WO2018120469A1 - 触摸屏及具有触摸屏的终端设备 - Google Patents

触摸屏及具有触摸屏的终端设备 Download PDF

Info

Publication number
WO2018120469A1
WO2018120469A1 PCT/CN2017/078275 CN2017078275W WO2018120469A1 WO 2018120469 A1 WO2018120469 A1 WO 2018120469A1 CN 2017078275 W CN2017078275 W CN 2017078275W WO 2018120469 A1 WO2018120469 A1 WO 2018120469A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
touch driving
glass substrate
disposed
Prior art date
Application number
PCT/CN2017/078275
Other languages
English (en)
French (fr)
Inventor
梁艳峰
濮春朗
叶建波
李勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780004319.3A priority Critical patent/CN108513653B/zh
Priority to US16/473,520 priority patent/US10965798B2/en
Publication of WO2018120469A1 publication Critical patent/WO2018120469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/38Displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector

Definitions

  • the present application relates to the field of touch technologies, and in particular, to a touch screen and a terminal device having the touch screen.
  • the embedded capacitive touch screen is a touch screen obtained by making a touch layer in a display panel.
  • FIG. 1 is a schematic diagram showing the structure of a conventional embedded capacitive touch screen.
  • the embedded capacitive touch screen includes a touch drive electrode 101 and a touch sensing electrode 102 that are isolated from each other, and a capacitance Ctp is formed between the two electrodes.
  • a conductor for example, a human hand
  • the capacitance value of the capacitance Ctp changes, and the touch detection device recognizes the touch position according to the change in the capacitance value.
  • the touch driving electrode 101 extends in a first direction (the first direction shown in FIG. 1 is a lateral direction), and the touch driving circuit 103 is disposed on both sides of the touch driving electrode, that is, perpendicular to the touch driving electrode 101. Parallel to the gate drive circuit 104. Both the touch driving circuit 103 and the gate driving circuit 104 have a certain width, which belongs to the non-display area of the touch screen, thereby causing the non-display area width of the capacitive touch screen to be wide.
  • the present application provides a touch screen and a terminal device with a touch screen to solve the technical problem that the frame of the conventional embedded capacitive touch screen is wide.
  • the technical solutions provided by the present application are as follows:
  • the present disclosure provides a touch screen including: a touch driving electrode, a touch sensing electrode, a touch driving circuit, a gate driving circuit, a touch driving electrode lead, and a liquid crystal panel; and the touch driving electrode is disposed on the liquid crystal panel And the touch driving electrode extends along the first direction; the touch sensing electrode is disposed on the liquid crystal panel, and the touch sensing electrode extends in a second direction, the second direction is perpendicular to the first direction
  • the gate driving circuit is disposed in a non-display area of the touch screen, and the gate driving circuit extends along the second direction; the touch driving circuit is disposed in a non-display area of the touch screen, and the a touch driving circuit extending along the first direction, wherein the touch driving electrode is electrically connected to the touch driving circuit through the touch driving electrode lead; the touch driving electrode lead and the gate driving circuit are on the lower glass substrate
  • the thickness driving directions are overlapped, and the touch driving electrode leads are isolated from the gate driving circuit.
  • the touch driving electrode is laterally extended, the touch driving circuit is disposed in the non-display area of the touch screen, and parallel to the extending direction of the touch driving electrode, the touch driving electrode is electrically connected to the touch driving electrode through the touch driving electrode lead.
  • the touch driving electrode leads are overlapped with the gate driving circuit and are isolated from each other, thereby saving the width required for the touch driving electrode leads, thereby reducing the non-display area of the touch screen. Width to achieve a narrow border touch screen.
  • the liquid crystal panel includes an upper glass substrate, a liquid crystal layer, and a lower layer a glass substrate; the touch driving electrode is disposed on the lower glass substrate, the touch sensing electrode is disposed on the upper glass substrate, and the touch driving electrode and the touch sensing electrode are isolated from each other.
  • the liquid crystal panel includes an upper glass substrate, a liquid crystal layer, and a lower glass substrate; and the touch driving electrodes and the touch sensing electrodes are disposed on the lower glass substrate On the same plane, the touch driving electrodes and the touch sensing electrodes are isolated from each other.
  • the touch sensing electrode is a strip electrode and extends along the second direction, the touch sensing electrode is disposed on the lower glass substrate; the touch driving The electrode is a touch driving electrode array including a plurality of touch driving electrode blocks, one of the adjacent two columns of touch driving electrode blocks is disposed, and the touch driving electrode blocks of each row are electrically connected.
  • the embodiment of the present application provides a touch screen, a touch driving electrode, a touch sensing electrode, a touch driving circuit, an inductive processing circuit, a touch sensing electrode lead, and a liquid crystal panel, wherein the liquid crystal panel includes an upper glass substrate and a liquid crystal layer.
  • the touch driving electrode is disposed on the lower glass substrate, and the touch driving electrode extends in a first direction;
  • the touch driving circuit is disposed in a non-display area of the touch screen, and the touch The driving circuit extends in a second direction, the touch driving circuit is electrically connected to the touch driving electrode, the second direction is perpendicular to the first direction; and the touch sensing electrode is disposed on the upper glass substrate toward the a surface of the liquid crystal layer, wherein the touch sensing electrode extends along the second direction;
  • the sensing processing circuit is disposed in a non-display area of the touch screen, and the touch sensing electrode passes through the touch sensing electrode lead
  • An inductive processing circuit is electrically connected; the touch sensing electrode lead and the touch sensing electrode are located on the upper glass On the same surface of the plate.
  • the touch driving electrode is longitudinally disposed on the glass substrate, and the touch driving circuit is perpendicular to the extending direction of the touch driving electrode, so that the lead between the touch driving electrode and the touch driving circuit can be neglected, thereby saving the touch driving circuit.
  • the width of the non-display area of the touch screen required to be occupied, thereby reducing the width of the non-display area of the touch screen.
  • the touch sensing electrode and the touch sensing electrode lead are disposed on the inner surface of the upper glass substrate, that is, the upper glass substrate faces the surface of the liquid crystal layer, so as to prevent the touch sensing electrode lead from being scratched during the manufacturing process of the touch screen, thereby ensuring the inner The touch precision of the embedded capacitive touch screen.
  • the embodiment of the present application further provides a terminal device with a touch screen, including: a touch screen and a processor electrically connected to the touch screen; and the processor, configured to respond to the touch operation detected by the touch screen And transmitting information to be displayed to the touch screen;
  • the touch screen includes: a touch driving electrode touch sensing electrode, a touch driving electrode driving, a gate driving circuit, a touch driving electrode lead, and a liquid crystal panel; wherein the touch driving electrode is disposed at On the liquid crystal panel, the touch driving electrode extends in a first direction; the touch sensing electrode is disposed on the liquid crystal panel, the touch sensing electrode extends in a second direction, and the second direction is The first direction is vertical; the gate driving circuit is disposed in a non-display area of the touch screen, and the gate driving circuit extends along the second direction; the touch driving circuit is disposed in a non-display area of the touch screen And the touch driving circuit extends along the first direction, and the touch driving electrode passes the touch driving electrode lead
  • the touch driving electrode
  • the terminal device with a touch screen provided by the third aspect adopts a built-in capacitive touch screen with a narrower frame, so that the width of the terminal device can be made narrower.
  • the liquid crystal panel includes an upper glass substrate, a liquid crystal layer, and a lower glass substrate; the touch driving electrodes are disposed on the lower glass substrate, and the touch sensing electrodes are disposed On the upper glass substrate, the touch driving electrodes and the touch sensing electrodes are isolated from each other.
  • the liquid crystal panel includes an upper glass substrate, a liquid crystal layer, and a lower glass substrate; and the touch driving electrodes and the touch sensing electrodes are disposed on the lower glass substrate On the same plane, the touch driving electrodes and the touch sensing electrodes are isolated from each other.
  • the touch sensing electrode is a strip electrode and extends along the second direction, the touch sensing electrode is disposed on the lower glass substrate; the touch driving The electrode is a touch driving electrode array including a plurality of touch driving electrode blocks, one of the adjacent two columns of touch driving electrode blocks is disposed, and the touch driving electrode blocks of each row are electrically connected.
  • the present application further provides a terminal device with a touch screen, including: a touch screen and a processor electrically connected to the touch screen; the processor, configured to respond to the touch operation detected by the touch screen, and Sending information to be displayed to the touch screen;
  • the touch screen includes: a touch driving electrode, a touch sensing electrode, a touch driving circuit, an inductive processing circuit, a touch sensing electrode lead, and a liquid crystal panel, wherein the liquid crystal panel includes an upper glass substrate, a liquid crystal layer and a lower glass substrate; the touch driving electrode is disposed on the lower glass substrate, and the touch driving electrode extends in a first direction; the touch driving circuit is disposed in a non-display area of the touch screen, and The touch driving circuit extends in a second direction, the touch driving circuit is electrically connected to the touch driving electrode, the second direction is perpendicular to the first direction; and the touch sensing electrode is disposed on the upper glass substrate On the surface of the liquid crystal layer, and the touch sensing electrode extends along the
  • the terminal device with a touch screen provided by the fourth aspect, wherein the touch screen touch driving electrode is longitudinally disposed on the glass substrate, and the touch driving circuit is perpendicular to the extending direction of the touch driving electrode, so that the lead between the touch driving electrode and the touch driving circuit can be ignored.
  • the width of the non-display area of the touch screen required by the touch driving circuit is saved, thereby reducing the width of the touch screen border.
  • the touch sensing electrode and the touch sensing electrode lead are disposed on the inner surface of the upper glass substrate, that is, the upper glass substrate faces the surface of the liquid crystal layer, so as to prevent the touch sensing electrode lead from being scratched during the manufacturing process of the touch screen, thereby ensuring the inner The touch precision of the embedded capacitive touch screen.
  • FIG. 1 is a schematic structural view of a conventional embedded capacitive touch screen
  • FIG. 2 is a schematic structural diagram of an embedded capacitive touch screen according to an embodiment of the present application.
  • Figure 3a shows a partial enlarged view of the area A in Figure 2;
  • Figure 3b shows a partial enlarged view of the area B in Figure 3a;
  • FIG. 4 is a schematic structural diagram of another embedded capacitive touch screen according to an embodiment of the present application.
  • Figure 5a shows a partial enlarged view of the area C of Figure 4.
  • Figure 5b shows a partial enlarged view of the D area of Figure 5a
  • FIG. 6 is a schematic structural diagram of another embedded capacitive touch screen according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing the structure of a terminal device with a touch screen according to an embodiment of the present application.
  • the touch driving electrodes extend laterally, and the touch driving circuit is disposed in the non-display area of the touch screen and is perpendicular to the extending direction of the touch driving electrodes. Moreover, the gate driving circuit is also disposed in the non-display area of the touch screen and perpendicular to the extending direction of the touch driving electrodes. Both the touch driving circuit and the gate driving circuit have a certain width, so that the width of the frame of the capacitive touch screen is wide and cannot be narrower, thereby affecting the overall width of the capacitive touch screen.
  • the embodiment of the present application provides an embedded capacitive touch screen, wherein the touch driving electrode extends laterally, and the touch driving circuit is disposed in the non-display area of the touch screen, and is disposed in parallel with the extending direction of the touch driving electrode, and the touch driving circuit and the touch
  • the driving electrodes are electrically connected through respective touch driving electrode leads, wherein the touch driving electrode leads and the gate driving circuit are overlapped in the thickness direction of the touch screen, and the touch driving electrode leads are isolated from the gate driving circuit.
  • the width of the touch driving electrode lead and the gate driving circuit is equal to the width of one gate driving circuit, which saves the width required for the touch driving electrode lead, and reduces the width of the non-display area of the touch screen. Therefore, the capacitive type The border of the touch screen is narrower.
  • FIG. 2 a schematic structural diagram of a touch screen according to an embodiment of the present application is shown.
  • the touch screen of the embodiment is an in-cell capacitive touch screen.
  • the embedded capacitive touch screen includes: a touch driving electrode layer 201, a touch sensing electrode layer 202, a touch driving circuit 203, a liquid crystal panel 204, an inductive processing circuit 205, a gate driving circuit 206, and a touch driving electrode lead. 207; wherein the liquid crystal panel 204 is, in order from top to bottom, an upper glass substrate, a liquid crystal layer, and a lower glass substrate.
  • the touch sensing electrode layer 202 is disposed on the upper glass substrate of the liquid crystal panel 204, and the touch sensing electrode extends in the second direction (the second direction shown in FIG. 2 is a longitudinal direction);
  • the sensing processing circuit 205 is electrically connected to each of the touch sensing electrodes 202 for processing the electrical signals sensed by the touch sensing electrodes to identify the touch position in the next step.
  • the touch driving electrode layer 201 is disposed on the lower glass substrate of the liquid crystal panel 204, and the touch driving electrode extends in the first direction (the first direction shown in FIG. 2 is the lateral direction), and the first direction is perpendicular to the second direction.
  • the touch driving circuit 203 is disposed in the non-display area of the liquid crystal panel 204, and the touch driving circuit 203 extends in the first direction, that is, the touch driving circuit is disposed in parallel with the touch driving electrode, and the touch driving electrode passes through the touch driving electrode lead 207 and the touch driving circuit 203. Electrically connected, the touch drive circuit 203 is used to provide a drive signal to the touch drive electrodes.
  • the gate driving circuit 206 is disposed in the non-display area of the liquid crystal panel 204, and the gate driving circuit 206 extends in the second direction.
  • the gate driving circuit 206 is responsible for opening and closing the liquid crystal layer in the liquid crystal panel.
  • the touch driving electrode lead 207 is disposed above the gate driving circuit 206, that is, the touch driving electrode lead 207 and the gate driving circuit 206 overlap in the thickness direction of the lower glass substrate. Moreover, the touch driving electrode lead 207 and the gate driving circuit 206 are isolated from each other. As shown in FIG. 3b, the gate driving circuit 206 and the touch driving electrode lead 207 are isolated from each other by an insulating layer 208.
  • the touch driving electrode extends laterally, and the touch driving circuit is disposed in the non-display area of the touch screen, and is parallel to the extending direction of the touch driving electrode, that is, the extending direction of the touch driving circuit and the touch driving electrode.
  • the direction of extension is the same.
  • each touch drive electrode needs to be connected to the touch drive circuit through the touch drive electrode lead.
  • the touch drive electrode lead and the gate drive circuit are heavy. The stacking is disposed and isolated from each other, which saves the width required for the touch driving electrode lead, thereby reducing the width of the non-display area of the embedded touch screen and realizing the touch screen of the narrow border.
  • the touch sensing electrode and the touch driving electrode are disposed on the same plane of the liquid crystal panel, there is also a problem that the width of the touch screen frame is wide.
  • FIG. 4 is a schematic structural diagram of another embedded capacitive touch screen according to an embodiment of the present application
  • FIG. 5a is a partially enlarged schematic view showing a C area of FIG. 4
  • the touch sensing electrodes and the touch driving electrodes of the touch screen in this embodiment are all disposed on the lower glass substrate of the liquid crystal panel.
  • the embedded capacitive touch screen includes: a touch driving electrode 401, a touch sensing electrode 402, a touch driving circuit 403, a gate driving circuit 404, a touch driving electrode lead 405 (shown in FIG. 5a), and a liquid crystal panel 406.
  • the liquid crystal panel 406 is, in order from top to bottom, an upper glass substrate, a liquid crystal layer, and a lower glass substrate.
  • the touch driving electrode 401 and the touch sensing electrode 402 are both disposed on the lower glass substrate of the liquid crystal panel 406, wherein the touch driving electrode 401 extends in the first direction, the touch sensing electrode 402 extends in the second direction, and the second direction and the first direction vertical.
  • the touch driving electrodes 401 and the touch sensing electrodes 402 are isolated from each other.
  • the touch driving electrode is an array touch driving electrode, and includes a plurality of touch driving electrode blocks (the touch driving electrode 1 and the touch driving electrode 2 in FIG. 5a)
  • the driving electrode 3 or the like) is provided with a touch sensing electrode (the touch sensing electrode is a strip electrode) between the adjacent two columns of touch driving electrode blocks, and the touch driving electrode blocks of each row are electrically connected to form one touch driving electrode.
  • the touch driving electrode 401 is connected to the touch driving circuit 403 (shown in FIG. 4) through the touch driving electrode lead 405, so that the touch driving circuit 403 supplies a driving signal to the touch driving electrode 401.
  • the touch driving electrode lead 405 and the gate driving circuit 404 are overlapped in the thickness direction of the lower glass substrate 4061, and the touch driving electrode lead 405 and the gate driving circuit 404 are isolated from each other.
  • the touch driving electrode lead 405 and the gate driving circuit 404 are isolated from each other by the insulating layer 407.
  • the overlapping arrangement of the touch drive electrode lead and the gate drive circuit saves the width required for the touch drive electrode lead, and reduces the width of the non-display area of the embedded capacitive touch screen.
  • the touch driving electrode lead and the gate driving circuit are overlapped in the thickness direction of the lower glass substrate, and the touch driving electrode lead and the gate driving circuit are isolated from each other. In this way, the width required for the touch drive electrode lead is saved, thus reducing the width of the non-display area of the touch screen, so that the frame of the touch screen can be made narrower.
  • FIG. 6 a schematic structural diagram of another embedded capacitive touch screen according to an embodiment of the present application is shown.
  • the width of the touch screen border is reduced by adjusting the extending direction of the touch driving electrodes.
  • the embedded capacitive touch screen includes a touch sensing electrode layer 601, a touch driving electrode layer 602, a touch driving circuit 603, a gate driving circuit 604, an inductive processing circuit 605, a touch sensing electrode lead 606, and a liquid crystal panel.
  • the liquid crystal panel includes an upper glass substrate 607, a liquid crystal layer 608, and a lower glass substrate 609 in this order from top to bottom.
  • the touch sensing electrode layer 601 is disposed on the inner surface of the upper glass substrate 607 (ie, the side of the upper glass substrate facing the liquid crystal layer). Moreover, the touch sensing electrode extends in the second direction (the second direction shown in FIG. 6 is the lateral direction).
  • the sensing processing circuit 605 is disposed in the non-display area of the touch screen and parallel to the extending direction of the touch sensing electrode, and the touch sensing electrode is electrically connected to the sensing processing circuit 605 through the touch sensing electrode lead 606, so that the sensing processing circuit 605 processes the touch sensing electrode to sense The electrical signal is used to identify the touch location in the next step.
  • the touch sensing electrode lead 606 and the touch sensing electrode layer 601 are located on the inner surface of the upper glass substrate 607, so that during the manufacturing process of the touch screen, the touch sensing electrode lead 606 is not scratched, and the touch sensing electrode lead 606 is avoided. Poor touch caused by scratches.
  • the touch driving electrode layer 602 is disposed on the lower glass substrate 607 of the liquid crystal panel, the touch driving electrode extends in the first direction (the first direction shown in FIG. 6 is the vertical direction), and the touch driving electrode layer 602 and the touch sensing electrode layer 601 are mutually connected. isolation.
  • the touch driving circuit 603 is disposed in the non-display area of the touch screen, and the touch driving circuit 603 extends in the second direction, that is, the touch driving circuit 603 is perpendicular to the touch driving electrode, and therefore, the lead wire between the touch driving circuit 603 and the touch driving electrode may be ignore.
  • the touch driving electrode extends longitudinally, and the touch driving circuit 603 is disposed in the non-display area of the touch screen, and is perpendicular to the extending direction of the touch driving electrode, and the lead between the touch driving circuit and the touch driving electrode is negligible. Therefore, the width required for the touch driving circuit is saved, and the width of the non-display area of the touch screen is reduced, thereby reducing the border width of the touch screen.
  • the touch driving electrode is longitudinally disposed on the glass substrate, and the touch driving circuit is perpendicular to the extending direction of the touch driving electrode, so that the lead between the touch driving electrode and the touch driving circuit can be neglected, thereby saving
  • the width of the non-display area of the touch screen required by the touch driving circuit reduces the width of the border of the touch screen.
  • the touch sensing electrode and the touch sensing electrode lead are disposed on the inner surface of the upper glass substrate, that is, the upper glass substrate faces the surface of the liquid crystal layer, so as to prevent the touch sensing electrode lead from being scratched during the manufacturing process of the touch screen, thereby ensuring the inner The touch precision of the embedded capacitive touch screen.
  • FIG. 7 a schematic structural diagram of a terminal device with a touch screen according to an embodiment of the present application is shown.
  • This embodiment uses a smart phone with a touch screen as an example for description.
  • the terminal device includes a processor 701 and a touch screen 702, wherein the touch screen 702 is an embedded capacitive touch screen;
  • the processor 701 is connected to the touch screen 702, and the touch screen is sent to the processor 701 for subsequent processing.
  • the processor 701 responds to the touch operation according to the corresponding processing logic.
  • the processor 701 sends the touch screen 702 to the touch screen 702.
  • the data is such that the touch screen 702 displays the data.
  • the touch screen 702 can be any one of the embedded capacitive touch screens in the embodiments corresponding to FIG. 2 to FIG. 6 , and details are not described herein again.
  • the terminal device provided by the present embodiment adopts a built-in capacitive touch screen with a narrower frame, so that the width of the terminal device can be made narrower.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例提供一种触摸屏及具有触摸屏的终端设备,触摸驱动电极沿第一方向延伸,触摸驱动电路设置在触摸屏的非显示区域,且延伸方向与触摸驱动电极的延伸方向平行,即,触摸驱动电路的延伸方向与触摸驱动电极的延伸方向相同;这样,每一个触摸驱动电极都需要通过触摸驱动电极引线连接触摸驱动电路。为了减小电容式触摸屏的边框宽度,将触摸驱动电极引线做在栅极驱动电路所在区域,即,触摸驱动电极引线与栅极驱动电路重叠设置,且相互隔离,这样,节省了触摸驱动电极引线所需占用触摸屏非显示区域的宽度,从而,减小了内嵌电容式触摸屏的边框宽度,实现窄边框的电容式触摸屏。

Description

触摸屏及具有触摸屏的终端设备
本申请要求于2016年12月26日提交中国专利局、申请号为201611219943.9、发明名称为“一种Touch panel”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触控技术领域,尤其涉及触摸屏及具有触摸屏的终端设备。
背景技术
随着触摸屏技术发展,电容式触摸屏广泛应用于智能电子设备中。内嵌电容式触摸屏是将触控层制作在显示面板内得到的触摸屏。
电容式触摸屏利用人体的电流感应进行工作。图1所示是一种传统的内嵌电容式触摸屏的结构原理示意图,该内嵌电容式触摸屏包括互相隔离的触摸驱动电极101和触摸感应电极102,两种电极之间形成电容Ctp。当导体(例如,人手)触摸电容式触摸屏时,电容Ctp的电容值发生变化,触摸检测装置根据电容值的变化识别出触控位置。
如图1所示,触摸驱动电极101沿第一方向延伸(图1所示第一方向为横向),触摸驱动电路103设置在触摸驱动电极的两个侧边,即与触摸驱动电极101垂直,与栅极驱动电路104平行。触摸驱动电路103和栅极驱动电路104均具有一定的宽度,此宽度范围属于触摸屏的非显示区域,从而导致电容式触摸屏的非显示区域宽度较宽。
发明内容
本申请提供一种触摸屏及具有触摸屏的终端设备,以解决传统的内嵌电容式触摸屏的边框较宽的技术问题。本申请提供的技术方案如下:
第一方面,本申请提供一种触摸屏,包括:触摸驱动电极、触摸感应电极、触摸驱动电路、栅极驱动电路、触摸驱动电极引线和液晶面板;所述触摸驱动电极设置在所述液晶面板上,且所述触摸驱动电极沿第一方向延伸;所述触摸感应电极设置在所述液晶面板上,且所述触摸感应电极沿第二方向延伸,所述第二方向与所述第一方向垂直;所述栅极驱动电路设置在所述触摸屏的非显示区域,且所述栅极驱动电路沿所述第二方向延伸;所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿所述第一方向延伸,述触摸驱动电极通过所述触摸驱动电极引线与所述触摸驱动电路电连接;所述触摸驱动电极引线与所述栅极驱动电路在所述下玻璃基板的厚度方向上重叠设置,且所述触摸驱动电极引线与所述栅极驱动电路相互隔离。
第一方面提供的触摸屏,触摸驱动电极横向延伸、触摸驱动电路设置在触摸屏的非显示区域,且与触摸驱动电极的延伸方向平行,触摸驱动电极通过触摸驱动电极引线与触摸驱动电极电连接。为了减小触摸屏非显示区域的宽度,将触摸驱动电极引线与栅极驱动电路重叠设置,且相互隔离,从而节省了触摸驱动电极引线所需占用的宽度,因此,减小了触摸屏非显示区域的宽度,实现窄边框触摸屏。
在第一方面的第一种可能的实现方式中,所述液晶面板包括上玻璃基板、液晶层和下 玻璃基板;所述触摸驱动电极设置在所述下玻璃基板上,所述触摸感应电极设置在所述上玻璃基板上,所述触摸驱动电极与所述触摸感应电极之间相互隔离。
在第一方面的第二种可能的实现方式中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;所述触摸驱动电极与所述触摸感应电极均设置在所述下玻璃基板的同一平面上,且所述触摸驱动电极与所述触摸感应电极相互隔离。
在第一方面的第三种可能的实现方式中,所述触摸感应电极为条状电极且沿所述第二方向延伸,所述触摸感应电极设置在所述下玻璃基板上;所述触摸驱动电极为包括多个触摸驱动电极块的触摸驱动电极阵列,相邻两列触摸驱动电极块之间设置一个所述触摸感应电极,且每一行的所述触摸驱动电极块电连接。
第二方面,本申请实施例提供一种触摸屏,触摸驱动电极、触摸感应电极、触摸驱动电路、感应处理电路、触摸感应电极引线和液晶面板,其中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;所述触摸驱动电极设置在所述下玻璃基板上,且所述触摸驱动电极沿第一方向延伸;所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿第二方向延伸,所述触摸驱动电路与所述触摸驱动电极电连接,所述第二方向与所述第一方向垂直;所述触摸感应电极设置在所述上玻璃基板朝向所述液晶层的表面上,且所述触摸感应电极沿所述第二方向延伸;所述感应处理电路设置在所述触摸屏的非显示区域,所述触摸感应电极通过所述触摸感应电极引线与所述感应处理电路电连接;所述触摸感应电极引线与所述触摸感应电极位于所述上玻璃基板的同一表面上。
第二方面提供的触摸屏,触摸驱动电极纵向设置在玻璃基板上,且触摸驱动电路垂直于触摸驱动电极的延伸方向这样,触摸驱动电极和触摸驱动电路之间的引线可以忽略,节省了触摸驱动电路所需占用的触摸屏非显示区域的宽度,从而减小了触摸屏非显示区域的宽度。同时,触摸感应电极及触摸感应电极引线设置在上玻璃基板的内表面,即上玻璃基板朝向液晶层的表面上,避免触摸感应电极引线在触摸屏的制作过程中被划伤,因此,保证了内嵌电容式触摸屏的触控精度。
第三方面,本申请实施例还提供了一种具有触摸屏的终端设备,包括:触摸屏和与所述触摸屏电连接的处理器;所述处理器,用于响应所述触摸屏检测到的触控操作,以及,向所述触摸屏发送待显示的信息;所述触摸屏包括:触摸驱动电极触摸感应电极、触摸驱动电极驱动、栅极驱动电路、触摸驱动电极引线和液晶面板;所述触摸驱动电极设置在所述液晶面板上,且所述触摸驱动电极沿第一方向延伸;所述触摸感应电极设置在所述液晶面板上,所述触摸感应电极沿第二方向延伸,所述第二方向与所述第一方向垂直;所述栅极驱动电路设置在所述触摸屏的非显示区域,且所述栅极驱动电路沿所述第二方向延伸;所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿所述第一方向延伸,所述触摸驱动电极通过所述触摸驱动电极引线与所述触摸驱动电路电连接;所述触摸驱动电极引线与所述栅极驱动电路在所述下玻璃基板的厚度方向上重叠设置,且所述触摸驱动电极引线与所述栅极驱动电路相互隔离。
第三方面提供的具有触摸屏的终端设备,采用边框更窄的内嵌电容式触摸屏,从而使得终端设备的宽度可以做到更窄。
在第三方面的第一种可能的实现方式中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;所述触摸驱动电极设置在所述下玻璃基板上,所述触摸感应电极设置在所述上玻璃基板上,所述触摸驱动电极与所述触摸感应电极之间相互隔离。
在第三方面的第二种可能的实现方式中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;所述触摸驱动电极与所述触摸感应电极均设置在所述下玻璃基板的同一平面上,且所述触摸驱动电极与所述触摸感应电极相互隔离。
在第三方面的第三种可能的实现方式中,所述触摸感应电极为条状电极且沿所述第二方向延伸,所述触摸感应电极设置在所述下玻璃基板上;所述触摸驱动电极为包括多个触摸驱动电极块的触摸驱动电极阵列,相邻两列触摸驱动电极块之间设置一个所述触摸感应电极,且每一行的所述触摸驱动电极块电连接。
第四方面,本申请还提供一种具有触摸屏的终端设备,包括:触摸屏和与所述触摸屏电连接的处理器;所述处理器,用于响应所述触摸屏检测到的触控操作,以及,向所述触摸屏发送待显示的信息;所述触摸屏包括:触摸驱动电极、触摸感应电极、触摸驱动电路、感应处理电路、触摸感应电极引线和液晶面板,其中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;所述触摸驱动电极设置在所述下玻璃基板上,且所述触摸驱动电极沿第一方向延伸;所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿第二方向延伸,所述触摸驱动电路与所述触摸驱动电极电连接,所述第二方向与所述第一方向垂直;所述触摸感应电极设置在所述上玻璃基板朝向所述液晶层的表面上,且所述触摸感应电极沿所述第二方向延伸;所述感应处理电路设置在所述触摸屏的非显示区域,所述触摸感应电极通过所述触摸感应电极引线与所述感应处理电路电连接;所述触摸感应电极引线与所述触摸感应电极位于所述上玻璃基板的同一表面上。
第四方面提供的具有触摸屏的终端设备,其触摸屏触摸驱动电极纵向设置在玻璃基板上,且触摸驱动电路垂直于触摸驱动电极的延伸方向这样,触摸驱动电极和触摸驱动电路之间的引线可以忽略,节省了触摸驱动电路所需占用的触摸屏非显示区域的宽度,从而减小了触摸屏边框宽度。同时,触摸感应电极及触摸感应电极引线设置在上玻璃基板的内表面,即上玻璃基板朝向液晶层的表面上,避免触摸感应电极引线在触摸屏的制作过程中被划伤,因此,保证了内嵌电容式触摸屏的触控精度。
附图说明
图1示出了一种传统技术的内嵌电容式触摸屏的结构示意图;
图2示出了本申请实施例一种内嵌电容式触摸屏的结构示意图;
图3a示出了图2中A区域的局部放大示意图;
图3b示出了图3a中B区域的局部放大示意图;
图4示出了本申请实施例另一种内嵌电容式触摸屏的结构示意图;
图5a示出了图4中C区域的局部放大示意图;
图5b示出了图5a中D区域的局部放大示意图;
图6示出了本申请实施例又一种内嵌电容式触摸屏的结构示意图;
图7示出了本申请实施例一种具有触摸屏的终端设备的结构原理示意图。
具体实施方式
传统的内嵌电容式触摸屏,触摸驱动电极横向延伸,而且,触摸驱动电路设置在触摸屏的非显示区域,且与触摸驱动电极的延伸方向垂直。而且,栅极驱动电路也设置在触摸屏的非显示区域,且与触摸驱动电极的延伸方向垂直。触摸驱动电路和栅极驱动电路都具有一定的宽度因此导致电容式触摸屏的边框宽度较宽,无法做到更窄,进而影响电容式触摸屏的整体宽度。针对上述现象,本申请实施例提供一种内嵌电容式触摸屏,触摸驱动电极横向延伸,触摸驱动电路设置在触摸屏的非显示区域,且与触摸驱动电极的延伸方向平行设置,触摸驱动电路和触摸驱动电极通过相应的触摸驱动电极引线电连接,其中,触摸驱动电极引线和栅极驱动电路在触摸屏厚度方向上重叠设置,而且,触摸驱动电极引线与栅极驱动电路相互隔离。这样,触摸驱动电极引线和栅极驱动电路的宽度等于一个栅极驱动电路的宽度,节省了触摸驱动电极引线所需要占用的宽度,减小了触摸屏非显示区域的宽度,因此,此种电容式触摸屏的边框更窄。
请参见图2,示出了本申请实施例一种触摸屏的结构示意图,本实施例的触摸屏是内嵌电容式触摸屏。
如图2所示,该内嵌电容式触摸屏包括:触摸驱动电极层201、触摸感应电极层202、触摸驱动电路203、液晶面板204、感应处理电路205、栅极驱动电路206、触摸驱动电极引线207;其中,液晶面板204由上至下依次是上玻璃基板、液晶层和下玻璃基板。
触摸感应电极层202设置在液晶面板204的上玻璃基板上,触摸感应电极沿第二方向延伸(图2所示的第二方向为纵向);
感应处理电路205与触摸感应电极层202中的每一个触摸感应电极电连接,用于处理触摸感应电极感应到的电信号,以便下一步识别出触控位置。
触摸驱动电极层201设置在液晶面板204的下玻璃基板上,触摸驱动电极沿第一方向延伸(图2所示的第一方向为横向),且第一方向与第二方向垂直。
触摸驱动电路203设置在液晶面板204的非显示区域,且触摸驱动电路203沿第一方向延伸,即触摸驱动电路与触摸驱动电极平行设置,触摸驱动电极通过触摸驱动电极引线207与触摸驱动电路203电连接,触摸驱动电路203用于为触摸驱动电极提供驱动信号。
栅极驱动电路206设置在液晶面板204的非显示区域,且栅极驱动电路206沿第二方向延伸,栅极驱动电路206负责打开及关断液晶面板中液晶层。
请参见图3a和图3b,触摸驱动电极引线207设置在栅极驱动电路206上方,即,触摸驱动电极引线207与栅极驱动电路206在下玻璃基板的厚度方向上重叠。而且,触摸驱动电极引线207和栅极驱动电路206相互隔离。如图3b所示,栅极驱动电路206和触摸驱动电极引线207之间通过绝缘层208相互隔离。
本实施例提供的内嵌电容式触摸屏,触摸驱动电极横向延伸,触摸驱动电路设置在触摸屏的非显示区域,且与触摸驱动电极的延伸方向平行,即,触摸驱动电路的延伸方向与触摸驱动电极的延伸方向相同。这样,每一个触摸驱动电极都需要通过触摸驱动电极引线连接触摸驱动电路。为了减小触摸屏的边框宽度,将触摸驱动电极引线与栅极驱动电路重 叠设置,且相互隔离,节省了触摸驱动电极引线所需占用的宽度,因此,减小了内嵌触摸屏非显示区域的宽度,实现窄边框的触摸屏。
对于触摸感应电极和触摸驱动电极设置在液晶面板的同一平面的结构,同样存在触摸屏边框宽度较宽的问题。
请参见图4~图5b,图4示出了本申请实施例另一种内嵌电容式触摸屏的结构示意图;图5a示出了图4中C区域的局部放大示意图;图5b示出了图4中D区域的局部放大示意图。本实施例中的触摸屏的触摸感应电极和触摸驱动电极均设置在液晶面板的下玻璃基板上。
如图4所示,该内嵌电容式触摸屏包括:触摸驱动电极401、触摸感应电极402、触摸驱动电路403、栅极驱动电路404、触摸驱动电极引线405(图5a所示)、液晶面板406,其中,液晶面板406由上至下依次为上玻璃基板、液晶层和下玻璃基板。
触摸驱动电极401和触摸感应电极402均设置在液晶面板406的下玻璃基板上,其中,触摸驱动电极401沿第一方向延伸,触摸感应电极402沿第二方向延伸,第二方向与第一方向垂直。触摸驱动电极401与触摸感应电极402之间相互隔离。
在本申请一种可能的实现方式中,如图5a所示,触摸驱动电极为阵列式触摸驱动电极,包含多个触摸驱动电极块(图5a中的触摸驱动电极1、触摸驱动电极2、触摸驱动电极3等),相邻两列触摸驱动电极块之间设置有一个触摸感应电极(触摸感应电极为条状电极),每一行的触摸驱动电极块电连接构成一个触摸驱动电极。
如图5a所示,触摸驱动电极401通过触摸驱动电极引线405连接触摸驱动电路403(图4所示),以便触摸驱动电路403为触摸驱动电极401提供驱动信号。
如图5b所示,触摸驱动电极引线405与栅极驱动电路404在下玻璃基板4061的厚度方向上重叠设置,且触摸驱动电极引线405和栅极驱动电路404相互隔离。例如,触摸驱动电极引线405和栅极驱动电路404之间通过绝缘层407相互隔离。触摸驱动电极引线和栅极驱动电路重叠设置节省了触摸驱动电极引线所需占用的宽度,减小了内嵌电容式触摸屏非显示区域的宽度。
本实施例提供的内嵌电容式触摸屏,触摸驱动电极引线与栅极驱动电路在下玻璃基板的厚度方向上重叠设置,且触摸驱动电极引线和栅极驱动电路相互隔离。这样,节省了触摸驱动电极引线所需占用的宽度,因此减小了触摸屏非显示区域的宽度,使得触摸屏的边框能够做得更窄。
请参见图6,示出了本申请实施例又一种内嵌电容式触摸屏的结构示意图,本实施例中,通过调整触摸驱动电极的延伸方向减少触摸屏边框宽度。
如图6所示,该内嵌电容式触摸屏包括触摸感应电极层601、触摸驱动电极层602、触摸驱动电路603、栅极驱动电路604、感应处理电路605、触摸感应电极引线606和液晶面板,其中,液晶面板由上至下依次包括上玻璃基板607、液晶层608和下玻璃基板609。
触摸感应电极层601设置在上玻璃基板607的内表面(即,上玻璃基板朝向液晶层的一面)上。而且,触摸感应电极沿第二方向延伸(图6所示的第二方向是横向)。
感应处理电路605设置在触摸屏的非显示区域且与触摸感应电极的延伸方向平行,触摸感应电极通过触摸感应电极引线606与感应处理电路605电连接,以使感应处理电路605处理触摸感应电极感应到的电信号,以便下一步识别触控位置。
触摸感应电极引线606和触摸感应电极层601位于上玻璃基板607的内表面,这样,在触摸屏的制作过程中,保证触摸感应电极引线606不会被划伤,避免了由于触摸感应电极引线606被划伤而导致的触控不良现象出现。
触摸驱动电极层602设置在液晶面板下玻璃基板607上,触摸驱动电极沿第一方向延伸(图6所示的第一方向是纵向),而且,触摸驱动电极层602与触摸感应电极层601相互隔离。
触摸驱动电路603设置在触摸屏的非显示区域,且触摸驱动电路603沿第二方向延伸,即,触摸驱动电路603与触摸驱动电极垂直,因此,触摸驱动电路603与触摸驱动电极之间的引线可以忽略。
本实施例提供的触摸屏,触摸驱动电极纵向延伸,触摸驱动电路603设置在触摸屏非显示区域,且与触摸驱动电极的延伸方向垂直,触摸驱动电路与触摸驱动电极之间的引线可以忽略不计。因此,节省了触摸驱动电路所需占用的宽度,减小了触摸屏非显示区域的宽度,从而减小了触摸屏的边框宽度。
本实施例提供的内嵌电容式触摸屏,触摸驱动电极纵向设置在玻璃基板上,且触摸驱动电路垂直于触摸驱动电极的延伸方向这样,触摸驱动电极和触摸驱动电路之间的引线可以忽略,节省了触摸驱动电路所需占用的触摸屏非显示区域的宽度,从而减小了触摸屏的边框宽度。同时,触摸感应电极及触摸感应电极引线设置在上玻璃基板的内表面,即上玻璃基板朝向液晶层的表面上,避免触摸感应电极引线在触摸屏的制作过程中被划伤,因此,保证了内嵌电容式触摸屏的触控精度。
请参见图7,示出了本申请实施例一种具有触摸屏的终端设备的结构原理示意图,本实施例以具有触摸屏的智能手机为例说明。如图7所示,终端设备包括处理器701和触摸屏702,其中,触摸屏702是内嵌电容式触摸屏;
处理器701与触摸屏702电连接,触摸屏检测触控操作后提供给处理器701进行后续处理;处理器701根据相应的处理逻辑响应该触控操作,此外,处理器701向触摸屏702发送待显示的数据,以使触摸屏702显示该数据。
触摸屏702可以是图2~图6所对应实施例中的任意一种内嵌电容式触摸屏,此处不再赘述。
本实施提供的终端设备,采用边框更窄的内嵌电容式触摸屏,从而使得终端设备的宽度可以做到更窄。

Claims (10)

  1. 一种触摸屏,其特征在于,包括:触摸驱动电极、触摸感应电极、触摸驱动电路、栅极驱动电路、触摸驱动电极引线和液晶面板;
    所述触摸驱动电极设置在所述液晶面板上,且所述触摸驱动电极沿第一方向延伸;
    所述触摸感应电极设置在所述液晶面板上,且所述触摸感应电极沿第二方向延伸,所述第二方向与所述第一方向垂直;
    所述栅极驱动电路设置在所述触摸屏的非显示区域,且所述栅极驱动电路沿所述第二方向延伸;
    所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿所述第一方向延伸,所述触摸驱动电极通过所述触摸驱动电极引线与所述触摸驱动电路电连接;
    所述触摸驱动电极引线与所述栅极驱动电路在所述下玻璃基板的厚度方向上重叠设置,且所述触摸驱动电极引线与所述栅极驱动电路相互隔离。
  2. 根据权利要求1所述的触摸屏,其特征在于,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;
    所述触摸驱动电极设置在所述下玻璃基板上,所述触摸感应电极设置在所述上玻璃基板上,所述触摸驱动电极与所述触摸感应电极之间相互隔离。
  3. 根据权利要求1所述的触摸屏,其特征在于,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;
    所述触摸驱动电极与所述触摸感应电极均设置在所述下玻璃基板的同一平面上,且所述触摸驱动电极与所述触摸感应电极相互隔离。
  4. 根据权利要求3所述的触摸屏,其特征在于,
    所述触摸感应电极为条状电极且沿所述第二方向延伸,所述触摸感应电极设置在所述下玻璃基板上;
    所述触摸驱动电极为包括多个触摸驱动电极块的触摸驱动电极阵列,相邻两列触摸驱动电极块之间设置一个所述触摸感应电极,且每一行的所述触摸驱动电极块电连接。
  5. 一种触摸屏,其特征在于,包括:触摸驱动电极、触摸感应电极、触摸驱动电路、感应处理电路、触摸感应电极引线和液晶面板,其中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;
    所述触摸驱动电极设置在所述下玻璃基板上,且所述触摸驱动电极沿第一方向延伸;
    所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿第二方向延伸,所述触摸驱动电路与所述触摸驱动电极电连接,所述第二方向与所述第一方向垂直;
    所述触摸感应电极设置在所述上玻璃基板朝向所述液晶层的表面上,且所述触摸感应电极沿所述第二方向延伸;
    所述感应处理电路设置在所述触摸屏的非显示区域,所述触摸感应电极通过所述触摸感应电极引线与所述感应处理电路电连接;
    所述触摸感应电极引线与所述触摸感应电极位于所述上玻璃基板的同一表面上。
  6. 一种具有触摸屏的终端设备,其特征在于,包括:触摸屏和与所述触摸屏电连接的 处理器;
    所述处理器,用于响应所述触摸屏检测到的触控操作,以及,向所述触摸屏发送待显示的信息;
    所述触摸屏包括:触摸驱动电极触摸感应电极、触摸驱动电极驱动、栅极驱动电路、触摸驱动电极引线和液晶面板;
    所述触摸驱动电极设置在所述液晶面板上,且所述触摸驱动电极沿第一方向延伸;
    所述触摸感应电极设置在所述液晶面板上,所述触摸感应电极沿第二方向延伸,所述第二方向与所述第一方向垂直;
    所述栅极驱动电路设置在所述触摸屏的非显示区域,且所述栅极驱动电路沿所述第二方向延伸;
    所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿所述第一方向延伸,所述触摸驱动电极通过所述触摸驱动电极引线与所述触摸驱动电路电连接;
    所述触摸驱动电极引线与所述栅极驱动电路在所述下玻璃基板的厚度方向上重叠设置,且所述触摸驱动电极引线与所述栅极驱动电路相互隔离。
  7. 根据权利要求6所述的终端设备,其特征在于,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;
    所述触摸驱动电极设置在所述下玻璃基板上,所述触摸感应电极设置在所述上玻璃基板上,所述触摸驱动电极与所述触摸感应电极之间相互隔离。
  8. 根据权利要求6所述的终端设备,其特征在于,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;
    所述触摸驱动电极与所述触摸感应电极均设置在所述下玻璃基板的同一平面上,且所述触摸驱动电极与所述触摸感应电极相互隔离。
  9. 根据权利要求8所述的终端设备,其特征在于,
    所述触摸感应电极为条状电极且沿所述第二方向延伸,所述触摸感应电极设置在所述下玻璃基板上;
    所述触摸驱动电极为包括多个触摸驱动电极块的触摸驱动电极阵列,相邻两列触摸驱动电极块之间设置一个所述触摸感应电极,且每一行的所述触摸驱动电极块电连接。
  10. 一种具有触摸屏的终端设备,其特征在于,包括:触摸屏和与所述触摸屏电连接的处理器;
    所述处理器,用于响应所述触摸屏检测到的触控操作,以及,向所述触摸屏发送待显示的信息;
    所述触摸屏包括:触摸驱动电极、触摸感应电极、触摸驱动电路、感应处理电路、触摸感应电极引线和液晶面板,其中,所述液晶面板包括上玻璃基板、液晶层和下玻璃基板;
    所述触摸驱动电极设置在所述下玻璃基板上,且所述触摸驱动电极沿第一方向延伸;
    所述触摸驱动电路设置在所述触摸屏的非显示区域,且所述触摸驱动电路沿第二方向延伸,所述触摸驱动电路与所述触摸驱动电极电连接,所述第二方向与所述第一方向垂直;
    所述触摸感应电极设置在所述上玻璃基板朝向所述液晶层的表面上,且所述触摸感应 电极沿所述第二方向延伸;
    所述感应处理电路设置在所述触摸屏的非显示区域,所述触摸感应电极通过所述触摸感应电极引线与所述感应处理电路电连接;
    所述触摸感应电极引线与所述触摸感应电极位于所述上玻璃基板的同一表面上。
PCT/CN2017/078275 2016-12-26 2017-03-27 触摸屏及具有触摸屏的终端设备 WO2018120469A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780004319.3A CN108513653B (zh) 2016-12-26 2017-03-27 触摸屏及具有触摸屏的终端设备
US16/473,520 US10965798B2 (en) 2016-12-26 2017-03-27 Touchscreen and terminal device with touchscreen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611219943 2016-12-26
CN201611219943.9 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018120469A1 true WO2018120469A1 (zh) 2018-07-05

Family

ID=62710233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078275 WO2018120469A1 (zh) 2016-12-26 2017-03-27 触摸屏及具有触摸屏的终端设备

Country Status (3)

Country Link
US (1) US10965798B2 (zh)
CN (1) CN108513653B (zh)
WO (1) WO2018120469A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220051901A (ko) * 2020-10-19 2022-04-27 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
CN113031820B (zh) * 2021-03-25 2024-02-27 联想(北京)有限公司 一种触摸屏、电子设备以及信息处理方法
CN113093947B (zh) * 2021-04-25 2023-02-10 芜湖伦丰电子科技有限公司 一种触摸屏边框走线结构、触摸屏及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830879A (zh) * 2012-08-17 2012-12-19 北京京东方光电科技有限公司 一种内嵌式触摸屏
CN105244005A (zh) * 2015-11-24 2016-01-13 厦门天马微电子有限公司 阵列基板、触控显示装置及其驱动方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096614A (ja) 2006-10-11 2008-04-24 Epson Imaging Devices Corp 液晶装置、及び、電子機器
US8692776B2 (en) 2008-09-19 2014-04-08 Apple Inc. Correction of parasitic capacitance effect in touch sensor panels
CN202205184U (zh) 2011-08-16 2012-04-25 深圳宝龙达信息技术股份有限公司 窄边框触摸屏
CN102360145A (zh) 2011-09-30 2012-02-22 信利半导体有限公司 一种液晶显示面板及其制作方法
US9195331B2 (en) 2011-12-06 2015-11-24 Apple Inc. Common electrode connections in integrated touch screens
KR102068588B1 (ko) 2012-11-13 2020-02-11 엘지디스플레이 주식회사 터치 스크린 일체형 디스플레이 장치
US9244560B2 (en) 2013-04-15 2016-01-26 Stmicroelectronics Asia Pacific Pte Ltd Multiple row receiving line pattern for in-cell touchscreen panels
CN103412675B (zh) 2013-07-26 2016-07-27 北京京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏及显示装置
CN103500039B (zh) 2013-09-29 2016-10-05 北京京东方光电科技有限公司 触摸显示屏及其驱动方法
CN203706173U (zh) 2014-01-21 2014-07-09 信利光电股份有限公司 一种触控显示模组及其触摸屏
JP6212448B2 (ja) 2014-08-04 2017-10-11 株式会社ジャパンディスプレイ タッチ検出装置、タッチ検出機能付き表示装置、及びタッチ検出方法
CN104657016B (zh) 2014-12-25 2019-02-01 上海天马微电子有限公司 内嵌式触控显示屏及触控显示装置
CN205540655U (zh) 2016-03-24 2016-08-31 南昌欧菲光科技有限公司 触摸屏及触摸显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830879A (zh) * 2012-08-17 2012-12-19 北京京东方光电科技有限公司 一种内嵌式触摸屏
CN105244005A (zh) * 2015-11-24 2016-01-13 厦门天马微电子有限公司 阵列基板、触控显示装置及其驱动方法

Also Published As

Publication number Publication date
CN108513653B (zh) 2020-07-28
US10965798B2 (en) 2021-03-30
CN108513653A (zh) 2018-09-07
US20200104011A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US10817095B2 (en) Electronic device, touch display panel and touch display substrate
US9559690B2 (en) Array substrate and manufacturing method thereof, and display device
US10013121B2 (en) In-cell touch panel and display device with self-capacitance electrodes
US9310948B2 (en) Array substrate, touch screen panel and display device
US10067614B2 (en) In-cell touch panel and display device
US10394404B2 (en) Touch display panel
US20160357337A1 (en) In-Cell Touch Panel and Display Device
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2015158083A1 (zh) 触摸屏及显示装置
WO2015180318A1 (zh) 内嵌式触摸屏及显示装置
US20160291741A1 (en) Array substrate, touch display panel and touch display device
US8976132B2 (en) Touch-sensing display apparatus
US10627946B2 (en) Display panel and display device
KR20130081197A (ko) 터치 패널 및 터치 패널의 제조 방법
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
WO2016119408A1 (zh) 触控面板、显示装置及触摸驱动方法
WO2017045222A1 (zh) 一种触摸面板、阵列基板及其制造方法
WO2018120469A1 (zh) 触摸屏及具有触摸屏的终端设备
WO2016106849A1 (zh) 一种触控式液晶面板及其制作方法
WO2017113469A1 (zh) 互电容式的内嵌型触摸屏
US11366535B2 (en) Touch display panel and touch display device having regular-shaped touch electrode and irregular-shaped touch electrode with same area
US10795500B2 (en) Display device and display method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887861

Country of ref document: EP

Kind code of ref document: A1