WO2018121415A1 - 膨胀开关阀 - Google Patents

膨胀开关阀 Download PDF

Info

Publication number
WO2018121415A1
WO2018121415A1 PCT/CN2017/117815 CN2017117815W WO2018121415A1 WO 2018121415 A1 WO2018121415 A1 WO 2018121415A1 CN 2017117815 W CN2017117815 W CN 2017117815W WO 2018121415 A1 WO2018121415 A1 WO 2018121415A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
inlet
outlet
expansion switch
flow passage
Prior art date
Application number
PCT/CN2017/117815
Other languages
English (en)
French (fr)
Inventor
张小伟
黄健
陈雪峰
叶梅娇
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/475,300 priority Critical patent/US20190331242A1/en
Publication of WO2018121415A1 publication Critical patent/WO2018121415A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/24Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0254Construction of housing; Use of materials therefor of lift valves with conical shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0263Construction of housing; Use of materials therefor of lift valves multiple way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • F16K31/0627Lift valves with movable valve member positioned between seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/406Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston
    • F16K31/408Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston the discharge being effected through the piston and being blockable by an electrically-actuated member making contact with the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the field of control valves and, in particular, to an expansion switch valve.
  • the prior art uses a structure in which an electronic expansion valve and an electromagnetic switching valve are connected in parallel. This structure requires two three-way joints and six pipelines, which are complicated in structure and inconvenient to install.
  • the solenoid valve is closed and the electronic expansion valve is used, the electronic expansion valve inlet is a medium-temperature high-pressure liquid refrigerant, and the electronic expansion valve outlet is a low-temperature low-pressure liquid refrigerant.
  • the inlet and outlet of the solenoid valve are also respectively The state of the refrigerant in the inlet and outlet of the electronic expansion valve is the same, and the refrigerant pressure at the inlet and outlet of the solenoid valve is different, which easily causes damage to the internal structure of the solenoid valve.
  • the refrigerant charge of the entire heat pump system is increased and the cost is increased.
  • the heat pump system is operated at low temperatures, it is difficult to return the oil to the compressor. This complicated structure is also detrimental to the oil return of the heat pump system.
  • an expansion switch valve including a valve body, wherein the valve body is formed with an inlet, an outlet, and an internal flow passage communicating between the inlet and the outlet, the internal flow a first spool and a second spool disposed coaxially and spaced apart from each other, the first spool causing the inlet and the outlet to be in direct communication or disconnected communication, the second spool making The inlet and the outlet are connected or disconnected through an orifice.
  • the internal flow passage includes a first flow passage and a second flow passage respectively communicating with the inlet, and the first flow passage is formed with a first valve port that cooperates with the first valve core, the section a flow hole formed on the second flow path to form a second valve port that cooperates with the second valve body, the first flow path and the second flow path meet under the second valve port Swim and communicate with the exit.
  • the second flow path and the outlet are perpendicular to each other, and the first flow path is formed as a first through hole coaxially and spaced apart from the second flow path, and the inlet is opened in the a second through hole on the sidewall of the second flow passage is in communication with the second flow passage, and the first through hole and the second through hole are respectively communicated with the inlet, the first valve port and the The second valve port is located between the first valve core and the second valve core.
  • the inlet and the outlet are coaxially disposed on opposite sides of the valve body.
  • the first spool is coaxially disposed with the first valve port in a moving direction to selectively block or disengage the first valve port.
  • the second spool is coaxially disposed with the second valve port in a moving direction to selectively block or disengage the second valve port.
  • the first valve core includes a first valve stem and a first plug connected to an end of the first valve stem, the first plug is used for sealing against an end surface of the first valve port Upper to block the first flow path.
  • the second valve core includes a second valve stem, the end of the second valve stem is formed as a conical head structure, and the second valve port is formed into a tapered shape matching the conical head structure Hole structure.
  • the valve body includes a valve seat formed with the internal flow passage and a first valve housing and a second valve housing mounted on the valve seat, and the first valve housing is mounted for driving the a first electromagnetic driving portion of the first valve body, a second electromagnetic driving portion for driving the second valve core is mounted in the second valve housing, the first valve core extending from the first valve housing to The inner flow passage in the valve seat, the second spool extending from the second valve housing to the inner flow passage in the valve seat.
  • valve seat is formed as a polyhedral structure, and the first valve housing, the second valve housing, the inlet and the outlet are respectively disposed on different surfaces of the polyhedral structure, wherein the first The mounting directions of a valve housing and the second valve housing are parallel to each other, and the opening directions of the inlet and the outlet are parallel to each other.
  • the first valve core and the second valve core which are disposed on the inner flow passage of the same valve body and are relatively spaced apart can realize the on-off control or the throttle expansion control function of the refrigerant, and the structure is simple. It is easy to produce and install, and when the expansion switch valve provided by the present disclosure is applied to a heat pump system, the pipe connection can be simplified to reduce the cost, and the refrigerant charge amount of the entire heat pump system can be reduced, and the compressor can be returned to the oil.
  • FIG. 1 is a perspective structural view of an expansion switch valve in one direction according to an exemplary embodiment of the present disclosure. intention;
  • FIG. 2 is a perspective structural view of the expansion switch valve in another direction according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional structural view of an expansion switch valve according to an exemplary embodiment of the present disclosure, wherein a first valve port is in a closed state and a second valve port is in an open state;
  • FIG. 4 is another cross-sectional structural view of an expansion switch valve according to an exemplary embodiment of the present disclosure, wherein the first valve port is in an open state and the second valve port is in a closed state.
  • orientation words used such as “up, down, left, and right" are generally relative to the drawing direction of the drawing, and the "upstream, downstream” is relative to The medium, for example, in the flow direction of the refrigerant, specifically, the flow direction toward the refrigerant is downstream, and the flow direction away from the refrigerant is upstream, and "inside and outside” means the inside and outside of the contour of the corresponding member.
  • the present disclosure provides an expansion switch valve including a valve body 500, wherein the valve body 500 is formed with an inlet 501, an outlet 502, and an internal flow communicating between the inlet 501 and the outlet 502.
  • the first spool 503 and the second spool 504 are coaxially disposed on the inner flow passage and are disposed at intervals.
  • the first spool 503 directly connects or disconnects the inlet 501 and the outlet 502, and the second spool 504
  • the inlet 501 and the outlet 502 are caused to communicate or disconnect through the orifice 505.
  • the "direct communication" achieved by the first valve body 503 means that the coolant entering from the inlet 501 of the valve body 500 can flow directly over the first valve body 503 through the internal flow path without being throttled directly to the valve body 500.
  • the outlet 502, the "disconnected communication” achieved by the first spool 503 means that the coolant entering from the inlet 501 of the valve body 500 cannot pass over the first spool 503 does not flow through the internal flow path to the outlet 502 of the valve body 500.
  • the “connected through the orifice” realized by the second spool 504 means that the coolant entering from the inlet 501 of the valve body 500 can flow over the second spool 504 and flow through the orifice to the valve body 500.
  • the outlet 502, and the "disconnected communication" achieved by the second spool means that the coolant entering from the inlet 501 of the valve body 500 cannot pass over the second spool 504 and cannot flow through the orifice 505 to the outlet of the valve body 500. 502.
  • the expansion switch valve has at least a first working position, a second working position, and a third working position.
  • the first working position the first spool 503 directly connects the inlet 501 and the outlet 502, and the second spool 504 makes The inlet 501 and the outlet 502 are in communication communication;
  • the first spool 503 disconnects the inlet 501 from the outlet 502, and the second spool 504 allows the inlet 501 and the outlet 502 to communicate through the orifice 505;
  • the first spool 503 disconnects the inlet 501 from the outlet 502, and the second spool 504 disconnects the inlet 501 from the outlet 502.
  • the expansion switch valve of the present disclosure can cause the coolant entering from the inlet 501 to achieve at least three states. That is, 1) an off state; 2) a direct communication state over the first valve body 503; and 3) a throttle communication mode over the second valve body 504.
  • the high-temperature high-pressure liquid refrigerant is throttled by the orifice 505, and can be a low-temperature low-pressure mist-like hydraulic refrigerant, thereby creating conditions for the evaporation of the refrigerant, that is, the cross-sectional area of the orifice 505 is smaller than the inlet 501.
  • the respective cross-sectional areas of the outlets 502, and the opening degree of the orifices 505 can be adjusted by controlling the second spool 504 to control the flow rate through the orifices 505 to prevent insufficient refrigeration due to too little refrigerant.
  • the cooperation of the second spool 504 and the valve body 500 can cause the expansion switch valve to function as an expansion valve.
  • the on-off control or throttling control between the inlet 501 and the outlet 502 is achieved by mounting the coaxial and linearly spaced first and second spools 503 and 504 on the inner flow passage of the same valve body 500.
  • the utility model has the advantages of simple structure, easy production and installation, and when the expansion switch valve provided by the present disclosure is applied to the heat pump system, the pipeline connection can be simplified, the refrigerant charge amount of the entire heat pump system can be reduced, the cost can be reduced, and the heat pump system is more favorable. Return to oil.
  • the valve body 500 includes a valve seat 510 formed with an internal flow passage and a first valve housing 511 mounted on the valve seat 510. And a second valve housing 512, a first electromagnetic driving portion 521 for driving the first valve core 503 is mounted in the first valve housing 511, and a second electromagnetic driving for driving the second valve core 504 is mounted in the second valve housing 512.
  • Portion 522, the first spool 503 extends from the first valve housing 511 to the internal flow passage in the valve seat 510, and the second spool 504 extends from the second valve housing 512 to the internal flow passage in the valve seat 510.
  • the control of the on/off power of the first electromagnetic driving portion 521 can conveniently control the position of the first valve core 503 in the internal flow path, thereby controlling the direct connection or disconnection of the inlet 501 and the outlet 502.
  • the position of the second electromagnetic driving portion 522 can be conveniently controlled, thereby controlling whether the inlet 501 and the outlet 502 are connected to the orifice 505. .
  • the electronic expansion valve and the electromagnetic valve having the common inlet 501 and the outlet 502 are integrally connected in parallel in the valve body 500, thereby enabling automatic control of the on/off or throttling of the expansion switching valve and simplifying the pipeline running.
  • the valve seat 510 is formed into a polyhedral structure, the first valve housing 511, the second valve housing 512, the inlet 501 and the outlet 502 They are respectively disposed on different surfaces of the polyhedral structure, wherein the mounting directions of the first valve housing 511 and the second valve housing 512 are parallel to each other, and the opening directions of the inlet 501 and the outlet 502 are parallel to each other.
  • the inlet and outlet pipes can be connected to different surfaces of the polyhedral structure, which can avoid the problem of messy and entangled pipe arrangement.
  • the internal flow passage includes a first flow passage 506 and a second flow passage 507 respectively communicating with the inlet 501, and the first flow passage 506 is formed with a first valve port 516 that cooperates with the first valve body 503.
  • the orifice 505 is formed on the second flow passage 507 to form a second valve port 517 that cooperates with the second valve spool 504, and the first flow passage 506 and the second flow passage 507 meet downstream of the second valve opening 517 and Connected to the exit 502.
  • the closing or opening of the first valve port 516 is achieved by changing the position of the first valve body 503 in the internal flow path, thereby controlling the cutting or conduction of the first flow path 506 connecting the inlet 501 and the outlet 502, thereby achieving The function of connecting or disconnecting the solenoid valve described above.
  • the cutting or conduction of the second valve port 517 is achieved by changing the position of the second valve body 504 in the internal flow passage, so that the throttle function of the electronic expansion valve can be achieved.
  • the first flow path 506 and the second flow path 507 may respectively communicate with the inlet 501 and the outlet 502 in any suitable arrangement.
  • the second flow path 507 and The outlets 502 are perpendicular to each other, and the first flow passage 506 is formed as a first through hole 526 which is coaxially and spaced apart from the second flow passage 507.
  • the inlet 501 passes through the second through hole 527 which is opened on the side wall of the second flow passage 507.
  • the second flow path 507 is in communication, and the first through hole 526 and the second through hole 527 are respectively in communication with the inlet 501.
  • first valve core 503 and the second valve core 504 can be disposed opposite to each other, so that the structure of the valve body 500 is compact, as shown in FIG. 3 and FIG. 4, the first valve core 503 and the second valve core 504 are oppositely disposed. That is, the first valve port 516 and the second valve port 517 are both located between the first spool 503 and the second spool 504. In this way, the dimension of the valve body 500 in the axial direction parallel to the first valve body 503 can be reduced, reducing the overall occupation space of the valve body 500.
  • the inlet 501 and the outlet 502 are coaxially opened on opposite sides of the valve body 500.
  • the pipe joints of different pipelines can be respectively installed on opposite sides of the valve body 500, thereby avoiding the limitation of the installation space on the same side of the valve body, and preventing the messy and entangled situation of different pipelines.
  • the first valve core 503 is coaxially disposed with the first valve port 516 in the moving direction to selectively block or disengage the first valve. Port 516.
  • the second valve core 504 is coaxially disposed with the second valve port 517 in the moving direction to selectively block or disengage the second valve. Port 517.
  • the first valve core 503 may include a first valve stem 513 and an end connected to the end of the first valve stem 513.
  • the first plug 523 is used for sealing against the end surface of the first valve port 516 to block the first flow passage 506.
  • the second spool 504 includes a second valve stem 514, and the end of the second valve stem 514 is formed into a tapered head structure.
  • the second valve port 517 is formed as a tapered hole structure that cooperates with the tapered head structure.
  • the opening of the orifice 505 of the expansion switch valve can be adjusted by the up and down movement of the second valve core 504, and the up and down movement of the second valve core 504 can be adjusted by the second electromagnetic driving portion 522. If the opening of the orifice 505 of the expansion switch valve is zero, as shown in FIG. 4, the second spool 504 is at the lowest position, and the second spool 504 blocks the second valve port 517, and the refrigerant cannot pass the throttle at all. Hole 505; if the expansion switch valve orifice 505 has an opening degree, as shown in FIG. 3, there is a gap between the tapered head structure of the end of the second valve body 504 and the orifice 505, and the refrigerant is throttled. Flow to exit 502.
  • the second solenoid 504 can be moved upward by controlling the second electromagnetic driving portion 522 to move the tapered head structure away from the orifice 505, thereby realizing the orifice 505.
  • the increase in opening degree conversely, when it is necessary to reduce the opening degree of the orifice 505 of the expansion switching valve, the second valve body 504 is driven to move downward.
  • the first electromagnetic drive portion 521 is powered off, and the first valve body 503 is The first plug 523 is separated from the first valve port 516, the first valve port 516 is in an open state; the second electromagnetic drive portion 522 is energized, the second valve core 504 is at the lowest position, and the second valve core 504 is blocked by the throttle hole 505.
  • the refrigerant flowing from the inlet 501 to the internal flow passage cannot pass through the orifice 505 at all, and can only flow into the outlet 502 through the first valve port 516 and the first through hole 526 in sequence.
  • the dotted line with an arrow in FIG. 4 represents the circulation route and the direction of the refrigerant when the direct communication function is used.
  • the first electromagnetic drive portion 521 When it is only necessary to use the throttle communication function of the expansion switch valve, that is, when the expansion switch valve is located at the second working position described above, as shown in FIG. 3, the first electromagnetic drive portion 521 is energized, and the first valve core 503 is first.
  • the plug 523 blocks the first valve port 516, the first valve port 516 is in a closed state; the second electromagnetic driving portion 522 is de-energized, the second valve core 504 is at the highest position, and the second valve core 504 is disengaged from the throttle hole 505.
  • the refrigerant flowing into the internal flow passage of the inlet 501 cannot pass through the first through hole 526 at all, and can only flow into the outlet 502 through the second through hole 527 and the orifice 505 in sequence, and can be adjusted by moving the second valve core 504 up and down.
  • dotted line with an arrow in FIG. 3 represents the circulation route and the tendency of the refrigerant when the throttle communication function is used.
  • the first electromagnetic drive portion 521 When it is not necessary to use the direct communication function and the throttle communication function of the expansion switch valve, that is, when the expansion switch valve is located at the third working position described above, the first electromagnetic drive portion 521 is energized, and the first plug of the first valve body 503 523 blocks the first valve port 516, the first valve port 516 is in a closed state; the second electromagnetic driving portion 522 is energized, and the second valve body 504 is at the most In the low position, the second valve core 504 blocks the orifice 505, and the refrigerant flowing from the inlet 501 to the internal flow passage cannot pass through the first flow passage and the second flow passage at all, that is, the internal flow passage is in an off state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种膨胀开关阀,包括阀体(500),该阀体(500)上形成有进口(501)、出口(502)以及连通在进口(501)和出口(502)之间的内部流道,内部流道上安装有同轴线且相对间隔设置的第一阀芯(503)和第二阀芯(504),第一阀芯(503)使得进口(501)和出口(502)直接连通或断开连通,第二阀芯(504)使得进口(501)和出口(502)通过节流孔(505)连通或断开连通。通过在同一阀体(500)的内部流道上集成安装同轴线且相对间隔设置的第一阀芯(503)和第二阀芯(504),能够实现冷剂的通断控制或节流膨胀控制功能,结构简单,易于生产和安装,当该膨胀开关阀应用于热泵***时,可以简化管路连接,还可减少整个热泵***的制冷剂充注量,便于压缩机回油。

Description

膨胀开关阀
相关申请的交叉引用
本申请要求于2016年12月29日提交至中国国家知识产权局的专利申请号为201611249731.5的中国专利申请的优先权,其公开内容通过引用并入本文。
技术领域
本公开涉及控制阀领域,具体地,涉及一种膨胀开关阀。
背景技术
热泵***中有时需要控制制冷剂节流降压或者只通过不节流,而现有的电子膨胀阀只能控制制冷剂节流或者不通过。为满足热泵***的这种需求,现有技术要用到电子膨胀阀和电磁开关阀并联的结构。这种结构需要用到两个三通接头、六根管路,结构比较复杂,不便于安装。当电磁阀关闭,使用电子膨胀阀时,电子膨胀阀进口为中温高压的液态制冷剂,电子膨胀阀出口为低温低压的液态制冷剂,由于管路是连通的,所以电磁阀的进出口也分别跟电子膨胀阀进出口的制冷剂状态一致,电磁阀进出口的制冷剂压力温度不一样,容易对电磁阀的内部结构造成损坏。另外,由于管路比较多,会提高整个热泵***的制冷剂充注量,提高成本。热泵***在低温下工作时,压缩机回油会比较困难,这种复杂的结构还会不利于热泵***的回油。
发明内容
本公开的目的是提供一种膨胀开关阀,该膨胀开关阀能够实现对流经媒介的通断控制和节流控制两种功能,且结构简单。
为了实现上述目的,本公开提供一种膨胀开关阀,包括阀体,其中,该阀体上形成有进口、出口以及连通在所述进口和所述出口之间的内部流道,所述内部流道上安装有同轴线且相对间隔设置的第一阀芯和第二阀芯,所述第一阀芯使得所述进口和所述出口直接连通或断开连通,所述第二阀芯使得所述进口和所述出口通过节流孔连通或断开连通。
可选地,所述内部流道包括分别与所述进口连通的第一流道和第二流道,所述第一流道上形成有与所述第一阀芯配合的第一阀口,所述节流孔形成在所述第二流道上以形成为与所述第二阀芯配合的第二阀口,所述第一流道和所述第二流道交汇于所述第二阀口的下 游并与所述出口连通。
可选地,所述第二流道与所述出口相互垂直,所述第一流道形成为与所述第二流道同轴线且间隔设置的第一通孔,所述进口通过开设在所述第二流道侧壁上的第二通孔与所述第二流道连通,所述第一通孔和所述第二通孔与所述进口分别连通,所述第一阀口和所述第二阀口均位于所述第一阀芯和所述第二阀芯之间。
可选地,所述进口与所述出口同轴线地开设在所述阀体的相对两侧上。
可选地,所述第一阀芯沿移动方向与所述第一阀口同轴布设以可选择地封堵或脱离所述第一阀口。
可选地,所述第二阀芯沿移动方向与所述第二阀口同轴布设以可选择地封堵或脱离所述第二阀口。
可选地,所述第一阀芯包括第一阀杆和连接在该第一阀杆端部的第一堵头,该第一堵头用于密封压靠在所述第一阀口的端面上以封堵所述第一流道。
可选地,所述第二阀芯包括第二阀杆,该第二阀杆的端部形成为锥形头结构,所述第二阀口形成为与该锥形头结构相配合的锥形孔结构。
可选地,所述阀体包括形成有所述内部流道的阀座和安装在该阀座上的第一阀壳和第二阀壳,所述第一阀壳内安装有用于驱动所述第一阀芯的第一电磁驱动部,所述第二阀壳内安装有用于驱动所述第二阀芯的第二电磁驱动部,所述第一阀芯从所述第一阀壳延伸至所述阀座内的所述内部流道,所述第二阀芯从所述第二阀壳延伸至所述阀座内的所述内部流道。
可选地,所述阀座形成为多面体结构,所述第一阀壳、所述第二阀壳、所述进口和所述出口分别设置在该多面体结构的不同表面上,其中,所述第一阀壳和所述第二阀壳的安装方向相互平行,所述进口和所述出口的开口方向相互平行。
通过上述技术方案,通过在同一阀体的内部流道上安装同轴线且相对间隔设置的第一阀芯和第二阀芯,能够实现冷剂的通断控制或节流膨胀控制功能,结构简单,易于生产和安装,且当本公开提供的膨胀开关阀应用于热泵***时,可以简化管路连接降低成本,并且减少整个热泵***的制冷剂充注量,便于压缩机回油。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开的一示例性实施方式提供的膨胀开关阀的沿一个方向的立体结构示 意图;
图2是根据本公开的一示例性实施方式提供的膨胀开关阀的沿另一个方向的立体结构示意图;
图3是根据本公开的一示例性实施方式提供的膨胀开关阀的剖面结构示意图,其中,第一阀口处于闭合状态,第二阀口处于打开状态;
图4是根据本公开的一示例性实施方式提供的膨胀开关阀的另一剖面结构示意图,其中,第一阀口处于打开状态,第二阀口处于闭合状态。
附图标记:
500阀体             501进口              502出口
503第一阀芯         513第一阀杆          523第一堵头
504第二阀芯         514第二阀杆          505节流孔
506第一流道         516第一阀口          526第一通孔
507第二流道         517第二阀口          527第二通孔
510阀座             511第一阀壳          521第一电磁驱动部
512第二阀壳         522第二电磁驱动部
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是相对于附图的图面方向而言的,“上游、下游”是相对于媒介,如,制冷剂的流动方向而言的,具体地,朝向制冷剂的流动方向为下游,背离制冷剂的流动方向为上游,“内、外”是指相应部件轮廓的内与外。
如图1至图4所示,本公开提供一种膨胀开关阀,包括阀体500,其中,该阀体500上形成有进口501、出口502以及连通在进口501和出口502之间的内部流道,内部流道上安装有同轴线且相对间隔设置的第一阀芯503和第二阀芯504,第一阀芯503使得进口501和出口502直接连通或断开连通,第二阀芯504使得进口501和出口502通过节流孔505连通或断开连通。
其中,第一阀芯503所实现的“直接连通”是指从阀体500的进口501进入的冷却剂可以越过第一阀芯503而通过内部流道不被节流地直接流到阀体500的出口502,第一阀芯503所实现的“断开连通”是指从阀体500的进口501进入的冷却剂无法越过第一阀芯 503而不能通过内部流道流向阀体500的出口502。第二阀芯504所实现的“通过节流孔连通”是指从阀体500的进口501进入的冷却剂可以越过第二阀芯504而通过节流孔的节流后流到阀体500的出口502,而第二阀芯所实现的“断开连通”是指从阀体500的进口501进入的冷却剂无法越过第二阀芯504而不能通过节流孔505流到阀体500的出口502。
换言之,该膨胀开关阀至少具有第一工作位置、第二工作位置和第三工作位置,在第一工作位置时,第一阀芯503使得进口501和出口502直接连通,第二阀芯504使得进口501和出口502断开连通;在第二工作位置时,第一阀芯503使得进口501和出口502断开连通,第二阀芯504使得进口501和出口502通过节流孔505连通;在第三工作位置时,第一阀芯503使得进口501和出口502断开连通,第二阀芯504使得进口501和出口502断开连通。
这样,通过对第一阀芯503和第二阀芯504的控制,本公开的膨胀开关阀可以使得从进口501进入的冷却剂至少实现三种状态。即,1)截止状态;2)越过第一阀芯503的直接连通状态;以及3)越过第二阀芯504的节流连通方式。
其中,高温高压的液态制冷剂经过节流孔505节流后,可以成为低温低压的雾状的液压制冷剂,从而为制冷剂的蒸发创造条件,即节流孔505的横截面积小于进口501和出口502各自的横截面积,另外通过控制第二阀芯504可以调节节流孔505的开度大小,以控制流经节流孔505的流量,防止因制冷剂过少产生的制冷不足,以及防止因制冷剂过多而使得压缩机产生液击现象。即,第二阀芯504和阀体500的配合可以使得膨胀开关阀具有膨胀阀的功能。
这样,通过在同一阀体500的内部流道上安装同轴线且相对间隔设置的第一阀芯503和第二阀芯504,以实现进口501和出口502之间的通断控制或节流控制功能,结构简单,易于生产和安装,且当本公开提供的膨胀开关阀应用于热泵***时,可以简化管路连接,减少整个热泵***的制冷剂充注量,降低成本且更利于热泵***的回油。
作为阀体500的一种示例性的内部安装结构,如图1至图4所示,阀体500包括形成有内部流道的阀座510和安装在该阀座510上的第一阀壳511和第二阀壳512,第一阀壳511内安装有用于驱动第一阀芯503的第一电磁驱动部521,第二阀壳512内安装有用于驱动第二阀芯504的第二电磁驱动部522,第一阀芯503从第一阀壳511延伸至阀座510内的内部流道,第二阀芯504从第二阀壳512延伸至阀座510内的内部流道。
其中,通过对第一电磁驱动部521(例如电磁线圈)的通断电的控制能够方便地控制第一阀芯503在内部流道的位置,进而控制进口501和出口502直接连通或断开连通;通过对第二电磁驱动部522(例如电磁线圈)的通断电的控制能够方便地控制第二阀芯504在内部流道的位置,从而控制进口501和出口502是否与节流孔505连通。换言之,可以 理解为阀体500内集成地并联安装有共有进口501和出口502的电子膨胀阀和电磁阀,因而能够实现膨胀开关阀的通断或节流的自动化控制,且简化管路走向。
为充分利用膨胀开关阀的各个方向的空间位置,避免膨胀开关阀和不同管路连接产生干涉,阀座510形成为多面体结构,第一阀壳511、第二阀壳512、进口501和出口502分别设置在该多面体结构的不同表面上,其中,第一阀壳511和第二阀壳512的安装方向相互平行,进口501和出口502的开口方向相互平行。这样,可以将进口、出口管路连接在多面体结构的不同表面上,能够避免管路布置凌乱、纠缠的问题。
如图3和图4所示,内部流道包括分别与进口501连通的第一流道506和第二流道507,第一流道506上形成有与第一阀芯503配合的第一阀口516,节流孔505形成在第二流道507上以形成为与第二阀芯504配合的第二阀口517,第一流道506和第二流道507交汇于第二阀口517的下游并与出口502连通。
即,通过变换第一阀芯503在内部流道中的位置来实现对第一阀口516的关闭或打开,进而控制连通进口501和出口502的第一流道506的截断或导通,从而可以实现上文描述的电磁阀的连通或断开连通的功能。同样地,通过变换第二阀芯504在内部流道中的位置来实现对第二阀口517的截断或导通,从而可以实现电子膨胀阀的节流功能。
第一流道506和第二流道507可以以任意合适的布置方式分别连通进口501和出口502,为减少阀体500的整体占用空间,如图3和图4所示,第二流道507与出口502相互垂直,第一流道506形成为与第二流道507同轴线且间隔设置的第一通孔526,进口501通过开设在第二流道507侧壁上的第二通孔527与第二流道507连通,第一通孔526和第二通孔527与进口501分别连通。
其中,第一阀芯503和第二阀芯504可以相向设置,为使得阀体500的结构紧凑,如图3和图4所示,第一阀芯503和第二阀芯504相对设置。即,第一阀口516和第二阀口517均位于第一阀芯503和第二阀芯504之间。以此方式,能够减少阀体500的沿平行于第一阀芯503的轴线方向的尺寸,减少阀体500的整体占用空间。
为方便阀体500的进口和出口分别与不同管路的管接头相连,如图1至图4所示,进口501与出口502同轴线地开设在阀体500的相对两侧上。这样,不同管路的管接头可以分别安装到阀体500的相对两侧,避免阀体同一侧的安装空间受限,且能够防止不同管路布置凌乱、纠缠的情形。
如图3和图4所示,为便于实现第一阀口516的关闭和打开,第一阀芯503沿移动方向与第一阀口516同轴布设以可选择地封堵或脱离第一阀口516。
为便于实现第二阀口517的关闭和打开,如图3和图4所示,第二阀芯504沿移动方向与第二阀口517同轴布设以可选择地封堵或脱离第二阀口517。
进一步地,如图4所示,为保证第一阀芯503对第一流道506堵塞的可靠性,第一阀芯503可以包括第一阀杆513和连接在该第一阀杆513端部的第一堵头523,该第一堵头523用于密封压靠在第一阀口516的端面上以封堵第一流道506。
为便于调节膨胀开关阀的节流孔505的开度大小,如图4所示,第二阀芯504包括第二阀杆514,该第二阀杆514的端部形成为锥形头结构,第二阀口517形成为与该锥形头结构相配合的锥形孔结构。
其中,膨胀开关阀的节流孔505开度可以通过第二阀芯504的上下移动来调节,而第二阀芯504的上下移动可以通过第二电磁驱动部522来调节。若膨胀开关阀的节流孔505的开度为零,如图4所示,第二阀芯504处于最低位置,第二阀芯504封堵第二阀口517,制冷剂完全不能通过节流孔505;若膨胀开关阀节流孔505具有开度,如图3所示,第二阀芯504的端部的锥形头结构与节流孔505之间具有空隙,制冷剂节流后再流至出口502。若需要增加膨胀开关阀的节流开度时,可以通过控制第二电磁驱动部522,使得第二阀芯504向上移动,以使得锥形头结构远离节流孔505,从而实现节流孔505开度的增大;相反,当需要减少膨胀开关阀的节流孔505的开度时,则驱使第二阀芯504向下移动即可。
使用时,当只需要使用膨胀开关阀的直接连通功能时,即当膨胀开关阀位于上述的第一工作位置时,如图4所示,第一电磁驱动部521断电,第一阀芯503的第一堵头523脱离第一阀口516,第一阀口516处于打开状态;第二电磁驱动部522通电,第二阀芯504处于最低位置,第二阀芯504封堵节流孔505,从进口501流入至内部流道的制冷剂完全不能通过节流孔505,只能依次通过第一阀口516、第一通孔526流入至出口502中。
需要说明的是,图4中的带箭头的虚线代表制冷剂在使用直接连通功能时的流通路线以及走向。
当只需要使用膨胀开关阀的节流连通功能时,即当膨胀开关阀位于上述的第二工作位置时,如图3所示,第一电磁驱动部521通电,第一阀芯503的第一堵头523封堵第一阀口516,第一阀口516处于关闭状态;第二电磁驱动部522断电,第二阀芯504处于最高位置,第二阀芯504脱离节流孔505,从进口501流入至内部流道的制冷剂完全不能通过第一通孔526,只能依次通过第二通孔527、节流孔505流入至出口502中,并且可以上下移动第二阀芯504来调节节流孔505的开度的大小。
需要说明的是,图3中的带箭头的虚线代表制冷剂在使用节流连通功能时的流通路线以及走向。
当不需要使用膨胀开关阀的直接连通功能和节流连通功能时,即当膨胀开关阀位于上述的第三工作位置时,第一电磁驱动部521通电,第一阀芯503的第一堵头523封堵第一阀口516,第一阀口516处于关闭状态;第二电磁驱动部522通电,第二阀芯504处于最 低位置,第二阀芯504封堵节流孔505,从进口501流入至内部流道的制冷剂完全不能通过第一流道和第二流道,即内部流道处于截止状态。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种膨胀开关阀,包括阀体(500),其特征在于,该阀体(500)上形成有进口(501)、出口(502)以及连通在所述进口(501)和所述出口(502)之间的内部流道,所述内部流道上安装有同轴线且相对间隔设置的第一阀芯(503)和第二阀芯(504),所述第一阀芯(503)使得所述进口(501)和所述出口(502)直接连通或断开连通,所述第二阀芯(504)使得所述进口(501)和所述出口(502)通过节流孔(505)连通或断开连通。
  2. 根据权利要求1所述的膨胀开关阀,其特征在于,所述内部流道包括分别与所述进口(501)连通的第一流道(506)和第二流道(507),所述第一流道(506)上形成有与所述第一阀芯(503)配合的第一阀口(516),所述节流孔(505)形成在所述第二流道(507)上以形成为与所述第二阀芯(504)配合的第二阀口(517),所述第一流道(506)和所述第二流道(507)交汇于所述第二阀口(517)的下游并与所述出口(502)连通。
  3. 根据权利要求2所述的膨胀开关阀,其特征在于,所述第二流道(507)与所述出口(502)相互垂直,所述第一流道(506)形成为与所述第二流道(507)同轴线且间隔设置的第一通孔(526),所述进口(501)通过开设在所述第二流道(507)侧壁上的第二通孔(527)与所述第二流道(507)连通,所述第一通孔(526)和所述第二通孔(527)与所述进口(501)分别连通,所述第一阀口(516)和所述第二阀口(517)均位于所述第一阀芯(503)和所述第二阀芯(504)之间。
  4. 根据权利要求1-3中任意一项所述的膨胀开关阀,其特征在于,所述进口(501)与所述出口(502)同轴线地开设在所述阀体(500)的相对两侧上。
  5. 根据权利要求2或3所述的膨胀开关阀,其特征在于,所述第一阀芯(503)沿移动方向与所述第一阀口(516)同轴布设以可选择地封堵或脱离所述第一阀口(516)。
  6. 根据权利要求2至5中任意一项所述的膨胀开关阀,其特征在于,所述第二阀芯(504)沿移动方向与所述第二阀口(517)同轴布设以可选择地封堵或脱离所述第二阀口(517)。
  7. 根据权利要求5所述的膨胀开关阀,其特征在于,所述第一阀芯(503)包括第一阀杆(513)和连接在该第一阀杆(513)端部的第一堵头(523),该第一堵头(523)用于 密封压靠在所述第一阀口(516)的端面上以封堵所述第一流道(506)。
  8. 根据权利要求6所述的膨胀开关阀,其特征在于,所述第二阀芯(504)包括第二阀杆(514),该第二阀杆(514)的端部形成为锥形头结构,所述第二阀口(517)形成为与该锥形头结构相配合的锥形孔结构。
  9. 根据权利要求1至8中任意一项所述的膨胀开关阀,其特征在于,所述阀体(500)包括形成有所述内部流道的阀座(510)和安装在该阀座(510)上的第一阀壳(511)和第二阀壳(512),所述第一阀壳(511)内安装有用于驱动所述第一阀芯(503)的第一电磁驱动部(521),所述第二阀壳(512)内安装有用于驱动所述第二阀芯(504)的第二电磁驱动部(522),所述第一阀芯(503)从所述第一阀壳(511)延伸至所述阀座(510)内的所述内部流道,所述第二阀芯(504)从所述第二阀壳(512)延伸至所述阀座(510)内的所述内部流道。
  10. 根据权利要求9所述的膨胀开关阀,其特征在于,所述阀座(510)形成为多面体结构,所述第一阀壳(511)、所述第二阀壳(512)、所述进口(501)和所述出口(502)分别设置在该多面体结构的不同表面上,其中,所述第一阀壳(511)和所述第二阀壳(512)的安装方向相互平行,所述进口(501)和所述出口(502)的开口方向相互平行。
PCT/CN2017/117815 2016-12-29 2017-12-21 膨胀开关阀 WO2018121415A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,300 US20190331242A1 (en) 2016-12-29 2017-12-21 Expansion switch valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611249731.5A CN108253160A (zh) 2016-12-29 2016-12-29 膨胀开关阀
CN201611249731.5 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018121415A1 true WO2018121415A1 (zh) 2018-07-05

Family

ID=62707836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117815 WO2018121415A1 (zh) 2016-12-29 2017-12-21 膨胀开关阀

Country Status (3)

Country Link
US (1) US20190331242A1 (zh)
CN (1) CN108253160A (zh)
WO (1) WO2018121415A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109707689B (zh) * 2018-12-29 2019-10-29 燕山大学 可变阻尼阀
CN111520480B (zh) * 2019-02-03 2024-05-17 浙江三花智能控制股份有限公司 阀装置及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138371A (ja) * 1984-07-31 1986-02-24 株式会社 鷺宮製作所 電動式流量調節弁
WO2002057695A1 (fr) * 2001-01-22 2002-07-25 Zexel Valeo Climate Control Corporation Cycle de refrigeration
JP2004182009A (ja) * 2002-11-29 2004-07-02 Denso Corp 車両用空調ユニット及び膨張弁
CN100363658C (zh) * 2003-11-06 2008-01-23 株式会社不二工机 带电磁排放阀的膨胀阀
JP2011089732A (ja) * 2009-10-26 2011-05-06 Fuji Koki Corp ヒートポンプ装置
CN105874288A (zh) * 2014-01-21 2016-08-17 株式会社电装 热泵循环装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109055B2 (ja) * 2002-08-30 2008-06-25 株式会社不二工機 電気式膨張弁
JP5802539B2 (ja) * 2011-12-15 2015-10-28 株式会社不二工機 複合弁
CN103742681A (zh) * 2013-10-28 2014-04-23 江苏合丰机械制造有限公司 高压组合单向阀
CN104728483B (zh) * 2013-12-20 2018-10-19 杭州三花研究院有限公司 一种流量控制阀及其控制方法以及制冷***
CN204477392U (zh) * 2015-03-13 2015-07-15 杨发 掺水调节器
CN205446805U (zh) * 2016-03-24 2016-08-10 浙江三花制冷集团有限公司 一种换向阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138371A (ja) * 1984-07-31 1986-02-24 株式会社 鷺宮製作所 電動式流量調節弁
WO2002057695A1 (fr) * 2001-01-22 2002-07-25 Zexel Valeo Climate Control Corporation Cycle de refrigeration
JP2004182009A (ja) * 2002-11-29 2004-07-02 Denso Corp 車両用空調ユニット及び膨張弁
CN100363658C (zh) * 2003-11-06 2008-01-23 株式会社不二工机 带电磁排放阀的膨胀阀
JP2011089732A (ja) * 2009-10-26 2011-05-06 Fuji Koki Corp ヒートポンプ装置
CN105874288A (zh) * 2014-01-21 2016-08-17 株式会社电装 热泵循环装置

Also Published As

Publication number Publication date
CN108253160A (zh) 2018-07-06
US20190331242A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2018121416A1 (zh) 膨胀开关阀
WO2018121412A1 (zh) 膨胀开关阀
KR101526427B1 (ko) 차량용 열교환기
CN108068572B (zh) 流体换热组件及车辆热管理***
WO2018121417A1 (zh) 膨胀开关阀
CN202420050U (zh) 空调用双向节流阀
WO2018121415A1 (zh) 膨胀开关阀
CN109838587B (zh) 流体管理组件及热管理***
CN105222386B (zh) 一种气动gm制冷机及其控制过程
WO2018121418A1 (zh) 膨胀开关阀
US8813783B2 (en) Valve with canted seals
CN205978641U (zh) 膨胀开关阀
CN103542647B (zh) 一种双向节流电子膨胀阀
JP2023541113A (ja) 止め弁、及びそれを有する空調システム
CN106286889B (zh) 六通换向阀和空调***
CN106288543B (zh) 五通换向阀和空调***
WO2017193855A1 (zh) 膨胀开关阀
CN107355570A (zh) 膨胀开关阀
CN108955313B (zh) 流体换热组件
CN110411261B (zh) 流体换热装置及热管理单元
WO2019095758A1 (zh) 两位八通阀及电车空调***
CN205744660U (zh) 一种自锁式液压阀
CN211503341U (zh) 一种膨胀阀
CN106286893A (zh) 三通电磁阀
CN210026953U (zh) 流量控制装置以及换热***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886058

Country of ref document: EP

Effective date: 20190729

122 Ep: pct application non-entry in european phase

Ref document number: 17886058

Country of ref document: EP

Kind code of ref document: A1