WO2018119784A1 - 底发光型oled显示单元及其制作方法 - Google Patents

底发光型oled显示单元及其制作方法 Download PDF

Info

Publication number
WO2018119784A1
WO2018119784A1 PCT/CN2016/112720 CN2016112720W WO2018119784A1 WO 2018119784 A1 WO2018119784 A1 WO 2018119784A1 CN 2016112720 W CN2016112720 W CN 2016112720W WO 2018119784 A1 WO2018119784 A1 WO 2018119784A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
display unit
thin film
region
Prior art date
Application number
PCT/CN2016/112720
Other languages
English (en)
French (fr)
Inventor
余威
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/327,130 priority Critical patent/US20180212199A1/en
Publication of WO2018119784A1 publication Critical patent/WO2018119784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a bottom emission type OLED display unit and a manufacturing method thereof.
  • OLED displays are a new generation of displays that have many advantages over liquid crystal displays, such as self-illumination, fast response, wide viewing angle, and saturated color.
  • the OLED display is mainly composed of an organic thin film formed on an OLED substrate, and a cathode and an anode metal are disposed on both sides of the organic thin film. A voltage is applied to the cathode and anode of the sandwiched organic film, and the organic film emits light to form an image display.
  • OLED displays are classified into a bottom emission type (relative substrate downward illumination) and a top emission type (relative substrate upward illumination).
  • the top-emitting OLED display is an anode reflection
  • the cathode is transparent, and a microcavity effect is required, and the thickness of each film layer is strict, and the manufacturing process is difficult.
  • the bottom-emitting OLED display is anodic transparent, cathode reflective, the anode is generally a conventional ITO film, and the cathode is generally made of a metal such as Al, Mg, Ag, etc., and the manufacturing process is relatively simple, so it is widely used.
  • each pixel unit is provided with a plurality of thin film transistor structure TFTs for control, and some are used as switching elements, some are used to control the magnitude of the current, and some are used to compensate the circuit.
  • TFTs thin film transistor structure
  • the presence of a plurality of TFTs causes the aperture ratio of the OLED bottom-emitting display to be reduced, and the light emitted by the luminescent material (organic film) of a part of the OLED device is blocked by the TFT, and cannot be effectively outputted, thereby reducing the light-emitting efficiency of the OLED display, such as Figure 1 shows.
  • the present invention proposes a solution to the above problems.
  • One of the technical problems to be solved by the present invention is to reduce the thin film crystal in the OLED bottom-emitting display.
  • the occlusion of the light by the tube structure improves the light extraction efficiency of the OLED display.
  • an embodiment of the present application first provides a bottom emission type OLED display unit including a transparent substrate on which a plurality of thin film transistor structures for constituting a driving circuit are disposed, An interlayer insulating layer and a flat layer are disposed above the thin film transistor structure, and a light deriving layer is disposed between the interlayer insulating layer and the flat layer, the light deriving layer being configured to be projected onto a surface thereof Light is deflected to avoid occlusion of light by the thin film transistor structure.
  • the material used to make the light-extracting layer has a refractive index greater than the refractive index of the material used to make the planar layer.
  • the material used to make the light-derived layer has a light transmittance greater than or equal to the light transmittance of the material used to make the planar layer.
  • the light-derived layer is disposed in a region corresponding to a gap between the plurality of thin film transistor structures.
  • the light deriving layer comprises a light direct region and a light refraction region, and the light refraction region is located at a peripheral position of the direct light region; and the light that illuminates the direct light region does not change or does not occur. Significant change; the light that illuminates the light-refractive region changes significantly in its optical path.
  • the light direct region has a surface parallel to the flat layer, the light refraction region having a surface inclined with respect to the flat layer.
  • both the direct light area and the light refraction area have an arcuate surface.
  • the light-derived layer is made of an organic material or an inorganic material.
  • An embodiment of the present application further provides a method for fabricating a bottom emission type OLED display unit, comprising: forming a plurality of thin film transistor structures for forming a driving circuit on a transparent substrate; forming over the thin film transistor structure An interlayer insulating layer; a material layer formed over the interlayer insulating layer; the material layer being patterned to form a light-derived layer; and a planar layer formed over the light-derived layer.
  • the material layer is patterned using a gray scale reticle to form the light deriving layer.
  • the light shielding of the thin film transistor structure is avoided, the light-emitting efficiency of the OLED display is improved, and the brightness of the display screen is increased. To improve the display effect.
  • FIG. 1 is a schematic structural view of a bottom emission type OLED display unit in the prior art
  • FIGS. 2 and 3 are schematic cross-sectional views of a bottom emission type OLED display unit according to an embodiment of the invention.
  • FIG. 4 is a schematic perspective view of a light-derived layer in the bottom-emitting OLED display unit shown in FIG. 2;
  • FIG. 5 is a schematic perspective view of a light-derived layer in the bottom-emitting OLED display unit shown in FIG. 3;
  • FIG. 6 is a perspective view showing a light-derived layer in a bottom emission type OLED display unit of another example
  • FIG. 7 is a schematic flow chart of a method for fabricating a bottom emission type OLED display unit according to another embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a bottom-emitting OLED display unit according to an embodiment of the invention. As shown, the bottom-emitting OLED display unit is disposed on a substrate 1, and two thin film transistor structures 2 are schematically illustrated. The plurality of thin film transistors constituting the driving circuit do not constitute a limitation of the present invention.
  • the plurality of thin film transistor structures 2 When the light is emitted from the luminescent material layer on the top of the OLED display unit, directly emitted downward, or reflected downward by the reflective electrode disposed above the luminescent material layer, the plurality of thin film transistor structures 2 will form a propagation path to the light. Blocking, which in turn blocks the light.
  • the interlayer insulating layer is sequentially arranged above the thin film transistor structure 2. 3 and the flat layer 4, a light-extracting layer 5 is provided between the interlayer insulating layer 3 and the flat layer 4, so that The light incident on the surface of the light-derived layer 5 is deflected.
  • the light-derived layer 5 is disposed in a region corresponding to the gap between the plurality of thin film transistor structures 2, which is more advantageous for the emission of light and improves the efficiency of the light-derived layer.
  • the light-derived layer disposed in the upper region of the thin film transistor structure 2 may also re-emit light that is originally blocked by the thin film transistor structure 2 by changing the propagation path of the light, but the light emitted in this case is limited,
  • the light-emitting layer 5 is low in light-emitting efficiency, and is less used in terms of production cost and the like.
  • the light derivation layer 5 corresponds to each display unit, that is, the light derivation layers between different OLED display units are separated, and such a light derivation layer can fully adapt to the wiring arrangement of the OLED display panel. .
  • the light-extracting layers 5 of the partial display units may be connected to each other, for example, in a row, the light-derived layers in the respective OLED display units corresponding to the same row of pixels are connected.
  • the light-extracting layers in the respective OLED display units corresponding to the same column of pixels those skilled in the art can be used according to embodiments of the present invention without departing from the spirit and scope of the present invention. Make various changes and distortions.
  • the material used to form the light-derived layer 5 should be such that its refractive index is greater than the refractive index of the material used to make the planar layer 4.
  • the refractive index of the material of the light-derived layer 5 is larger, when light enters the light-extracting layer 5 from the interface between the flat layer 4 and the light-extracting layer 5, the propagation path of the light is deflected. It is known from the related optical knowledge that light is deflected in a direction close to the normal of the interface, and thus the light-derived layer has a function of condensing light.
  • the light-converging layer 5 is used to concentrate the light, so that the light blocked by the thin film transistor structure 2 can be obtained from the thin film transistor.
  • the gap between the structures 2 is emitted, which improves the light extraction rate of the OLED display unit and improves the utilization efficiency of light.
  • the light-extracting layer 5 may have light that is irradiated onto the surface thereof. Emission, or absorption of light, necessarily reduces the light extraction rate of the OLED display unit and the efficiency of light utilization.
  • the light transmittance of the material used to form the light-derived layer 5 is greater than or equal to the light transmittance of the material used to form the flat layer 4 to ensure illumination to the light-derived layer 5.
  • the light on the surface can be effectively emitted.
  • the light-derived layer 5 may be selected by using an organic material or an inorganic material, for example, silicon nitride (SiNx), silicon oxide (SiOx). Or a polyimide (polyimide), which is not limited by the embodiment of the present invention.
  • the light-derived layer 5 of the embodiment of the present invention includes a direct light-emitting region and a light-refractive region, and when the light is irradiated onto the surface of the light-derived layer 5 of the direct light-emitting region, the optical path does not change or does not change significantly.
  • the light illuminates the surface of the light-extracting layer 5 of the light-refracting region, its optical path changes significantly.
  • the light refraction area is located at a peripheral position of the direct light area.
  • the light that is incident on the intermediate portion of the two thin film transistors is not blocked by the thin film transistor structure 2, so that the light directing region of the light-derived layer 5 is generally located at the middle of the entire light-derived layer 5, then The light incident between the two thin film transistors can be emitted directly through the light-derived layer, and the light path generally does not change or only slightly changes.
  • the direct light region, the light refraction region, and the like may be defined according to the deflection of the propagation path of the light, or the angle of refraction of the light.
  • the light-extracting layer 5 in this embodiment has a trapezoidal cross section, which is perpendicular to the plane of the paper ( The direction in Figure 2) has a length value determined by the size of the display unit and other structures within the display unit, as the case may be.
  • the light direct region has a surface parallel to the flat layer 4
  • the light refraction region has a surface inclined with respect to the flat layer 4
  • the light refraction region is located on both sides of the direct light region.
  • FIG. 5 is a perspective view of the light-derived layer in the bottom-emitting OLED display unit shown in FIG. 3. It can be seen that the light-extracting layer 5 in this embodiment has a curved cross section. Similarly, the length direction of the light-extracting layer 5 is in a direction perpendicular to the plane of the paper, so that in fact, both the direct light-emitting region and the light-refractive region have curved surfaces.
  • the above two specific embodiments are only used to describe the structure of the light-derived layer 5 as well as the direct light-emitting region and the light-refractive region. It is easily understood that the light-derived layer 5 may be other preferred structures. For example, as shown in FIG. 6, the light refraction region of the light-derived layer 5 is disposed in four directions of the direct light-emitting region. Alternatively, it is also possible to use a spherical or ellipsoidal portion as a light-derived layer. Without departing from the spirit of the invention and in fact In the case of the present invention, various changes and modifications can be made in accordance with the embodiments of the invention.
  • FIG. 7 further illustrates a method of fabricating a bottom-emitting OLED display unit, as shown in the figure, including the following steps:
  • Step S710 forming a plurality of thin film transistor structures for constituting the driving circuit on the transparent substrate.
  • Step S720 forming an interlayer insulating layer over the thin film transistor structure.
  • Step S730 forming a material layer above the interlayer insulating layer.
  • Step S740 patterning the material layer to form a light-derived layer.
  • Step S750 forming a flat layer over the light-derived layer.
  • the light-extracting layer 5 is formed prior to the flat layer 4, that is, a material layer for forming the light-derived layer 5 is formed over the prepared interlayer insulating layer.
  • the material layer can be formed by a conventional CVD film forming process, and then the material layer is patterned.
  • the patterning process generally includes coating a photoresist, exposing and developing the photoresist, then etching the material layer, and finally stripping the residual layer. Light resistance. This patterning process can be obtained by referring to the prior art, and will not be described here.
  • a gray tone process can be employed to specify the process steps for the particular shape of the light-derived layer.
  • the light-derived layer 5 can be formed by using a conventional process to improve the light-emitting rate and light utilization efficiency of the OLED display unit, and is easy to implement. Operation to significantly increase costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了一种底发光型OLED显示单元及其制作方法,该底发光型OLED显示单元,包括透明基底(1),在所述透明基底(1)上设置有多个用于构成驱动电路的薄膜晶体管结构(2),在所述薄膜晶体管结构(2)的上方设置有层间绝缘层(3)与平坦层(4),在所述层间绝缘层(3)与所述平坦层(4)之间设置有光导出层(5),所述光导出层(5)被配置为使投射到其表面上的光发生偏转,以避开所述薄膜晶体管结构(2)对光的遮挡。该OLED显示单元能够提高OLED显示器的出光效率,增加显示画面的亮度,改善显示效果。

Description

底发光型OLED显示单元及其制作方法
相关申请的交叉引用
本申请要求享有2016年12月26日提交的名称为“底发光型OLED显示单元及其制作方法”的中国专利申请CN201611217655.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明属于显示技术领域,尤其涉及一种底发光型OLED显示单元及其制作方法。
背景技术
OLED显示器是新一代的显示器,相对于液晶显示器具有自发光,响应快,视角广,色彩饱和等许多优点。OLED显示器主要是通过在OLED基板上制作有机薄膜,并在有机薄膜的两侧设置阴极和阳极金属构成。给包夹有机薄膜的阴极和阳极施加电压,有机薄膜就会发光以形成图像显示。
目前,OLED显示器分为底发光型(相对基板向下发光)和顶发光型(相对基板向上发光)两种。其中,顶发光型OLED显示器为阳极反射,阴极透光,需要用到微腔效应,对各膜层的厚度要求严格,制作工艺难度较高。底发光型OLED显示器为阳极透光,阴极反射,阳极一般采用传统ITO薄膜,阴极一般采用如Al,Mg,Ag等金属,制作工艺相对简单,故得到广泛使用。
但在OLED显示器中,每个像素单元都会相应设置多个薄膜晶体管结构TFT进行控制,有的用来作为开关元件,有的用来控制电流的大小,有的则起到补偿电路的作用。多个TFT的存在会导致OLED底发光型显示器的开口率变小,一部分OLED器件的发光材料(有机薄膜)发出的光线会被TFT遮挡,无法有效输出,进而降低了OLED显示器的出光效率,如图1所示。
本发明针对上述问题提出解决方案。
发明内容
本发明所要解决的技术问题之一是减少OLED底发光型显示器中薄膜晶体 管结构对光线的遮挡,提高OLED显示器的出光效率。
为了解决上述技术问题,本申请的实施例首先提供了一种底发光型OLED显示单元,包括透明基底,在所述透明基底上设置有多个用于构成驱动电路的薄膜晶体管结构,在所述薄膜晶体管结构的上方设置有层间绝缘层与平坦层,在所述层间绝缘层与所述平坦层之间设置有光导出层,所述光导出层被配置为使投射到其表面上的光发生偏转,以避开所述薄膜晶体管结构对光的遮挡。
优选地,用于制作所述光导出层的材料的折射率大于用于制作所述平坦层的材料的折射率。
优选地,用于制作所述光导出层的材料的光透过率大于或者等于用于制作所述平坦层的材料的光透过率。
优选地,所述光导出层设置在与多个薄膜晶体管结构之间的空隙相对应的区域内。
优选地,所述光导出层包括光直射区域与光折射区域,且所述光折射区域位于所述光直射区域的周边位置;照射所述光直射区域的光,其光路不发生变化或不发生显著变化;照射所述光折射区域的光,其光路发生显著变化。
优选地,所述光直射区域具有平行于所述平坦层的表面,所述光折射区域具有相对于所述平坦层倾斜的表面。
优选地,所述光直射区域与所述光折射区域均具有弧形的表面。
优选地,所述光导出层采用有机材料或无机材料制作。
本申请的实施例还提供了一种用于制作底发光型OLED显示单元的方法,包括:在透明基底上形成多个用于构成驱动电路的薄膜晶体管结构;在所述薄膜晶体管结构的上方形成层间绝缘层;在所述层间绝缘层的上方形成材料层;图案化所述材料层,以形成光导出层;在所述光导出层的上方形成平坦层。
优选地,采用灰阶光罩来图案化所述材料层,以形成所述光导出层。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
通过在OLED显示单元的层间绝缘层和平坦层之间设置光导出层来改变光路的传播方向来避开薄膜晶体管结构对光的遮挡,提高了OLED显示器的出光效率,增加了显示画面的亮度,改善显示的效果。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是 显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1为现有技术中的底发光型OLED显示单元的结构示意图;
图2和图3为根据本发明一实施例的底发光型OLED显示单元的剖面结构示意图;
图4为图2所示底发光型OLED显示单元中光导出层的立体示意图;
图5为图3所示底发光型OLED显示单元中光导出层的立体示意图;
图6为另一示例的底发光型OLED显示单元中光导出层的立体示意图;
图7为根据本发明另一实施例的底发光型OLED显示单元的制作方法的流程示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
图2为根据本发明一实施例的底发光型OLED显示单元的剖面结构示意图,如图所示,该底发光型OLED显示单元设置在基底1上,两个薄膜晶体管结构2示意性给出用于构成驱动电路的多个薄膜晶体管,并不构成对本发明的限定。
当光线从OLED显示单元顶部的发光材料层发出后,直接向下射出,或者由设置在发光材料层上方的反射电极反射向下射出时,多个薄膜晶体管结构2将形成对光的传播路径的阻挡,进而对光产生遮挡作用。
为了避开薄膜晶体管结构2对光的遮挡,本实施例中设置了一个能够改变光的传播路径的结构,具体为,如图2所示,在薄膜晶体管结构2的上方依次为层间绝缘层3和平坦层4,在层间绝缘层3与平坦层4之间设置光导出层5,使投 射到光导出层5的表面上的光发生偏转。
从图2中可以看出,光导出层5设置在与多个薄膜晶体管结构2之间的空隙相对应的区域内,这样更有利于光线的出射,提高光导出层的效率。而设置在薄膜晶体管结构2上方区域内的光导出层虽然也有可能通过改变光线的传播路径而使得原本被薄膜晶体管结构2遮挡的光重新射出,但这种情况下射出的光线是有限的,因此导致光导出层5的出光效率低,出于生产成本等方面的考虑而较少采用。
进一步地,在本发明的实施例中,光导出层5对应于各显示单元,即不同OLED显示单元之间的光导出层是分离的,这样的光导出层能够充分适应OLED显示面板的布线设置。
当然对于特别结构的OLED显示面板,当布线允许时,也可以将部分显示单元的光导出层5相互连接,比如以行为单位,将对应于同一行像素的各OLED显示单元内的光导出层连接在一起,或者将对应于同一列像素的各OLED显示单元内的光导出层连接在一起,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明实施例作出各种相应的改变和变形。
用于制作光导出层5的材料,应保证其折射率大于用于制作平坦层4的材料的折射率。
如图2所示,由于光导出层5的材料的折射率更大,当光线从平坦层4与光导出层5之间的界面进入光导出层5时,光线的传播路径会发生偏转。由相关光学知识可知,光线会向靠近界面法线的方向偏转,因而光导出层具有使光汇聚的作用。
在本实施例中,通过在层间绝缘层3与平坦层4之间设置光导出层5,利用光导出层5对光线的汇聚作用,使由于被薄膜晶体管结构2遮挡的光线能够从薄膜晶体管结构2之间的空隙射出,提高了OLED显示单元的出光率以及提高了光的利用效率。
进一步地,如果用于制作光导出层5的材料的光透过率小于用于制作平坦层4的材料的光透过率,那么光导出层5将有可能是照射到其表面上的光发生发射,或对光进行吸收,必然降低OLED显示单元的出光率以及光的利用效率。
因此,在本发明的其他实施例中,使用于制作光导出层5的材料的光透过率大于或者等于用于制作平坦层4的材料的光透过率以保证照射到光导出层5的表面上的光能够有效射出。
在保证用于制作光导出层5的折射率与光透过率满足要求的情况下,可以选择有机材料或者无机材料来制作光导出层5,例如采用氮化硅(SiNx)、氧化硅(SiOx)或者聚酰亚胺(polyimide),本发明实施例对其不做限定。
进一步地,本发明实施例的光导出层5包括光直射区域与光折射区域,当光照射光直射区域的光导出层5的表面上时,其光路不发生变化或不发生显著变化。当光照射光折射区域的光导出层5的表面上时,其光路发生显著变化。
一般的,光折射区域位于光直射区域的周边位置。如图2所示,射向两个薄膜晶体管中间区域的光线是不会被薄膜晶体管结构2遮挡的,因此光导出层5的光直射区域一般位于整个光导出层5的中间的位置,则从两个薄膜晶体管中间射入的光线可以通过直接经由光导出层射出,光线路径一般不发生变化或仅发生微小的变化。而越靠近薄膜晶体管处,光线越易被遮挡,而光导出层5的光折射区域一般位于光直射区域的周围,则射向光导出层5的光折射区域的光线被折射而改变传输路径,即光路发生显著变化。
需要说明的是,这里所说的显著变化由本领域技术人员结合其所具备的常识与实际情况来确定。例如,可以根据光的传播路径的偏转的情况,或者光线的折射角度来界定光直射区域与光折射区域等。
下面结合具体实施例中的光导出层5的结构详细说明。
图4为图2所示底发光型OLED显示单元中光导出层的立体示意图,可以看出,该实施例中的光导出层5的的横截面为梯形,其沿垂直于纸面的方向(如图2中)方向具有一长度值,该长度值由显示单元的尺寸以及显示单元内的其他结构,根据实际情况确定。
如图4所示,光直射区域具有平行于平坦层4的表面,光折射区域具有相对于平坦层4倾斜的表面,且光折射区域位于光直射区域的两侧。
图5为图3所示底发光型OLED显示单元中光导出层的立体示意图,可以看出,该实施例中的光导出层5的横截面为弧形。同样的,该光导出层5的长度方向沿垂直于纸面的方向,因此实际上,光直射区域与光折射区域均具有弧形的表面。
上述两个具体的实施例仅用于对光导出层5的结构以及光直射区域和光折射区域进行说明,容易理解的是,光导出层5可以为其他优选的结构。例如,如图6所示,光导出层5的光折射区域设置于光直射区域的四个方向上。或者,以球面或者椭球面的一部分作为光导出层也是可以的。在不背离本发明精神及其实 质的情况下,熟悉本领域的技术人员当可根据本发明实施例作出各种相应的改变和变形。
图7进一步示出底发光型OLED显示单元的制作方法,如图所示,包括以下步骤:
步骤S710、在透明基底上形成多个用于构成驱动电路的薄膜晶体管结构。
步骤S720、在薄膜晶体管结构的上方形成层间绝缘层。
步骤S730、在层间绝缘层的上方形成材料层。
步骤S740、图案化材料层,以形成光导出层。
步骤S750、在光导出层的上方形成平坦层。
需要注意的是,光导出层5先于平坦层4制作,即在制作好的层间绝缘层上方形成用于制作光导出层5的材料层。材料层的成膜方式可以采用常用的CVD成膜工艺,然后图案化材料层,图案化过程一般包括涂布光阻,对光阻进行曝光和显影,然后对材料层进行蚀刻,最后剥离残留的光阻。这个图案化过程可以参考现有技术手段获得,此处不再赘述。
另外,在图案化材料层的过程中,可以采用灰阶光罩(gray tone)工艺,针对光导出层的具体形状指定工艺步骤。
本发明实施例中,只需在制作平坦层4之前增加一步工艺制程,再借助常规的工艺处理手段,就可以形成光导出层5来提高OLED显示单元的出光率以及光的利用效率,易于实施操作,为显著增加成本。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种底发光型OLED显示单元,包括透明基底,在所述透明基底上设置有多个用于构成驱动电路的薄膜晶体管结构,在所述薄膜晶体管结构的上方设置有层间绝缘层与平坦层,在所述层间绝缘层与所述平坦层之间设置有光导出层,所述光导出层被配置为使投射到其表面上的光发生偏转,以避开所述薄膜晶体管结构对光的遮挡。
  2. 根据权利要求1所述的显示单元,其中,用于制作所述光导出层的材料的折射率大于用于制作所述平坦层的材料的折射率。
  3. 根据权利要求1所述的显示单元,其中,用于制作所述光导出层的材料的光透过率大于或者等于用于制作所述平坦层的材料的光透过率。
  4. 根据权利要求1所述的显示单元,其中,所述光导出层设置在与多个薄膜晶体管结构之间的空隙相对应的区域内。
  5. 根据权利要求1所述的显示单元,其中,
    所述光导出层包括光直射区域与光折射区域,且所述光折射区域位于所述光直射区域的周边位置;
    照射所述光直射区域的光,其光路不发生变化或不发生显著变化;照射所述光折射区域的光,其光路发生显著变化。
  6. 根据权利要求5所述的显示单元,其中,所述光直射区域具有平行于所述平坦层的表面,所述光折射区域具有相对于所述平坦层倾斜的表面。
  7. 根据权利要求5所述的显示单元,其中,所述光直射区域与所述光折射区域均具有弧形的表面。
  8. 根据权利要求1所述的显示单元,其中,所述光导出层采用有机材料或无机材料制作。
  9. 一种用于制作底发光型OLED显示单元的方法,包括:
    在透明基底上形成多个用于构成驱动电路的薄膜晶体管结构;
    在所述薄膜晶体管结构的上方形成层间绝缘层;
    在所述层间绝缘层的上方形成材料层;
    图案化所述材料层,以形成光导出层;
    在所述光导出层的上方形成平坦层。
  10. 根据权利要求9所述的方法,其中,采用灰阶光罩来图案化所述材料层,以形成所述光导出层。
PCT/CN2016/112720 2016-12-26 2016-12-28 底发光型oled显示单元及其制作方法 WO2018119784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/327,130 US20180212199A1 (en) 2016-12-26 2016-12-28 Bottom-emitting oled display unit and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611217655.X 2016-12-26
CN201611217655.XA CN106847861B (zh) 2016-12-26 2016-12-26 底发光型oled显示单元及其制作方法

Publications (1)

Publication Number Publication Date
WO2018119784A1 true WO2018119784A1 (zh) 2018-07-05

Family

ID=59136775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112720 WO2018119784A1 (zh) 2016-12-26 2016-12-28 底发光型oled显示单元及其制作方法

Country Status (3)

Country Link
US (1) US20180212199A1 (zh)
CN (1) CN106847861B (zh)
WO (1) WO2018119784A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978624A (zh) * 2017-12-01 2018-05-01 京东方科技集团股份有限公司 Oled显示面板及其制备方法、显示装置
CN109031821A (zh) * 2018-07-05 2018-12-18 Oppo广东移动通信有限公司 薄膜晶体管阵列基板、显示屏及电子设备
CN109166903B (zh) * 2018-09-12 2021-09-03 京东方科技集团股份有限公司 一种oled显示面板及其制作方法,以及显示装置
CN109244112B (zh) * 2018-09-18 2021-05-11 京东方科技集团股份有限公司 一种显示面板以及显示装置
CN109873019B (zh) * 2019-03-07 2021-01-29 京东方科技集团股份有限公司 一种电致发光器件及其制作方法、显示面板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267486A1 (en) * 2008-04-25 2009-10-29 Jung-Yeon Kim Organic light emitting display device
CN103500754A (zh) * 2013-09-29 2014-01-08 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置
CN104037357A (zh) * 2014-06-05 2014-09-10 京东方科技集团股份有限公司 一种有机发光显示装置及其制造方法
US20150041779A1 (en) * 2013-08-08 2015-02-12 Samsung Display Co., Ltd. Organic light emitting diode display and optical film
CN104576706A (zh) * 2015-01-27 2015-04-29 京东方科技集团股份有限公司 底发射型有机电致发光显示器件、其制作方法及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703158B1 (ko) * 2005-10-24 2007-04-06 삼성전자주식회사 표시장치와 그 제조방법
KR101407309B1 (ko) * 2011-11-15 2014-06-16 엘지디스플레이 주식회사 유기 전계 발광 표시 패널 및 그의 제조 방법
CN103151369B (zh) * 2013-02-06 2016-01-06 京东方科技集团股份有限公司 一种像素结构及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267486A1 (en) * 2008-04-25 2009-10-29 Jung-Yeon Kim Organic light emitting display device
US20150041779A1 (en) * 2013-08-08 2015-02-12 Samsung Display Co., Ltd. Organic light emitting diode display and optical film
CN103500754A (zh) * 2013-09-29 2014-01-08 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置
CN104037357A (zh) * 2014-06-05 2014-09-10 京东方科技集团股份有限公司 一种有机发光显示装置及其制造方法
CN104576706A (zh) * 2015-01-27 2015-04-29 京东方科技集团股份有限公司 底发射型有机电致发光显示器件、其制作方法及显示装置

Also Published As

Publication number Publication date
CN106847861A (zh) 2017-06-13
CN106847861B (zh) 2020-05-05
US20180212199A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US10319948B2 (en) Organic light emitting diode display device
WO2019214585A1 (zh) 显示装置及其制备方法
WO2018119784A1 (zh) 底发光型oled显示单元及其制作方法
JP4642823B2 (ja) 照明装置及び液晶表示装置
US11874999B2 (en) Display panel with under-screen camera and manufacturing method thereof
TWI692135B (zh) 有機發光顯示裝置
TW201827900A (zh) 畫素結構與具有此畫素結構的顯示面板
WO2019041899A1 (zh) 显示面板、显示装置及显示面板制作方法
KR102520955B1 (ko) 유기발광 표시장치
KR20170052455A (ko) 유기발광 표시장치
JP2005063838A (ja) 光学デバイス及び有機el表示装置
TWI693708B (zh) 透明顯示面板
CN109244115B (zh) 一种oled显示面板及其制作方法,以及显示装置
US20210336226A1 (en) Display panel and display device
US8648527B2 (en) Display apparatus
CN109166903B (zh) 一种oled显示面板及其制作方法,以及显示装置
KR20200134752A (ko) 발광 표시 장치
JP2023179634A (ja) 画素構造、表示装置及び画素構造の製造方法
WO2022247180A1 (zh) 显示面板及显示装置
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
CN111415963B (zh) 显示面板及其制备方法
TW201838171A (zh) 頂部發光型微發光二極體顯示器與底部發光型微發光二極體顯示器及其形成方法
US20130082909A1 (en) Display apparatus
JP2006100137A (ja) 有機el表示装置
KR101968570B1 (ko) 유기발광 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15327130

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925046

Country of ref document: EP

Kind code of ref document: A1