. For this reason, it is preferable that the film thickness of each surface coating layer is 1 micrometer or less as a total film thickness (film thickness of a surface film) of the laminated | stacked surface coating layer, and it is more preferable that it is 0.03 or less.
(リードフレーム材の製造方法について)
 次に、本発明のリードフレーム材10の製造方法を以下で説明する。
 導電性基体1を準備し、この導電性基体1に対し、カソード電解脱脂工程および酸洗工程を施す。次に、必要に応じて、電気めっきにより中間層を形成した後に、電気めっきにより、少なくとも1層の粗化層2を含む粗化皮膜3を形成し、その後、さらに必要に応じて、電気めっきにより、少なくとも1層の表面被覆層を含む表面皮膜を形成することによって、リードフレーム材10を製造することができる。具体的な製造条件の代表例として、表1にカソード電解脱脂条件、表2に酸洗条件、表3に各種中間層の形成条件、表4に各種粗化層2の形成条件、そして、表5に各種表面被覆層の形成条件をそれぞれ示す。上述したリードフレーム材10の製造方法では、中間層、粗化層2および表面被覆層を、いずれも電気めっきで製造した場合を例示した。粗化層2は、電流密度、攪拌、温度、処理時間等により比較的容易に突起物の形状を制御することができ且つ簡便であることから、電気めっき法で形成することが好ましく、さらに、中間層や表面被覆層についても、電気めっき法のような湿式めっき法によって形成することが、生産性の観点から好ましいが、乾式めっき法や他の製造方法で製造してもよく、特に限定はしない。
(Lead frame material manufacturing method)
Next, the manufacturing method of the lead frame material 10 of the present invention will be described below.
A conductive substrate 1 is prepared, and a cathode electrolytic degreasing process and a pickling process are performed on the conductive substrate 1. Next, after forming an intermediate layer by electroplating, if necessary, a roughened film 3 including at least one roughened layer 2 is formed by electroplating, and then further electroplated as necessary. Thus, the lead frame material 10 can be manufactured by forming a surface film including at least one surface coating layer. As typical examples of production conditions, Table 1 shows cathode electrolytic degreasing conditions, Table 2 shows pickling conditions, Table 3 shows various intermediate layer forming conditions, Table 4 shows various roughening layer 2 forming conditions, 5 shows conditions for forming various surface coating layers. In the manufacturing method of the lead frame material 10 described above, the case where all of the intermediate layer, the roughening layer 2 and the surface coating layer are manufactured by electroplating is illustrated. The roughened layer 2 is preferably formed by an electroplating method because the shape of the protrusions can be controlled relatively easily by current density, stirring, temperature, treatment time, and the like, and is simple. The intermediate layer and the surface coating layer are also preferably formed by a wet plating method such as an electroplating method from the viewpoint of productivity, but may be manufactured by a dry plating method or other manufacturing methods, and there is a particular limitation. do not do.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 予め試験片サイズ40mm×40mmに切断した板厚0.2mmの表6に示す各種導電性基体を準備し、前述した、表1に示す条件でカソード電解脱脂を行った。次いで、表2に示す条件で導電性基体の酸洗を行なった後に、表6に示す層構成で少なくとも1層の粗化層を導電性基体の表面に形成してリードフレーム材の試験片を得た。なお、粗化層の形成は、比表面積だけではなく、断面における粗化層の突起物における最大幅の最小幅に対する比率も制御した。実施例1~30のうち、実施例11~13については、粗化皮膜が下側粗化層に加えて、さらに上側粗化層を形成して2層の粗化層で構成されており、また、実施例22~24については、導電性基体と粗化皮膜の間に中間層がさらに形成されており、そして、実施例29および30については、粗化皮膜が下側粗化層に加えて、さらに上側粗化層を形成して2層の粗化層で構成されているとともに、下側表面被覆層と上側表面被覆層の2層を含む表面皮膜がさらに形成されている。参考のため、比較例1として、粗化層の比表面積が550%と非常に大きいものの、粗化層を形成する突起物の最大幅の最小幅に対する比率を制御せず、本発明の範囲外(5.2倍)であるリードフレーム材の試験片を作製した。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.
Various conductive substrates shown in Table 6 having a plate thickness of 0.2 mm that were cut in advance to a test piece size of 40 mm × 40 mm were prepared, and cathode electrolytic degreasing was performed under the conditions shown in Table 1 described above. Next, after pickling the conductive substrate under the conditions shown in Table 2, at least one roughened layer was formed on the surface of the conductive substrate with the layer structure shown in Table 6 to prepare a test piece of lead frame material. Obtained. In addition, formation of the roughening layer controlled not only the specific surface area but also the ratio of the maximum width to the minimum width in the protrusion of the roughening layer in the cross section. Among Examples 1 to 30, for Examples 11 to 13, the roughened film is composed of two roughened layers by forming an upper roughened layer in addition to the lower roughened layer, In Examples 22 to 24, an intermediate layer is further formed between the conductive substrate and the roughened film. In Examples 29 and 30, the roughened film is added to the lower roughened layer. In addition, an upper roughened layer is formed to form two roughened layers, and a surface film including two layers of a lower surface covering layer and an upper surface covering layer is further formed. For reference, as Comparative Example 1, although the specific surface area of the roughened layer is as large as 550%, the ratio of the maximum width of the protrusions forming the roughened layer to the minimum width is not controlled, and is outside the scope of the present invention. A test piece of a lead frame material (5.2 times) was produced.
 上記各試験片において、樹脂モールドをコータキ精機社製トランスファーモールド試験装置(製品名:Model FTS)にて、金型温度130℃、モールド後保持時間90秒、注入圧力6.865MPaの条件下で注入成形して、接触面積10mm2のプリン状試験片を形成した。その各試験片を高温高湿試験(85℃、85%RHで、168時間保持)に投入し、その試験片について、樹脂密着性および粉落ち性について以下に示す条件で評価した。それらの評価結果を表7に示す。 In each of the above test pieces, a resin mold was injected with a transfer mold test apparatus (product name: Model FTS) manufactured by Kotaki Seiki Co., Ltd. under conditions of a mold temperature of 130 ° C., a holding time after molding of 90 seconds, and an injection pressure of 6.865 MPa. Molding was performed to form a pudding-like test piece having a contact area of 10 mm2. Each test piece was put into a high-temperature and high-humidity test (maintained at 85 ° C. and 85% RH for 168 hours), and the test piece was evaluated for the resin adhesion and the powder falling off under the following conditions. Table 7 shows the evaluation results.
(樹脂密着性評価)
評価樹脂:G630L、住友ベークライト社製(商品名)
評価条件:装置:4000Plus、ノードソン・アドバンスト・テクノロジー社製(商品名)、
     ロードセル:50kg
     測定レンジ:10kg
     テストスピード:100μm/s
     テスト高さ:10μm
(Resin adhesion evaluation)
Evaluation resin: G630L, manufactured by Sumitomo Bakelite Co., Ltd. (trade name)
Evaluation conditions: Apparatus: 4000 Plus, manufactured by Nordson Advanced Technology (trade name),
Load cell: 50kg
Measurement range: 10kg
Test speed: 100 μm / s
Test height: 10 μm
 樹脂密着性の評価結果を表7に示す。なお、表7に示す樹脂密着性の評価は、シェア強度(剥離強度)が平均で9.8MPa以上である場合を樹脂密着性が優れているとして「A」とし、シェア強度(剥離強度)が平均で4.9MPa以上9.8MPa未満である場合を樹脂密着性が良好であるとして「B」とし、そして、シェア強度(剥離強度)が平均で4.9MPa未満である場合を樹脂密着性が劣るとして「C」として示した。
 樹脂密着性は、「初期のシェア強度」と「高温高湿試験後のシェア強度」の両方を測定することによってそれぞれ評価した。「高温高湿試験後のシェア強度」は、各試験片を樹脂モールドした後に、温度85℃、湿度85%の環境にて168時間放置した後の値である。また、「初期のシェア強度」とは、各試験片を樹脂モールドした直後(高温高湿試験前)のシェア強度である。
Table 7 shows the evaluation results of the resin adhesion. The evaluation of the resin adhesion shown in Table 7 is “A” when the shear strength (peel strength) is 9.8 MPa or more on the average and the shear strength (peel strength) is excellent. When the average is 4.9 MPa or more and less than 9.8 MPa, the resin adhesion is “B”, and when the shear strength (peel strength) is less than 4.9 MPa on the average, the resin adhesion is Shown as “C” as inferior.
The resin adhesion was evaluated by measuring both “initial shear strength” and “shear strength after high temperature and high humidity test”. The “shear strength after the high-temperature and high-humidity test” is a value after each test piece is resin-molded and left for 168 hours in an environment at a temperature of 85 ° C. and a humidity of 85%. The “initial shear strength” is the shear strength immediately after each test piece is resin-molded (before the high temperature and high humidity test).
(粉落ち性評価)
 粉落ち性は、目視により感応評価した。その評価結果を表7に示す。なお、表7に示す粉落ち性は、表面からの粉落ちが認められなかった場合を「A(優)」とし、粉落ちが少し発生した場合を「B(良)」とし、そして、粉落ちが非常に多く発生した場合を「C(不可)」として示し、「A」および「B」は実用に供するレベルである。
(Evaluation of powder removal)
Powderiness was evaluated by visual evaluation. The evaluation results are shown in Table 7. In addition, the powder falling property shown in Table 7 is “A (excellent)” when powder falling from the surface is not recognized, “B (good)” when powder falling slightly occurs, A case where a great number of drops occur is indicated as “C (impossible)”, and “A” and “B” are levels for practical use.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の評価結果から、実施例1~30はいずれも、初期のシェア強度および高温高湿試験後のシェア強度が「A」または「B」であり、良好な樹脂密着性を維持しており、また、粉落ち性も「A」または「B」と実用に供するレベルであった。これに対し、粗化層の比表面積が550%と非常に大きいものの、粗化層を形成する突起物の最大幅の最小幅に対する比率を制御せず、本発明の範囲外(5.2倍)である比較例1は、初期のシェア強度については「A」であって、樹脂密着性に優れているものの、高温高湿試験後のシェア強度が「C」となり、樹脂密着性が大きく劣化しており、さらに、粉落ち性も、「C」と劣っていて、実用に供するレベルではなかった。 From the evaluation results in Table 7, in all of Examples 1 to 30, the initial shear strength and the shear strength after the high-temperature and high-humidity test are “A” or “B”, and good resin adhesion is maintained. In addition, the powder-off property was “A” or “B”, which was a practical level. On the other hand, although the specific surface area of the roughened layer is very large as 550%, the ratio of the maximum width of the protrusions forming the roughened layer to the minimum width is not controlled, and is outside the range of the present invention (5.2 times) In Comparative Example 1, the initial shear strength is “A” and the resin adhesion is excellent, but the shear strength after the high-temperature and high-humidity test is “C”, and the resin adhesion is greatly deteriorated. Furthermore, the powder-off property was inferior to “C”, and was not at a practical level.
 本発明のリードフレーム材は、高温高湿の耐久性試験、例えば温度85℃、湿度85%の環境にて168時間放置する過酷な条件下で高温高湿試験を行なった場合であっても、リードフレームに対する良好な樹脂密着性をほとんど劣化させることなく維持することができ、このリードフレーム材を用いて構成した半導体パッケージは、高い信頼性を実現することができる。 Even when the lead frame material of the present invention is subjected to a high temperature and high humidity durability test, for example, when a high temperature and high humidity test is performed under harsh conditions of leaving for 168 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, Good resin adhesion to the lead frame can be maintained with almost no deterioration, and a semiconductor package constructed using this lead frame material can achieve high reliability.
 1 導電性基体
 2 粗化層
  2-1 第1粗化層(基材側から1層目の粗化層)
  2-2 第2粗化層(基材側から2層目の粗化層)
 3、3-1 粗化皮膜
 4、4-1 突起物
 10、10A リードフレーム材
 A 粗化皮膜の最表面の断面線分長さ
 B 導電性基体の表面の断面線分長さ
DESCRIPTION OF SYMBOLS 1 Conductive base | substrate 2 Roughening layer 2-1 1st roughening layer (1st roughening layer from the base-material side)
2-2 Second roughened layer (second roughened layer from the substrate side)
3, 3-1 Roughening film 4, 4-1 Protrusion 10, 10A Lead frame material A Cross-sectional line length of outermost surface of roughened film B Cross-sectional line length of surface of conductive substrate

Claims (7)

  1.  導電性基体と、
     該導電性基体の少なくとも片面上に、直接または中間層を介して複数の粗化粒子の突起物で形成された少なくとも1層の粗化層を含む粗化皮膜と、を備え、
     前記突起物は、前記粗化皮膜の厚さ方向断面で測定したときの最大幅が、該最大幅の測定位置よりも前記導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有するリードフレーム材。
    A conductive substrate;
    A roughened film comprising at least one roughened layer formed of a plurality of roughened particle protrusions directly or via an intermediate layer on at least one surface of the conductive substrate;
    The protrusion has a maximum width when measured in a cross section in the thickness direction of the roughened film, and a minimum width when measured at a lower portion located on the conductive substrate side than the measurement position of the maximum width. A lead frame material having a shape that is 1 to 5 times as large as the above.
  2.  前記導電性基体は、銅、銅合金、鉄、鉄合金、アルミニウムまたはアルミニウム合金である、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the conductive substrate is copper, a copper alloy, iron, an iron alloy, aluminum, or an aluminum alloy.
  3.  前記粗化層は、銅、銅合金、ニッケル、ニッケル合金、パラジウム、パラジウム合金、銀、銀合金、錫、錫合金、亜鉛、亜鉛合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウムおよびイリジウム合金の群から選択される金属または合金を含む、請求項1または2に記載のリードフレーム材。 The roughening layer is made of copper, copper alloy, nickel, nickel alloy, palladium, palladium alloy, silver, silver alloy, tin, tin alloy, zinc, zinc alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium and iridium alloy. The lead frame material according to claim 1, comprising a metal or an alloy selected from the group consisting of:
  4.  前記粗化皮膜の表面の少なくとも一部の上に、少なくとも1層の表面被覆層を含む表面皮膜をさらに備え、前記表面被覆層が、パラジウム、パラジウム合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、白金、白金合金、イリジウム、イリジウム合金、金、金合金、銀および銀合金の群から選択される金属または合金を含む、請求項1~3のいずれか1項に記載のリードフレーム材。 The surface coating layer further includes a surface coating including at least one surface coating layer on at least a part of the surface of the roughened coating, and the surface coating layer includes palladium, palladium alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, The lead frame material according to any one of claims 1 to 3, comprising a metal or alloy selected from the group consisting of platinum, platinum alloy, iridium, iridium alloy, gold, gold alloy, silver and silver alloy.
  5.  前記中間層は、ニッケル、ニッケル合金、コバルト、コバルト合金、銅または銅合金である、請求項4に記載のリードフレーム材。 The lead frame material according to claim 4, wherein the intermediate layer is nickel, nickel alloy, cobalt, cobalt alloy, copper, or copper alloy.
  6.  導電性基体の少なくとも片面上に、直接または中間層を介して、電気めっきにより複数の粗化粒子の突起物で形成された少なくとも1層の粗化層を含む粗化皮膜を形成する工程を含み、
     前記突起物は、前記粗化皮膜の厚さ方向断面で測定したときの最大幅が、該最大幅の測定位置よりも前記導電性基体側に位置する下側部分で測定したときの最小幅に対して1~5倍となる形状を有するリードフレーム材の製造方法。
    Forming a roughened film including at least one roughened layer formed of protrusions of a plurality of roughened particles by electroplating directly or via an intermediate layer on at least one surface of a conductive substrate. ,
    The protrusion has a maximum width when measured in a cross section in the thickness direction of the roughened film, and a minimum width when measured at a lower portion located on the conductive substrate side than the measurement position of the maximum width. A method of manufacturing a lead frame material having a shape that is 1 to 5 times as large as the above.
  7.  請求項1~5のいずれか1項に記載のリードフレーム材を有する半導体パッケージ。 A semiconductor package having the lead frame material according to any one of claims 1 to 5.
PCT/JP2017/045451 2016-12-27 2017-12-19 Lead frame member and method for manufacturing same, and semiconductor package WO2018123708A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780068101.4A CN109937479B (en) 2016-12-27 2017-12-19 Lead frame material, method for manufacturing the same, and semiconductor package
JP2018518662A JP6479265B2 (en) 2016-12-27 2017-12-19 Lead frame material, manufacturing method thereof, and semiconductor package
KR1020197013787A KR102482396B1 (en) 2016-12-27 2017-12-19 Lead frame material and its manufacturing method and semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-253968 2016-12-27
JP2016253968 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123708A1 true WO2018123708A1 (en) 2018-07-05

Family

ID=62707235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045451 WO2018123708A1 (en) 2016-12-27 2017-12-19 Lead frame member and method for manufacturing same, and semiconductor package

Country Status (5)

Country Link
JP (1) JP6479265B2 (en)
KR (1) KR102482396B1 (en)
CN (1) CN109937479B (en)
TW (1) TWI762546B (en)
WO (1) WO2018123708A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020079904A1 (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Electroconductive material, molded article, and electronic component
WO2020079905A1 (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Electroconductive material, molded article, and electronic component
JP7178530B1 (en) * 2021-07-16 2022-11-25 古河電気工業株式会社 Lead frame material, manufacturing method thereof, and semiconductor package
WO2023286697A1 (en) * 2021-07-16 2023-01-19 古河電気工業株式会社 Lead frame material and method for producing same, and semiconductor package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077519A (en) * 2009-10-01 2011-04-14 Samsung Techwin Co Ltd Lead frame, and method of manufacturing the same
JP2013182978A (en) * 2012-03-01 2013-09-12 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543619B2 (en) 1990-09-05 1996-10-16 新光電気工業株式会社 Lead frame for semiconductor device
JP3228789B2 (en) 1992-07-11 2001-11-12 新光電気工業株式会社 Method for manufacturing insert member for resin
JP2732490B2 (en) * 1994-03-25 1998-03-30 日鉱金属株式会社 Manufacturing method of high strength and high conductivity copper alloy for electronic equipment
US5554569A (en) * 1994-06-06 1996-09-10 Motorola, Inc. Method and apparatus for improving interfacial adhesion between a polymer and a metal
JP4168077B2 (en) * 2006-07-21 2008-10-22 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
KR101241735B1 (en) * 2008-09-05 2013-03-08 엘지이노텍 주식회사 Lead frame and method for manufacturing the same
JP4892033B2 (en) * 2009-05-13 2012-03-07 日立ケーブルプレシジョン株式会社 Lead frame manufacturing method
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
TWI557750B (en) * 2014-02-05 2016-11-11 Furukawa Electric Co Ltd Electrical contact material and manufacturing method thereof
JP5766318B2 (en) * 2014-02-17 2015-08-19 株式会社三井ハイテック Lead frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077519A (en) * 2009-10-01 2011-04-14 Samsung Techwin Co Ltd Lead frame, and method of manufacturing the same
JP2013182978A (en) * 2012-03-01 2013-09-12 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020079904A1 (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Electroconductive material, molded article, and electronic component
WO2020079905A1 (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Electroconductive material, molded article, and electronic component
JP2020063492A (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Electroconductive material, molded article, and electronic component
JP2020063493A (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Electroconductive material, molded article, and electronic component
JP7014695B2 (en) 2018-10-18 2022-02-01 Jx金属株式会社 Conductive materials, molded products and electronic components
JP7178530B1 (en) * 2021-07-16 2022-11-25 古河電気工業株式会社 Lead frame material, manufacturing method thereof, and semiconductor package
WO2023286697A1 (en) * 2021-07-16 2023-01-19 古河電気工業株式会社 Lead frame material and method for producing same, and semiconductor package

Also Published As

Publication number Publication date
CN109937479B (en) 2023-01-13
JP6479265B2 (en) 2019-03-06
JPWO2018123708A1 (en) 2018-12-27
KR20190096964A (en) 2019-08-20
KR102482396B1 (en) 2022-12-28
TWI762546B (en) 2022-05-01
CN109937479A (en) 2019-06-25
TW201830627A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6479265B2 (en) Lead frame material, manufacturing method thereof, and semiconductor package
WO2017077903A1 (en) Lead frame member and manufacturing method therefor
KR102471172B1 (en) Surface treatment material, its manufacturing method, and parts formed using the surface treatment material
WO2017179447A1 (en) Lead frame material and method for producing same
JP6869920B2 (en) Precious metal-coated silver wire for ball bonding and its manufacturing method, and semiconductor device using precious metal-coated silver wire for ball bonding and its manufacturing method
JP5109881B2 (en) Copper bonding wire
JPWO2018124115A1 (en) Surface treatment material and parts produced using the same
JPWO2015182786A1 (en) Electrical contact material, method of manufacturing electrical contact material, and terminal
JP7032239B2 (en) Lead frame material and its manufacturing method and semiconductor package
JP6034233B2 (en) Lead frame for optical semiconductor device, method for manufacturing the same, and optical semiconductor device
JP2013232693A (en) Bonding wire for semiconductor device
US11456271B2 (en) Noble metal-coated silver wire for ball bonding and method for producing the same, and semiconductor device using noble metal-coated silver wire for ball bonding and method for producing the same
JP6667728B2 (en) Lead frame material, method of manufacturing the same, and semiconductor package using the same
JP6827150B1 (en) Lead frame material and its manufacturing method, lead frame and electrical and electronic parts
JP2022148743A (en) Conductive material, molded article and electronic component
JP2020063493A (en) Electroconductive material, molded article, and electronic component

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518662

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197013787

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886703

Country of ref document: EP

Kind code of ref document: A1