WO2018123307A1 - Porous base material for tissue reconstruction, artificial blood vessel and method for producing same - Google Patents

Porous base material for tissue reconstruction, artificial blood vessel and method for producing same Download PDF

Info

Publication number
WO2018123307A1
WO2018123307A1 PCT/JP2017/040985 JP2017040985W WO2018123307A1 WO 2018123307 A1 WO2018123307 A1 WO 2018123307A1 JP 2017040985 W JP2017040985 W JP 2017040985W WO 2018123307 A1 WO2018123307 A1 WO 2018123307A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nonwoven fabric
fiber nonwoven
ultrafine fiber
polymer
Prior art date
Application number
PCT/JP2017/040985
Other languages
French (fr)
Japanese (ja)
Inventor
中山 英隆
俊治 新岡
秀樹 宮地
修平 太良
唯久 杉浦
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Publication of WO2018123307A1 publication Critical patent/WO2018123307A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to a porous tissue regeneration substrate, an artificial blood vessel, and methods for producing them.
  • animal cells such as human cells have been cultured in the medical field, and regenerative medicine for regenerating human tissues and organs using these cells has been performed.
  • Step 3 wherein the polymer layer swollen by the laminate and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
  • the bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable The bioabsorbability using a solvent 2 that is less soluble in the ultrafine fiber nonwoven fabric layer than in the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 that is compatible with the solvent 2.
  • FIG. 1 In the manufacturing method of the artificial blood vessel of this invention, it is a cross-sectional schematic diagram which shows the state which crimps
  • FIG. in the manufacturing method of the artificial blood vessel of this invention it is a figure which shows the rod-shaped composite_body
  • the porous tissue regeneration substrate and the artificial blood vessel can be easily produced.
  • porous tissue regeneration substrate of the present invention is a porous tissue regeneration substrate that is a laminate of at least two layers made of a bioabsorbable material, and includes at least one ultrafine fiber nonwoven fabric layer. And having at least one porous layer having an average pore diameter of 0.1 to 800 ⁇ m on the surface of the ultrafine fiber nonwoven fabric layer.
  • the layer structure of the porous tissue regeneration substrate is not particularly limited as long as it is the above-mentioned laminate of at least two layers and has at least one ultrafine fiber nonwoven fabric layer and one porous layer, which will be described later.
  • the bioabsorbable material constituting the ultrafine fiber nonwoven fabric layer is not particularly limited as long as it has bioabsorbability.
  • a bioabsorbable polymer can be suitably used.
  • Bioabsorbable polymers include polyglycolic acid, polyglycolide, polylactide, poly- ⁇ -caprolactone, lactide-glycolic acid copolymer, glycolide- ⁇ -caprolactone copolymer, lactide- ⁇ -caprolactone copolymer, poly Dioxane, polycitric acid, polymalic acid, poly- ⁇ -cyanoacrylate, poly- ⁇ -hydroxy acid, polytrimethylene oxalate, polytetramethylene oxalate, polyorthoester, polyorthocarbonate, polyethylene carbonate, poly- ⁇ - Synthetic polymers such as benzyl-L-glutamate, poly- ⁇ -methyl-L-glutamate, poly-L-alanine, polyglycol sebastic acid
  • the fiber diameter of the fibers forming the ultrafine fiber nonwoven fabric layer is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the fiber diameter is more preferably 0.3 ⁇ m to 8.0 ⁇ m, still more preferably 0.3 ⁇ m to 5.0 ⁇ m.
  • the average fiber diameter of the fibers forming the ultrafine fiber nonwoven fabric layer is obtained by cutting the porous tissue regenerated substrate in a direction perpendicular to the surface thereof, and the fibers of any 10 points in the obtained electron microscope image The diameter is measured and the average value is calculated.
  • the porous tissue regeneration substrate of the present invention is an artificial blood vessel
  • a tube-shaped artificial blood vessel is cut in a direction perpendicular to the longitudinal direction, and an electron microscope is used near the center of the cross section of the wall surface of the artificial blood vessel. This is measured by taking an electron microscope image, measuring the diameters of 10 arbitrary fibers in the obtained electron microscope image, and calculating the average value.
  • the thickness of the ultrafine fiber nonwoven fabric layer is preferably 10 to 1000 ⁇ m. When the thickness of the ultrafine fiber nonwoven fabric layer is within the above range, the effect of improving the strength can be further exhibited.
  • At least one ultrafine fiber nonwoven fabric layer is formed, and a plurality of layers may be formed.
  • the porous layer is a layer disposed on the surface of the ultrafine fiber nonwoven fabric layer in order to accelerate tissue regeneration.
  • the porous layer only needs to be formed on at least one surface of the ultrafine fiber nonwoven fabric layer, and may be formed on both surfaces, but is usually formed only on one surface.
  • the average pore diameter of the porous layer is 0.1 to 800 ⁇ m. If the average pore size is smaller than 0.1 ⁇ m, the cell invasiveness is inferior.
  • the average pore size of the porous layer is preferably 1.0 to 700 ⁇ m, more preferably 10 to 600 ⁇ m.
  • the average pore size of the porous layer is determined by cutting the porous tissue regenerated substrate in a direction perpendicular to the surface thereof, and using an electron microscope around the center of the cross section of the porous tissue regenerated substrate. It is measured by taking an image, measuring the diameter (major axis) of arbitrary 10 holes of the porous layer of the obtained electron microscope image, and calculating the average value.
  • the porous tissue regeneration substrate of the present invention is an artificial blood vessel
  • a tube-shaped artificial blood vessel is cut in a direction perpendicular to the longitudinal direction, and an electron microscope is used near the center of the cross section of the wall surface of the artificial blood vessel. This is measured by taking an electron microscope image, measuring the diameter (major axis) of arbitrary 10 holes of the porous layer of the obtained electron microscope image, and calculating the average value.
  • the porous layer is preferably made of a bioabsorbable polymer. It does not specifically limit as a bioabsorbable polymer which forms a porous layer, The bioabsorbable polymer similar to the bioabsorbable polymer which comprises the microfiber nonwoven fabric layer mentioned above can be used.
  • the thickness of the porous layer may be set in consideration of the balance with the thickness of the ultrafine fiber nonwoven fabric layer, the desired shape, and the desired diameter in the case of an artificial blood vessel.
  • the thickness of the porous layer is not particularly limited, and is preferably 10 to 1000 ⁇ m, more preferably 50 to 600 ⁇ m.
  • At least one porous layer is formed, and a plurality of layers may be formed.
  • the artificial blood vessel of the present invention can be used for nerve regeneration in addition to artificial blood vessels. Further, the tube-shaped artificial blood vessel of the present invention can be used as a tissue regeneration base material such as a patch for incising a tissue in a vascular defect part by incising in a direction parallel to the longitudinal direction.
  • the polymer layer is a layer that suppresses a homogeneous solution of a bioabsorbable polymer for forming a porous layer, which will be described later, from entering the surface of the ultrafine fiber nonwoven fabric layer forming side, It is the layer that is finally removed.
  • polymer that forms the polymer layer penetration of the uniform solution of the bioabsorbable polymer for forming the porous layer into the ultrafine fiber nonwoven fabric layer can be suppressed, and the formed polymer layer can be easily removed.
  • a polymer include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, HEMA, sodium polyacrylate, polyacrylamide, polyethyleneimine, polyvinylpyrrolidone, polyglutamic acid, carboxymethylcellulose, hydroxyethylcellulose, starch, xanthan gum, gelatin and the like. Is mentioned.
  • polyvinyl alcohol in that the penetration of the uniform solution of the bioabsorbable polymer into the ultrafine fiber nonwoven fabric layer can be further suppressed, and the formed polymer layer can be easily removed.
  • Sodium polyacrylate is preferred.
  • the above polymers may be used singly or in combination of two or more.
  • the electrospinning conditions are not particularly limited, and it is preferably performed under conditions of a voltage of ⁇ 5 to ⁇ 25 kV and a nozzle diameter of 18 to 32 G.
  • step 1 fibers made of a bioabsorbable material are ejected onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer.
  • the electrospinning method is a method in which a solution in which a bioabsorbable polymer is dissolved is discharged from a nozzle toward a target while a high voltage is applied between the nozzle and a collector electrode. The solution fired from the nozzle becomes an ultrafine fiber along the electric lines of force and adheres on the target.
  • the electrospinning conditions are not particularly limited, and are preferably performed under conditions of a voltage of ⁇ 5 to ⁇ 25 kV and a nozzle diameter of 18 to 32 G.
  • the pressure-bonding method for press-bonding the swollen polymer layer and the ultrafine fiber nonwoven fabric layer of the laminate is not particularly limited, and may be performed by a conventionally known method.
  • a conventionally known method for example, there is a method in which the entire laminate in which the polymer layer is swollen in the step 2 is uniformly roll-pressed with a silicon plate or the like.
  • Step 3 only the polymer layer may be melted and pressure-bonded to such an extent that the ultrafine fiber nonwoven fabric layer is not damaged by ultrasonic welding.
  • step 3 the laminated polymer is dried after the polymer layer of the laminate and the ultrafine fiber nonwoven fabric layer are pressure-bonded.
  • a porous layer can be suitably formed on the surface of the ultrafine fiber nonwoven fabric layer in a subsequent step.
  • a conventionally well-known method can be used. Examples of such a method include a method in which the laminate is dried by placing it in a drying oven at about 20 to 100 ° C. for about 1 to 60 minutes. Further, the surface of the ultrafine fiber nonwoven fabric layer may be dried by a method of wiping with a Kimwipe or the like.
  • Glycolic acid copolymers such as polyethylene carbonate, poly- ⁇ -benzyl-L-glutamate, poly- ⁇ -methyl-L-glutamate, poly-L-alanine, polyglycol sebacic acid, glycolide- ⁇ -caprolactone copolymer
  • Poly (lactide-co-glycolide) copolymer, lactide- ⁇ -caprolactone copolymer and the like can be suitably used.
  • the ultrafine fiber nonwoven fabric layer is made of polyglycolide and used in Step 4
  • the ultrafine fiber nonwoven fabric layer is made of polyglycolide and used in step 4
  • solvent 1 is water
  • solvent 2 is chloroform
  • co-solvent 3 1 acetone cosolvent 3-2 include combinations is ethanol.
  • Examples of the solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer include water, methanol, ethanol, isopropanol, butanol, and t-butyl alcohol.
  • the relatively high solubility with respect to the polymer layer and the relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer means that the ultrafine fiber nonwoven fabric layer is less soluble than the polymer layer. means.
  • Step 8 is a step of obtaining a porous tissue regeneration substrate by freeze-drying the composite porous body.
  • the lyophilization conditions are not particularly limited, and can be performed under conventionally known conditions.
  • the composite porous body can be freeze-dried to obtain a porous tissue regeneration substrate.
  • Step 2 (3) Step 3 in which the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
  • Step 3 in which the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
  • Step 4 for preparing a homogeneous solution in which the polymer is dissolved (5) Step 5 of applying the uniform solution to the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate.
  • Step 4 includes a bioabsorbable polymer, a solvent 1 having a relatively low solubility in the bioabsorbable polymer, a relatively high solubility in the bioabsorbable polymer, and a bioabsorbable property.
  • Uniformity in which the bioabsorbable polymer is dissolved using the solvent 2 which is less soluble in the ultrafine fiber nonwoven fabric layer than the polymer and is incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 compatible with the solvent 2 It is a step of preparing a solution. About process 4, it is the same as the manufacturing method of the said porous structure
  • the electrospinning conditions were a voltage of ⁇ 20 kV and a nozzle diameter of 25 G. Thereby, a polymer layer having an outer diameter of about 900 ⁇ m and a thickness of 100 ⁇ m was formed on the rod-shaped body.
  • ⁇ Measurement of average pore diameter> The tube-shaped artificial blood vessel was cut in a direction perpendicular to the longitudinal direction, and an electron microscope image was taken near the center of the cross section of the wall surface of the artificial blood vessel using an electron microscope with a magnification of 1000 or 8000. The diameter (major axis) of arbitrary 10 points of the porous layer of the obtained electron microscope image was measured, and the average value was taken as the average pore diameter.
  • the tube-shaped artificial blood vessel was cut in a direction perpendicular to the longitudinal direction, and an electron microscope image was taken using an electron microscope with a magnification of 8000 times around the center of the cross section of the wall surface of the artificial blood vessel.
  • the diameters of 10 arbitrary fibers in the obtained electron microscope image were measured, and the average value was defined as the average fiber diameter.
  • Example 1 the diameter of the fiber at the cross-sectional location of the ultrafine fiber nonwoven fabric layer was measured.
  • Example 1 In Example 1 and Comparative Example 1, all 10 specimens were alive at 8 weeks after the operation, and no occlusion of blood vessels was observed.
  • FIG. 11 shows a photomicrograph of the specimen obtained by excising the buried portion 8 weeks after the operation of the artificial blood vessel obtained in Example 1 with HE staining.
  • FIG. 12 shows a photomicrograph taken by HE staining of a specimen obtained by excising the buried portion 8 weeks after the operation of the artificial blood vessel obtained in Comparative Example 1. From the results of FIGS. 11 and 12, it can be seen that the artificial blood vessel of Example 1 is clearly infiltrated with the cells compared with the artificial blood vessel of Comparative Example 1. As a result, it was found that the artificial blood vessel of Example 1 had a high tissue regeneration rate and excellent composition reproducibility.

Abstract

Provided are a porous base material for tissue reconstruction, said porous base material having excellent cell infiltration properties and thus exhibiting excellent tissue reconstruction ability, and an artificial blood vessel. Also provided is a production method whereby the porous base material for tissue reconstruction or the artificial blood vessel can be easily produced. The porous base material for tissue reconstruction according to the present invention is a laminate consisting of at least two layers formed of bioabsorbable materials, characterized by comprising at least one ultrafine fiber nonwoven fabric layer and at least one porous layer having an average pore size of 0.1-800 μm, said porous layer being disposed on the surface of said ultrafine fiber nonwoven fabric layer.

Description

多孔質組織再生基材、人工血管、及びそれらの製造方法Porous tissue regeneration substrate, artificial blood vessel, and production method thereof
 本発明は、多孔質組織再生基材、人工血管、及びそれらの製造方法に関する。 The present invention relates to a porous tissue regeneration substrate, an artificial blood vessel, and methods for producing them.
 近年、医療の分野において、ヒト細胞等の動物細胞の培養が行われており、それらの細胞を用いてヒトの組織や器官等を再生する、再生医療が行われている。 In recent years, animal cells such as human cells have been cultured in the medical field, and regenerative medicine for regenerating human tissues and organs using these cells has been performed.
 上述の再生医療では、組織再生基材を患者の体内に埋め込み、当該再生基材中に細胞を侵入させて増殖分化させ、組織又は器官が再生される。 In the above-described regenerative medicine, a tissue regeneration base material is embedded in a patient's body, and cells are invaded into the regeneration base material to proliferate and differentiate, thereby regenerating the tissue or organ.
 上述のような組織再生基材として、生体吸収性高分子からなる多孔質組織再生基材が用いられている。多孔質組織再生基材を体内に埋め込むことにより、孔に細胞が侵入して増殖分化し、早期に組織が再生される。また、多孔質組織再生基材を生体吸収性高分子により形成することで、組織再生後に手術により取り出さなくても、多孔質組織再生基材が分解されて体内に吸収される。 As a tissue regeneration substrate as described above, a porous tissue regeneration substrate made of a bioabsorbable polymer is used. By embedding the porous tissue regeneration substrate in the body, cells enter the pores, proliferate and differentiate, and the tissue is regenerated at an early stage. In addition, by forming the porous tissue regeneration base material with a bioabsorbable polymer, the porous tissue regeneration base material is decomposed and absorbed into the body without being removed by surgery after tissue regeneration.
 このような生体吸収性高分子からなる多孔質基材として、例えば血管組織を構成している細胞外基質の構造を模倣できるエレクトロスピニング技術(以下、「ESD」という)を使用したナノファイバーチューブ(ESDチューブ)が注目されており、ナノファイバーの平滑性が優れていることから、血栓が付き難いことが報告されている(非特許文献1参照)。 As a porous substrate made of such a bioabsorbable polymer, for example, a nanofiber tube (hereinafter referred to as “ESD”) that uses an electrospinning technique (hereinafter referred to as “ESD”) that can mimic the structure of an extracellular matrix constituting a vascular tissue. (ESD tube) has been attracting attention, and since the smoothness of nanofibers is excellent, it has been reported that thrombus is difficult to adhere (see Non-Patent Document 1).
 しかしながら、上述のようなナノファイバーチューブのポアサイズは小さいため、細胞浸潤性に劣り、組織再生に時間がかかるという問題がある(非特許文献2参照)。 However, since the pore size of the nanofiber tube as described above is small, there is a problem that cell infiltration is inferior and tissue regeneration takes time (see Non-Patent Document 2).
 上記問題を解決するために、予め細胞特異的接着ペプチドや繊維芽細胞増殖因子等の細胞成長因子を導入し、組織再生を早めることが試みられている。しかしながら、これらの細胞成長因子が血流の条件の中ナノファイバーチューブに留まっているかが明確ではなく、また、過剰な細胞成長因子が周辺組織の増殖を促すことによる悪影響が懸念されるという問題がある。また、細胞成長因子が存在しなくなった場合に細胞浸潤性が改善されず、組織再生性に劣るという問題がある(特許文献1及び2参照)。 In order to solve the above problems, it has been attempted to accelerate cell regeneration by introducing cell growth factors such as cell-specific adhesion peptides and fibroblast growth factors in advance. However, it is not clear whether these cell growth factors remain in the nanofiber tube in the blood flow condition, and there are concerns that there is a concern about the adverse effects of excessive cell growth factors promoting proliferation of surrounding tissues. is there. In addition, there is a problem that cell invasiveness is not improved when cell growth factors are not present, and tissue regeneration is poor (see Patent Documents 1 and 2).
 従って、細胞浸潤性に優れることにより、組織再生性に優れた多孔質組織再生基材及び人工血管の開発が望まれており、これらを製造することができる製造方法の開発が望まれている。 Therefore, it is desired to develop a porous tissue regeneration substrate and an artificial blood vessel that are excellent in cell invasiveness and have excellent tissue regeneration, and development of a production method capable of producing them is desired.
特許第4417909号公報Japanese Patent No. 4417909 特許第5792442号公報Japanese Patent No. 5792442
 本発明は、細胞浸潤性に優れることにより、組織再生性に優れた多孔質組織再生基材及び人工血管を提供することを目的とする。また、本発明は、これらを容易に製造することができる製造方法を提供することを目的とする。 An object of the present invention is to provide a porous tissue regeneration substrate and an artificial blood vessel that are excellent in tissue regenerative property by being excellent in cell invasiveness. Moreover, an object of this invention is to provide the manufacturing method which can manufacture these easily.
 本発明者は、上記課題を解決するために鋭意研究を行った結果、生体吸収性材料からなる少なくとも2層の積層体である多孔質組織再生基材において、少なくとも1層の極細繊維不織布層を有し、当該極細繊維不織布層の表面に、平均孔径が特定の範囲の少なくとも1層の多孔質層を有する構成、又は、生体吸収性材料からなる少なくとも2層のチューブ状の人工血管において、最内層に少なくとも1層の極細繊維不織布層を有し、当該極細繊維不織布層の外側の表面に平均孔径が特定の範囲の少なくとも1層の多孔質層を有する構成とすることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of earnest research to solve the above-mentioned problems, the present inventor has obtained at least one ultrafine fiber nonwoven fabric layer in a porous tissue regeneration substrate that is a laminate of at least two layers made of a bioabsorbable material. And having at least one porous layer having an average pore diameter in a specific range on the surface of the ultrafine fiber nonwoven fabric layer, or at least two layers of tube-shaped artificial blood vessels made of a bioabsorbable material. The above object is achieved by having at least one ultrafine fiber nonwoven fabric layer in the inner layer and having at least one porous layer having an average pore diameter in a specific range on the outer surface of the ultrafine fiber nonwoven fabric layer. The present inventors have found that this can be done and have completed the present invention.
 即ち、本発明は下記の多孔質組織再生基材、人工血管、及びそれらの製造方法を提供する。
1.生体吸収性材料からなる少なくとも2層の積層体である多孔質組織再生基材であって、
 少なくとも1層の極細繊維不織布層を有し、
 前記極細繊維不織布層の表面に、平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する、
ことを特徴とする多孔質組織再生基材。
2.前記極細繊維不織布層は、平均繊維径が0.1~10μmの極細繊維からなる、項1に記載の多孔質組織再生基材。
3.前記極細繊維不織布層は、生体吸収性の異なる2種以上の生体吸収性高分子からなる、項1又は2に記載の多孔質組織再生基材。
4.生体吸収性材料からなる少なくとも2層の多孔質組織再生基材の製造方法であって、
(1)高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して積層体を得る工程1、
(2)前記極細繊維不織布層に対して相対的に溶解度が低く、且つ、前記高分子層に対して相対的に溶解度が高い溶媒を用いて、前記積層体の前記高分子層を膨潤させる工程2、(3)前記積層体の膨潤させた前記高分子層と前記極細繊維不織布層とを圧着させ、乾燥させる工程3、
(4)生体吸収性高分子と、前記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、前記生体吸収性高分子に対して相対的に溶解度が高く、且つ、前記生体吸収性高分子に対する溶解度よりも前記極細繊維不織布層に対する溶解度が低く前記溶媒1と相溶しない溶媒2と、前記溶媒1及び前記溶媒2と相溶する共溶媒3とを用いて、前記生体吸収性高分子を溶解した均一溶液を調製する工程4、
(5)前記均一溶液を、前記積層体の前記極細繊維不織布層の表面に塗工する工程5、(6)前記積層体の表面の前記均一溶液を冷却して、前記積層体の前記極細繊維不織布層の表面に前記生体吸収性高分子からなる多孔質層を析出させて複合体を形成する工程6、(7)前記複合体の前記高分子層を、前記高分子層に対して相対的に溶解度が高く且つ前記極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、前記高分子層を前記複合体から取り除き、前記極細繊維不織布層及び前記多孔質層からなる複合多孔体を得る工程7、
(8)前記複合多孔体を凍結乾燥して多孔質組織再生基材を得る工程8、
を有することを特徴とする多孔質組織再生基材の製造方法。
5.前記共溶媒3を2種以上用い、前記2種以上の共溶媒3の配合比を調整することにより、得られる多孔質層の平均孔径を制御する、項4に記載の多孔質組織再生基材の製造方法。
6.生体吸収性材料からなる少なくとも2層のチューブ状の人工血管であって、
 最内層に少なくとも1層の極細繊維不織布層を有し、
 前記極細繊維不織布層の外側の表面に平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する、
ことを特徴とする人工血管。
7.前記極細繊維不織布層は、平均繊維径が0.1~10μmの極細繊維からなる、項6に記載の人工血管。
8.前記極細繊維不織布層は、生体吸収性の異なる2種以上の生体吸収性高分子からなる、項6又は7に記載の人工血管。
9.生体吸収性材料からなる少なくとも2層のチューブ状の人工血管の製造方法であって、
(1-1)棒状体上に高分子層を形成する工程1-1、
(1-2)前記高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して棒状積層体を得る工程1-2、
(2)前記極細繊維不織布層に対して相対的に溶解度が低く、且つ、前記高分子層に対して相対的に溶解度が高い溶媒を用いて、前記棒状積層体の前記高分子層を膨潤させる工程2、
(3)膨潤させた前記高分子層と前記極細繊維不織布層とを圧着させ、乾燥させる工程3、
(4)生体吸収性高分子と、前記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、前記生体吸収性高分子に対して相対的に溶解度が高く、且つ、前記生体吸収性高分子に対する溶解度よりも前記極細繊維不織布層に対する溶解度が低く前記溶媒1と相溶しない溶媒2と、前記溶媒1及び前記溶媒2と相溶する共溶媒3とを用いて、前記生体吸収性高分子を溶解した均一溶液を調製する工程4、
(5)前記均一溶液を、前記棒状積層体の前記極細繊維不織布層の表面に塗工する工程5、
(6)前記棒状積層体の表面の前記均一溶液を冷却して、前記棒状積層体の前記極細繊維不織布層の表面に前記生体吸収性高分子からなる多孔質層を析出させて棒状複合体を形成する工程6、
(7)前記棒状複合体の前記高分子層を、前記高分子層に対して相対的に溶解度が高く且つ前記極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、前記棒状体及び前記高分子層を前記棒状複合体から取り除き、前記極細繊維不織布層及び前記多孔質層からなるチューブ状の複合多孔体を得る工程7、
(8)前記チューブ状の複合多孔体を凍結乾燥してチューブ状の人工血管を得る工程8、
を有することを特徴とする人工血管の製造方法。
10.前記棒状体は、金属からなる、項9に記載の人工血管の製造方法。
That is, the present invention provides the following porous tissue regeneration substrate, artificial blood vessel, and production methods thereof.
1. A porous tissue regeneration substrate that is a laminate of at least two layers made of a bioabsorbable material,
Having at least one ultrafine fiber nonwoven fabric layer,
Having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the surface of the ultrafine fiber nonwoven fabric layer;
A porous tissue regeneration substrate characterized by the above.
2. Item 2. The porous tissue regeneration substrate according to Item 1, wherein the ultrafine fiber nonwoven fabric layer is made of ultrafine fibers having an average fiber diameter of 0.1 to 10 µm.
3. Item 3. The porous tissue regeneration substrate according to Item 1 or 2, wherein the ultrafine fiber nonwoven fabric layer is composed of two or more types of bioabsorbable polymers having different bioabsorbability.
4). A method for producing a porous tissue regeneration substrate having at least two layers made of a bioabsorbable material, comprising:
(1) Step 1 of obtaining a laminate by discharging fibers made of a bioabsorbable material onto a polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer,
(2) A step of swelling the polymer layer of the laminate using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. 2, (3) Step 3, wherein the polymer layer swollen by the laminate and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
(4) The bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable The bioabsorbability using a solvent 2 that is less soluble in the ultrafine fiber nonwoven fabric layer than in the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 that is compatible with the solvent 2. Step 4 for preparing a homogeneous solution in which the polymer is dissolved,
(5) Step 5 of coating the uniform solution on the surface of the ultrafine fiber nonwoven fabric layer of the laminate, (6) Cooling the uniform solution on the surface of the laminate, and the ultrafine fiber of the laminate Step 6 of depositing a porous layer made of the bioabsorbable polymer on the surface of the non-woven fabric layer to form a composite, (7) The polymer layer of the composite is relative to the polymer layer A composite comprising the ultrafine fiber nonwoven fabric layer and the porous layer is dissolved in a solvent having a high solubility and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer, and the polymer layer is removed from the composite. Step 7 for obtaining a porous body,
(8) Step 8 of freeze-drying the composite porous body to obtain a porous tissue regeneration substrate,
A method for producing a porous tissue regeneration substrate, comprising:
5). Item 5. The porous tissue regeneration substrate according to Item 4, wherein the average pore size of the resulting porous layer is controlled by using two or more of the cosolvents 3 and adjusting the mixing ratio of the two or more cosolvents 3. Manufacturing method.
6). A tubular artificial blood vessel of at least two layers made of a bioabsorbable material,
It has at least one ultrafine fiber nonwoven fabric layer as the innermost layer,
Having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the outer surface of the ultrafine fiber nonwoven fabric layer;
An artificial blood vessel characterized by that.
7). Item 7. The artificial blood vessel according to Item 6, wherein the ultrafine fiber nonwoven fabric layer is made of ultrafine fibers having an average fiber diameter of 0.1 to 10 µm.
8). Item 8. The artificial blood vessel according to Item 6 or 7, wherein the ultrafine fiber nonwoven fabric layer is composed of two or more types of bioabsorbable polymers having different bioabsorbability.
9. A method for producing a tube-shaped artificial blood vessel having at least two layers made of a bioabsorbable material,
(1-1) Step 1-1 of forming a polymer layer on a rod-shaped body,
(1-2) Step 1-2 of discharging a fiber made of a bioabsorbable material onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer to obtain a rod-like laminate.
(2) The polymer layer of the rod-shaped laminate is swollen using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. Step 2,
(3) Step 3 in which the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
(4) The bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable The bioabsorbability using a solvent 2 that is less soluble in the ultrafine fiber nonwoven fabric layer than in the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 that is compatible with the solvent 2. Step 4 for preparing a homogeneous solution in which the polymer is dissolved,
(5) Step 5 of applying the uniform solution to the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate.
(6) The uniform solution on the surface of the rod-shaped laminate is cooled, and a porous layer made of the bioabsorbable polymer is deposited on the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate to form a rod-shaped composite. Forming step 6,
(7) The polymer layer of the rod-shaped composite is dissolved using a solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer, Step 7 for removing the rod-like body and the polymer layer from the rod-like composite to obtain a tubular composite porous body comprising the ultrafine fiber nonwoven fabric layer and the porous layer,
(8) Step 8 of freeze-drying the tubular composite porous body to obtain a tubular artificial blood vessel,
A method for producing an artificial blood vessel, comprising:
10. Item 10. The method for manufacturing an artificial blood vessel according to Item 9, wherein the rod-shaped body is made of metal.
 本発明の多孔質組織再生基材及び人工血管は、細胞浸潤性に優れており、優れた組織再生性を示すことができる。また、本発明の多孔質組織再生基材の製造方法及び人工血管の製造方法によれば、上記多孔質再生基材及び人工血管を容易に製造することができる。 The porous tissue regeneration substrate and the artificial blood vessel of the present invention are excellent in cell infiltration and can exhibit excellent tissue regeneration. Moreover, according to the method for producing a porous tissue regeneration base material and the method for producing an artificial blood vessel of the present invention, the porous regeneration base material and the artificial blood vessel can be easily produced.
本発明の人工血管の製造方法において、工程1-1を電界紡糸法により行う場合を示す模式図である。FIG. 3 is a schematic diagram showing a case where step 1-1 is performed by an electrospinning method in the method for producing an artificial blood vessel of the present invention. 本発明の人工血管の製造方法において、工程1-1により、棒状体上に高分子層が形成された状態を示す図である。In the method for producing an artificial blood vessel of the present invention, it is a diagram showing a state in which a polymer layer has been formed on a rod-like body by Step 1-1. 本発明の人工血管の製造方法における工程1-2を示す模式図である。FIG. 3 is a schematic diagram showing step 1-2 in the method for manufacturing an artificial blood vessel of the present invention. 本発明の人工血管の製造方法の工程1-2により得られる棒状積層体を示す図である。It is a figure which shows the rod-shaped laminated body obtained by process 1-2 of the manufacturing method of the artificial blood vessel of this invention. 本発明の人工血管の製造方法において、工程3により、膨潤させた高分子層と極細繊維不織布層とを圧着させる状態を示す断面模式図である。In the manufacturing method of the artificial blood vessel of this invention, it is a cross-sectional schematic diagram which shows the state which crimps | bonds the polymer layer swollen and the ultrafine fiber nonwoven fabric layer by the process 3. FIG. 本発明の人工血管の製造方法において、工程5により、均一溶液を、棒状積層体の極細繊維不織布層の表面に塗工する状態を示す図である。In the manufacturing method of the artificial blood vessel of this invention, it is a figure which shows the state which coats a uniform solution on the surface of the ultrafine fiber nonwoven fabric layer of a rod-shaped laminated body by the process 5. FIG. 本発明の人工血管の製造方法において、工程6により得られた棒状複合体を示す図である。In the manufacturing method of the artificial blood vessel of this invention, it is a figure which shows the rod-shaped composite_body | complex obtained by the process 6. FIG. 本発明の人工血管の製造方法において、工程7により得られたチューブ状の複合多孔体を示す図である。In the manufacturing method of the artificial blood vessel of this invention, it is a figure which shows the tube-shaped composite porous body obtained by the process 7. FIG. 実施例1で得られた人工血管の電子顕微鏡写真である。2 is an electron micrograph of an artificial blood vessel obtained in Example 1. 比較例1で得られた人工血管の電子顕微鏡写真である。2 is an electron micrograph of an artificial blood vessel obtained in Comparative Example 1. 実施例1において得られた人工血管の術後8週目の埋稙部分を摘出して得られた標本をHE染色して撮影した顕微鏡写真である。It is the microscope picture which image | photographed HE dye | stained the sample obtained by extracting the embedding part 8 weeks after the operation of the artificial blood vessel obtained in Example 1. FIG. 比較例1において得られた人工血管の術後8週目の埋稙部分を摘出して得られた標本をHE染色して撮影した顕微鏡写真である。It is the microscope picture which image | photographed HE dye | stained the sample obtained by extracting the embedding part 8 weeks after the operation of the artificial blood vessel obtained in the comparative example 1. FIG.
 本発明の多孔質組織再生基材は、生体吸収性材料からなる少なくとも2層の積層体である多孔質組織再生基材であって、少なくとも1層の極細繊維不織布層を有し、上記極細繊維不織布層の表面に、平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する多孔質組織再生基材である。また、本発明の人工血管は、生体吸収性材料からなる少なくとも2層のチューブ状の人工血管であって、最内層に少なくとも1層の極細繊維不織布層を有し、上記極細繊維不織布層の外側の表面に平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する人工血管である。本発明の多孔質組織再生基材及び人工血管は、上記構成を備えているので、多孔質層の空隙部分に細胞が侵入して増殖し易くなっており、早期に組織が再生される。特に、本発明の多孔質組織再生基材をチューブ状にして、最内層に少なくとも1層の極細繊維不織布層を有し、極細繊維不織布層の外側の表面に平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する構成とした本発明の人工血管では、最内層の極細繊維不織布層の表面が平滑性に優れていることから、血栓等が付着し難く、血管の詰まりが抑制されるので、人工血管として好適に用いることができる。 The porous tissue regeneration substrate of the present invention is a porous tissue regeneration substrate that is a laminate of at least two layers made of a bioabsorbable material, and has at least one ultrafine fiber nonwoven fabric layer, A porous tissue regeneration substrate having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the surface of the nonwoven fabric layer. Further, the artificial blood vessel of the present invention is a tube-shaped artificial blood vessel made of a bioabsorbable material, and has at least one ultrafine fiber nonwoven fabric layer in the innermost layer, and is located outside the ultrafine fiber nonwoven fabric layer. This is an artificial blood vessel having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the surface thereof. Since the porous tissue regeneration substrate and the artificial blood vessel of the present invention have the above-described configuration, cells easily enter and proliferate into the voids of the porous layer, and the tissue is regenerated early. In particular, the porous tissue regeneration substrate of the present invention is formed into a tube shape and has at least one ultrafine fiber nonwoven fabric layer as the innermost layer, and the average pore diameter is 0.1 to 800 μm on the outer surface of the ultrafine fiber nonwoven fabric layer. In the artificial blood vessel of the present invention having a structure having at least one porous layer, the surface of the innermost ultrafine fiber nonwoven fabric layer is excellent in smoothness. Since it is suppressed, it can be suitably used as an artificial blood vessel.
 また、本発明の多孔質組織再生基材の製造方法、及び人工血管の製造方法によれば、上記多孔質組織再生基材及び人工血管を容易に製造することができる。 Also, according to the method for producing a porous tissue regeneration substrate and the method for producing an artificial blood vessel of the present invention, the porous tissue regeneration substrate and the artificial blood vessel can be easily produced.
 以下、本発明の多孔質組織再生基材、人工血管、及びそれらの製造方法について詳細に説明する。 Hereinafter, the porous tissue regeneration substrate, the artificial blood vessel, and the production method thereof according to the present invention will be described in detail.
1.多孔質組織再生基材
 本発明の多孔質組織再生基材は、生体吸収性材料からなる少なくとも2層の積層体である多孔質組織再生基材であって、少なくとも1層の極細繊維不織布層を有し、上記極細繊維不織布層の表面に、平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する。上記多孔質組織再生基材の層構成は、上記少なくとも2層の積層体であり、後述する極細繊維不織布層及び多孔質層を少なくともそれぞれ1層ずつ有していれば特に限定されない。
1. Porous tissue regeneration substrate The porous tissue regeneration substrate of the present invention is a porous tissue regeneration substrate that is a laminate of at least two layers made of a bioabsorbable material, and includes at least one ultrafine fiber nonwoven fabric layer. And having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the surface of the ultrafine fiber nonwoven fabric layer. The layer structure of the porous tissue regeneration substrate is not particularly limited as long as it is the above-mentioned laminate of at least two layers and has at least one ultrafine fiber nonwoven fabric layer and one porous layer, which will be described later.
 多孔質組織再生基材の形状は特に限定されず、平面状、チューブ状等の種々の形状であってもよい。多孔質組織再生基材を平面状に形成した場合、皮膚等の比較的平面性を要求される組織の多孔質組織再生基材として好適に用いることができる。 The shape of the porous tissue regeneration substrate is not particularly limited, and may be various shapes such as a flat shape and a tube shape. When the porous tissue regeneration substrate is formed in a planar shape, it can be suitably used as a porous tissue regeneration substrate for tissues that require relatively flatness, such as skin.
 本発明の多孔質組織再生基材を、極細繊維不織布層が最内層となるようにチューブ状に形成した場合、本発明の人工血管となる。 When the porous tissue regeneration substrate of the present invention is formed in a tube shape such that the ultrafine fiber nonwoven fabric layer is the innermost layer, the artificial blood vessel of the present invention is obtained.
(極細繊維不織布層)
 極細繊維不織布層は、生体吸収性材料からなる、極細繊維により形成される不織布層である。特に、多孔質組織再生基材において、極細繊維不織布層を血液に接触する層とした場合、血栓形成を抑制し、且つ、血液中からの細胞浸潤を容易にすることができる。また、極細繊維不織布層を設けることにより多孔質組織再生基材の強度を向上させることができる。
(Extra fine fiber nonwoven fabric layer)
The ultrafine fiber nonwoven fabric layer is a nonwoven fabric layer made of ultrafine fibers made of a bioabsorbable material. In particular, in the porous tissue regeneration substrate, when the ultrafine fiber nonwoven fabric layer is a layer in contact with blood, thrombus formation can be suppressed and cell infiltration from blood can be facilitated. Moreover, the intensity | strength of a porous structure | tissue reproduction | regeneration base material can be improved by providing a very fine fiber nonwoven fabric layer.
 極細繊維不織布層を構成する生体吸収性材料としては生体吸収性を有していれば特に限定されず、例えば、生体吸収性高分子を好適に用いることができる。生体吸収性高分子としては、ポリグリコール酸、ポリグリコリド、ポリラクチド、ポリ-ε-カプロラクトン、ラクチド-グリコール酸共重合体、グリコリド-ε-カプロラクトン共重合体、ラクチド-ε-カプロラクトン共重合体、ポリジオキサンノン、ポリクエン酸、ポリリンゴ酸、ポリ-α-シアノアクリレート、ポリ-β-ヒドロキシ酸、ポリトリメチレンオキサレート、ポリテトラメチレンオキサレート、ポリオルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリ-γ-ベンジル-L-グルタメート、ポリ-γ-メチル-L-グルタメート、ポリ-L-アラニン、ポリグリコールセバスチン酸等の合成高分子;デンプン、アルギン酸、ヒアルロン酸、キチン、ペクチン酸及びその誘導体等の多糖類;ゼラチン、コラーゲン、アルブミン、フィブリン等のタンパク質等の天然高分子等が挙げられる。 The bioabsorbable material constituting the ultrafine fiber nonwoven fabric layer is not particularly limited as long as it has bioabsorbability. For example, a bioabsorbable polymer can be suitably used. Bioabsorbable polymers include polyglycolic acid, polyglycolide, polylactide, poly-ε-caprolactone, lactide-glycolic acid copolymer, glycolide-ε-caprolactone copolymer, lactide-ε-caprolactone copolymer, poly Dioxane, polycitric acid, polymalic acid, poly-α-cyanoacrylate, poly-β-hydroxy acid, polytrimethylene oxalate, polytetramethylene oxalate, polyorthoester, polyorthocarbonate, polyethylene carbonate, poly-γ- Synthetic polymers such as benzyl-L-glutamate, poly-γ-methyl-L-glutamate, poly-L-alanine, polyglycol sebastic acid; starch, alginic acid, hyaluronic acid, chitin, pectinic acid and their derivatives Sugars; gelatin, Collagen, albumin, natural polymers, and the like such as a protein of fibrin, and the like.
 上記生体吸収性材料は1種単独で用いてもよいし、2種以上を混合して用いてもよい。特に、生体吸収性の異なる2種以上の生体吸収性高分子を組み合わせて用いることが好ましい。生体吸収性の異なる2種以上の生体吸収性高分子を組み合わせて極細繊維不織布層を構成することにより、極細繊維不織布層への細胞の侵入をより一層容易にすることができ、血管再生の遅延や、石灰化の原因となることをより一層抑制することができる。例えば、相対的に生体吸収性の高いポリグリコリドと、相対的に生体吸収性の低いポリラクチドとを組み合わせて極細繊維不織布層を構成するとする。この場合、特に強度が求められる移植直後の比較的初期においては、2種の生体吸収性高分子のいずれもが分解せずに存在することから、高い強度向上効果を発揮できる。その後、徐々に生体吸収性の高いポリグリコリドが分解され吸収されていくに従って、極細繊維不織布層に空隙が生成する。この空隙により細胞の侵入がより一層容易となり、血管再生がより一層促進され、石灰化をより一層抑制することができる。 The above bioabsorbable materials may be used alone or in combination of two or more. In particular, it is preferable to use a combination of two or more kinds of bioabsorbable polymers having different bioabsorbability. Combining two or more types of bioabsorbable polymers with different bioabsorbability to form an ultrafine fiber nonwoven layer makes it easier to invade cells into the ultrafine fiber nonwoven layer and delays blood vessel regeneration. Moreover, it can suppress further that it becomes a cause of calcification. For example, it is assumed that the ultrafine fiber nonwoven fabric layer is configured by combining polyglycolide having relatively high bioabsorbability and polylactide having relatively low bioabsorbability. In this case, since both of the two types of bioabsorbable polymers exist without being decomposed at a relatively early stage immediately after transplantation, particularly when strength is required, a high strength improvement effect can be exhibited. Thereafter, as the polyglycolide having high bioabsorbability is gradually decomposed and absorbed, voids are formed in the ultrafine fiber nonwoven fabric layer. This void makes it easier for cells to enter, promotes blood vessel regeneration, and can further suppress calcification.
 極細繊維不織布層を形成する繊維の繊維径は0.1μm~10μmが好ましい。上記繊維系を0.1μm以上とすることで、繊維間と繊維間の距離が適度に広くなり細胞浸潤性がより一層優れ、10μm以下とすることで、極細繊維不織布層の表面の平滑性がより一層向上して、血栓形成の一因である血小板の付着をより一層抑制することができる。上記繊維径は0.3μm~8.0μmがより好ましく、0.3μm~5.0μmが更に好ましい。 The fiber diameter of the fibers forming the ultrafine fiber nonwoven fabric layer is preferably 0.1 μm to 10 μm. When the fiber system is 0.1 μm or more, the distance between fibers is appropriately widened, the cell infiltration is further improved, and when it is 10 μm or less, the surface smoothness of the ultrafine fiber nonwoven fabric layer is improved. It can be further improved and platelet adhesion that is a cause of thrombus formation can be further suppressed. The fiber diameter is more preferably 0.3 μm to 8.0 μm, still more preferably 0.3 μm to 5.0 μm.
 本明細書において、上記極細繊維不織布層を形成する繊維の平均繊維径は、多孔質組織再生基材をその表面とは垂直方向に切断し、得られた電子顕微鏡像の任意の10点の繊維の直径を測定し、その平均値を算出することにより測定される。同様に、本発明の多孔質組織再生基材が人工血管である場合は、チューブ状の人工血管を長手方向と直交する方向で切断し、人工血管の壁面の断面の中央付近を電子顕微鏡を用いて電子顕微鏡像を撮影し、得られた電子顕微鏡像の任意の10点の繊維の直径を測定し、その平均値を算出することにより測定される。 In the present specification, the average fiber diameter of the fibers forming the ultrafine fiber nonwoven fabric layer is obtained by cutting the porous tissue regenerated substrate in a direction perpendicular to the surface thereof, and the fibers of any 10 points in the obtained electron microscope image The diameter is measured and the average value is calculated. Similarly, when the porous tissue regeneration substrate of the present invention is an artificial blood vessel, a tube-shaped artificial blood vessel is cut in a direction perpendicular to the longitudinal direction, and an electron microscope is used near the center of the cross section of the wall surface of the artificial blood vessel. This is measured by taking an electron microscope image, measuring the diameters of 10 arbitrary fibers in the obtained electron microscope image, and calculating the average value.
 極細繊維不織布層の厚みは10~1000μmが好ましい。極細繊維不織布層の厚みが上記範囲内であると、より一層強度向上効果を発揮することができる。 The thickness of the ultrafine fiber nonwoven fabric layer is preferably 10 to 1000 μm. When the thickness of the ultrafine fiber nonwoven fabric layer is within the above range, the effect of improving the strength can be further exhibited.
 極細繊維不織布層は、少なくとも1層形成されていればよく、複数層形成されていてもよい。 It is sufficient that at least one ultrafine fiber nonwoven fabric layer is formed, and a plurality of layers may be formed.
(多孔質層)
 多孔質層は、組織再生を早めるため、極細繊維不織布層の表面に配置される層である。多孔質層は、極細繊維不織布層の少なくとも片面の表面に形成されていればよく、両面の表面に形成されていてもよいが、通常は片面の表面にのみ形成される。
(Porous layer)
The porous layer is a layer disposed on the surface of the ultrafine fiber nonwoven fabric layer in order to accelerate tissue regeneration. The porous layer only needs to be formed on at least one surface of the ultrafine fiber nonwoven fabric layer, and may be formed on both surfaces, but is usually formed only on one surface.
 多孔質層の平均孔径は、0.1~800μmである。平均孔径が0.1μmより小さいと細胞浸潤性が劣り、800μmより大きいと侵入してきた細胞を補足することが困難となる。多孔質層の平均孔径は、1.0~700μmが好ましく、10~600μmがより好ましい。 The average pore diameter of the porous layer is 0.1 to 800 μm. If the average pore size is smaller than 0.1 μm, the cell invasiveness is inferior. The average pore size of the porous layer is preferably 1.0 to 700 μm, more preferably 10 to 600 μm.
 本明細書において、上記多孔質層の平均孔径は、多孔質組織再生基材をその表面とは垂直方向に切断し、多孔質組織再生基材の断面の中央付近を電子顕微鏡を用いて電子顕微鏡像を撮影し、得られた電子顕微鏡像の多孔質層の任意の10点の孔の直径(長径)を測定して、その平均値を算出することにより測定される。同様に、本発明の多孔質組織再生基材が人工血管である場合は、チューブ状の人工血管を長手方向と直交する方向で切断し、人工血管の壁面の断面の中央付近を電子顕微鏡を用いて電子顕微鏡像を撮影し、得られた電子顕微鏡像の多孔質層の任意の10点の孔の直径(長径)を測定して、その平均値を算出することにより測定される。 In the present specification, the average pore size of the porous layer is determined by cutting the porous tissue regenerated substrate in a direction perpendicular to the surface thereof, and using an electron microscope around the center of the cross section of the porous tissue regenerated substrate. It is measured by taking an image, measuring the diameter (major axis) of arbitrary 10 holes of the porous layer of the obtained electron microscope image, and calculating the average value. Similarly, when the porous tissue regeneration substrate of the present invention is an artificial blood vessel, a tube-shaped artificial blood vessel is cut in a direction perpendicular to the longitudinal direction, and an electron microscope is used near the center of the cross section of the wall surface of the artificial blood vessel. This is measured by taking an electron microscope image, measuring the diameter (major axis) of arbitrary 10 holes of the porous layer of the obtained electron microscope image, and calculating the average value.
 多孔質層は、生体吸収性高分子により形成されていることが好ましい。多孔質層を形成する生体吸収性高分子としては特に限定されず、上述した極細繊維不織布層を構成する生体吸収性高分子と同様の生体吸収性高分子を用いることができる。 The porous layer is preferably made of a bioabsorbable polymer. It does not specifically limit as a bioabsorbable polymer which forms a porous layer, The bioabsorbable polymer similar to the bioabsorbable polymer which comprises the microfiber nonwoven fabric layer mentioned above can be used.
 多孔質層の厚みは、上記極細繊維不織布層の厚みとのバランス、所望の形状、及び人工血管である場合は所望の口径を勘案して設定すればよい。多孔質層の厚みは特に限定されず、10~1000μmが好ましく、50~600μmがより好ましい。 The thickness of the porous layer may be set in consideration of the balance with the thickness of the ultrafine fiber nonwoven fabric layer, the desired shape, and the desired diameter in the case of an artificial blood vessel. The thickness of the porous layer is not particularly limited, and is preferably 10 to 1000 μm, more preferably 50 to 600 μm.
 多孔質層は、少なくとも1層形成されていればよく、複数層形成されていてもよい。 It is sufficient that at least one porous layer is formed, and a plurality of layers may be formed.
 本発明の多孔質組織再生基材は、各層に、ヘパリン等の血栓の形成を防止する剤や、bFGF等の血管の再生を促進する成長因子等を含有してもよい。更に、移植に先立って、間葉系幹細胞等の細胞が播種されていてもよい。 The porous tissue regeneration substrate of the present invention may contain, in each layer, an agent that prevents the formation of a thrombus such as heparin, a growth factor that promotes the regeneration of blood vessels such as bFGF, and the like. Furthermore, prior to transplantation, cells such as mesenchymal stem cells may be seeded.
2.人工血管
 本発明の人工血管は、生体吸収性材料からなる少なくとも2層のチューブ状の人工血管であって、最内層に少なくとも1層の極細繊維不織布層を有し、上記極細繊維不織布層の外側の表面に平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する。上記多孔質組織再生基材を、極細繊維不織布層が最内層となるようにチューブ状に形成した場合、本発明の人工血管となる。
2. Artificial blood vessel The artificial blood vessel of the present invention is a tube-shaped artificial blood vessel of at least two layers made of a bioabsorbable material, and has at least one ultrafine fiber nonwoven fabric layer in the innermost layer, and is located outside the ultrafine fiber nonwoven fabric layer. At least one porous layer having an average pore size of 0.1 to 800 μm. When the porous tissue regeneration substrate is formed in a tube shape such that the ultrafine fiber nonwoven fabric layer is the innermost layer, the artificial blood vessel of the present invention is obtained.
 本発明の人工血管において、上記極細繊維不織布層は最内層の直接血液に接触する層であり、血栓形成を抑制し、且つ、血液中からの細胞浸潤を容易にする層である。また、極細繊維不織布層を設けることにより人工血管の強度を向上させることができる。 In the artificial blood vessel of the present invention, the ultrafine fiber nonwoven fabric layer is an innermost layer that is in direct contact with blood, is a layer that suppresses thrombus formation and facilitates cell infiltration from blood. Moreover, the strength of the artificial blood vessel can be improved by providing the ultrafine fiber nonwoven fabric layer.
 本発明の人工血管において、上記多孔質層は、極細繊維不織布層の外側の表面に形成される。上記構成とすることで、最内層の直接血液に接触する層が極細繊維不織布層となり、血栓形成を抑制し、且つ、血液中からの細胞浸潤を容易にすることができる。 In the artificial blood vessel of the present invention, the porous layer is formed on the outer surface of the ultrafine fiber nonwoven fabric layer. By setting it as the said structure, the layer which contacts the blood of innermost layer directly becomes an ultrafine fiber nonwoven fabric layer, can suppress thrombus formation and can make cell infiltration from the blood easy.
 人工血管の内径は特に限定されず、一般的な血管の内径から、好ましい下限は0.5mm、好ましい上限は8.0mm程度である。また、上記人工血管の外径は特に限定されず、一般的な血管の外径から、好ましい下限は1.0mm、好ましい上限は10.0mm程度である。とりわけ内径が2.0~5.0mm程度の抹消血管の再生にも利用可能な人工血管は、従来の方法では製造が困難であったが、後述する本発明の人工血管の製造方法によれば容易に製造することができる。 The inner diameter of the artificial blood vessel is not particularly limited, and the preferable lower limit is about 0.5 mm and the preferable upper limit is about 8.0 mm from the inner diameter of a general blood vessel. The outer diameter of the artificial blood vessel is not particularly limited, and the preferable lower limit is about 1.0 mm and the preferable upper limit is about 10.0 mm from the outer diameter of a general blood vessel. In particular, an artificial blood vessel that can be used for regeneration of a peripheral blood vessel having an inner diameter of about 2.0 to 5.0 mm has been difficult to manufacture by a conventional method. However, according to the method for manufacturing an artificial blood vessel of the present invention described later, It can be manufactured easily.
 本発明の人工血管の上記以外の構成については、上記多孔質組織再生基材と同一である。 Other configurations of the artificial blood vessel of the present invention are the same as those of the porous tissue regeneration substrate.
 本発明の人工血管は、人工血管以外にも神経再生に用いることができる。また、本発明のチューブ状の人工血管を長手方向と平行方向に切開し、血管欠損部の組織再生を促すパッチ等の組織再生基材として用いることができる。 The artificial blood vessel of the present invention can be used for nerve regeneration in addition to artificial blood vessels. Further, the tube-shaped artificial blood vessel of the present invention can be used as a tissue regeneration base material such as a patch for incising a tissue in a vascular defect part by incising in a direction parallel to the longitudinal direction.
3.多孔質組織再生基材の製造方法
 本発明の多孔質組織再生基材の製造方法は、生体吸収性材料からなる少なくとも2層の多孔質組織再生基材の製造方法であって、
(1)高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して積層体を得る工程1、
(2)上記極細繊維不織布層に対して相対的に溶解度が低く、且つ、上記高分子層に対して相対的に溶解度が高い溶媒を用いて、上記積層体の前記高分子層を膨潤させる工程2、(3)上記積層体の膨潤させた上記高分子層と上記極細繊維不織布層とを圧着させ、乾燥させる工程3、
(4)生体吸収性高分子と、上記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、上記生体吸収性高分子に対して相対的に溶解度が高く、且つ、上記生体吸収性高分子に対する溶解度よりも上記極細繊維不織布層に対する溶解度が低く上記溶媒1と相溶しない溶媒2と、上記溶媒1及び上記溶媒2と相溶する共溶媒3とを用いて、上記生体吸収性高分子を溶解した均一溶液を調製する工程4、
(5)上記均一溶液を、上記積層体の上記極細繊維不織布層の表面に塗工する工程5、(6)上記積層体の表面の上記均一溶液を冷却して、上記積層体の上記極細繊維不織布層の表面に上記生体吸収性高分子からなる多孔質層を析出させて複合体を形成する工程6、(7)上記複合体の上記高分子層を、上記高分子層に対して相対的に溶解度が高く且つ上記極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、上記高分子層を上記複合体から取り除き、上記極細繊維不織布層及び上記多孔質層からなる複合多孔体を得る工程7、
(8)上記複合多孔体を凍結乾燥して多孔質組織再生基材を得る工程8、
を有する製造方法である。
3. A method for producing a porous tissue regeneration substrate according to the present invention is a method for producing a porous tissue regeneration substrate having at least two layers made of a bioabsorbable material,
(1) Step 1 of obtaining a laminate by discharging fibers made of a bioabsorbable material onto a polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer,
(2) A step of swelling the polymer layer of the laminate using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. 2, (3) Step 3 of pressure-bonding and drying the swollen polymer layer and the ultrafine fiber nonwoven fabric layer of the laminate.
(4) The bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable Using the solvent 2 having a lower solubility in the ultrafine fiber nonwoven fabric layer than the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 compatible with the solvent 2. Step 4 for preparing a homogeneous solution in which the polymer is dissolved,
(5) Step 5 of applying the uniform solution to the surface of the ultrafine fiber nonwoven fabric layer of the laminate, (6) Cooling the uniform solution on the surface of the laminate, and the ultrafine fiber of the laminate Step 6 of depositing a porous layer made of the bioabsorbable polymer on the surface of the non-woven fabric layer to form a composite, (7) The polymer layer of the composite is relative to the polymer layer A composite composed of the ultrafine fiber nonwoven fabric layer and the porous layer, dissolved in a solvent having a high solubility and a relatively low solubility in the ultrafine fiber nonwoven fabric layer, and removing the polymer layer from the composite. Step 7 for obtaining a porous body,
(8) Step 8 of freeze-drying the composite porous body to obtain a porous tissue regeneration substrate,
It is a manufacturing method which has this.
 本発明の多孔質組織再生基材の製造方法により製造される多孔質組織再生基材の形状がチューブ状である場合、本発明の人工血管となる。このため、後述するように、本発明の多孔質組織再生基材の製造方法において、棒状体上に高分子層、極細繊維不織布層及び多孔質層を形成し、棒状体及び高分子層を取り除く工程を有する製造方法とすることにより、本発明の人工血管の製造方法となる。先ず、以下に本発明の多孔質組織再生基材の製造方法について説明する。 When the porous tissue regeneration substrate produced by the method for producing a porous tissue regeneration substrate of the present invention has a tube shape, the artificial blood vessel of the present invention is obtained. Therefore, as described later, in the method for producing a porous tissue regeneration substrate of the present invention, a polymer layer, an ultrafine fiber nonwoven fabric layer, and a porous layer are formed on a rod-like body, and the rod-like body and the polymer layer are removed. By setting it as the manufacturing method which has a process, it becomes the manufacturing method of the artificial blood vessel of this invention. First, the manufacturing method of the porous structure | tissue reproduction | regeneration base material of this invention is demonstrated below.
(工程1)
 工程1は、高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して積層体を得る工程である。
(Process 1)
Step 1 is a step of discharging a fiber made of a bioabsorbable material onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer to obtain a laminate.
 高分子層は、後述する多孔質層を形成するための生体吸収性高分子の均一溶液が、極細繊維不織布層の高分子層を形成する側の表面へ侵入することを抑制する層であり、最終的に取り除かれる層である。 The polymer layer is a layer that suppresses a homogeneous solution of a bioabsorbable polymer for forming a porous layer, which will be described later, from entering the surface of the ultrafine fiber nonwoven fabric layer forming side, It is the layer that is finally removed.
 高分子層を形成する高分子としては、多孔質層を形成するための生体吸収性高分子の均一溶液の極細繊維不織布層への侵入を抑制でき、形成された高分子層を容易に取り除くことができれば特に限定されない。このような高分子としては、例えば、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、HEMA、ポリアクリル酸ナトリウム、ポリアクリルアミド、ポリエチレンイミン、ポリビニルピロリドン、ポリグルタミン酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、でんぷん、キサンタンガム、ゼラチン等が挙げられる。これらの中でも、生体吸収性高分子の均一溶液の極細繊維不織布層への侵入をより一層抑制することができ、且つ、形成された高分子層を容易に取り除くことができる点で、ポリビニルアルコール、ポリアクリル酸ナトリウムが好ましい。 As the polymer that forms the polymer layer, penetration of the uniform solution of the bioabsorbable polymer for forming the porous layer into the ultrafine fiber nonwoven fabric layer can be suppressed, and the formed polymer layer can be easily removed. If it is possible, there is no particular limitation. Examples of such a polymer include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, HEMA, sodium polyacrylate, polyacrylamide, polyethyleneimine, polyvinylpyrrolidone, polyglutamic acid, carboxymethylcellulose, hydroxyethylcellulose, starch, xanthan gum, gelatin and the like. Is mentioned. Among these, polyvinyl alcohol, in that the penetration of the uniform solution of the bioabsorbable polymer into the ultrafine fiber nonwoven fabric layer can be further suppressed, and the formed polymer layer can be easily removed. Sodium polyacrylate is preferred.
 上記高分子は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The above polymers may be used singly or in combination of two or more.
 高分子層の形態は特に限定されず、高分子フィルム等の平面状の層であってもよいし、ナノファイバー等の繊維状の高分子の不織布層であってもよい。中でも、高分子のナノファイバーの不織布層であることが好ましい。高分子層を高分子のナノファイバーの不織布層とすることにより、高分子層を均一な厚みに形成し易く、且つ、後工程で極細繊維不織布層を電界紡糸法により形成する場合、高分子層の密度を0.3~0.8g/cm程度に調整することができるため電圧がかかり易くなり、極細繊維不織布層をより一層形成し易くなる。 The form of the polymer layer is not particularly limited, and may be a planar layer such as a polymer film or a fibrous polymer nonwoven fabric layer such as nanofiber. Among these, a non-woven fabric layer of polymer nanofibers is preferable. By forming the polymer layer into a non-woven layer of polymer nanofibers, the polymer layer can be easily formed to have a uniform thickness, and when the ultrafine fiber nonwoven fabric layer is formed by electrospinning in a later step, the polymer layer Can be adjusted to about 0.3 to 0.8 g / cm 3 , so that a voltage is easily applied, and an ultrafine fiber nonwoven fabric layer can be more easily formed.
 高分子層の厚みは、後工程での電界紡糸法等の方法による極細繊維不織布層の形成を阻害しなければ特に限定されず、10~800μmが好ましく、30~500μmがより好ましい。 The thickness of the polymer layer is not particularly limited as long as it does not hinder the formation of the ultrafine fiber nonwoven fabric layer by a method such as electrospinning in a later step, preferably 10 to 800 μm, more preferably 30 to 500 μm.
 高分子層の形成方法としては特に限定されず、例えば、高分子層を形成する高分子を適当な溶媒に溶解させ、平面状体、棒状体等の基材上にディプコーティング、スプレーコーティング、電界紡糸法(エレクトロスピニング)等の方法により形成する方法が挙げられる。高分子層を形成後、後工程で電界紡糸法により極細繊維不織布層を積層するため、生産性の観点から同様な装置で均一な高分子層を形成させることが望ましく、上記方法の中でも、電界紡糸法が好適である。 The method for forming the polymer layer is not particularly limited. For example, the polymer for forming the polymer layer is dissolved in a suitable solvent, and dip coating, spray coating, electric field is applied on a substrate such as a planar body or a rod-shaped body. Examples thereof include a method of forming by a method such as spinning (electrospinning). After the polymer layer is formed, the ultrafine fiber nonwoven fabric layer is laminated by an electrospinning method in a later step. Therefore, it is desirable to form a uniform polymer layer with a similar apparatus from the viewpoint of productivity. A spinning method is preferred.
 高分子層の形成を電界紡糸法で行う場合、電界紡糸の条件は特に限定されず、電圧-5~-25kV、ノズル径18~32Gの条件で行うことが好ましい。 When the polymer layer is formed by the electrospinning method, the electrospinning conditions are not particularly limited, and it is preferably performed under conditions of a voltage of −5 to −25 kV and a nozzle diameter of 18 to 32 G.
 上記基材として平面状体を用いれば、製造される多孔質組織再生基材が平面状となり、皮膚等の比較的平面性を要求される組織に好適に用いられる多孔質組織再生基材を製造することができる。また、上記基材として棒状体を用いれば、製造される多孔質組織再生基材がチューブ状となり、本発明の人工血管を製造することができる。 If a planar body is used as the substrate, the produced porous tissue regeneration substrate becomes planar, and a porous tissue regeneration substrate suitable for use in tissues such as skin that require relatively flatness is produced. can do. Moreover, if a rod-shaped body is used as the substrate, the produced porous tissue regeneration substrate has a tube shape, and the artificial blood vessel of the present invention can be manufactured.
 工程1では、上記高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成する。電界紡糸法は、ノズルとコレクタ電極との間に高電圧をかけた状態で、ノズルから生体吸収性高分子を溶解した溶液をターゲットに向けて吐出する方法である。ノズルから発射された溶液は、電気力線に沿って極細繊維状となり、ターゲット上に付着する。 In step 1, fibers made of a bioabsorbable material are ejected onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer. The electrospinning method is a method in which a solution in which a bioabsorbable polymer is dissolved is discharged from a nozzle toward a target while a high voltage is applied between the nozzle and a collector electrode. The solution fired from the nozzle becomes an ultrafine fiber along the electric lines of force and adheres on the target.
 極細繊維不織布層の形成を電界紡糸法で行う場合、電界紡糸の条件は特に限定されず、電圧-5~-25kV、ノズル径18~32Gの条件で行うことが好ましい。 When the ultrafine fiber nonwoven fabric layer is formed by the electrospinning method, the electrospinning conditions are not particularly limited, and are preferably performed under conditions of a voltage of −5 to −25 kV and a nozzle diameter of 18 to 32 G.
 工程1で用いられる極細繊維不織布層を形成する生体吸収性材料としては、上述の本発明の多孔質組織再生基材の極細繊維不織布層の説明において説明した生体吸収性高分子を好適に用いることができる。工程1で好適に用いられる生体吸収性高分子は、後述する工程4において用いられる良溶媒(溶媒2)及び共溶媒3に溶解しないことが好ましく、例えば、工程4において良溶媒としてメチルエチルケトン(MEK)、共溶媒としてアセトンを用いる場合、これらの溶媒の溶解度パラメーター(sp値)がそれぞれ9.3及び10であることから、それらよりも溶解度パラメーターが高いことが好ましい。このような生体吸収性高分子としては、ポリラクチド、ポリグリコール酸、ラクチド-グリコール酸共重合体、グリコリド-ε-カプロラクトン共重合体、ラクチド-ε-カプロラクトン共重合体、ポリジオキサンノン、コラーゲン等が挙げられる。これらの中でも、ポリラクチド、ラクチド-ε-カプロラクトン共重合体が好ましい。ポリラクチドの中でも、ポリ-L-ラクチド(PLLA)は溶解度パラメーターが19であるので好適に用いることができ、ポリ-D,L-ラクチド(PDLLA)は、D-ラクチドとLラクチドとの混合比を適宜調整することにより溶解度パラメーターを調整することができ、好適に用いることができる。また、ラクチド-ε-カプロラクトン共重合体は、ラクチドとε-カプロラクトンとの共重合比LA/CLを75/25~100/0の範囲とすることにより結晶性が高くなり、好適に用いることができる。 As the bioabsorbable material for forming the ultrafine fiber nonwoven fabric layer used in step 1, the bioabsorbable polymer described in the explanation of the ultrafine fiber nonwoven fabric layer of the porous tissue regeneration substrate of the present invention is preferably used. Can do. The bioabsorbable polymer suitably used in step 1 is preferably not dissolved in the good solvent (solvent 2) and co-solvent 3 used in step 4 described below. For example, methyl ethyl ketone (MEK) is used as the good solvent in step 4. When acetone is used as a co-solvent, the solubility parameter (sp value) of these solvents is 9.3 and 10, respectively, so that the solubility parameter is preferably higher than those. Examples of such bioabsorbable polymers include polylactide, polyglycolic acid, lactide-glycolic acid copolymer, glycolide-ε-caprolactone copolymer, lactide-ε-caprolactone copolymer, polydioxane, collagen and the like. Can be mentioned. Among these, polylactide and lactide-ε-caprolactone copolymer are preferable. Among polylactides, poly-L-lactide (PLLA) has a solubility parameter of 19 and can be used preferably. Poly-D, L-lactide (PDLLA) has a mixing ratio of D-lactide and L-lactide. A solubility parameter can be adjusted by adjusting suitably and it can use suitably. The lactide-ε-caprolactone copolymer has high crystallinity when the copolymerization ratio LA / CL of lactide and ε-caprolactone is in the range of 75/25 to 100/0, and is preferably used. it can.
 工程1において生体性高分子は、後述する工程4で用いられる良溶媒(溶媒2)及び共溶媒3に溶解しないよう耐溶剤性を向上させてもよく、熱処理(アニーリング)されていてもよい。 In step 1, the biological polymer may be improved in solvent resistance so as not to dissolve in the good solvent (solvent 2) and co-solvent 3 used in step 4 to be described later, and may be heat-treated (annealed).
 以上説明した工程1により、高分子層上に極細繊維不織布層が形成された積層体を得ることができる。 By the step 1 described above, it is possible to obtain a laminate in which the ultrafine fiber nonwoven fabric layer is formed on the polymer layer.
(工程2)
 工程2は、極細繊維不織布層に対して相対的に溶解度が低く、且つ、高分子層に対して相対的に溶解度が高い溶媒を用いて、積層体の高分子層を膨潤させる工程である。上記工程1により得られた積層体では、高分子層と極細繊維不織布層とは界面で密着しておらず、当該界面に、後工程により多孔質層を形成する生体吸収性高分子を溶解させた均一溶液(高分子溶液)が侵入し、極細繊維不織布の高分子層が形成される側の表面にも高分子層が形成されてしまう。本発明では、上記工程2において、積層体の高分子層を溶解させない程度に膨潤させることにより、高分子層と極細繊維不織布層とを密着させることができ、これらの界面への高分子溶液の侵入を抑制することができる。
(Process 2)
Step 2 is a step of swelling the polymer layer of the laminate using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. In the laminate obtained by the above step 1, the polymer layer and the ultrafine fiber nonwoven fabric layer are not in close contact at the interface, and the bioabsorbable polymer that forms the porous layer is dissolved in the interface at the interface. The uniform solution (polymer solution) enters and a polymer layer is also formed on the surface of the ultrafine fiber nonwoven fabric on which the polymer layer is formed. In the present invention, in step 2 above, the polymer layer and the ultrafine fiber nonwoven fabric layer can be brought into close contact with each other by swelling the polymer layer of the laminate so as not to dissolve. Intrusion can be suppressed.
 上記極細繊維不織布層に対して相対的に溶解度が低く、且つ、高分子層に対して相対的に溶解度が高い溶媒とは、高分子層よりも極細繊維不織布層を溶解しにくい性質を有する溶媒であることを意味する。このような溶媒としては、例えば、水、メタノール、エタノール、アセトニトリル、テトラヒドロフラン等が挙げられる。上記溶媒は1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer is a solvent having a property that the ultrafine fiber nonwoven fabric layer is less soluble than the polymer layer. It means that. Examples of such a solvent include water, methanol, ethanol, acetonitrile, tetrahydrofuran and the like. The said solvent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 上記溶媒を用いて高分子層を膨潤させる方法としては特に限定されず、例えば、工程1により得られた積層体を上記溶媒に浸漬する方法が挙げられる。浸漬時間は特に限定されず、1~60分が好ましく、5~30分がより好ましい。浸漬の際の溶媒の温度は上記溶媒の沸点を超えない程度であればよく、5~60℃が好ましく、10~50℃がより好ましい。 The method for swelling the polymer layer using the solvent is not particularly limited, and examples thereof include a method of immersing the laminate obtained in Step 1 in the solvent. The immersion time is not particularly limited, preferably 1 to 60 minutes, and more preferably 5 to 30 minutes. The temperature of the solvent at the time of immersion may be a level that does not exceed the boiling point of the solvent, preferably 5 to 60 ° C, more preferably 10 to 50 ° C.
 以上説明した工程2により、上記積層体の高分子層が膨潤される。 By the step 2 described above, the polymer layer of the laminate is swollen.
(工程3)
 工程3は、積層体の膨潤させた高分子層と極細繊維不織布層とを圧着させ、乾燥させる工程である。上述のように、工程1により得られた積層体では、高分子層と極細繊維不織布層との界面は密着しておらず、当該界面に、後工程により多孔質層を形成する生体吸収性高分子を溶解させた高分子溶液が侵入し、極細繊維不織布の高分子層が形成される側の表面にも多孔質層が形成されてしまう。このため、上記工程2により積層体の高分子層を膨潤させた後、工程3により高分子層と極細繊維不織布層とを密着させる。
(Process 3)
Step 3 is a step in which the swelled polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried. As described above, in the laminate obtained in step 1, the interface between the polymer layer and the ultrafine fiber nonwoven fabric layer is not in close contact, and a highly bioabsorbable layer is formed on the interface by a subsequent step. A polymer solution in which molecules are dissolved enters and a porous layer is also formed on the surface of the ultrafine fiber nonwoven fabric on which the polymer layer is formed. For this reason, after swelling the polymer layer of a laminated body by the said process 2, a polymer layer and an ultrafine fiber nonwoven fabric layer are closely_contact | adhered by the process 3. FIG.
 積層体の膨潤させた高分子層と極細繊維不織布層とを圧着させる圧着方法としては特に限定されず、従来公知の方法により圧着させればよい。このような方法としては、例えば、上記工程2により高分子層を膨潤させた積層体全体を、シリコン板等で均一にロールプレスする方法が挙げられる。また、工程3においては、超音波溶着により極細繊維不織布層を損傷させない程度に、高分子層だけを溶融させて圧着してもよい。 The pressure-bonding method for press-bonding the swollen polymer layer and the ultrafine fiber nonwoven fabric layer of the laminate is not particularly limited, and may be performed by a conventionally known method. As such a method, for example, there is a method in which the entire laminate in which the polymer layer is swollen in the step 2 is uniformly roll-pressed with a silicon plate or the like. In Step 3, only the polymer layer may be melted and pressure-bonded to such an extent that the ultrafine fiber nonwoven fabric layer is not damaged by ultrasonic welding.
 上記圧着方法として、シリコン板等で均一にロールプレスする方法を採用する場合、ロールプレスの際の圧力は、0.01~10MPaが好ましく、0.2~5.0MPaがより好ましい。 In the case of adopting a method of uniformly roll-pressing with a silicon plate or the like as the pressure-bonding method, the pressure during the roll-pressing is preferably 0.01 to 10 MPa, more preferably 0.2 to 5.0 MPa.
 工程3では、積層体の高分子層と極細繊維不織布層とを圧着させた後、積層体を乾燥させる。積層体を乾燥させることにより、後工程で極細繊維不織布層の表面に多孔質層を好適に形成することができる。上記乾燥方法としては特に限定されず、従来公知の方法を用いることができる。このような方法としては、例えば、積層体を20~100℃程度の乾燥オーブンに1~60分間程度入れて乾燥させる方法が挙げられる。また、極細繊維不織布層の表面をキムワイプ等で拭きとる方法により乾燥させてもよい。 In step 3, the laminated polymer is dried after the polymer layer of the laminate and the ultrafine fiber nonwoven fabric layer are pressure-bonded. By drying the laminate, a porous layer can be suitably formed on the surface of the ultrafine fiber nonwoven fabric layer in a subsequent step. It does not specifically limit as said drying method, A conventionally well-known method can be used. Examples of such a method include a method in which the laminate is dried by placing it in a drying oven at about 20 to 100 ° C. for about 1 to 60 minutes. Further, the surface of the ultrafine fiber nonwoven fabric layer may be dried by a method of wiping with a Kimwipe or the like.
 以上説明した工程3により、積層体の膨潤させた高分子層と極細繊維不織布層とが圧着され、乾燥される。 By the step 3 described above, the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressed and dried.
(工程4)
 工程4は、生体吸収性高分子と、生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、生体吸収性高分子に対して相対的に溶解度が高く、且つ、生体吸収性高分子に対する溶解度よりも極細繊維不織布層に対する溶解度が低く溶媒1と相溶しない溶媒2と、溶媒1及び溶媒2と相溶する共溶媒3とを用いて、生体吸収性高分子を溶解した均一溶液を調製する工程である。
(Process 4)
Step 4 includes a bioabsorbable polymer, a solvent 1 having a relatively low solubility in the bioabsorbable polymer, a relatively high solubility in the bioabsorbable polymer, and a high bioabsorbability. A homogeneous solution in which a bioabsorbable polymer is dissolved using a solvent 2 that is less soluble in the ultrafine fiber nonwoven fabric layer than the molecule and is incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 that is compatible with the solvent 2 Is a step of preparing
 工程4において用いられる生体吸収性高分子は、上記均一溶液を調製できるものであれば特に限定されず、例えば、上述の本発明の多孔質組織再生基材を構成する極細繊維不織布層の説明において説明した生体吸収性高分子の中から適宜選択して用いることができる。これらの中でも、ポリε-カプロラクトン、ポリジオキサノン、ポリクエン酸、ポリリンゴ酸、ポリ-α-シアノアクリレート、ポリ-β-ヒドロキシ酸、ポリトリメチレンオキサレート、ポリテトラメチレンオキサレート、ポリオルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリ-γ-ベンジル-L-グルタメート、ポリ-γ-メチル-L-グルタメート、ポリ-L-アラニン、ポリグリコールセバシン酸等のグリコール酸共重合体、グリコリド-ε-カプロラクトン共重合体、ポリ(ラクチド-co-グリコリド)共重合体、ラクチド-ε-カプロラクトン共重合体等を好適に用いることができる。特に、ラクチド-ε-カプロラクトン共重合体は、ラクチドとε-カプロラクトンとの共重合比LA/CLを75/25~0/100の範囲とすることにより上記均一溶液をより一層容易に調製することができ、より好適に用いることができる。 The bioabsorbable polymer used in Step 4 is not particularly limited as long as it can prepare the homogeneous solution. For example, in the description of the ultrafine fiber nonwoven fabric layer constituting the porous tissue regeneration substrate of the present invention described above. The bioabsorbable polymer described can be appropriately selected and used. Among these, poly ε-caprolactone, polydioxanone, polycitric acid, polymalic acid, poly-α-cyanoacrylate, poly-β-hydroxy acid, polytrimethylene oxalate, polytetramethylene oxalate, polyorthoester, polyorthocarbonate Glycolic acid copolymers such as polyethylene carbonate, poly-γ-benzyl-L-glutamate, poly-γ-methyl-L-glutamate, poly-L-alanine, polyglycol sebacic acid, glycolide-ε-caprolactone copolymer Poly (lactide-co-glycolide) copolymer, lactide-ε-caprolactone copolymer and the like can be suitably used. In particular, the lactide-ε-caprolactone copolymer can be more easily prepared by making the copolymerization ratio LA / CL of lactide and ε-caprolactone in the range of 75/25 to 0/100. Can be used more suitably.
 溶媒1は、上記生体吸収性高分子に対して相対的に溶解度が低い、いわゆる貧溶媒である。ここで、「生体吸収性高分子に対し相対的に溶解度が低い」とは、上記溶媒2よりも上記生体吸収性高分子を溶解しにくい性質を有することを意味する。 Solvent 1 is a so-called poor solvent that has relatively low solubility in the bioabsorbable polymer. Here, “relatively low solubility in the bioabsorbable polymer” means that the bioabsorbable polymer is less soluble than the solvent 2.
 溶媒1としては、生体吸収性高分子が合成高分子である場合には、例えば、水、メタノール、n-プロパノール、イソプロパノール、n-ブタノール等を用いることができる。なかでも、取り扱い性に優れることから、水が好適である。 As the solvent 1, when the bioabsorbable polymer is a synthetic polymer, for example, water, methanol, n-propanol, isopropanol, n-butanol and the like can be used. Of these, water is preferred because of its excellent handleability.
 溶媒2は、上記生体吸収性高分子に対して相対的に溶解度が高いいわゆる良溶媒であって、且つ、生体吸収性高分子に対する溶解度よりも極細繊維不織布層に対する溶解度が低い溶媒である。ここで、「生体吸収性高分子に対して相対的に溶解度が高い」とは、上記溶媒1よりも上記生体吸収性高分子を溶解しやすい性質を有することを意味する。 Solvent 2 is a so-called good solvent having a relatively high solubility in the bioabsorbable polymer and a solvent having a lower solubility in the ultrafine fiber nonwoven fabric layer than in the bioabsorbable polymer. Here, “relatively high solubility in the bioabsorbable polymer” means that the bioabsorbable polymer is more easily dissolved than the solvent 1.
 溶媒2は、溶媒1と相溶しないものである。ここで相溶しないとは、25℃の室温下で混合、撹拌しても相分離することを意味する。 Solvent 2 is incompatible with solvent 1. Here, incompatible means that the phases are separated even when mixed and stirred at room temperature of 25 ° C.
 溶媒2としては、工程4で用いられる生体吸収性高分子が合成高分子であって、溶媒1として水を選択した場合には、例えば、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミノケトン、シクロヘサノン、酢酸エチル等の有機溶媒を用いることができる。なかでも、安価で比較的取扱い容易なメチルエチルケトンが好適である。 As the solvent 2, when the bioabsorbable polymer used in Step 4 is a synthetic polymer and water is selected as the solvent 1, for example, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl An organic solvent such as aminoketone, cyclohesanone, and ethyl acetate can be used. Of these, methyl ethyl ketone, which is inexpensive and relatively easy to handle, is preferred.
 共溶媒3は、溶媒1と溶媒2とのいずれとも相溶する。このような共溶媒3を組み合わせることにより、溶媒1と溶媒2とが非相溶であっても相分離法による多孔質層を製造することが可能となり、溶媒1と溶媒2との組み合わせの選択肢が飛躍的に広がる。ここで相溶するとは、25℃の室温下で混合、撹拌しても相分離しないことを意味する。 Co-solvent 3 is compatible with both solvent 1 and solvent 2. By combining such a co-solvent 3, it becomes possible to produce a porous layer by a phase separation method even if the solvent 1 and the solvent 2 are incompatible, and options for combining the solvent 1 and the solvent 2 Will spread dramatically. Compatibilization here means that phase separation does not occur even when mixed and stirred at room temperature of 25 ° C.
 得られる多孔質層の孔径は、溶媒1と溶媒2との配合比を調整することにより制御することができる。具体的には、溶媒1の比率を高くすると得られる多孔質層の孔径が大きくなり、溶媒2の比率を高くすると得られる多孔質層の孔径が小さくなる。溶媒1と溶媒2との配合比は特に限定されず、溶媒1と溶媒2とが重量比で1:1~1:100の範囲内であることが好ましい。この範囲内であると、均一な多孔質層を製造することができる。より好ましくは、1:10~1:50の範囲内である。 The pore size of the obtained porous layer can be controlled by adjusting the blending ratio of the solvent 1 and the solvent 2. Specifically, when the ratio of the solvent 1 is increased, the pore diameter of the obtained porous layer is increased, and when the ratio of the solvent 2 is increased, the pore diameter of the obtained porous layer is decreased. The mixing ratio of the solvent 1 and the solvent 2 is not particularly limited, and the solvent 1 and the solvent 2 are preferably in a range of 1: 1 to 1: 100 by weight. Within this range, a uniform porous layer can be produced. More preferably, it is in the range of 1:10 to 1:50.
 溶媒1及び溶媒2の合計と共溶媒3との配合比は特に限定されないが、溶媒1及び溶媒2の合計と共溶媒3とが重量比で1:0.01~1:0.5の範囲内であることが好ましい。この範囲内であると、より一層均一な多孔質層を製造することができる。より好ましくは、1:0.02~1:0.3の範囲内である。 The blending ratio of the total of the solvent 1 and the solvent 2 and the co-solvent 3 is not particularly limited. It is preferable to be within. Within this range, a more uniform porous layer can be produced. More preferably, it is in the range of 1: 0.02 to 1: 0.3.
 工程4で用いられる生体吸収性高分子として合成高分子を用い、溶媒1として極細繊維不織布層に対して溶解度が低い溶媒である水を選択し、上記溶媒2として有機溶媒を選択した場合には、共溶媒3としては、例えば、アセトン、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、イソブタノール、テトラヒドロフラン等を用いることができる。 When a synthetic polymer is used as the bioabsorbable polymer used in Step 4 and water, which is a solvent having low solubility in the ultrafine fiber nonwoven fabric layer, is selected as the solvent 1, and an organic solvent is selected as the solvent 2. As the cosolvent 3, for example, acetone, methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, isobutanol, tetrahydrofuran and the like can be used.
 工程4では、共溶媒3を2種以上組み合わせて用いることが好ましい(以下、共溶媒3に含まれる2種以上の溶媒を「共溶媒3-1」、「共溶媒3-2」、・・・ともいう。)。上記共溶媒3を2種以上組み合わせて、例えば、共溶媒3-1と共溶媒3-2の配合比を調整することにより、得られる多孔質層の平均孔径を制御することができる。即ち、溶媒1と溶媒2と共溶媒3の配合比を一定としたまま、共溶媒3に含まれる共溶媒3-1と共溶媒3-2との配合比を調整することにより、得られる多孔質層の平均孔径を制御することができる。これは、得られる多孔質層のかさ密度をほぼ一定として、孔径のみを調整可能なことを意味する。このような本発明の多孔質組織再生基材の製造方法によれば、任意の孔径とかさ密度を有する多孔質層を製造することがより一層容易になる。 In step 4, it is preferable to use a combination of two or more co-solvents 3 (hereinafter, two or more solvents included in co-solvent 3 are referred to as “co-solvent 3-1”, “co-solvent 3-2”,.・ Also called.) The average pore diameter of the resulting porous layer can be controlled by combining two or more of the cosolvents 3 and adjusting the mixing ratio of the cosolvent 3-1 and the cosolvent 3-2, for example. That is, the porous ratio obtained by adjusting the blending ratio of the cosolvent 3-1 and the cosolvent 3-2 contained in the cosolvent 3 while keeping the blending ratio of the solvent 1, the solvent 2 and the cosolvent 3 constant. The average pore size of the quality layer can be controlled. This means that only the pore diameter can be adjusted while the bulk density of the obtained porous layer is substantially constant. According to such a method for producing a porous tissue regeneration substrate of the present invention, it becomes even easier to produce a porous layer having an arbitrary pore size and bulk density.
 極細繊維不織布層、工程4で用いられる生体吸収性高分子、及び各溶媒の組み合わせとしては特に限定されず、各溶媒が極細繊維不織布層に対して溶解度が低く生体吸収性高分子に対して溶解度が高い溶媒の組み合わせとすればよい。例えば、極細繊維不織布層がポリラクチドからなり、工程4で用いられる生体吸収性高分子としてのラクチド-ε-カプロラクトン共重合体に対して、溶媒1が水、溶媒2がメチルエチルケトンである組み合わせ;極細繊維不織布層がポリグリコライドからなり、生体吸収性高分子としてのポリラクチドに対して、溶媒1が水、溶媒2がクロロホルムである組み合わせ;極細繊維不織布層がポリグリコライドからなり、工程4で用いられる生体吸収性高分子としてのポリラクチドに対して、共溶媒3-1がテトラヒドロフラン、共溶媒3-2がエタノールである組み合わせ;極細繊維不織布層がポリグリコライドからなり、工程4で用いられる生体吸収性高分子としてのポリラクチドに対して、溶媒1が水、溶媒2がクロロホルム、共溶媒3-1がアセトン、共溶媒3-2がエタノールである組み合わせ等が挙げられる。 The combination of the ultrafine fiber nonwoven fabric layer, the bioabsorbable polymer used in Step 4 and each solvent is not particularly limited, and each solvent has a low solubility in the ultrafine fiber nonwoven fabric layer and is soluble in the bioabsorbable polymer. May be a combination of solvents having a high value. For example, a combination in which the ultrafine fiber nonwoven fabric layer is made of polylactide and the solvent 1 is water and the solvent 2 is methyl ethyl ketone for the lactide-ε-caprolactone copolymer as a bioabsorbable polymer used in Step 4; A combination in which the nonwoven fabric layer is made of polyglycolide and the solvent 1 is water and the solvent 2 is chloroform with respect to polylactide as a bioabsorbable polymer; the ultrafine fiber nonwoven fabric layer is made of polyglycolide and used in Step 4 A combination of polylactide as a bioabsorbable polymer with co-solvent 3-1 in tetrahydrofuran and co-solvent 3-2 in ethanol; the ultrafine fiber nonwoven fabric layer is made of polyglycolide and used in step 4 For polylactide as a polymer, solvent 1 is water, solvent 2 is chloroform, co-solvent 3 1 acetone cosolvent 3-2 include combinations is ethanol.
 工程4においては、生体吸収性高分子と溶媒1と溶媒2と共溶媒3とを用いて、生体吸収性高分子を溶解した均一溶液を調製する。より具体的に上記均一溶液を調製する方法としては、例えば、生体吸収性高分子と、上記溶媒1、溶媒2及び共溶媒3を含む混合溶媒(以下、単に「混合溶媒」ともいう。)を混合した後、加熱する方法が挙げられる。また、より容易に均一溶液を調製する方法として、例えば、上記混合溶媒を予め加熱し、該加熱した混合溶媒に生体吸収性高分子を加える方法や、生体吸収性高分子をいったん溶媒2に溶解した後、加熱しながら溶媒1及び共溶媒3を加える方法等も挙げられる。混合方法は特に限定されず、例えば、スターラチップ、撹拌棒等を用いた公知の混合方法を用いることができる。 In Step 4, a homogeneous solution in which the bioabsorbable polymer is dissolved is prepared using the bioabsorbable polymer, the solvent 1, the solvent 2, and the cosolvent 3. More specifically, as a method for preparing the uniform solution, for example, a mixed solvent containing a bioabsorbable polymer, the solvent 1, the solvent 2, and the co-solvent 3 (hereinafter also simply referred to as “mixed solvent”). The method of heating after mixing is mentioned. Further, as a method for preparing a uniform solution more easily, for example, the above mixed solvent is heated in advance, and a bioabsorbable polymer is added to the heated mixed solvent, or the bioabsorbable polymer is once dissolved in the solvent 2. Then, a method of adding the solvent 1 and the co-solvent 3 while heating is also included. The mixing method is not particularly limited, and for example, a known mixing method using a stirrer chip, a stirring rod or the like can be used.
 工程4における上記加熱の温度としては、生体吸収性高分子が均一に溶解する温度であれば特に限定されず、溶媒1、溶媒2及び共溶媒3のいずれの沸点よりも低い温度が好ましい。加熱温度をこのような温度とすることにより、加熱温度を沸点以上の温度とすることによる各溶媒の配合比の変動を抑制することができ、得られる多孔質組織再生基材の孔径、かさ密度をより一層制御し易くなる。 The temperature of the heating in Step 4 is not particularly limited as long as the bioabsorbable polymer is uniformly dissolved, and a temperature lower than any boiling point of the solvent 1, the solvent 2 and the cosolvent 3 is preferable. By setting the heating temperature to such a temperature, fluctuations in the mixing ratio of each solvent due to the heating temperature being higher than the boiling point can be suppressed, and the pore diameter and bulk density of the resulting porous tissue regeneration substrate It becomes easier to control.
 以上説明した工程4により、均一溶液が調製される。 A uniform solution is prepared by the process 4 described above.
(工程5)
 工程5は、上記均一溶液を、積層体の極細繊維不織布層の表面に塗工する工程である。上記均一溶液を極細繊維不織布層の表面に塗工する方法としては特に限定されず、例えば、極細繊維不織布層が形成された積層体を均一溶液中に1回又は複数回ディップする方法等が挙げられる。
(Process 5)
Step 5 is a step of coating the uniform solution on the surface of the ultrafine fiber nonwoven fabric layer of the laminate. The method for coating the uniform solution on the surface of the ultrafine fiber nonwoven fabric layer is not particularly limited, and examples thereof include a method of dipping a laminate formed with the ultrafine fiber nonwoven fabric layer once or a plurality of times in the uniform solution. It is done.
 以上説明した工程5により、上記均一溶液が、積層体の極細繊維不織布層の表面に塗工される。 By the step 5 described above, the uniform solution is applied to the surface of the ultrafine fiber nonwoven fabric layer of the laminate.
(工程6)
 工程6は、積層体の表面の均一溶液を冷却して、積層体の極細繊維不織布層の表面に生体吸収性高分子からなる多孔質層を析出させて複合体を形成する工程である。積層体を冷却することにより、不溶となった生体吸収性高分子からなる多孔質層が析出する。これは、いわゆる一般的な熱融起相分離の冷却による多孔質高分子の析出であるが、析出された多孔質層は細胞浸潤性にとって望ましい連通孔となっている。これは、生体吸収性高分子が結晶化され析出する前に、生体吸収性高分子が結晶化する温度以上で、液体状態の生体吸収性高分子と各溶媒とがまず熱力学的不安定性により相分離(液-液相分離)するためと考えられる。
(Step 6)
Step 6 is a step of cooling the uniform solution on the surface of the laminate and depositing a porous layer made of a bioabsorbable polymer on the surface of the ultrafine fiber nonwoven fabric layer of the laminate to form a composite. By cooling the laminate, a porous layer made of the insoluble bioabsorbable polymer is deposited. This is precipitation of a porous polymer by cooling of so-called general thermal fusion phase separation, and the deposited porous layer is a desirable communication hole for cell infiltration. This is because, before the bioabsorbable polymer is crystallized and precipitated, the bioabsorbable polymer in the liquid state and each solvent are first caused by thermodynamic instability above the temperature at which the bioabsorbable polymer crystallizes. This is thought to be due to phase separation (liquid-liquid phase separation).
 工程6における冷却の温度としては、生体吸収性高分子からなる多孔質層を析出できる温度であれば特に限定されないが、4℃以下であることが好ましく、-24℃以下であることがより好ましい。なお、得られる多孔質組織再生基材の孔径は冷却速度にも影響される。具体的には、冷却速度が早いと孔径が小さくなり、冷却速度が遅いと孔径が大きくなる傾向がある。従って、特に孔径の小さい多孔質組織再生基材を得る場合には、冷却温度を低く設定して急速に冷却することが考えられる。また、冷却温度の下限は特に限定されず、-40℃が好ましく、-70℃がより好ましい。 The cooling temperature in step 6 is not particularly limited as long as the porous layer made of the bioabsorbable polymer can be deposited, but is preferably 4 ° C. or lower, more preferably −24 ° C. or lower. . Note that the pore diameter of the porous tissue regeneration substrate obtained is also affected by the cooling rate. Specifically, when the cooling rate is fast, the hole diameter tends to be small, and when the cooling rate is slow, the hole diameter tends to be large. Therefore, when obtaining a porous tissue regeneration substrate having a particularly small pore diameter, it is conceivable that the cooling temperature is set low and the substrate is rapidly cooled. The lower limit of the cooling temperature is not particularly limited, and is preferably −40 ° C., more preferably −70 ° C.
 工程6における冷却時間としては特に限定されず、5~480分が好ましく、10~120分がより好ましい。 The cooling time in Step 6 is not particularly limited, preferably 5 to 480 minutes, and more preferably 10 to 120 minutes.
 冷却方法としては特に限定されず、従来公知の冷却方法により冷却すればよい。このような冷却方法としては、例えば、積層体を冷凍庫に保管する方法が挙げられる。 The cooling method is not particularly limited, and may be cooled by a conventionally known cooling method. Examples of such a cooling method include a method of storing the laminate in a freezer.
 以上説明した工程6により、積層体の極細繊維不織布層の表面に生体吸収性高分子からなる多孔質層が析出して複合体が形成される。 By the process 6 described above, a porous layer made of a bioabsorbable polymer is deposited on the surface of the ultrafine fiber nonwoven fabric layer of the laminate, thereby forming a composite.
(工程7)
 工程7は、複合体の高分子層を高分子層に対して相対的に溶解度が高く且つ極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、高分子層を複合体から取り除き、極細繊維不織布層及び多孔質層からなる複合多孔体を得る工程である。
(Step 7)
Step 7 is to dissolve the polymer layer using a solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer. Is a step of obtaining a composite porous body comprising an ultrafine fiber nonwoven fabric layer and a porous layer.
 高分子層に対し相対的に溶解度が高く且つ極細繊維不織布層に対して相対的に溶解度が低い溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、ブタノール、t―ブチルアルコール等が挙げられる。ここで、高分子層に対して相対的に溶解度が高く且つ極細繊維不織布層に対して相対的に溶解度が低いとは、高分子層よりも極細繊維不織布層を溶解しにくい性質を有することを意味する。 Examples of the solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer include water, methanol, ethanol, isopropanol, butanol, and t-butyl alcohol. Here, the relatively high solubility with respect to the polymer layer and the relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer means that the ultrafine fiber nonwoven fabric layer is less soluble than the polymer layer. means.
 高分子層を上記溶媒を用いて溶解させる方法としては特に限定されず、上記溶媒に複合体を浸漬する方法等が挙げられる。このような方法により高分子層を溶解させる場合、浸漬時間は、1分~24時間であることが好ましい。 The method for dissolving the polymer layer using the solvent is not particularly limited, and examples thereof include a method of immersing the composite in the solvent. When the polymer layer is dissolved by such a method, the immersion time is preferably 1 minute to 24 hours.
 工程7における溶媒の温度は、5~60℃が好ましく、20~40℃がより好ましい。 The temperature of the solvent in Step 7 is preferably 5 to 60 ° C, and more preferably 20 to 40 ° C.
 工程7では、より具体的には、上記高分子層を形成する高分子としてポリビニルアルコールを用いた場合、溶媒として水を用いることが好ましく、例えば、複合体を37℃の水に約20~60分間浸漬させ、これを数回繰り返すことで、複合体から高分子層を容易に取り除くことができる。 In step 7, more specifically, when polyvinyl alcohol is used as the polymer for forming the polymer layer, it is preferable to use water as the solvent. For example, the composite is immersed in water at 37 ° C. for about 20-60. By soaking for a minute and repeating this several times, the polymer layer can be easily removed from the composite.
 以上説明した工程7により、高分子層を複合体から取り除き、極細繊維不織布層及び多孔質層からなる複合多孔体を得ることができる。 By the step 7 described above, the polymer layer is removed from the composite, and a composite porous body composed of the ultrafine fiber nonwoven fabric layer and the porous layer can be obtained.
(工程8)
 工程8は、複合多孔体を凍結乾燥して多孔質組織再生基材を得る工程である。凍結乾燥の条件としては特に限定されず、従来公知の条件で行うことができる。
(Process 8)
Step 8 is a step of obtaining a porous tissue regeneration substrate by freeze-drying the composite porous body. The lyophilization conditions are not particularly limited, and can be performed under conventionally known conditions.
 凍結乾燥の凍結温度としては特に限定されず、-100℃~-10℃が好ましく、-50℃~-30℃がより好ましい。 The freezing temperature for lyophilization is not particularly limited, but is preferably −100 ° C. to −10 ° C., more preferably −50 ° C. to −30 ° C.
 凍結乾燥の際の圧力としては特に限定されず、1~400Paが好ましく、5~100Paがより好ましい。 The pressure during lyophilization is not particularly limited, preferably 1 to 400 Pa, more preferably 5 to 100 Pa.
 凍結乾燥の乾燥時間としては特に限定されず、12~96時間が好ましく、24~52時間がより好ましい。 The drying time for lyophilization is not particularly limited, and is preferably 12 to 96 hours, more preferably 24 to 52 hours.
 以上説明した工程8により、複合多孔体が凍結乾燥されて、多孔質組織再生基材を得ることができる。 By the step 8 described above, the composite porous body can be freeze-dried to obtain a porous tissue regeneration substrate.
 本発明の多孔質組織再生基材の極細繊維不織布層を複数層形成する場合は、上記工程1において、電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成する工程を複数回繰り返して行い、極細繊維不織布層を所望の層数で形成すればよい。 In the case of forming a plurality of ultrafine fiber nonwoven fabric layers of the porous tissue regeneration substrate of the present invention, in step 1 above, fibers made of a bioabsorbable material are discharged by electrospinning to form an ultrafine fiber nonwoven fabric layer. The process may be repeated a plurality of times to form the ultrafine fiber nonwoven fabric layer with a desired number of layers.
 本発明の多孔質組織再生基材の多孔質層を複数層形成する場合は、上記工程4及び5を複数回繰り返して行い、多孔質層を所望の層数で形成すればよい。 When forming a plurality of porous layers of the porous tissue regeneration substrate of the present invention, the above steps 4 and 5 may be repeated a plurality of times to form a porous layer with a desired number of layers.
 上記多孔質組織再生基材の製造方法により製造される多孔質組織再生基材の形状は特に限定されず、平面状、チューブ状等の種々の形状であってもよい。上記工程1において、高分子層の形状を所望の形状にすることにより、多孔質組織再生基材の形状を所望の形状にすることができる。上記多孔質再生基材の製造方法により、多孔質組織再生基材を極細繊維不織布層が最内層となるようにチューブ状に製造した場合、後述する本発明の人工血管の製造方法となる。 The shape of the porous tissue regeneration substrate produced by the method for producing a porous tissue regeneration substrate is not particularly limited, and may be various shapes such as a flat shape and a tube shape. In the step 1, the shape of the polymer layer can be changed to a desired shape by changing the shape of the polymer layer to a desired shape. When the porous tissue regeneration substrate is produced in a tube shape so that the ultrafine fiber nonwoven fabric layer becomes the innermost layer by the method for producing a porous regeneration substrate, the method for producing an artificial blood vessel of the present invention described later is obtained.
 なお、本発明の多孔質組織再生基材は、後述する本発明の人工血管の製造方法において、製造されたチューブ状の人工血管を長手方向と平行方向に切開することによっても製造することができる。このようにして製造された本発明の多孔質組織再生基材は、血管欠損部の組織再生を促すパッチ等として用いることができる。 The porous tissue regeneration substrate of the present invention can also be produced by incising the produced tubular artificial blood vessel in the direction parallel to the longitudinal direction in the method for producing an artificial blood vessel of the present invention described later. . The porous tissue regeneration substrate of the present invention thus produced can be used as a patch or the like for promoting tissue regeneration of a blood vessel defect portion.
4.人工血管の製造方法
 本発明の人工血管の製造方法は、生体吸収性材料からなる少なくとも2層のチューブ状の人工血管の製造方法であって、
(1-1)棒状体上に高分子層を形成する工程1-1、
(1-2)上記高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して棒状積層体を得る工程1-2、
(2)上記極細繊維不織布層に対して相対的に溶解度が低く、且つ、上記高分子層に対して相対的に溶解度が高い溶媒を用いて、上記棒状積層体の上記高分子層を膨潤させる工程2、
(3)膨潤させた上記高分子層と上記極細繊維不織布層とを圧着させ、乾燥させる工程3、
(4)生体吸収性高分子と、上記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、上記生体吸収性高分子に対して相対的に溶解度が高く、且つ、上記生体吸収性高分子に対する溶解度よりも上記極細繊維不織布層に対する溶解度が低く上記溶媒1と相溶しない溶媒2と、上記溶媒1及び上記溶媒2と相溶する共溶媒3とを用いて、上記生体吸収性高分子を溶解した均一溶液を調製する工程4、
(5)上記均一溶液を、上記棒状積層体の前記極細繊維不織布層の表面に塗工する工程5、
(6)上記棒状積層体の表面の前記均一溶液を冷却して、上記棒状積層体の上記極細繊維不織布層の表面に上記生体吸収性高分子からなる多孔質層を析出させて棒状複合体を形成する工程6、
(7)上記棒状複合体の上記高分子層を、上記高分子層に対して相対的に溶解度が高く且つ上記極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、上記棒状体及び上記高分子層を上記棒状複合体から取り除き、上記極細繊維不織布層及び上記多孔質層からなるチューブ状の複合多孔体を得る工程7、
(8)上記チューブ状の複合多孔体を凍結乾燥してチューブ状の人工血管を得る工程8、を有することを特徴とする製造方法である。
4). The method for producing an artificial blood vessel according to the present invention is a method for producing a tube-shaped artificial blood vessel having at least two layers made of a bioabsorbable material,
(1-1) Step 1-1 of forming a polymer layer on a rod-shaped body,
(1-2) Step 1-2 of discharging a fiber made of a bioabsorbable material onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer to obtain a rod-like laminate.
(2) The polymer layer of the rod-shaped laminate is swollen using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. Step 2,
(3) Step 3 in which the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
(4) The bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable Using the solvent 2 having a lower solubility in the ultrafine fiber nonwoven fabric layer than the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 compatible with the solvent 2. Step 4 for preparing a homogeneous solution in which the polymer is dissolved,
(5) Step 5 of applying the uniform solution to the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate.
(6) The uniform solution on the surface of the rod-shaped laminate is cooled, and a porous layer made of the bioabsorbable polymer is deposited on the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate to form a rod-shaped composite. Forming step 6,
(7) The polymer layer of the rod-shaped composite is dissolved using a solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer, Removing the rod-like body and the polymer layer from the rod-like composite to obtain a tubular composite porous body comprising the ultrafine fiber nonwoven fabric layer and the porous layer;
(8) A manufacturing method comprising the step 8 of freeze-drying the tubular composite porous body to obtain a tubular artificial blood vessel.
 本発明の人工血管の製造方法は、上記多孔質組織再生基材の製造方法において、多孔質組織再生基材をチューブ状に製造する製造方法である。このため、本発明の人工血管の製造方法では、上記多孔質組織再生基材の製造方法の工程1において棒状体を用い、棒状体上に高分子層を形成した後、当該高分子層上に順次極細繊維不織布層及び多孔質層を形成して、工程7において棒状体及び高分子層を取り除くこととなる。 The method for producing an artificial blood vessel according to the present invention is a method for producing a porous tissue regeneration substrate in a tube shape in the method for producing a porous tissue regeneration substrate. For this reason, in the method for producing an artificial blood vessel of the present invention, a rod-like body is used in Step 1 of the method for producing a porous tissue regeneration substrate, and after forming a polymer layer on the rod-like body, The ultrafine fiber nonwoven fabric layer and the porous layer are sequentially formed, and in step 7, the rod-like body and the polymer layer are removed.
 以下、本発明の人工血管の製造方法について、上記多孔質組織再生基材の製造方法との相違点を中心に、図を用いて説明する。以下の本発明の人工血管の製造方法の説明において、記載のない事項は、上記多孔質組織再生基材の製造方法と同一である。 Hereinafter, the method for producing an artificial blood vessel of the present invention will be described with reference to the drawings, focusing on the differences from the method for producing a porous tissue regeneration substrate. In the following description of the method for producing an artificial blood vessel of the present invention, items not described are the same as those in the method for producing a porous tissue regeneration substrate.
(工程1-1)
 工程1-1は、棒状体上に高分子層を形成する工程である。棒状体上に高分子層を形成する方法としては特に限定されず、高分子層を含有する樹脂組成物を塗布し、乾燥させる方法や、電界紡糸法等が挙げられる。中でも、後述する棒状体を用いて効率よく高分子層を形成することができる点で、電界紡糸法により形成することが好ましい。
(Step 1-1)
Step 1-1 is a step of forming a polymer layer on the rod-shaped body. The method for forming the polymer layer on the rod-shaped body is not particularly limited, and examples thereof include a method in which a resin composition containing the polymer layer is applied and dried, and an electrospinning method. Especially, it is preferable to form by an electrospinning method at the point which can form a polymer layer efficiently using the rod-shaped body mentioned later.
(棒状体)
 棒状体は、高分子層をチューブ状に成形するための部材である。棒状体としては特に限定されず、従来公知の棒状の部材を用いることがでる。棒状体としては、例えば、ステンレスや樹脂被覆ステンレス等の金属からなる棒状体が挙げられる。棒状体として金属からなる導電性の棒状体を用いることにより、電界紡糸法において棒状体をコレクタ電極として、高分子層及び極細繊維不織布層を効率よく形成することができる。
(Bar-shaped body)
The rod-shaped body is a member for forming the polymer layer into a tube shape. It does not specifically limit as a rod-shaped body, A conventionally well-known rod-shaped member can be used. Examples of the rod-shaped body include a rod-shaped body made of a metal such as stainless steel or resin-coated stainless steel. By using a conductive rod-shaped body made of metal as the rod-shaped body, the polymer layer and the ultrafine fiber nonwoven fabric layer can be efficiently formed using the rod-shaped body as a collector electrode in the electrospinning method.
 棒状体の直径は、0.4~50mmが好ましく、0.5~40mmがより好ましい。棒状体の直径を上記範囲とすることで、人工血管の内径を、体内の所望の部位に好適に用いることができる。また、棒状体の長さは、製造する血管の長さに合わせて適宜設定すればよい。 The diameter of the rod-shaped body is preferably 0.4 to 50 mm, more preferably 0.5 to 40 mm. By setting the diameter of the rod-shaped body within the above range, the inner diameter of the artificial blood vessel can be suitably used for a desired site in the body. Further, the length of the rod-shaped body may be appropriately set according to the length of the blood vessel to be manufactured.
 図1は、工程1-1を電界紡糸法により行う場合を示す模式図である。図1では、棒状体1をコレクタ電極として、棒状体1を回転させて、ノズル2を往復させながら高分子層を形成する高分子を吐出している。工程1-1により、図2に示すように、棒状体1上に高分子層3が形成される。 FIG. 1 is a schematic diagram showing a case where step 1-1 is performed by an electrospinning method. In FIG. 1, the rod-shaped body 1 is used as a collector electrode, the rod-shaped body 1 is rotated, and a polymer that forms a polymer layer is discharged while the nozzle 2 is reciprocated. As shown in FIG. 2, the polymer layer 3 is formed on the rod-shaped body 1 by the step 1-1.
(工程1-2)
 工程1-2は、高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して棒状積層体を得る工程である。図3は、工程1-2を示す模式図である。図3では、工程1で形成された高分子層3上に電界紡糸法により生体吸収性材料からなる繊維が吐出されている。工程1-2により、図4に示すように、高分子層3上に極細繊維不織布層4が形成され、棒状積層体5が得られる。
(Step 1-2)
Step 1-2 is a step of discharging a fiber made of a bioabsorbable material onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer to obtain a rod-like laminate. FIG. 3 is a schematic diagram showing step 1-2. In FIG. 3, fibers made of a bioabsorbable material are discharged onto the polymer layer 3 formed in step 1 by electrospinning. By step 1-2, as shown in FIG. 4, the ultrafine fiber nonwoven fabric layer 4 is formed on the polymer layer 3, and the rod-like laminate 5 is obtained.
(工程2)
 工程2は、極細繊維不織布層に対して相対的に溶解度が低く、且つ、高分子層に対して相対的に溶解度が高い溶媒を用いて、棒状積層体の高分子層を膨潤させる工程である。工程2については、上記多孔質組織再生基材の製造方法と同一である。
(Process 2)
Step 2 is a step of swelling the polymer layer of the rod-shaped laminate using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. . About process 2, it is the same as the manufacturing method of the said porous structure | tissue reproduction | regeneration base material.
(工程3)
 工程3は、工程2により膨潤させた高分子層と極細繊維不織布層とを圧着させ、乾燥させる工程である。図5は、工程3において、膨潤させた高分子層と極細繊維不織布層とを圧着させる状態を示す断面模式図である。図5において、棒状積層体5は、シリコン板6によりロールプレスされており、これにより、高分子層3と極細繊維不織布層4とが界面7において密着する。当該密着により、界面7に、後工程により多孔質層を形成する生体吸収性高分子を溶解させた高分子溶液が侵入することを抑制して、極細繊維不織布の高分子層が形成されている側の表面への多孔質層の形成を抑制することができる。
(Process 3)
Step 3 is a step in which the polymer layer swollen in Step 2 and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried. FIG. 5 is a schematic cross-sectional view showing a state in which the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded in Step 3. In FIG. 5, the rod-like laminate 5 is roll-pressed by a silicon plate 6, whereby the polymer layer 3 and the ultrafine fiber nonwoven fabric layer 4 are in close contact at the interface 7. Due to the adhesion, the polymer layer of the ultrafine fiber nonwoven fabric is formed by suppressing the intrusion of the polymer solution in which the bioabsorbable polymer that forms the porous layer is formed in the post-process into the interface 7. Formation of the porous layer on the surface on the side can be suppressed.
(工程4)
 工程4は、生体吸収性高分子と、上記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、生体吸収性高分子に対して相対的に溶解度が高く、且つ、生体吸収性高分子に対する溶解度よりも極細繊維不織布層に対する溶解度が低く溶媒1と相溶しない溶媒2と、溶媒1及び溶媒2と相溶する共溶媒3とを用いて、生体吸収性高分子を溶解した均一溶液を調製する工程である。工程4については、上記多孔質組織再生基材の製造方法と同一である。
(Process 4)
Step 4 includes a bioabsorbable polymer, a solvent 1 having a relatively low solubility in the bioabsorbable polymer, a relatively high solubility in the bioabsorbable polymer, and a bioabsorbable property. Uniformity in which the bioabsorbable polymer is dissolved using the solvent 2 which is less soluble in the ultrafine fiber nonwoven fabric layer than the polymer and is incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 compatible with the solvent 2 It is a step of preparing a solution. About process 4, it is the same as the manufacturing method of the said porous structure | tissue reproduction | regeneration base material.
(工程5)
 工程5は、工程4により調製した均一溶液を、棒状積層体の極細繊維不織布層の表面に塗工する工程である。図6は、工程5において、均一溶液を、棒状積層体の極細繊維不織布層の表面に塗工する状態を示す図である。図6において、棒状積層体5は、当該棒状積層体5の内径よりも内径が大きい筒状体8であるガラス管の中に配置され、棒状積層体5と筒状体8との隙間に工程4により調製した均一溶液9が流し込まれ、充填されている。
(Process 5)
Step 5 is a step of applying the uniform solution prepared in Step 4 to the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate. FIG. 6 is a diagram illustrating a state in which the uniform solution is applied to the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminated body in Step 5. In FIG. 6, the rod-like laminated body 5 is disposed in a glass tube that is a cylindrical body 8 having an inner diameter larger than the inner diameter of the rod-like laminated body 5, and a process is performed in the gap between the rod-like laminated body 5 and the cylindrical body 8. The homogeneous solution 9 prepared according to 4 is poured and filled.
 筒状体を形成する素材としては特に限定されず、ガラス管、ステンレス管、アルミニウム管等を用いることができる。中でも、多孔質層の形成過程を確認できる点で、ガラス管が好ましい。 The material for forming the cylindrical body is not particularly limited, and a glass tube, a stainless tube, an aluminum tube, or the like can be used. Among these, a glass tube is preferable in that the formation process of the porous layer can be confirmed.
 筒状体の内径は、棒状積層体の直径に応じて適宜設定すればよい。棒状積層体と筒状体との隙間は、0.01~10mmが好ましく、0.1~8.0mmがより好ましい。 The inner diameter of the cylindrical body may be appropriately set according to the diameter of the rod-shaped laminate. The gap between the rod-like laminate and the cylindrical body is preferably 0.01 to 10 mm, and more preferably 0.1 to 8.0 mm.
 後述する工程6において、棒状積層体5の極細繊維不織布層の表面に析出する多孔質層は、若干収縮することから、筒状体の抜き取りは容易であるが、より一層筒状体の抜き取りを容易にするために、予め筒状体の内側の表面にコーティング等の滑り加工を施しておいてもよい。 In step 6 to be described later, the porous layer deposited on the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate 5 is slightly contracted, so that the cylindrical body can be easily extracted, but the cylindrical body can be further extracted. In order to facilitate, a sliding process such as coating may be applied to the inner surface of the cylindrical body in advance.
(工程6)
 工程6は、棒状積層体の表面の均一溶液を冷却して、棒状積層体の極細繊維不織布層の表面に生体吸収性高分子からなる多孔質層を析出させて棒状複合体を形成する工程である。図7は、工程6により得られた棒状複合体を示す模式図である。図7において、棒状複合体10は、棒状積層体5の極細繊維不織布層4の表面に多孔質層9が形成されている。
(Step 6)
Step 6 is a step of cooling the uniform solution on the surface of the rod-like laminate and depositing a porous layer made of a bioabsorbable polymer on the surface of the ultrafine fiber nonwoven fabric layer of the rod-like laminate to form a rod-like composite. is there. FIG. 7 is a schematic view showing the rod-like composite obtained in step 6. In FIG. 7, the rod-like composite 10 has a porous layer 9 formed on the surface of the ultrafine fiber nonwoven fabric layer 4 of the rod-like laminate 5.
(工程7)
 工程7は、棒状複合体の高分子層を、高分子層に対して相対的に溶解度が高く且つ極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、棒状体及び前記高分子層を棒状複合体から取り除き、極細繊維不織布層及び多孔質層からなるチューブ状の複合多孔体を得る工程である。図8は、工程7により得られたチューブ状の複合多孔体を示す模式図である。図8において、複合多孔体11は、図7で示される棒状複合体の中心に存在していた棒状体及び高分子層3が取り除かれて空洞12となっており、極細繊維不織布層の表面に多孔質層が積層された、チューブ状の複合多孔体となっている。
(Step 7)
Step 7 comprises dissolving the polymer layer of the rod-shaped composite using a solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer, In this step, the polymer layer is removed from the rod-like composite to obtain a tube-like composite porous body comprising an ultrafine fiber nonwoven fabric layer and a porous layer. FIG. 8 is a schematic diagram showing the tubular composite porous body obtained in step 7. FIG. In FIG. 8, the composite porous body 11 is formed by removing the rod-like body and the polymer layer 3 existing at the center of the rod-like composite shown in FIG. It is a tube-shaped composite porous body in which a porous layer is laminated.
 以下の本発明の人工血管の製造方法の説明において、記載のない事項は、上記多孔質組織再生基材の製造方法と同一である。以上説明した人工血管の製造方法により、細胞浸潤性に優れており、優れた組織再生性を示すことができる本発明の人工血管を、容易に製造することができる。 In the following description of the method for producing an artificial blood vessel of the present invention, items not described are the same as those in the method for producing a porous tissue regeneration substrate. By the method for producing an artificial blood vessel described above, the artificial blood vessel of the present invention that is excellent in cell invasiveness and can exhibit excellent tissue regeneration can be easily produced.
 以下に、本発明を、実施例及び比較例を用いてより詳細に説明するが、本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 実施例1
(工程1-1)
 ポリビニルアルコール(和光純薬工業株式会社製、平均重合度1500~1800)を水に溶解させて、ポリビニルアルコール濃度が10質量%のポリビニルアルコール水溶液を調製した。棒状体としてφ0.7mmのステンレス棒を用意してコレクタ電極とし、電界紡糸装置を用いて、棒状体の表面にポリビニルアルコール水溶液を吐出させた。この際、棒状体を回転させて、調製されたポリビニルアルコール水溶液をノズルに充填して複数回往復させながら吐出することにより塗布し、高分子層を形成した。なお、電界紡糸の条件は、電圧-20kV、ノズル径25Gであった。これにより、棒状体上に外径約900μm、厚み100μmの高分子層を形成した。
Example 1
(Step 1-1)
Polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., average polymerization degree 1500 to 1800) was dissolved in water to prepare a polyvinyl alcohol aqueous solution having a polyvinyl alcohol concentration of 10% by mass. A stainless steel rod having a diameter of 0.7 mm was prepared as a rod-shaped body to serve as a collector electrode, and an aqueous polyvinyl alcohol solution was discharged onto the surface of the rod-shaped body using an electrospinning apparatus. At this time, the rod-shaped body was rotated, and the prepared polyvinyl alcohol aqueous solution was filled in the nozzle and applied by reciprocating a plurality of times to form a polymer layer. The electrospinning conditions were a voltage of −20 kV and a nozzle diameter of 25 G. Thereby, a polymer layer having an outer diameter of about 900 μm and a thickness of 100 μm was formed on the rod-shaped body.
(工程1-2)
 ポリラクチドをヘキサフルオロイソプロパノールに溶解させて、ポリラクチド濃度が10質量%のヘキサフルオロイソプロパノール溶液を調製した。工程1-1により調製された、高分子層が形成された棒状体をコレクタ電極として、電界紡糸装置を用いて、棒状体の表面にヘキサフルオロイソプロパノール溶液を吐出させた。この際、棒状体を回転させて、調製されたヘキサフルオロイソプロパノール溶液をノズルに充填して複数回往復させながら吐出することにより塗布し、高分子層上に極細繊維不織布層を形成して、棒状積層体を得た。なお、電界紡糸の条件は、電圧-15kV、ノズル径26Gであった。棒状積層体の外径は約1000μmであった。
(Step 1-2)
Polylactide was dissolved in hexafluoroisopropanol to prepare a hexafluoroisopropanol solution having a polylactide concentration of 10% by mass. A hexafluoroisopropanol solution was discharged onto the surface of the rod-shaped body using an electrospinning apparatus using the rod-shaped body prepared in Step 1-1 and having the polymer layer formed thereon as a collector electrode. At this time, the rod-shaped body is rotated, and the prepared hexafluoroisopropanol solution is filled in the nozzle and discharged by reciprocating a plurality of times to form an ultrafine fiber nonwoven fabric layer on the polymer layer. A laminate was obtained. The electrospinning conditions were a voltage of -15 kV and a nozzle diameter of 26G. The outer diameter of the rod-shaped laminate was about 1000 μm.
(工程2)
 工程1-2により調製された棒状積層体を37℃の水に5分間浸漬させて、高分子層を膨潤させた。
(Process 2)
The rod-shaped laminate prepared in Step 1-2 was immersed in water at 37 ° C. for 5 minutes to swell the polymer layer.
(工程3)
 高分子層が膨潤した棒状積層体をシリコン板で0.1MPaの条件で軽くロールプレスして、高分子層と極細繊維不織布層を圧着した。次いで、60℃のオーブンで約5分間乾燥させて、極細繊維不織布層の表面の水分を除去した。
(Process 3)
The rod-shaped laminate with the polymer layer swollen was lightly roll-pressed with a silicon plate under the condition of 0.1 MPa, and the polymer layer and the ultrafine fiber nonwoven fabric layer were pressure bonded. Subsequently, it was dried in an oven at 60 ° C. for about 5 minutes to remove moisture on the surface of the ultrafine fiber nonwoven fabric layer.
(工程4)
 生体吸収性高分子として、L-ラクチド-ε-カプロラクトン共重合体(モル比50:50)を用意した。25℃の室温下で、L-ラクチド-ε-カプロラクトン共重合体0.25g、溶媒1として水0.3mL、溶媒2としてメチルエチルケトン2.0mL、共溶媒3としてアセトン(共溶媒3-1)とエタノール(共溶媒3-2)との混合物1.0mLを混合した。次いで、60℃に加熱したところ、L-ラクチド-ε-カプロラクトン共重合体が溶解した均一溶液が得られた。
(Process 4)
An L-lactide-ε-caprolactone copolymer (molar ratio 50:50) was prepared as a bioabsorbable polymer. At room temperature of 25 ° C., 0.25 g of L-lactide-ε-caprolactone copolymer, 0.3 mL of water as solvent 1, 2.0 mL of methyl ethyl ketone as solvent 2, acetone (cosolvent 3-1) as cosolvent 3 1.0 mL of a mixture with ethanol (co-solvent 3-2) was mixed. Subsequently, when heated to 60 ° C., a homogeneous solution in which the L-lactide-ε-caprolactone copolymer was dissolved was obtained.
(工程5)
 工程3により得られた、圧着、乾燥後の棒状積層体を、内径1.1mmのガラス管の中に配置し、棒状積層体とガラス管との隙間に、工程4により得られた均一溶液を流し込んだ。
(Process 5)
The rod-shaped laminated body obtained after the pressure bonding and drying obtained in the step 3 is placed in a glass tube having an inner diameter of 1.1 mm, and the uniform solution obtained in the step 4 is placed in the gap between the rod-shaped laminated body and the glass tube. Poured.
(工程6)
 工程5により、棒状積層体とガラス管との隙間に工程4により得られた均一溶液を流し込んだ状態で、冷凍庫内に入れて-30℃で120分間冷却したところ、棒状積層体の表面にL-ラクチド-ε-カプロラクトン共重合体からなる多孔質層が析出して、棒状複合体が得られた。
(Step 6)
In Step 5, the homogeneous solution obtained in Step 4 was poured into the gap between the rod-shaped laminate and the glass tube, and then placed in a freezer and cooled at −30 ° C. for 120 minutes. A porous layer composed of a -lactide-ε-caprolactone copolymer was deposited, and a rod-like composite was obtained.
(工程7)
 得られた棒状複合体を、50mLのエタノール槽中に-30℃、12時間浸漬した。次いで、50mLの水槽中に37℃、30分の条件で2回浸漬し、高分子層を取り除くと同時に棒状体を取り除いた。次いで、50mLの水槽中に37℃、30分の条件で2回浸漬した後、洗浄を行った。
(Step 7)
The obtained rod-shaped composite was immersed in a 50 mL ethanol bath at −30 ° C. for 12 hours. Next, it was immersed twice in a 50 mL water bath at 37 ° C. for 30 minutes to remove the polymer layer and simultaneously remove the rod-like body. Subsequently, after being immersed twice in a 50 mL water bath at 37 ° C. for 30 minutes, washing was performed.
(工程8)
 最後に、-40℃の条件で凍結乾燥を行い、最内層に極細繊維不織布層を有するチューブ状の人工血管を製造した。得られた人工血管の極細繊維不織布層の厚みは約50μmであり、多孔質層の厚みは約250μmであった。
(Process 8)
Finally, freeze-drying was performed at −40 ° C. to produce a tube-shaped artificial blood vessel having an ultrafine fiber nonwoven fabric layer as the innermost layer. The thickness of the ultrafine fiber nonwoven fabric layer of the obtained artificial blood vessel was about 50 μm, and the thickness of the porous layer was about 250 μm.
 比較例1
 ポリラクチドをヘキサフルオロイソプロパノールに溶解して、ポリラクチド濃度が10重量%のヘキサフルオロイソプロパノール溶液を調製した。φ0.6mmのステンレスの棒状体をコレクタ電極として、電界紡糸装置を用いて、棒状体の表面に該ヘキサフルオロイソプロパノール溶液を吐出させた。このとき、棒状体を回転させ、調製されたヘキサフルオロイソプロパノール溶液をノズルに充填して複数回往復させながら吐出することにより塗布し、棒状体上に極細繊維不織布層を形成した。なお、電界紡糸の条件は、電圧-15kV、ノズル径26Gであった。
Comparative Example 1
Polylactide was dissolved in hexafluoroisopropanol to prepare a hexafluoroisopropanol solution having a polylactide concentration of 10% by weight. The hexafluoroisopropanol solution was discharged onto the surface of the rod-shaped body using an electrospinning apparatus using a stainless rod-shaped body of φ0.6 mm as a collector electrode. At this time, the rod-shaped body was rotated, and the prepared hexafluoroisopropanol solution was filled in the nozzle and applied by discharging while reciprocating a plurality of times to form an ultrafine fiber nonwoven fabric layer on the rod-shaped body. The electrospinning conditions were a voltage of -15 kV and a nozzle diameter of 26G.
 最後に、棒状体を引き抜いて、外径約900μm、内径約600μmのチューブ状の人工血管を製造した。 Finally, the rod-shaped body was pulled out to produce a tube-shaped artificial blood vessel having an outer diameter of about 900 μm and an inner diameter of about 600 μm.
 上述のようにして調製された実施例及び比較例の人工血管を用いて、以下の測定及び評価を行った。 The following measurements and evaluations were performed using the artificial blood vessels of Examples and Comparative Examples prepared as described above.
 <平均孔径の測定>
 チューブ状の人工血管を長手方向と直交する方向で切断し、人工血管の壁面の断面の中央付近を倍率1000倍又は8000倍の電子顕微鏡を用いて電子顕微鏡像を撮影した。得られた電子顕微鏡像の多孔質層の任意の10点の孔の直径(長径)を測定し、その平均値を平均孔径とした。
<Measurement of average pore diameter>
The tube-shaped artificial blood vessel was cut in a direction perpendicular to the longitudinal direction, and an electron microscope image was taken near the center of the cross section of the wall surface of the artificial blood vessel using an electron microscope with a magnification of 1000 or 8000. The diameter (major axis) of arbitrary 10 points of the porous layer of the obtained electron microscope image was measured, and the average value was taken as the average pore diameter.
 <平均繊維径の測定>
 チューブ状の人工血管を長手方向と直交する方向で切断し、人工血管の壁面の断面の中央付近を倍率8000倍の電子顕微鏡用いて電子顕微鏡像を撮影した。得られた電子顕微鏡像の任意の10点の繊維の直径を測定し、その平均値を平均繊維径とした。なお、実施例1においては極細繊維不織布層の断面の箇所の繊維の直径を測定した。
<Measurement of average fiber diameter>
The tube-shaped artificial blood vessel was cut in a direction perpendicular to the longitudinal direction, and an electron microscope image was taken using an electron microscope with a magnification of 8000 times around the center of the cross section of the wall surface of the artificial blood vessel. The diameters of 10 arbitrary fibers in the obtained electron microscope image were measured, and the average value was defined as the average fiber diameter. In Example 1, the diameter of the fiber at the cross-sectional location of the ultrafine fiber nonwoven fabric layer was measured.
 <血管組織再生性の評価>
 マウスの腹部大動脈の一部を切除し、実施例及び比較例の人工血管に置換した。術後8週間でマウスが生存しているか否かを確認した。評価は、合計10検体で行った。また、実施例及び比較例において、術後8週目に、ペントバルビタール過剰量の腹腔内投与によりマウスを安楽死させ、埋稙部分を摘出して標本を得た。得られた標本をヘマトキシリン-エオシン染色(HE染色)して顕微鏡写真を撮影した。
<Evaluation of vascular tissue regeneration>
A part of the abdominal aorta of the mouse was excised and replaced with the artificial blood vessels of Examples and Comparative Examples. It was confirmed whether or not the mice were alive 8 weeks after the operation. Evaluation was performed on a total of 10 samples. In Examples and Comparative Examples, 8 weeks after the operation, mice were euthanized by intraperitoneal administration of an excessive amount of pentobarbital, and specimens were obtained by excising the buried part. The obtained specimen was stained with hematoxylin-eosin (HE staining) and a photomicrograph was taken.
(結果)
 図9に実施例1で得られた人工血管の電子顕微鏡写真を示し、図10に比較例1で得られた人工血管の電子顕微鏡写真を示す。図9の結果から、実施例1の人工血管は、最内層に極細繊維不織布層を有しており、極細繊維不織布層の外側の表面に相対的に孔径が大きな多孔質層を有しており、2層構造であることが確認できた。また、極細繊維不織布層の平均繊維径は0.5μmであり、多孔質層の平均孔径は23.2μmであった。また、図10から、比較例1の人工血管は、極細繊維不織布層のみ形成されており、多孔質層が形成されていない構成であることが確認できた。
(result)
FIG. 9 shows an electron micrograph of the artificial blood vessel obtained in Example 1, and FIG. 10 shows an electron micrograph of the artificial blood vessel obtained in Comparative Example 1. From the result of FIG. 9, the artificial blood vessel of Example 1 has an ultrafine fiber nonwoven fabric layer in the innermost layer, and has a porous layer having a relatively large pore diameter on the outer surface of the ultrafine fiber nonwoven fabric layer. It was confirmed that it was a two-layer structure. The average fiber diameter of the ultrafine fiber nonwoven fabric layer was 0.5 μm, and the average pore diameter of the porous layer was 23.2 μm. Moreover, from FIG. 10, it has confirmed that the artificial blood vessel of the comparative example 1 was the structure by which only the ultrafine fiber nonwoven fabric layer was formed and the porous layer was not formed.
 実施例1及び比較例1において、術後8週間の時点で10検体全てが生存しており、血管の閉塞は全く認められなかった。 In Example 1 and Comparative Example 1, all 10 specimens were alive at 8 weeks after the operation, and no occlusion of blood vessels was observed.
 図11に、実施例1において得られた人工血管の術後8週目の埋稙部分を摘出して得られた標本をHE染色して撮影した顕微鏡写真を示す。また、図12に、比較例1において得られた人工血管の術後8週目の埋稙部分を摘出して得られた標本をHE染色して撮影した顕微鏡写真を示す。図11及び図12の結果から、実施例1の人工血管では比較例1の人工血管よりも明らかに細胞が浸潤していることが分かる。これにより、実施例1の人工血管は組織再生速度が速く、組成再生性に優れていることが分かった。 FIG. 11 shows a photomicrograph of the specimen obtained by excising the buried portion 8 weeks after the operation of the artificial blood vessel obtained in Example 1 with HE staining. FIG. 12 shows a photomicrograph taken by HE staining of a specimen obtained by excising the buried portion 8 weeks after the operation of the artificial blood vessel obtained in Comparative Example 1. From the results of FIGS. 11 and 12, it can be seen that the artificial blood vessel of Example 1 is clearly infiltrated with the cells compared with the artificial blood vessel of Comparative Example 1. As a result, it was found that the artificial blood vessel of Example 1 had a high tissue regeneration rate and excellent composition reproducibility.
1…棒状体
2…ノズル
3…高分子層
4…極細繊維不織布層
5…棒状積層体
6…シリコン板
7…高分子層と極細繊維不織布層との界面
8…ガラス管
9…均一溶液
10…棒状複合体
11…複合多孔体
12…空洞
DESCRIPTION OF SYMBOLS 1 ... Rod-shaped body 2 ... Nozzle 3 ... Polymer layer 4 ... Ultrafine fiber nonwoven fabric layer 5 ... Rod-shaped laminated body 6 ... Silicon plate 7 ... Interface 8 between polymer layer and ultrafine fiber nonwoven fabric layer ... Glass tube 9 ... Uniform solution 10 ... Rod composite 11 ... Composite porous body 12 ... Cavity

Claims (10)

  1.  生体吸収性材料からなる少なくとも2層の積層体である多孔質組織再生基材であって、
     少なくとも1層の極細繊維不織布層を有し、
     前記極細繊維不織布層の表面に、平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する、
    ことを特徴とする多孔質組織再生基材。
    A porous tissue regeneration substrate that is a laminate of at least two layers made of a bioabsorbable material,
    Having at least one ultrafine fiber nonwoven fabric layer,
    Having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the surface of the ultrafine fiber nonwoven fabric layer;
    A porous tissue regeneration substrate characterized by the above.
  2.  前記極細繊維不織布層は、平均繊維径が0.1~10μmの極細繊維からなる、請求項1に記載の多孔質組織再生基材。 2. The porous tissue regeneration substrate according to claim 1, wherein the ultrafine fiber nonwoven fabric layer is made of ultrafine fibers having an average fiber diameter of 0.1 to 10 μm.
  3.  前記極細繊維不織布層は、生体吸収性の異なる2種以上の生体吸収性高分子からなる、請求項1又は2に記載の多孔質組織再生基材。 The porous tissue regeneration substrate according to claim 1 or 2, wherein the ultrafine fiber nonwoven fabric layer is composed of two or more types of bioabsorbable polymers having different bioabsorbability.
  4.  生体吸収性材料からなる少なくとも2層の多孔質組織再生基材の製造方法であって、
    (1)高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して積層体を得る工程1、
    (2)前記極細繊維不織布層に対して相対的に溶解度が低く、且つ、前記高分子層に対して相対的に溶解度が高い溶媒を用いて、前記積層体の前記高分子層を膨潤させる工程2、(3)前記積層体の膨潤させた前記高分子層と前記極細繊維不織布層とを圧着させ、乾燥させる工程3、
    (4)生体吸収性高分子と、前記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、前記生体吸収性高分子に対して相対的に溶解度が高く、且つ、前記生体吸収性高分子に対する溶解度よりも前記極細繊維不織布層に対する溶解度が低く前記溶媒1と相溶しない溶媒2と、前記溶媒1及び前記溶媒2と相溶する共溶媒3とを用いて、前記生体吸収性高分子を溶解した均一溶液を調製する工程4、
    (5)前記均一溶液を、前記積層体の前記極細繊維不織布層の表面に塗工する工程5、(6)前記積層体の表面の前記均一溶液を冷却して、前記積層体の前記極細繊維不織布層の表面に前記生体吸収性高分子からなる多孔質層を析出させて複合体を形成する工程6、
    (7)前記複合体の前記高分子層を、前記高分子層に対して相対的に溶解度が高く且つ前記極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、前記高分子層を前記複合体から取り除き、前記極細繊維不織布層及び前記多孔質層からなる複合多孔体を得る工程7、
    (8)前記複合多孔体を凍結乾燥して多孔質組織再生基材を得る工程8、
    を有することを特徴とする多孔質組織再生基材の製造方法。
    A method for producing a porous tissue regeneration substrate having at least two layers made of a bioabsorbable material, comprising:
    (1) Step 1 of obtaining a laminate by discharging fibers made of a bioabsorbable material onto a polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer,
    (2) A step of swelling the polymer layer of the laminate using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. 2, (3) Step 3, wherein the polymer layer swollen by the laminate and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
    (4) The bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable The bioabsorbability using a solvent 2 that is less soluble in the ultrafine fiber nonwoven fabric layer than in the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 that is compatible with the solvent 2. Step 4 for preparing a homogeneous solution in which the polymer is dissolved,
    (5) Step 5 of coating the uniform solution on the surface of the ultrafine fiber nonwoven fabric layer of the laminate, (6) Cooling the uniform solution on the surface of the laminate, and the ultrafine fiber of the laminate A step 6 of forming a composite by depositing a porous layer made of the bioabsorbable polymer on the surface of the nonwoven fabric layer;
    (7) The polymer layer of the composite is dissolved using a solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer. Step 7 of removing a molecular layer from the composite to obtain a composite porous body comprising the ultrafine fiber nonwoven fabric layer and the porous layer,
    (8) Step 8 of freeze-drying the composite porous body to obtain a porous tissue regeneration substrate,
    A method for producing a porous tissue regeneration substrate, comprising:
  5.  前記共溶媒3を2種以上用い、前記2種以上の共溶媒3の配合比を調整することにより、得られる多孔質層の平均孔径を制御する、請求項4に記載の多孔質組織再生基材の製造方法。 The porous tissue regeneration group according to claim 4, wherein the average pore diameter of the porous layer obtained is controlled by using two or more of the cosolvents 3 and adjusting the blending ratio of the two or more cosolvents 3. A method of manufacturing the material.
  6.  生体吸収性材料からなる少なくとも2層のチューブ状の人工血管であって、
     最内層に少なくとも1層の極細繊維不織布層を有し、
     前記極細繊維不織布層の外側の表面に平均孔径が0.1~800μmである少なくとも1層の多孔質層を有する、
    ことを特徴とする人工血管。
    A tubular artificial blood vessel of at least two layers made of a bioabsorbable material,
    It has at least one ultrafine fiber nonwoven fabric layer as the innermost layer,
    Having at least one porous layer having an average pore diameter of 0.1 to 800 μm on the outer surface of the ultrafine fiber nonwoven fabric layer;
    An artificial blood vessel characterized by that.
  7.  前記極細繊維不織布層は、平均繊維径が0.1~10μmの極細繊維からなる、請求項6に記載の人工血管。 The artificial blood vessel according to claim 6, wherein the ultrafine fiber nonwoven fabric layer is made of ultrafine fibers having an average fiber diameter of 0.1 to 10 µm.
  8.  前記極細繊維不織布層は、生体吸収性の異なる2種以上の生体吸収性高分子からなる、請求項6又は7に記載の人工血管。 The artificial blood vessel according to claim 6 or 7, wherein the ultrafine fiber nonwoven fabric layer is composed of two or more types of bioabsorbable polymers having different bioabsorbability.
  9.  生体吸収性材料からなる少なくとも2層のチューブ状の人工血管の製造方法であって、
    (1-1)棒状体上に高分子層を形成する工程1-1、
    (1-2)前記高分子層上に電界紡糸法により生体吸収性材料からなる繊維を吐出して、極細繊維不織布層を形成して棒状積層体を得る工程1-2、
    (2)前記極細繊維不織布層に対して相対的に溶解度が低く、且つ、前記高分子層に対して相対的に溶解度が高い溶媒を用いて、前記棒状積層体の前記高分子層を膨潤させる工程2、
    (3)膨潤させた前記高分子層と前記極細繊維不織布層とを圧着させ、乾燥させる工程3、
    (4)生体吸収性高分子と、前記生体吸収性高分子に対して相対的に溶解度が低い溶媒1と、前記生体吸収性高分子に対して相対的に溶解度が高く、且つ、前記生体吸収性高分子に対する溶解度よりも前記極細繊維不織布層に対する溶解度が低く前記溶媒1と相溶しない溶媒2と、前記溶媒1及び前記溶媒2と相溶する共溶媒3とを用いて、前記生体吸収性高分子を溶解した均一溶液を調製する工程4、
    (5)前記均一溶液を、前記棒状積層体の前記極細繊維不織布層の表面に塗工する工程5、
    (6)前記棒状積層体の表面の前記均一溶液を冷却して、前記棒状積層体の前記極細繊維不織布層の表面に前記生体吸収性高分子からなる多孔質層を析出させて棒状複合体を形成する工程6、
    (7)前記棒状複合体の前記高分子層を、前記高分子層に対して相対的に溶解度が高く且つ前記極細繊維不織布層に対して相対的に溶解度が低い溶媒を用いて溶解させ、前記棒状体及び前記高分子層を前記棒状複合体から取り除き、前記極細繊維不織布層及び前記多孔質層からなるチューブ状の複合多孔体を得る工程7、
    (8)前記チューブ状の複合多孔体を凍結乾燥してチューブ状の人工血管を得る工程8、
    を有することを特徴とする人工血管の製造方法。
    A method for producing a tube-shaped artificial blood vessel having at least two layers made of a bioabsorbable material,
    (1-1) Step 1-1 of forming a polymer layer on a rod-shaped body,
    (1-2) Step 1-2 of discharging a fiber made of a bioabsorbable material onto the polymer layer by electrospinning to form an ultrafine fiber nonwoven fabric layer to obtain a rod-like laminate.
    (2) The polymer layer of the rod-shaped laminate is swollen using a solvent having a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer and a relatively high solubility with respect to the polymer layer. Step 2,
    (3) Step 3 in which the swollen polymer layer and the ultrafine fiber nonwoven fabric layer are pressure-bonded and dried.
    (4) The bioabsorbable polymer, the solvent 1 having a relatively low solubility with respect to the bioabsorbable polymer, the relatively high solubility with respect to the bioabsorbable polymer, and the bioabsorbable The bioabsorbability using a solvent 2 that is less soluble in the ultrafine fiber nonwoven fabric layer than in the soluble polymer and incompatible with the solvent 1 and the solvent 1 and the cosolvent 3 that is compatible with the solvent 2. Step 4 for preparing a homogeneous solution in which the polymer is dissolved,
    (5) Step 5 of applying the uniform solution to the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate.
    (6) The uniform solution on the surface of the rod-shaped laminate is cooled, and a porous layer made of the bioabsorbable polymer is deposited on the surface of the ultrafine fiber nonwoven fabric layer of the rod-shaped laminate to form a rod-shaped composite. Forming step 6,
    (7) The polymer layer of the rod-shaped composite is dissolved using a solvent having a relatively high solubility with respect to the polymer layer and a relatively low solubility with respect to the ultrafine fiber nonwoven fabric layer, Step 7 for removing the rod-like body and the polymer layer from the rod-like composite to obtain a tubular composite porous body comprising the ultrafine fiber nonwoven fabric layer and the porous layer,
    (8) Step 8 of freeze-drying the tubular composite porous body to obtain a tubular artificial blood vessel,
    A method for producing an artificial blood vessel, comprising:
  10.  前記棒状体は、金属からなる、請求項9に記載の人工血管の製造方法。 The method for manufacturing an artificial blood vessel according to claim 9, wherein the rod-shaped body is made of metal.
PCT/JP2017/040985 2016-12-27 2017-11-14 Porous base material for tissue reconstruction, artificial blood vessel and method for producing same WO2018123307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-252791 2016-12-27
JP2016252791A JP6818543B2 (en) 2016-12-27 2016-12-27 Porous tissue regeneration base material, artificial blood vessels, and methods for manufacturing them

Publications (1)

Publication Number Publication Date
WO2018123307A1 true WO2018123307A1 (en) 2018-07-05

Family

ID=62707275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040985 WO2018123307A1 (en) 2016-12-27 2017-11-14 Porous base material for tissue reconstruction, artificial blood vessel and method for producing same

Country Status (2)

Country Link
JP (1) JP6818543B2 (en)
WO (1) WO2018123307A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963103B2 (en) 2018-05-29 2021-11-05 富士フイルム株式会社 Image processing equipment, radiation imaging system, image processing method, and image processing program
JP2021097909A (en) * 2019-12-23 2021-07-01 グンゼ株式会社 Artificial blood vessel, and manufacturing method of artificial blood vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019995A1 (en) * 2007-08-09 2009-02-12 Gunze Limited Prosthetic material for living organ
JP2011509786A (en) * 2008-01-25 2011-03-31 スミス アンド ネフュー ピーエルシー Multi-layer scaffold
JP2016087100A (en) * 2014-11-05 2016-05-23 グンゼ株式会社 Anagenesis base material
WO2017022750A1 (en) * 2015-08-06 2017-02-09 グンゼ株式会社 Artificial blood vessel, method for producing artificial blood vessel, and method for producing porous tissue regeneration substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019995A1 (en) * 2007-08-09 2009-02-12 Gunze Limited Prosthetic material for living organ
JP2011509786A (en) * 2008-01-25 2011-03-31 スミス アンド ネフュー ピーエルシー Multi-layer scaffold
JP2016087100A (en) * 2014-11-05 2016-05-23 グンゼ株式会社 Anagenesis base material
WO2017022750A1 (en) * 2015-08-06 2017-02-09 グンゼ株式会社 Artificial blood vessel, method for producing artificial blood vessel, and method for producing porous tissue regeneration substrate

Also Published As

Publication number Publication date
JP6818543B2 (en) 2021-01-20
JP2018102652A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
KR100932688B1 (en) Tubular porous scaffold with double membrane structure for artificial blood vessel and its manufacturing method
Zhang et al. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration
CN111479771B (en) Nanofiber structures and methods of use thereof
JP5793279B2 (en) Hemostasis implant
CN101595251B (en) Microtubes and methods of producing same
WO2017022750A1 (en) Artificial blood vessel, method for producing artificial blood vessel, and method for producing porous tissue regeneration substrate
AU772047B2 (en) Multi-channel bioresorbable nerve regeneration conduit and process for preparing the same
Skotak et al. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers
JP2010517730A (en) Scaffolds with increased pore size
JP2011072797A (en) Mesh implant
CN112743850B (en) Preparation method of low-temperature biological 3D printing composite stent
WO2018123307A1 (en) Porous base material for tissue reconstruction, artificial blood vessel and method for producing same
Ghobeira et al. Plasma surface functionalization of biodegradable electrospun scaffolds for tissue engineering applications
Li et al. Tough and VEGF-releasing scaffolds composed of artificial silk fibroin mats and a natural acellular matrix
JP2011160797A (en) Highly porous solid material made of biodegradable polymer and method for producing the same, and cell-seeding method
JP2019505347A (en) Fiber tube for stenting
WO2023103404A1 (en) Tubular material, preparation method therefor and use thereof
EP3500313B1 (en) Wound dressing comprising polymer fibers
JP2004290133A (en) Cell culture substrate and method for producing the same
JP2015213676A (en) Collagen fiber crosslinked porous body
CN109966549A (en) A kind of three-dimensional bionic bone renovating material and preparation method thereof
JP6916193B2 (en) A method for producing a porous base material made of a bioabsorbable polymer containing heparin, a porous base material made of a bioabsorbable polymer containing heparin, and an artificial blood vessel.
Fukuda et al. Laser perforated accordion nerve conduit of poly (lactide‐co‐glycolide‐co‐ɛ‐caprolactone)
Thomas et al. Biohybrid fibro-porous vascular scaffolds: effect of crosslinking on properties
JP6181460B2 (en) Revascularization substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888569

Country of ref document: EP

Kind code of ref document: A1