WO2018120179A1 - 一种管理光网络单元onu的方法、装置及*** - Google Patents

一种管理光网络单元onu的方法、装置及*** Download PDF

Info

Publication number
WO2018120179A1
WO2018120179A1 PCT/CN2016/113858 CN2016113858W WO2018120179A1 WO 2018120179 A1 WO2018120179 A1 WO 2018120179A1 CN 2016113858 W CN2016113858 W CN 2016113858W WO 2018120179 A1 WO2018120179 A1 WO 2018120179A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
management
mode
channel
message
Prior art date
Application number
PCT/CN2016/113858
Other languages
English (en)
French (fr)
Inventor
郑刚
万席锋
林薇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680091570.3A priority Critical patent/CN110073672B/zh
Priority to PCT/CN2016/113858 priority patent/WO2018120179A1/zh
Publication of WO2018120179A1 publication Critical patent/WO2018120179A1/zh
Priority to US16/455,426 priority patent/US20190319709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present application relates to the field of optical communications, and in particular, to a method, device, and system for managing an optical network unit ONU.
  • a passive optical network is a point-to-multipoint network topology. It usually includes an optical line terminal (OLT) at the central office and multiple optical network units at the user end. Network Unit (ONU) and an Optical Distribution Network (ODN) located between the two.
  • OLT optical line terminal
  • ONU Network Unit
  • ODN Optical Distribution Network
  • the remote management and maintenance of the ONT is realized through the PLOAM and the OMCI mechanism, and the remote management and maintenance of the ONT is realized by the MPCP and the OAM mechanism in the EPON system.
  • the standards organization defines a new management mechanism NETCONF/YANG to manage ONU devices, and the existing ONU devices cannot simultaneously support the above various management mechanisms, which in turn makes the management of ONU devices complicated.
  • the first design provides a method for managing an optical network unit ONU, the method comprising:
  • the management mode supported by the ONU includes one or more of the following: optical network unit management control interface OMCI mode, operation, management, and maintenance OAM management mode, network configuration The NETCONF mode, the technical report TR069 mode, and the simple network management SNMP mode; receive the management mode sent by the ONU; and select the management mode used by the ONU according to the management mode supported by the ONU, and send the management mode to the ONU.
  • the method further includes:
  • the management channel is created by the ONU, and the ONU is instructed to create the management channel carried by the management mode.
  • the sending a management channel message to the ONU, and instructing the ONU to create the management channel carried by the management mode specifically includes:
  • the channel configuration information includes one or more of the following: a static configuration Internet Protocol IP, a dynamic host configuration protocol DHCP, and an Ethernet bearer point-to-point protocol PPPoE;
  • the OLT determines the channel configuration used by the ONU and the management configuration information of the ONU.
  • the method further includes: receiving a message that the ONU returns to complete the management channel; and performing data interaction with the ONU through the NETCONF management mode.
  • a method for managing an ONU is provided.
  • the ONU reports the management mode supported by the ONU.
  • the OLT selects the management mode used by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU.
  • the ONU management mode is negotiated between the OLT and the ONU, so that the existing system can support multiple management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • a network management device includes:
  • the transceiver sends and receives the management mode supported by the ONU of the optical network unit.
  • the management mode supported by the ONU includes one or more of the following: an optical network unit management control interface OMCI mode, operation, management, and maintenance OAM management mode, network configuration The NETCONF mode, the technical report TR069 mode, and the simple network management SNMP mode; and receiving the management mode of the ONU transmission; and sending the selected management mode to the ONU.
  • the processor selects a management mode of the ONU according to a management mode supported by the ONU, and the The selected management mode is sent to the ONU through the transceiver.
  • the processor is further configured to:
  • the transceiver When the management mode supported by the ONU is the NETCONF management mode, the transceiver is instructed to send a management channel message to the ONU, and the ONU is instructed to create a management channel carried by the management mode.
  • the processor is specifically configured to instruct the transceiver to send a message for acquiring channel configuration information of the management channel supported by the ONU to the ONU; and according to the sending and receiving The channel configuration information supported by the ONU is selected, and the channel configuration used by the ONU is selected; the management channel information is created to the ONU, and the ONU is instructed to create a management channel carried by the management mode according to the management channel information, where the creation management The channel information includes: a channel configuration used by the OLT determined by the OLT and management configuration information of the ONU;
  • the transceiver is configured to send, according to an instruction of the processor, a message for acquiring channel configuration information of the management channel supported by the ONU to the ONU; and receiving the channel configuration information returned by the ONU, where
  • the channel configuration information includes one or more of the following: static configuration Internet Protocol IP, Dynamic Host Configuration Protocol DHCP, and Ethernet bearer point-to-point protocol PPPoE.
  • the transceiver is further configured to receive a message that the ONU returns a management channel
  • the processor is further configured to perform data interaction with the ONU through the NETCONF management mode on the established management channel.
  • the network management device provides a network management device, and the OLT selects the management mode supported by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU according to the management mode supported by the ONU.
  • the ONU management mode is negotiated between the OLT and the ONU, so that the existing system can support multiple management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • an optical line termination including a network device as in the second design described above.
  • a third design provides an optical line terminal including a network management device
  • the OLT selects the management mode used by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU.
  • the above method negotiates the ONU management mode between the OLT and the ONU. Therefore, the existing system can support various management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • a passive optical network PON system in a fourth design, includes an optical line terminal OLT and an optical network unit ONU, and the OLT is connected to the ONU through an optical distribution network ODN.
  • the OLT includes a network device as in the second design described above.
  • a fifth design a data communication system, wherein the data communication system comprises: an optical line terminal OLT, an optical network unit, and a controller, wherein the controller is connected to each ONU through an OLT, and the control includes A network device as in the second design described above.
  • FIG. 1 is a system architecture diagram of a data communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for managing an optical network unit ONU according to an embodiment of the present application
  • 3a-3c are schematic diagrams showing the structure of various PLOAM messages provided by the embodiments of the present application.
  • FIGS. 4a-4d are schematic diagrams showing the structure of various MPCP messages provided by the embodiments of the present application.
  • 5a-5c are schematic diagrams showing another structure of a PLOAM message provided by an embodiment of the present application.
  • 6a-6c are schematic diagrams showing another structure of an MPCP message provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second network device according to an embodiment of the present application.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” generally means that the contextual object is a An “or” relationship.
  • the passive optical network system 100 includes at least one optical line termination (OLT) 110, a plurality of optical network units (ONUs) 120, and an optical distribution network (ODN) 130.
  • the optical line terminal 110 is connected to the plurality of optical network units 120 in a point-to-multipoint manner through the optical distribution network 130.
  • the optical line terminal 110 and the optical network unit 120 can communicate using a TDM mechanism, a WDM mechanism, or a TDM/WDM hybrid mechanism.
  • the direction from the optical line terminal 110 to the optical network unit 120 is defined as a downlink direction, and the direction from the optical network unit 120 to the optical line terminal 110 is an uplink direction.
  • the system further includes: a controller, the controller may be connected to the optical line terminal (OLT) 110, and may perform data communication with the ONU through the OLT, or may be transparently transmitted to the ONU through an OLT.
  • OLT optical line terminal
  • the OLT When the ONU supports the Network Configuration Protocol (NETCONF) protocol, the OLT implements establishment of a management channel for the ONU by using an extended PLOAM message, for example, establishing an Internet Protocol (IP) management channel. After the management channel is established, the OLT and the ONU encapsulate the data from the ONU into a NETCONF message format for data transmission on the established management channel IP, and the OLT sends the NETCONF message to the controller; or The OLT receives the NETCONF message from the controller, and forwards the NETCOF message to the ONU through an IP channel established by the OLT and the ONU.
  • IP Internet Protocol
  • the NETCONF protocol provides a mechanism for managing network devices. Users can use this mechanism to add, modify, and delete network device configurations to obtain network device configuration and status information. Through the NETCONF protocol, network devices can provide a set of APIs (Application Programming Interfaces); applications can directly use these APIs to deliver and retrieve configurations to network devices.
  • the NETCONF protocol Client and Server use the RPC mechanism for communication interaction. The Client must successfully establish a secure, link-oriented session with the Server to interact. The client sends an RPC request to the server. After the server processes the user request, it sends a response message to the client.
  • the client's RPC request and the server's response message are all encoded in XML, and The XML DTD or XML schema is used to fully describe the message content, and the communication parties can recognize each other's grammatical constraints.
  • NETCONF can refer to the standard IETF RFC6241/5277/6536.
  • the configuration data Config Data and Data Notification Notification Data in the NETCONF protocol can be modeled by the YANG model.
  • YANG's model file can be converted to a corresponding format XML file by tools and finally encapsulated into NETCONF messages.
  • the detailed definition of NETCON.YANG can be referred to the standard IETF RFC6020/RFC6991, and will not be described here.
  • An Internet Protocol (IP) channel is established between the ONU and the controller as a management channel to transmit data supporting the NETCONF protocol.
  • IP Internet Protocol
  • the specific NETCOF message format includes: destination MAC, source MAC, Ethernet type, TCP header, RPC header, data, FCS, where the Ether type is 0x0800 to indicate the IP packet.
  • IP header The header of an IP packet. When the protocol type is TCP, it indicates that it is followed by a TCP packet.
  • TCP header The header of a TCP (Transmission Control Protocol) message.
  • the port number is used to distinguish specific services.
  • RPC Remote Procedure Call Protocol
  • NF/C data implementation of the NF/C protocol
  • FCS The check field of the Ethernet message.
  • the OLT When the ONU does not support the NETCONF protocol, the OLT implements configuration and management of the ONU through the OMCI protocol.
  • the above controllers can be integrated on the OLT or independently of the OLT.
  • the controller When the controller is integrated on the OLT, if the ONU supports the NETCONF management mode, the OLT and the ONU of the integrated controller transmit the NETCONF message through the IP channel.
  • the passive optical network system 100 can be a communication network that does not require any active devices to implement data distribution between the optical line terminal 110 and the optical network unit 120.
  • the optical line Data distribution between the terminal 110 and the optical network unit 120 can be implemented by passive optical devices (such as optical splitters) in the optical distribution network 130.
  • the passive optical network system 100 can An Asynchronous Transfer Mode Passive Optical Network (ATM PON) system or a Broadband Passive Optical Network (BPON) system defined by the ITU-T G.983 standard, and a Gigabit Passive Optical Network defined by the ITU-T G.984 series of standards ( GPON) system, Ethernet Passive Optical Network (EPON), Wavelength Division Multiplexed Passive Optical Network (WDM PON) system or next generation passive optical network (NGA PON system, such as ITU-T G) defined by IEEE 802.3ah standard
  • ATM PON Asynchronous Transfer Mode Passive Optical Network
  • BPON Broadband Passive Optical Network
  • G.984 Gigabit Passive Optical Network
  • GPON Ethernet Passive Optical Network
  • the optical line terminations 110 are typically located at a central location (e.g., Central Office, CO) that can collectively manage the plurality of optical network units 120.
  • the optical line terminal 110 may serve as a medium between the optical network unit 120 and an upper layer network (not shown), and forward data received from the upper layer network to the optical network unit 120 as downlink data, and The uplink data received from the optical network unit 120 is forwarded to the upper layer network.
  • the specific structural configuration of the optical line terminal 110 may vary depending on the specific type of the passive optical network 100.
  • the optical line terminal 110 may include an optical transceiver component 200 and a data processing module (The optical transceiver component 200 can convert the downlink data processed by the data processing module into a downlink optical signal, and send the downlink optical signal to the optical network unit 120 through the optical distribution network 130. And receiving an uplink optical signal sent by the optical network unit 120 through the optical distribution network 130, and converting the uplink data signal into an electrical signal and providing the data processing module to the data processing module for processing.
  • the optical network unit 120 can be distributedly disposed at a user-side location (such as a customer premises).
  • the optical network unit 120 may be a network device for communicating with the optical line terminal 110 and a user, and specifically, the optical network unit 120 may serve as an interface between the optical line terminal 110 and the user.
  • the medium for example, the optical network unit 120 may forward the downlink data received from the optical line terminal 110 to the user, and forward the data received from the user to the optical line terminal 110 as uplink data.
  • the specific configuration of the optical network unit 120 may be different depending on the specific type of the passive optical network 100.
  • the optical network unit 120 may include an optical transceiver component 300.
  • the component 300 is configured to receive the optical line terminal 110 through the optical component
  • the downlink data signal transmitted by the network 130 is distributed, and the uplink data signal is transmitted to the optical line terminal 110 through the optical distribution network 130.
  • the structure of the optical network unit 120 is similar to that of an optical network terminal (ONT). Therefore, in the solution provided in this application, the optical network unit and the optical network terminal may mutually change.
  • the optical distribution network 130 can be a data distribution system that can include optical fibers, optical couplers, optical multiplexers/demultiplexers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical multiplexer/demultiplexer, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, photosynthetic
  • the wave/demultiplexer, optical splitter, and/or other device may be a device that distributes data signals between the optical line terminal 110 and the optical network unit 120 without the need for power support.
  • the optical distribution network 130 may also include one or more processing devices, such as optical amplifiers or relay devices.
  • the optical distribution network 130 may specifically extend from the optical line terminal 110 to the plurality of optical network units 120, but may also be configured in any other point-to-multipoint structure. .
  • the optical transceiver module 200 or 300 may be a pluggable optical transceiver component integrated with an optical signal transceiving and photoelectric conversion function and an OTDR testing function.
  • the optical transceiver component 200 of the optical line terminal 110 is taken as an example, and the optical transceiver
  • the components may include a light emitting module 210, a light receiving module 220, and an OTDR testing module 230.
  • the optical transmitting module 210 is configured to send the downlink data signal to the optical network unit 120 through the optical distribution network 130, and provide the OTDR detection module 230 when the optical network and the PON device need to be detected.
  • the OTDR test control signal modulates the OTDR test signal to the downlink data signal and outputs to the optical distribution network 130.
  • the light receiving module 220 is configured to receive an uplink data signal that is transmitted from the optical network unit 120 and transmitted through the optical distribution network 130, and convert it into an electrical signal by photoelectric conversion and forward it to the optical line terminal 110.
  • the control module or data processing module (not shown) performs processing.
  • the PON system shown in FIG. 1 may be an EPON system or a GPON system; or may be a 10G EPON or a 100G EPON; or may be an XG-PON, an XGS-PON, or a TWDM-PON.
  • the embodiment does not limit this.
  • FIG. 2 is a method for managing an ONU, which is applied to the system architecture of FIG. 1 above.
  • the method includes:
  • the OLT sends a management mode for obtaining support of the ONU.
  • the management mode supported by the ONU includes one or more of the following: an optical network unit management and control interface (OMCI) mode, operation, and management.
  • OAM Management, Administration and Maintenance
  • NETCONF network configuration protocol
  • TR Technical Report
  • TR069 TR069
  • SNMP Simple network management protocol
  • the messages involved in the negotiation between the OLT and the ONU based on the management mode supported by the ONU may pass the Physical Layer OAM Operations, Administrations and Maintenance, PLOAM messages, or Multi-Point Control Protocol (MPCP). ) Messages and other messages to achieve.
  • MPCP Multi-Point Control Protocol
  • the negotiation phase of the ONU management mode can be applied to the ONU online registration phase.
  • the negotiation process of the ONU management mode is implemented by extending the PLOAM message.
  • the negotiation process is implemented by the extended MPCP message.
  • the above MPCP message can also be applied to 10G EPON and 100G EPON.
  • the messages involved below can all be implemented using the extended message mentioned above, and are not limited to other messages.
  • FIG. 3a shows that the PLOAM message format of the XG-PON/XGS/NG-PON2 extension is:
  • the 1-2th byte is the "Optical Network Unit ONU-ID", and the third byte adds a message type.
  • the message type is "Get the message type of the management mode supported by the ONU", and the 4th byte is the serial number. (Sequence Number, SN), used to identify the serial number of the unicast message, the 5th-40th byte is padding Any content can be extended to any content, and the 41st to 48th bytes are used for message integrity check MIC.
  • the type of the message is added to the format of the PLOAM message.
  • the remaining fields are the same as those defined in the existing standard. For details, refer to the meaning of each field in the standard defined PLOAM message. The number of bytes in each field can be adjusted arbitrarily. There is no restriction here, and the description of the specific PLOAM message will not be described here.
  • the above-mentioned PLOAM message of FIG. 3a can be used in step S200.
  • the OLT sends the PLOAM message of FIG. 3a to the ONU, and requests to obtain the management mode message supported by the ONU.
  • the destination MAC DMAC is used to indicate the destination MAC address of the message
  • the source MAC SMAC is used to indicate the source MAC address of the message
  • Bits 13-14, length/type Length/Type are used to indicate the length and type of the message
  • the operation code type Opcode is used to indicate the operation code type of the message, and a new operation code type "management mode supported by the ONU report" is added here;
  • the 17th-60th byte, padding Padding is used to fill the contents of other messages.
  • the above message does not limit the extended PLOAM or MPCP message shown in the figure, as long as the message capable of implementing the above functions is acceptable.
  • the ONU sends the supported management mode to the OLT.
  • FIG. 3b shows the extended PLOAM message
  • the 1-2 byte is an identifier of the ONU, and is used to indicate the unicast message mode of the ONU;
  • the third byte is an extended message type, and the message type is used to identify that the ONU reports the management mode supported by itself;
  • the fourth byte is a serial number, which is used to indicate the serial number of the unicast message
  • the 5th byte is a type that is specifically reported by the ONU. It supports one or several types, such as OMCI, NETCONF.YONG (NC/Y), TR069, or SNMP. The above types are supported by 1 and the value 0 indicates that it is not supported. The above various types.
  • Figure 4b shows the extended MPCP message
  • the destination MAC DMAC is used to indicate the destination MAC address of the message
  • the source MAC SMAC is used to indicate the source MAC address of the message
  • Bits 13-14, length/type Length/Type are used to indicate the length and type of the message
  • the operation code type Opcode is used to indicate the operation code type of the message.
  • an operation code type "management mode supported by the ONU" is added;
  • the 17th byte is used to indicate the management mode supported by the ONU. Specifically, it supports one or several types such as OMCI, NETCONF.YONG (NC/Y), TR069 or SNMP. 0 means that the above various types are not supported.
  • Bits 18-60 padding Padding, used to fill the contents of other messages.
  • the OLT selects a management mode used by the ONU according to a management mode supported by the ONU, and sends the management mode to the ONU.
  • the OLT selects an appropriate management mode of the ONU according to the supported management mode reported by the ONU, and then interacts with the ONU through the extended PLOAM message or the MPCP message as shown in FIG. 3c or FIG. 4c.
  • the extended PLOAM message format is as follows:
  • the 1-2 byte is an identifier of the ONU, and is used to indicate the unicast message mode of the ONU.
  • the third byte is an extended message type, and the message type is used to identify that the ONU reports the management mode supported by itself;
  • the fourth byte is a serial number, which is used to indicate the serial number of the unicast message
  • the fifth byte is a management mode, which is used to indicate the management mode of the appropriate ONU selected by the OLT for the ONU.
  • OMCI NETCONF.YONG (NC/Y), TR069 or SNMP are supported.
  • Figure 4c shows the extended MPCP message
  • the destination MAC DMAC is used to indicate the destination MAC address of the message
  • the source MAC SMAC is used to indicate the source MAC address of the message
  • Bits 13-14, length/type Length/Type are used to indicate the length and type of the message
  • the operation code type Opcode is used to indicate the operation code type of the message.
  • an operation code type "management mode supported by the ONU" is added;
  • the 17th byte is used to indicate the management mode of the appropriate ONU selected by the OLT for the ONU.
  • OMCI NETCONF.YONG (NC/Y), TR069 or SNMP
  • OMCI is supported by 1
  • 2 indicates support for OMCI and NC/Y
  • 3 indicates OMCI and TR069
  • 4 indicates support for OMCI and SNMP, and can also support SNMP or NC/Y, or TR069 by other values, or one or more of the above various modes
  • a combination of modes indicates that the above various types are not supported.
  • Bits 18-60 padding Padding, used to fill the contents of other messages.
  • the ONU determines whether it supports the management mode, and then returns a response message to the OLT.
  • the format of the specific response message may also be extended in the PLOAM message, and the "execution result" is added in the extended field or in the preset field to indicate whether the ONU supports the management mode delivered by the OLT or does not support the management mode.
  • the value 1 indicates successful support; the value 2 indicates failure, that is, the management mode is not supported.
  • Bits 13-14 used to indicate the length and type of the message
  • the 15th to 16th bytes are used to indicate the operation pattern of the message.
  • an operation code type "management response message supported by the ONU report" is added.
  • the 17th byte is used to indicate the result of the execution; wherein the value 1 indicates that the ONU supports the management mode delivered by the OLT; and 2 indicates that the ONU does not support the management mode delivered by the OLT, that is, the failure.
  • the method may further include:
  • the management channel is sent to the ONU, and the ONU is instructed to create the management channel carried by the management mode.
  • the method for establishing a management channel between the OLT and the ONU is as follows:
  • the OLT sends a message for obtaining channel configuration information of the management channel supported by the ONU to the ONU.
  • the management channel can be an IP channel.
  • the OLT can implement the above functions through the extended PLOAM message of Figure 5a or through the extended MPCP message of Figure 6c.
  • the channel configuration information reported by the ONU is sent to the OLT.
  • the channel configuration information includes one or more of the following: static configuration Internet Protocol IP, Dynamic Host Configuration Protocol (DHCP), and Ethernet bearer point-to-point protocol. (Point-to-Point Protocol over Ethernet, PPPoE).
  • the new message type is the channel configuration mode supported by the ONU.
  • the fifth byte is used to indicate the channel configuration mode supported by the ONU: static configuration, DHCP, PPPoE, IPv6, etc.
  • Bytes and values indicate whether the configuration is supported, etc. No restrictions.
  • the channel configuration information may further include: a default route, and information such as a gateway.
  • the OLT selects a channel configuration used by the ONU according to the channel configuration information returned by the ONU, and sends a management channel information to the ONU, and instructs the ONU to create a management channel carried by the management mode, where the management channel is created.
  • the information includes: the OLT determines the channel configuration used by the ONU and the management configuration information of the ONU.
  • the management configuration information includes: an allocation identifier (Allocation-ID, ALLOC-ID), a transport container (TCONT), a GEM frame port identifier GEMPORT ID, and a virtual local area network (VLAN). Identifies information such as VLAN ID, priority, and so on.
  • Allocation-ID allocation identifier
  • ALLOC-ID transport container
  • TCONT transport container
  • GEMPORT ID GEM frame port identifier
  • VLAN virtual local area network
  • the OLT sends the channel configuration information and the management configuration information reported by the ONU to the ONU, and instructs the ONU to create a management channel, such as an IP channel, according to the foregoing information.
  • the specific message format is shown in Figure 5b or 6b.
  • the management management channel message type is newly added through the third byte of the extended byte, and the specific supported management mode is added through the fifth byte: 1. static configuration; 2. DHCP configuration 3, PPPoE, and the like.
  • a combination of multiple modes and management configuration information such as Alloc-ID, the specific bytes are not shown in the figure, and the bytes are sequentially divided according to the order.
  • the ONU creates a management channel according to the information of creating a management channel sent by the OLT.
  • the ONU sends a message that the management channel recommends success to the OLT.
  • the OLT After receiving the message that the management channel is recommended to succeed, the OLT implements data transmission between the OLT and the ONU and the controller by using the NECONF message.
  • the OLT When the ONU supports the Network Configuration Protocol (NETCONF) protocol, the OLT implements establishment of a management channel for the ONU by using an extended PLOAM message, for example, establishing an Internet Protocol (IP) management channel. After the management channel is established, the OLT and the ONU encapsulate the data from the ONU into a NETCONF message format for data transmission on the established management channel IP, and the OLT sends the NETCONF message to the controller; or The OLT receives the NETCONF message from the controller, and forwards the NETCOF message to the ONU through an IP channel established by the OLT and the ONU.
  • IP Internet Protocol
  • An ONU management method is provided by the embodiment of the present invention.
  • the ONU reports the management mode supported by the ONU.
  • the OLT selects the management mode used by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU.
  • the ONU management mode is negotiated between the OLT and the ONU, so that the existing system can support multiple management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • the embodiment of the present invention further provides a network device.
  • the location of the network device in the PON system architecture is shown in the controller in FIG. 1.
  • the network device may be integrated in the OLT or independent of the OLT as a controller.
  • the transceiver 700 may be the optical transceiver component 200 of the OLT 110 in the system architecture, or the transceiver 700 may be located in the optical transceiver component 200 of the OLT in the system architecture.
  • the transceiver 700 sends a management mode for obtaining the ONU support of the optical network unit.
  • the management mode supported by the ONU includes one or more of the following: an optical network unit management control interface OMCI mode, operation, management, and maintenance OAM management mode, and network The configuration protocol NETCONF mode, the technical report TR069 mode, and the simple network management SNMP mode; and receiving the management mode sent by the ONU; and sending the selected management mode to the ONU.
  • the processor 702 selects a management mode of the ONU according to a management mode supported by the ONU.
  • the selected management mode is sent to the ONU through the transceiver.
  • processor is further configured to:
  • the transceiver When the management mode supported by the ONU is the NETCONF management mode, the transceiver is instructed to send a management channel message to the ONU, and the ONU is instructed to create a management channel carried by the management mode.
  • the processor is specifically configured to: instruct the transceiver to send a message for acquiring channel configuration information of the management channel supported by the ONU to the ONU; and select, according to channel configuration information supported by the ONU received by the transceiver The channel configuration used by the ONU; the management channel information is created to the ONU, and the ONU is instructed to create the management channel carried by the management mode according to the management channel information, where the information for creating the management channel includes: the channel used by the OLT determined by the OLT Configuration and management configuration information of the ONU;
  • the transceiver is configured to send, according to an instruction of the processor, a message for acquiring channel configuration information of the management channel supported by the ONU to the ONU; and receiving the channel configuration information returned by the ONU, where
  • the channel configuration information includes one or more of the following: static configuration Internet Protocol IP, Dynamic Host Configuration Protocol DHCP, and Ethernet bearer point-to-point protocol PPPoE.
  • the transceiver is further configured to receive a message that the ONU returns a management channel
  • the processor is further configured to perform data interaction with the ONU through the NETCONF management mode on the established management channel.
  • An ONU management method is provided by the embodiment of the present invention.
  • the ONU reports the management mode supported by the ONU.
  • the OLT selects the management mode used by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU.
  • the ONU management mode is negotiated between the OLT and the ONU, so that the existing system can support multiple management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • the optical line terminal in FIG. 1 further includes a network device as shown in FIG. 7, which is not shown in the figure, that is, the network device is integrated in the OLT.
  • the network device is integrated in the OLT.
  • the processor 702 in the figure may be a Media Access Controller (MAC) or other microprocessor.
  • MAC Media Access Controller
  • An ONU management method is provided by the embodiment of the present invention.
  • the ONU reports the management mode supported by the ONU.
  • the OLT selects the management mode used by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU.
  • the ONU management mode is negotiated between the OLT and the ONU, so that the existing system can support multiple management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • a passive optical network system PON includes an optical line terminal OLT and an optical network unit ONU, and the OLT is connected to the ONU through an optical distribution network ODN.
  • OLT 110 refers to the specific OLT.
  • ONU refers to the description of the specific structure of the ONU.
  • functions performed by the OLT and the ONU refer to the description of the above embodiments, and details are not described herein.
  • the embodiment of the present invention further provides a data communication device.
  • the data communication device includes: a processor, a memory, and a bus system, where the processor and the memory are connected by the bus system.
  • the memory is for storing instructions for executing the instructions stored by the memory.
  • the processor is configured to: send a management mode for obtaining support of the ONU, and the management mode supported by the ONU includes one or more of the following: an optical network unit management control interface OMCI mode The operation, management, and maintenance of the OAM management mode, the network configuration protocol NETCONF mode, the technical report TR069 mode, and the simple network management SNMP mode; receiving the management mode sent by the ONU; and selecting the ONU to be used according to the management mode supported by the ONU The management method is sent to the ONU.
  • OMCI mode optical network unit management control interface
  • An ONU management method is provided by the embodiment of the present invention.
  • the ONU reports the management mode supported by the ONU.
  • the OLT selects the management mode used by the ONU according to the management mode supported by the ONU, and sends the management mode to the ONU.
  • the ONU management mode is negotiated between the OLT and the ONU, so that the existing system can support multiple management mechanisms of the ONU, simplify the management of the ONU, and improve the management efficiency of the ONU.
  • the completion of the hardware may also be performed by a program to instruct related hardware.
  • the program may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请公开了一种管理光网络单元ONU的方法、装置及***,发送获取ONU的支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;接收所述ONU发送的管理方式;根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,实现了对现有的ONU的多种管理机制兼容,简化ONU的管理,提高ONU的管理效率。

Description

一种管理光网络单元ONU的方法、装置及*** 技术领域
本申请涉及光通信领域,特别涉及一种管理光网络单元ONU的方法、装置及***。
背景技术
无源光网络(Passive Optical Network,PON)是一种点对多点的网络拓扑结构,通常包括位于中心局的光线路终端(Optical Line Terminal,OLT)、位于用户端的多个光网络单元(Optical Network Unit,ONU)以及位于两者之间的光分配网络(Optical Distribution Network,ODN)。
PON***中,GPON***中,通过PLOAM和OMCI机制实现对ONT的远程管理和维护,EPON***中通过MPCP和OAM机制实现对ONT的远程管理和维护。随着技术的发展,标准组织定义了一种新的管理机制NETCONF/YANG来管理ONU设备,而现有的ONU设备无法同时支持上述各种管理机制,进而造成ONU设备的管理复杂。
发明内容
为了支持现有的ONU的多种管理机制,简化ONU的管理,提高ONU的管理效率,提出如下技术方案:
第一种设计方案,提供了一种管理光网络单元ONU的方法,该方法包括:
发送消息给ONU,以获取ONU的支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;接收所述ONU发送的管理方式;根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU。
基于第一种设计方案的一种可能的设计中,所述方法还包括:
当所述ONU支持的管理方式为NETCONF管理方式,则下发创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道。
另一种可能的设计中,所述下发创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道具体包括:
发送获取ONU支持的所述管理通道的通道配置信息;
接收所述ONU返回的所述通道配置信息,其中,所述通道配置信息包括下面一种或者几种:静态配置互联网协议IP、动态主机配置协议DHCP、以太网承载点对点协议PPPoE;
根据所述ONU返回的通道配置信息,选择ONU使用的通道配置,并下发创建管理通道信息给所述ONU,指示ONU创建所述管理方式承载的管理通道,其中所述创建管理通道信息包括:OLT确定ONU使用的通道配置和ONU的管理配置信息。
第三种可能的设计中,所述方法还包括:接收所述ONU返回完成管理通道的消息;与所述ONU之间通过NETCONF管理方式进行数据交互。
本设计方案中,提供了一种对ONU管理的方法,ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
第二种设计方案中,提供了一种网络设备,所述网络管理设备包括:
收发器,发送获取光网络单元ONU支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;以及接收所述ONU发送的管理方式;将所述选择的管理方式发送给所述ONU。
处理器,根据所述ONU支持的管理方式,选择所述ONU的管理方式,将所述 选择的管理方式通过收发器发送给ONU。
基于上述的涉及方案,一种可能的设计中,所述处理器,还用于:
当所述ONU支持的管理方式为NETCONF管理方式,则指示收发器发送创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道。
基于上述的涉及方案,另一种可能的设计中,所述处理器,具体用于指示收发器发送获取ONU支持的所述管理通道的通道配置信息的消息给所述ONU;以及根据所述收发器接收的ONU支持的通道配置信息,选择ONU使用的通道配置;将创建管理通道信息给所述ONU,指示ONU根据所述管理通道信息创建所述管理方式承载的管理通道,其中所述创建管理通道信息包括:OLT确定的ONU使用的通道配置和ONU的管理配置信息;
所述收发器,用于根据处理器的指示,发送获取ONU支持的所述管理通道的通道配置信息的消息给所述ONU;以及接收所述ONU返回的所述通道配置信息,其中,所述通道配置信息包括下面一种或者几种:静态配置互联网协议IP、动态主机配置协议DHCP、以太网承载点对点协议PPPoE。
基于上述的涉及方案,再一种可能的设计中,所述收发器,还用于接收所述ONU返回的完成管理通道的消息;
所述处理器,还用于在建立的管理通道上,与所述ONU之间通过NETCONF管理方式进行数据交互。
本设计方案中,提供了一种网络管理设备,通过接收ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
第三种设计方案中,提供了一种光线路终端,包括如上述第二种设计方案中的网络设备。
第三种设计方案,提供了一种光线路终端,该光线路终端包括网络管理设 备,通过接收ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
第四种设计方案中,提供了一种无源光网络PON***,所述PON***包括:光线路终端OLT和光网络单元ONU,所述OLT与所述ONU通过光分配网络ODN连接,其特征在于,所述OLT包括如上述第二种设计方案中的网络设备。
第五种设计方案,一种数据通信***,其特征在于,所述数据通信***包括:光线路终端OLT,光网络单元以及控制器,所述控制器通过OLT与各ONU连接,所述控制包括如上述第二种设计方案中的网络设备。
附图说明
图1示出了本申请实施例提供的数据通信***的***架构图;
图2示出了本申请实施例提供的一种管理光网络单元ONU的方法流程示意图;
图3a-图3c示出了本申请实施例提供的各种PLOAM消息结构示意图;
图4a-图4d示出了本申请实施例提供的各种MPCP消息结构示意图;
图5a-图5c示出了本申请实施例提供的的另一种PLOAM消息结构示意图;
图6a-图6c示出了本申请实施例提供的另一种MPCP消息结构示意图;
图7示出了本申请实施例提供的第一种网络设备的结构示意图;
图8示出了本申请实施例提供的第二种网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一 种“或”的关系。
请参考图1,所述无源光网络***100包括至少一个光线路终端(OLT)110、多个光网络单元(ONU)120和一个光分配网络(ODN)130。所述光线路终端110通过所述光分配网络130以点到多点的形式连接到所述多个光网络单元120。所述光线路终端110和所述光网络单元120之间可以采用TDM机制、WDM机制或者TDM/WDM混合机制进行通信。其中,从所述光线路终端110到所述光网络单元120的方向定义为下行方向,而从所述光网络单元120到所述光线路终端110的方向为上行方向。
所述***还包括:控制器,所述控制器可以与所述光线路终端(OLT)110连接,通过所述OLT与所述ONU进行数据通信,也可以通过OLT透传给直所述ONU。
当该ONU支持网络配置协议(Network Configuration Protocol,NETCONF)协议时,所述OLT通过扩展的PLOAM消息实现对ONU的管理通道的建立,例如建立互联网协议(Internet Protocol,IP)管理通道。当所述管理通道建立完成之后,所述OLT与ONU之间将来自ONU的数据封装成NETCONF消息格式在建立的管理通道IP上进行数据传输,所述OLT将该NETCONF消息发送给控制器;或者,OLT接收来自控制器的NETCONF消息,通过OLT与ONU建立的IP通道,将所述NETCOF消息转发给ONU。
NETCONF协议提供一套管理网络设备的机制,用户可以使用这套机制增加、修改、删除网络设备的配置,获取网络设备的配置和状态信息。通过NETCONF协议,网络设备可以提供一组完备规范的API(Application Programming Interface);应用程序可以直接使用这些API,向网络设备下发和获取配置。NETCONF协议Client和Server之间使用RPC机制进行通讯交互。Client必须与Server成功建立一个安全的、面向链接的session,才能进行交互。Client向Server发送一个RPC请求,Server处理完用户请求后,给Client发送一个回应消息。Client的RPC请求和Server的回应消息全部采用XML编码,并且 使用XML DTD或者XML schema对消息内容进行充分的描述,通讯双方可以互相识别语法约束。
NETCONF的详细定义可以参考标准IETF RFC6241/5277/6536,NETCONF协议中的配置数据Config Data、数据通知Notification Data等消息都可以通过YANG模型来建模实现。YANG的模型文件可以通过工具转换到对应格式的XML文件,被最终封装成NETCONF消息。NETCON.YANG的详细定义可以以参考标准IETF RFC6020/RFC6991,这里就不再赘述。该ONU与控制器之间建立互联网协议(Internet Protocol,IP)通道作为管理通道,传输支持NETCONF协议的数据。
具体的NETCOF消息格式包括:目的MAC,源MAC,以太类型,TCP头,RPC头,数据,FCS,其中以太类型,为0x0800的时候表示IP包
IP头:IP报文的头,当其中协议类型为TCP时,表示后面为TCP报文.
TCP头:TCP(Transmission Control Protocol)消息的头,通过端口号区分具体的业务。
RPC:(Remote Procedure Call Protocol)为TCP消息的净荷。
NF/C数据:NF/C协议的执行
FCS:以太报文的校验域。
当该ONU不支持NETCONF协议时,所述OLT通过OMCI协议实现对ONU的配置和管理。
上述控制器可以集成在OLT上,也可以独立于OLT。
当所述控制器集成在OLT上时,若ONU支持NETCONF管理方式,则集成控制器的OLT与ONU之间通过IP通道传输NETCONF消息。
所述无源光网络***100可以是不需要任何有源器件来实现所述光线路终端110与所述光网络单元120之间的数据分发的通信网络,在具体实施例中,所述光线路终端110与所述光网络单元120之间的数据分发可以通过所述光分配网络130中的无源光器件(比如分光器)来实现。所述无源光网络***100可 以为ITU-T G.983标准定义的异步传输模式无源光网络(ATM PON)***或宽带无源光网络(BPON)***、ITU-T G.984系列标准定义的吉比特无源光网络(GPON)***、IEEE 802.3ah标准定义的以太网无源光网络(EPON)、波分复用无源光网络(WDM PON)***或者下一代无源光网络(NGA PON***,比如ITU-T G.987系列标准定义的XGPON***、IEEE 802.3av标准定义的10G EPON***、TDM/WDM混合PON***等)。上述标准定义的各种无源光网络***的全部内容通过引用结合在本申请文件中。
所述光线路终端110通常位于中心位置(例如中心局Central Office,CO),其可以统一管理所述多个光网络单元120。所述光线路终端110可以充当所述光网络单元120与上层网络(图未示)之间的媒介,将从所述上层网络接收到的数据作为下行数据转发到所述光网络单元120,以及将从所述光网络单元120接收到的上行数据转发到所述上层网络。所述光线路终端110的具体结构配置可能会因所述无源光网络100的具体类型而异,在一种实施例中,所述光线路终端110可以包括光收发组件200和数据处理模块(图未示出),所述光收发组件200可以将经过所述数据处理模块处理的下行数据转换成下行光信号,并通过所述光分配网络130将下行光信号发送给所述光网络单元120,并且接收所述光网络单元120通过所述光分配网络130发送的上行光信号,并将所述上行数据信号转换为电信号并提供给所述数据处理模块进行处理。
所述光网络单元120可以分布式地设置在用户侧位置(比如用户驻地)。所述光网络单元120可以为用于与所述光线路终端110和用户进行通信的网络设备,具体而言,所述光网络单元120可以充当所述光线路终端110与所述用户之间的媒介,例如,所述光网络单元120可以将从所述光线路终端110接收到的下行数据转发到用户,以及将从用户接收到的数据作为上行数据转发到所述光线路终端110。所述光网络单元120的具体结构配置可能会因所述无源光网络100的具体类型而异,在一种实施例中,所述光网络单元120可以包括光收发组件300,所述光收发组件300用于接收所述光线路终端110通过所述光分 配网络130发送的下行数据信号,并且通过所述光分配网络130向所述光线路终端110发送上行数据信号。应当理解,在本申请文件中,所述光网络单元120的结构与光网络终端(Optical Network Terminal,ONT)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
所述光分配网络130可以是一个数据分发***,其可以包括光纤、光耦合器、光合波/分波器、光分路器和/或其他设备。在一个实施例中,所述光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是无源光器件,具体来说,所述光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是在所述光线路终端110和所述光网络单元120之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该光分配网络130还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。在如图1所示的分支结构中,所述光分配网络130具体可以从所述光线路终端110延伸到所述多个光网络单元120,但也可以配置成其他任何点到多点的结构。
所述光收发组件200或300可以是集成有光信号收发与光电转换功能以及OTDR测试功能的可插拔光收发组件,以所述光线路终端110的光收发组件200为例,所述光收发组件可以包括光发射模块210、光接收模块220和OTDR测试模块230。其中,所述光发射模块210用于将下行数据信号通过所述光分配网络130下发给所述光网络单元120,并在需要对光纤网络和PON设备进行检测时,根据OTDR检测模块230提供的OTDR测试控制信号,将OTDR测试信号调制到所述下行数据信号并输出到所述光分配网络130。所述光接收模块220用于接收来自所述光网络单元120且通过所述光分配网络130传送的上行数据信号,并通过光电转换将其转换为电信号并转发给所述光线路终端110的控制模块或者数据处理模块(图未示)进行处理。
需要说明的是,图1所示的PON***可以为EPON***、GPON***;也可以是10G EPON、100G EPON;还可以是XG-PON,XGS-PON,TWDM-PON,本申请 实施例并不对此进行限定。
下面所描述的各种ONU的管理方法均适用于上述图1的***。
请参考图2,图2为一种管理ONU的方法,应用于上述图1的***架构中。
所述方法包括:
S200、OLT发送获取ONU的支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口(Optical Network Unit Management and Control Interface,OMCI)方式、操作、管理和维护(Operations,Administration and Maintenance,OAM)管理方式、网络配置协议NETCONF方式、技术报告(Technical Report,TR)069,TR069方式、简单网络管理(Simple network management protocol,SNMP)方式。
具体地,所述OLT与ONU之间基于ONU支持的管理方式的协商中涉及的消息都可以通过Physical Layer OAM Operations,Administrations and Maintenance,PLOAM消息,或者多点控制协议(Multi-Point Control Protocol,MPCP)消息等消息来实现。
该ONU的管理方式的协商阶段可以应用到ONU上线注册阶段,对于GPON***而言,通过扩展PLOAM消息来实现ONU管理方式的协商过程,对于EPON***,通过扩展的MPCP消息来实现该协商过程。上述PLOAM消息也可以应用的XGPON以及TWDM PON中,上述MPCP消息也可以应用到10G EPON以及100G EPON中。下面涉及的消息都可以采用上述提到的扩展的消息实现,也不限制于其它消息。
如图3a所示,图3a为XG-PON/XGS/NG-PON2扩展的PLOAM消息格式为:
第1-2字节为“光网络单元ONU-标识ID”,第3字节增加一种消息类型,该消息类型为“获取ONU支持的管理方式的消息类型”,第4字节为序列号(Sequence Number,SN),用来标识单播消息的序列号,第5-40字节为填充 任意内容,可以扩展任意内容,第41-48字节用来做消息完整性校验MIC。该PLOAM消息的格式中新增了消息的类型,其余字段与现有标准定义的一致,详细请参见标准定义的PLOAM消息中各个字段的含义,其中,各个字段所占的字节数可以任意调节,这里不做限制,具体PLOAM消息的描述这里不再赘述。
上述图3a的PLOAM消息可以用于步骤S200中,OLT发送上述图3a的PLOAM消息给ONU,请求获取ONU的支持的管理方式的消息。
上述也可以用图4a所示扩展的MPCP消息格式表示,具体如下:
第1-6字节,目的MAC DMAC用于表示该消息的目的MAC地址;
第7-12字节,源MAC SMAC用于表示该消息的源MAC地址;
第13-14字节,长度/类型Length/Type用于表示该消息的长度和类型;
第15-16字节,操作码型Opcode用于表示该消息的操作码型,这里新增一种操作码型“ONU上报支持的管理方式”;
第17-60字节,填充Padding,用于填充其它消息的内容。
其余字段的描述请具体参见标准规定的MPCP的消息格式。
当然,上述的消息也不限制与图中所示的扩展的PLOAM或者MPCP消息,只要能实现上述功能的消息均可以。
S204、ONU发送支持的管理方式给OLT。
ONU上报自身支持的管理方式的消息请参见图3b所示或者参见图4b所示。
如图3b为扩展的PLOAM消息所示:
第1-2字节为ONU的标识,用于指示ONU的单播消息方式;
第3字节为扩展的消息类型,该消息类型用于标识ONU上报自己支持的管理方式;
第4字节为序列号,用于表示单播消息的序列号;
第5字节为ONU具体上报的类型,共支持OMCI,NETCONF.YONG(NC/Y),TR069或者SNMP等一种或者几种类型,通过1表示支持上述各种类型,通过数值0表示不支持上述各种类型。
其余字段与标准定义的一致,请参见标准对各个字段的定义。
如图4b为扩展的MPCP消息所示:
第1-6字节,目的MAC DMAC用于表示该消息的目的MAC地址;
第7-12字节,源MAC SMAC用于表示该消息的源MAC地址;
第13-14字节,长度/类型Length/Type用于表示该消息的长度和类型;
第15-16字节,操作码型Opcode用于表示该消息的操作码型,这里新增一种操作码型“ONU支持的管理方式”;
第17字节,用于表示ONU支持的管理方式,具体共支持OMCI,NETCONF.YONG(NC/Y),TR069或者SNMP等一种或者几种类型,通过1表示支持上述各种类型,通过数值0表示不支持上述各种类型。
第18-60字节,填充Padding,用于填充其它消息的内容。
其余字段的描述请具体参见标准规定的MPCP的消息格式。
S206、OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU。
OLT根据ONU上报的支持的管理方式,选择ONU合适的管理方式后通过如图3c或者图4c所示的扩展的PLOAM消息或者MPCP消息与ONU进行交互。
如图3c所示,扩展后的PLOAM消息格式如下:
第1-2字节为ONU的标识,用于指示ONU的单播消息方式;
第3字节为扩展的消息类型,该消息类型用于标识ONU上报自己支持的管理方式;
第4字节为序列号,用于表示单播消息的序列号;
第5字节为管理方式,用于表示OLT给ONU选择的合适ONU的管理方式,具体共支持OMCI,NETCONF.YONG(NC/Y),TR069或者SNMP等一种或者几种类型,通过1表示支持OMCI;2表示支持OMCI和NC/Y;3表示OMCI和TR069;4表示支持OMCI和SNMP,还可以通过其它值表示支持SNMP或者NC/Y,或者TR069, 或者上述的各种方式的一种或者多种方式的组合;通过数值0表示不支持上述各种类型。
其余字段与标准定义的一致,请参见标准对各个字段的定义。
如图4c为扩展的MPCP消息所示:
第1-6字节,目的MAC DMAC用于表示该消息的目的MAC地址;
第7-12字节,源MAC SMAC用于表示该消息的源MAC地址;
第13-14字节,长度/类型Length/Type用于表示该消息的长度和类型;
第15-16字节,操作码型Opcode用于表示该消息的操作码型,这里新增一种操作码型“ONU支持的管理方式”;
第17字节,用于表示OLT给ONU选择的合适ONU的管理方式,具体共支持OMCI,NETCONF.YONG(NC/Y),TR069或者SNMP等一种或者几种类型,通过1表示支持OMCI;2表示支持OMCI和NC/Y;3表示OMCI和TR069;4表示支持OMCI和SNMP,还可以通过其它值表示支持SNMP或者NC/Y,或者TR069,或者上述的各种方式的一种或者多种方式的组合;通过数值0表示不支持上述各种类型。
第18-60字节,填充Padding,用于填充其它消息的内容。
其余字段的描述请具体参见标准规定的MPCP的消息格式
进一步地,ONU收到该OLT下发的ONU的管理方式后,确定自身是否支持该管理方式,则回复响应消息给所述OLT。具体响应消息的格式也可以通过扩展PLOAM消息中,通过扩充字段中或者预先设置的字段中,增加“执行结果”,用于表示ONU支持OLT下发的管理方式还是不支持该管理方式。具体可以通过值1表示成功支持;通过值2表示失败,即不支持该管理方式。上述描述没有通过附图的方式示意出来。
上述的响应消息还可以通过图4d的MPCP消息格式进行体现,具体描述如下:
第1-6字节,用于表示该消息的目的MAC地址;
第7-12字节,用于表示该消息的源MAC地址;
第13-14字节,用于表示该消息的长度和类型;
第15-16字节,用于表示该消息的操作码型,这里新增一种操作码型“ONU上报支持的管理方式回应消息”;
第17字节,用于表示执行的结果;其中,值1表示ONU支持OLT下发的管理方式;2表示ONU不支持OLT下发的管理方式,即失败。
其余字段的描述请具体参见标准规定的MPCP的消息格式的详细描述,这里不再赘述。
进一步可选地,所述方法还可以包括:
S208、当所述ONU支持的管理方式为NETCONF管理方式,则下发创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道。
具体可以描述如下:OLT与ONU之间建立管理通道的方法如下:
OLT发送获取ONU支持的所述管理通道的通道配置信息的消息给ONU。该管理通道可以为IP通道。OLT可以通过如图5a的扩展的PLOAM消息实现上述功能或者通过图6c的扩展的MPCP消息实现上述功能。
ONU上报的所述通道配置信息给OLT;其中,所述通道配置信息包括下面一种或者几种:静态配置互联网协议IP、动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)、以太网承载点对点协议(Point-to-Point Protocol over Ethernet,PPPoE)。
具体ONU上报通道配置信息给OLT的消息格式如图5a或者图6a所示:
如图5a所示,重点描述的第3字节,新增消息类型为ONU支持的通道配置方式,第5字节用于表示ONU支持的通道配置方式:静态配置、DHCP、PPPoE、IPv6等一种或者多种方式的组合;通过值1表示支持上述配置方式的一种或者几种,通过值表示不支持该通道配置方式,其中值可以任意选取,全文中涉及到消息的各个字段所占的字节以及用值的方式表示是否支持该配置等方式,都 不做限制。
可选地,所述通道配置信息还可以包括:默认路由以及网关等信息。
如图6a所示,新增操作“ONU支持的管理通道配置方式上报”操作码,以及具体支持哪些配置方式,具体参见图6a所示。
3、OLT根据所述ONU返回的通道配置信息,选择ONU使用的通道配置,并下发创建管理通道信息给所述ONU,指示ONU创建所述管理方式承载的管理通道,其中所述创建管理通道信息包括:OLT确定ONU使用的通道配置和ONU的管理配置信息。
具体地,所述所述管理配置信息包括:分配标识(Allocation-ID,ALLOC-ID),传输容易(Transport Container,TCONT),GEM帧端口标识GEMPORT ID,虚拟局域网(virtual local area network,VLAN)标识VLAN ID,优先级Priority等信息。
进一步地,所述OLT根据ONU上报的通道配置信息和管理配置信息下发给ONU,指示ONU根据上述信息创建管理通道,例如IP通道。
具体的消息格式请参见图5b或者6b所示。具体图5b中,通过扩展字节第3字节新增创建管理配置通道消息类型,通过第5字节新增具体支持的管理方式:1、静态配置;2、DHCP配置3、PPPoE等一种或者多种方式的组合以及Alloc-ID等管理配置信息,图中没有显示出具体的字节,根据顺序依次划分字节即可。
图6b中通过第15-16字节新增“创建管理通道”的操作类型,第17字节新增管理方式,后面依次如上对管理配置信息进行填充。具体参见图6b。
S210、ONU根据OLT发送的创建管理通道信息,创建管理通道。
S212、ONU发送管理通道建议成功的消息给OLT。
具体创建成功的消息格式请具体参见图5c的扩展的PLOAM消息以及图6c的扩展的MPCP消息。
需要说明的是图6c中扩展了“创建管理通道回应消息”以及“执行结果” 用于标识创建该管理通道是成功还是失败的消息。
S214、所述OLT收到该管理通道建议成功的消息后,通过NECONF消息实现OLT与ONU以及控制器之间的数据传输。
当该ONU支持网络配置协议(Network Configuration Protocol,NETCONF)协议时,所述OLT通过扩展的PLOAM消息实现对ONU的管理通道的建立,例如建立互联网协议(Internet Protocol,IP)管理通道。当所述管理通道建立完成之后,所述OLT与ONU之间将来自ONU的数据封装成NETCONF消息格式在建立的管理通道IP上进行数据传输,所述OLT将该NETCONF消息发送给控制器;或者,OLT接收来自控制器的NETCONF消息,通过OLT与ONU建立的IP通道,将所述NETCOF消息转发给ONU。
本发明实施例提供的一种对ONU管理的方法,ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
本发明实施例还提供一种网络设备,上述的网络设备在PON***架构中的位置请参见图1中的控制器所示,该网络设备可以集成在OLT或者独立于OLT,作为控制器。其中,上述的收发器700可以为***架构中的OLT110的光收发组件200,或者改收发器700位于该***架构中OLT的光收发组件200中。
收发器700,发送获取光网络单元ONU支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;以及接收所述ONU发送的管理方式;将所述选择的管理方式发送给所述ONU。
处理器702,根据所述ONU支持的管理方式,选择所述ONU的管理方式, 将所述选择的管理方式通过收发器发送给ONU。
本申请的网络设备与OLT以及ONU之间的交互,可以参见图2-6以及对应的方法实施例的描述,这里就不再赘述了。
进一步地,所述处理器,还用于:
当所述ONU支持的管理方式为NETCONF管理方式,则指示收发器发送创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道。
进一步地,所述处理器,具体用于指示收发器发送获取ONU支持的所述管理通道的通道配置信息的消息给所述ONU;以及根据所述收发器接收的ONU支持的通道配置信息,选择ONU使用的通道配置;将创建管理通道信息给所述ONU,指示ONU根据所述管理通道信息创建所述管理方式承载的管理通道,其中所述创建管理通道信息包括:OLT确定的ONU使用的通道配置和ONU的管理配置信息;
所述收发器,用于根据处理器的指示,发送获取ONU支持的所述管理通道的通道配置信息的消息给所述ONU;以及接收所述ONU返回的所述通道配置信息,其中,所述通道配置信息包括下面一种或者几种:静态配置互联网协议IP、动态主机配置协议DHCP、以太网承载点对点协议PPPoE。
进一步地,所述收发器,还用于接收所述ONU返回的完成管理通道的消息;
所述处理器,还用于在建立的管理通道上,与所述ONU之间通过NETCONF管理方式进行数据交互。
本发明实施例提供的一种对ONU管理的方法,ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
结合图7以及图1的***架构图,图1中的光线路终端还包括如图7所示网络设备,图中未示出,即该网络设备集成在OLT中。具体网络设备完成的功能参见上述实施例的描述。
该图中的处理器702可以为媒体接入控制器(Media Access Controller,MAC)或者其它微处理器。
本发明实施例提供的一种对ONU管理的方法,ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
如图1所示的一种无源光网络***PON,包括光线路终端OLT和光网络单元ONU,所述OLT通过光分配网ODN与所述ONU连接,所述OLT110的结构请参见上述OLT的具体结构的描述,所述ONU的具体结构请参见上述ONU的具体结构的描述,所示OLT与ONU执行的功能请分别参见上述的各个实施例的描述,这里就不再赘述。
本发明实施例还提供了一种数据通信设备,如图8所示,所述数据通信设备包括:处理器、存储器和总线***,所述处理器和所述存储器通过所述总线***相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。
当所述数据通信设备是OLT的时候,所述处理器用于:发送获取ONU的支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;接收所述ONU发送的管理方式;根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU。
本发明实施例提供的一种对ONU管理的方法,ONU上报自己支持的管理方式,OLT根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送给所述ONU,上述方法通过OLT与ONU之间协商ONU的管理方式,使得现有的***可以支持ONU的多种管理机制,并简化ONU的管理,提高ONU的管理效率。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的具体实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种管理光网络单元ONU的方法,其特征在于,该方法包括:
    发送消息给ONU,以获取ONU支持的管理方式;
    接收所述ONU支持的管理方式,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;
    根据所述ONU支持的管理方式,选择所述ONU使用的管理方式,发送所述选择的ONU使用的管理方式给所述ONU。
  2. 根据权利要求1所述的管理ONU方法,其特征在于,所述方法还包括:
    当所述ONU支持的管理方式为NETCONF管理方式,则下发创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道。
  3. 根据权利要求2所述的管理ONU方法,其特征在于,所述下发创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道具体包括:
    发送获取ONU支持的所述管理通道的通道配置信息的消息给ONU;
    接收所述ONU返回的所述通道配置信息的消息,其中,所述通道配置信息包括下面一种或者几种:静态配置互联网协议IP、动态主机配置协议DHCP、以太网承载点对点协议PPPoE;
    根据所述ONU返回的通道配置信息,选择ONU使用的通道配置,并下发创建管理通道信息的消息给所述ONU,指示ONU创建所述管理方式承载的管理通道,其中所述创建管理通道信息包括:OLT确定ONU使用的通道配置和ONU的管理配置信息。
  4. 根据权利要求2-3所述的管理ONU的方法,其特征在于,所述方法还包括:
    接收所述ONU返回完成管理通道的消息;
    与所述ONU之间通过所述NETCONF管理方式进行数据交互。
  5. 一种网络设备,其特征在于,所述网络管理设备包括:
    收发器,发送获取光网络单元ONU支持的管理方式的消息。
    处理器,根据所述ONU支持的管理方式,选择所述ONU的管理方式,将所述选择的管理方式通过收发器发送给ONU,所述ONU支持的管理方式包括下面的一种或者几种:光网络单元管理控制接口OMCI方式、操作、管理和维护OAM管理方式、网络配置协议NETCONF方式、技术报告TR069方式、简单网络管理SNMP方式;以及接收所述ONU发送的管理方式;将所述选择的管理方式发送给所述ONU。
  6. 根据权利要求5所述的网络设备,其特征在于,所述处理器,还用于:
    当所述ONU支持的管理方式为NETCONF管理方式,则指示收发器发送创建管理通道消息给所述ONU,指示ONU创建所述管理方式承载的管理通道。
  7. 根据权利要求6所述的网络设备,其特征在于,
    所述处理器,具体用于指示收发器发送获取ONU支持的所述管理通道的通道配置信息的消息给所述ONU;以及根据所述收发器接收的ONU支持的通道配置信息,选择ONU使用的通道配置;将创建管理通道信息给所述ONU,指示ONU根据所述管理通道信息创建所述管理方式承载的管理通道,其中所述创建管理通道信息包括:OLT确定的ONU使用的通道配置和ONU的管理配置信息;
    所述收发器,用于根据处理器的指示,发送获取ONU支持的所述管理通道的通道配置信息的消息给所述ONU;以及接收所述ONU返回的所述通道配置信息,其中,所述通道配置信息包括下面一种或者几种:静态配置互联网协议IP、动态主机配置协议DHCP、以太网承载点对点协议PPPoE。
  8. 根据权利要求5-7所述的网络设备,其特征在于,
    所述收发器,还用于接收所述ONU返回的完成管理通道的消息;
    所述处理器,还用于在建立的管理通道上,与所述ONU之间通过NETCONF管理方式进行数据交互。
  9. 一种光线路终端OLT,其特征在于,所述OLT包括如权利要求5-8所述 的网络设备。
  10. 一种无源光网络PON***,其特征在于,所述PON***包括:光线路终端OLT和光网络单元ONU,所述OLT与所述ONU通过光分配网络ODN连接,其特征在于,所述OLT包括如权利要求5-8所述的网络设备。
  11. 一种数据通信***,其特征在于,所述数据通信***包括:光线路终端OLT,光网络单元以及控制器,所述控制器通过OLT与各ONU连接,所述控制包括如权利要求5-8所述的网络设备。
PCT/CN2016/113858 2016-12-30 2016-12-30 一种管理光网络单元onu的方法、装置及*** WO2018120179A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680091570.3A CN110073672B (zh) 2016-12-30 2016-12-30 一种管理光网络单元onu的方法、装置及***
PCT/CN2016/113858 WO2018120179A1 (zh) 2016-12-30 2016-12-30 一种管理光网络单元onu的方法、装置及***
US16/455,426 US20190319709A1 (en) 2016-12-30 2019-06-27 Method for managing optical network unit onu, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113858 WO2018120179A1 (zh) 2016-12-30 2016-12-30 一种管理光网络单元onu的方法、装置及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/455,426 Continuation US20190319709A1 (en) 2016-12-30 2019-06-27 Method for managing optical network unit onu, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018120179A1 true WO2018120179A1 (zh) 2018-07-05

Family

ID=62707729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113858 WO2018120179A1 (zh) 2016-12-30 2016-12-30 一种管理光网络单元onu的方法、装置及***

Country Status (3)

Country Link
US (1) US20190319709A1 (zh)
CN (1) CN110073672B (zh)
WO (1) WO2018120179A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225410B2 (ja) * 2018-12-28 2023-02-20 華為技術有限公司 光ケーブル接続を確立する方法および装置
FR3112046B1 (fr) * 2020-06-24 2022-06-17 Sagemcom Broadband Sas Procede d’etablissement de communication dans un reseau d’acces optique
CN112165660B (zh) * 2020-09-22 2022-07-19 深圳市瑞吉联通信科技有限公司 一种基于gpon由olt创建onu管理通道方法及装置
CN114257889B (zh) * 2021-12-22 2023-03-28 中兴通讯股份有限公司 网元管理方法及其***、网元、存储介质
US20230216582A1 (en) * 2022-01-04 2023-07-06 Level 3 Communications, Llc Alien wave interoperability system
US20240053557A1 (en) * 2022-08-12 2024-02-15 Arris Enterprises Llc Olts interoperable with different onts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388725A (zh) * 2007-09-14 2009-03-18 中兴通讯股份有限公司 控制并管理光网络单元/光网络终端的方法
CN101414925A (zh) * 2007-10-17 2009-04-22 华为技术有限公司 光网络终端配置的方法及***、装置
CN101873221A (zh) * 2009-04-21 2010-10-27 中兴通讯股份有限公司 一种光网络单元的管理方法及***
CN102291246A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种onu管理维护方式的选择方法和***
WO2016124075A1 (zh) * 2015-02-05 2016-08-11 中兴通讯股份有限公司 控制无源光网络中光网络单元的管理方式的方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509429B2 (en) * 2013-03-06 2016-11-29 Telefonaktiebolaget L M Ericsson (Publ) Energy conservation by means of traffic shaping
JP5997088B2 (ja) * 2013-03-29 2016-09-28 株式会社日立製作所 動的帯域割当方法、olt、及びponシステム
CN104639413B (zh) * 2013-11-13 2018-10-09 华为技术有限公司 接入网虚拟化的方法及代理节点
CN105934903B (zh) * 2014-01-23 2018-10-09 华为技术有限公司 光线路终端通信方法及具有数据结构的设备
US9432120B2 (en) * 2014-04-18 2016-08-30 Broadcom Corporation Probabilistic bandwidth control in a passive optical network (PON)
US10390117B2 (en) * 2014-11-07 2019-08-20 Zte Corporation Working channel (CH) tuning methods, devices and system, optical network unit (ONU) and optical line terminal (OLT)
CN105790986A (zh) * 2014-12-23 2016-07-20 中兴通讯股份有限公司 光网络单元dpu设备管理方法、装置及***
CN106063224B (zh) * 2014-12-29 2019-10-25 华为技术有限公司 一种在光网络中传输信息的方法、终端及***
WO2016123739A1 (zh) * 2015-02-02 2016-08-11 华为技术有限公司 通信***、用于管理通信***的方法和控制器
US9924248B2 (en) * 2015-12-01 2018-03-20 Adtran, Inc. Pon wavelength bonding for high-rate services
CN105791023B (zh) * 2016-04-15 2019-03-19 新华三技术有限公司 光网络单元onu管理的方法、装置以及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388725A (zh) * 2007-09-14 2009-03-18 中兴通讯股份有限公司 控制并管理光网络单元/光网络终端的方法
CN101414925A (zh) * 2007-10-17 2009-04-22 华为技术有限公司 光网络终端配置的方法及***、装置
CN101873221A (zh) * 2009-04-21 2010-10-27 中兴通讯股份有限公司 一种光网络单元的管理方法及***
CN102291246A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种onu管理维护方式的选择方法和***
WO2016124075A1 (zh) * 2015-02-05 2016-08-11 中兴通讯股份有限公司 控制无源光网络中光网络单元的管理方式的方法和装置

Also Published As

Publication number Publication date
CN110073672B (zh) 2021-10-15
US20190319709A1 (en) 2019-10-17
CN110073672A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018120179A1 (zh) 一种管理光网络单元onu的方法、装置及***
TWI555355B (zh) 一種同軸電纜媒體轉換器及流量交換的方法
EP2837141B1 (en) Dynamic bandwidth assignment in hybrid access network with passive optical network and another medium
US8331400B2 (en) Passive optical network (PON) system
US20230216584A1 (en) Cable modem system management of passive optical networks (pons)
ES2670357T3 (es) Método, dispositivo y sistema de distribución de servicio
US8897651B2 (en) Passive optical network data over cable service interface specification upstream proxy architecture over the next generation hybrid fiber-coaxial networks
CN101924649B (zh) 一种无源光网络***中光网络单元的远程管理方法和***
TWI725274B (zh) 資料通信系統、光線路終端及基帶單元
US20130343761A1 (en) Access Equipment that Runs Ethernet Passive Optical Network (PON) or Ethernet PON Over Coax Network
KR20040089910A (ko) Gpon에서의 ont 관리 제어 정보 전송을 위한gtc 프레임 구조와 그 전송 방법
JP2017516406A (ja) 波長切り換えのための方法、装置、及びシステム
EP3073697B1 (en) Method for processing packet in access network, and network device
CN101594250A (zh) 无源光网络***中建立管理维护通道的方法、装置及***
JP2009118469A (ja) 光受動網を用いた通信システムおよび光受動網
EP4002865B1 (en) Service configuration method and apparatus
US20120163817A1 (en) Connection management server, olt, onu/ont and the system and method for providing ethernet-based ptl-pon
CN106302166B (zh) 一种数据传输方法和装置
US8184640B2 (en) Compact virtual local area network mapper for the gigabit-passive optical network optical network management and control interface
WO2011006403A1 (zh) 一种数据传输方法、***以及运营商边缘节点
CN101741592B (zh) 多业务传送网中管理gpon支路的方法、设备及***
JP2016149609A (ja) アクセス制御システム、アクセス制御方法、親局装置及び子局装置
US20150350755A1 (en) Method And Apparatus For The Management Of Remote Nodes In A Communication Network
KR20040089423A (ko) Gpon에서의 데이터 처리 방법
Elragaiee Residential CO Re-Architected Datacenter, Services, Platforms, Architecture and Use Cases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925766

Country of ref document: EP

Kind code of ref document: A1