WO2018116947A1 - Spherical activated carbon and method for producing same - Google Patents

Spherical activated carbon and method for producing same Download PDF

Info

Publication number
WO2018116947A1
WO2018116947A1 PCT/JP2017/044861 JP2017044861W WO2018116947A1 WO 2018116947 A1 WO2018116947 A1 WO 2018116947A1 JP 2017044861 W JP2017044861 W JP 2017044861W WO 2018116947 A1 WO2018116947 A1 WO 2018116947A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
spherical
pitch
spherical activated
additive
Prior art date
Application number
PCT/JP2017/044861
Other languages
French (fr)
Japanese (ja)
Inventor
恭弘 秋田
鈴木 伸和
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2018557719A priority Critical patent/JP6803398B2/en
Priority to CN201780068885.0A priority patent/CN109923066B/en
Publication of WO2018116947A1 publication Critical patent/WO2018116947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/33Preparation characterised by the starting materials from distillation residues of coal or petroleum; from petroleum acid sludge

Definitions

  • the present invention relates to a spherical activated carbon and a method for producing the spherical activated carbon.
  • activated carbon is widely used for separation processes, purification, catalysts, or solvent recovery, as well as wastewater treatment, pollution countermeasures, and medical uses related to global environmental pollution problems.
  • Non-Patent Document 1 discloses powdered activated carbon and granular activated carbon having an average particle diameter of several millimeters.
  • Patent Document 1 using heavy hydrocarbon oil such as petroleum tar or ethylene bottom oil (Patent Document 1) and activated carbon using resin as a raw material (Patent Document 2).
  • the powdered activated carbon described above basically has a small particle size, it is considered that the pressure loss becomes large and the amount of fluid treatment is restricted when the apparatus is used by being filled in the apparatus.
  • the granular activated carbon has an average particle diameter of about several millimeters, it can be considered that pressure loss during filling is reduced and fluid treatment with a large flow rate is possible.
  • the integrally formed spherical activated carbon having a particle diameter of several millimeters can suppress pressure loss and dust. It came to complete.
  • the present invention is an integrally formed spherical activated carbon having an average particle diameter of 1.5 mm or more and 4.0 mm or less, and a pore volume in the range of pore diameters of 50 nm or more and 10,000 nm or less is 0.01 ml. / G or more and 0.24 ml / g or less of the spherical activated carbon is provided.
  • this invention provides the manufacturing method of the spherical activated carbon which has the characteristics mentioned above.
  • activated carbon capable of suppressing pressure loss and dust can be provided.
  • the spherical activated carbon according to the present embodiment (hereinafter, also simply referred to as “spherical activated carbon”) has an average particle diameter of 1.5 mm or more and 4.0 mm or less, and a pore volume in a range of pore diameters of 50 nm or more and 10,000 nm or less. Is 0.01 ml / g or more and 0.24 ml / g or less. Detailed description of the pore diameter and pore volume will be described later.
  • the spherical activated carbon means a spherical activated carbon.
  • the degree of the spherical shape of the spherical activated carbon is not particularly limited, but it is preferably 0.7 or more in aspect ratio, more preferably 0.8 or more, and further preferably 0.9 or more.
  • the aspect ratio is the ratio of the minor axis to the major axis.
  • the major axis and the minor axis are obtained by a known method, for example, as an average value of the maximum length and the minimum length in the projected image of the spherical activated carbon. The closer the aspect ratio is to 1, the closer the spherical activated carbon is to a true sphere.
  • the aspect ratio of the spherical activated carbon is 0.7 or more, when using the spherical activated carbon, wear due to the collision between the particles of the spherical activated carbon is further reduced, so that generation of dust can be sufficiently suppressed. it can.
  • the spherical activated carbon according to the present embodiment is an integrally molded spherical activated carbon.
  • “Integrally molded spherical activated carbon” means activated carbon molded as primary particles and having a spherical shape.
  • the spherical activated carbon according to the present embodiment has a pore diameter and a pore volume, which will be described later. Therefore, it can be said that the activated carbon is a primary particle having porosity and a spherical shape.
  • the spherical activated carbon according to the present embodiment is superior in mechanical strength to a conventional spherical activated carbon such as a sintered body of aggregated particles.
  • the spherical activated carbon according to the present embodiment has a high crushing strength or a low underwater shaking wear rate as compared with the conventional spherical activated carbon.
  • the lower limit value of the average particle diameter of the spherical activated carbon according to the present embodiment is 1.5 mm or more, preferably 1.7 mm or more, more preferably 1.8 mm, from the viewpoint of suppressing an increase in pressure loss of the packed bed of spherical activated carbon. More preferably, it is 2.0 mm or more.
  • the upper limit is 4.0 mm or less, preferably 3.5 mm or less, more preferably 3.0 mm or less from the viewpoint of realizing sufficient contact between the spherical activated carbon and the fluid in the packed bed.
  • the average particle diameter is in this range, the interparticle voids of the spherical activated carbon can be sufficiently increased. Therefore, with such a spherical activated carbon, the pressure loss can be sufficiently reduced when the spherical activated carbon is packed in an apparatus such as a column or a separation tower and a fluid containing the target substance is brought into contact therewith.
  • the average particle diameter of the spherical activated carbon can be evaluated according to JIS K 1474. That is, based on the result obtained from the operation of JIS K 1474, a cumulative particle size diagram of spherical activated carbon is created. From the intersection of the vertical line of the 50% point on the horizontal axis and the cumulative grain size diagram, a horizontal line is drawn on the vertical axis to obtain the mesh opening (mm) indicated by the intersection. The value of this opening is taken as the average particle diameter of the spherical activated carbon.
  • the pore diameter means the pore diameter of the pores possessed by the spherical activated carbon.
  • the pore diameter and pore volume can be measured by, for example, a known mercury intrusion method.
  • the pore diameter and pore volume can be adjusted by, for example, the properties of the crosslinked heavy pitch described later, the type of additive in the crosslinked heavy pitch, or the conditions for extracting the additive with a solvent. Is possible.
  • the pore volume means the pore volume in a specific pore diameter range of the activated carbon.
  • the lower limit value of the pore volume in the range of the pore diameter of 50 nm or more and 10000 nm or less is 0.01 ml / g from the viewpoint of suppressing the decrease in productivity in the manufacturing method of spherical activated carbon described later.
  • it is 0.02 ml / g or more, More preferably, it is 0.03 ml / g or more, More preferably, it is 0.05 g / ml or more.
  • the upper limit is 0.24 ml / g or less, preferably 0.22 ml / g or less, more preferably 0.20 ml / g or less, and still more preferably 0.20 ml / g or less, from the viewpoint of preventing reduction in crushing strength of the spherical activated carbon. 18 ml / g or less.
  • the lower limit of the pore volume in the range of the pore diameter of 10 nm or more and 10000 nm or less is 0.01 ml / g or more from the viewpoint of suppressing the productivity of the spherical activated carbon.
  • it is 0.02 ml / g or more, More preferably, it is 0.03 ml / g or more, More preferably, it is 0.04 ml / g or more.
  • the upper limit is 0.28 ml / g or less, preferably 0.27 ml / g or less, more preferably 0.26 ml / g or less, from the viewpoint of preventing reduction in the crushing strength of the spherical activated carbon. More preferably, it is 0.25 ml / g, and most preferably 0.24 ml / g or less.
  • the spherical activated carbon satisfies the above range, holes necessary for infusibility described later can be sufficiently formed, so that the infusible can be efficiently performed. Can be made. Moreover, since it can suppress that the pore volume which is hard to participate in the adsorption capacity of spherical activated carbon can be suppressed, the density of spherical activated carbon becomes high and the performance per volume of spherical activated carbon improves.
  • the pore volume can be evaluated by, for example, a known mercury intrusion method.
  • the crushing strength of the spherical activated carbon of the present embodiment is preferably 1.20 kg / piece or more, more preferably 1.25 kg / piece or more, and further preferably 1.30 kg / piece.
  • the crushing strength may be sufficient, for example, depending on the use of the spherical activated carbon, and may be, for example, 10.0 kg / piece or less.
  • the crushing strength can be measured by the following method. That is, sample particles of spherical activated carbon (for example, 32 particles) are randomly extracted, and the hardness at the moment when the sample particles are crushed is measured using a simple particle hardness meter (manufactured by Tsutsui Riken Kikai Co., Ltd.). Then, the average value of the remaining measurement values (for example, measurement values of 30 grains) is calculated except for the maximum value and the minimum value among the measurement values of hardness, and this is set as the crushing strength of the spherical activated carbon.
  • sample particles of spherical activated carbon for example, 32 particles
  • the hardness at the moment when the sample particles are crushed is measured using a simple particle hardness meter (manufactured by Tsutsui Riken Kikai Co., Ltd.).
  • the average value of the remaining measurement values for example, measurement values of 30 grains
  • dust means fine powder contained in spherical activated carbon.
  • the dust amount means the amount of dust, and is specifically an amount calculated by measuring the dust amount described later.
  • the amount of dust contained per gram of spherical activated carbon is preferably 2000 ⁇ g or less from the viewpoint of suppressing an increase in pressure loss in the packed bed of spherical activated carbon and fully expressing the separation ability of the spherical activated carbon. More preferably, it is 1500 ⁇ g or less, more preferably 1200 ⁇ g or less, and most preferably 1000 ⁇ g or less. The smaller the amount of dust, the better. The lower limit may be 0 ⁇ g or more.
  • the dust amount of the spherical activated carbon according to the present embodiment can be measured by a specific method described later.
  • the amount of dust can be reduced, for example, by a manufacturing method using integral molding.
  • the underwater shaking wear rate is calculated from the amount of the spherical activated carbon that has been peeled off.
  • the underwater shaking wear rate can be calculated from the following equation.
  • Underwater shaking wear rate (%) (AB) / A ⁇ 100 (%) (Formula 1)
  • the underwater shaking wear rate of the spherical activated carbon according to the present embodiment is preferably 5% or less, and more preferably 4.5% or less.
  • strength of spherical activated carbon becomes so large that an underwater shake wear rate is low, the amount of dust generated when spherical activated carbon collides will decrease.
  • the specific surface area is obtained from the ratio of the amount of gas molecules adsorbed to the substance to be evaluated and the amount of adsorbed gas molecules to the adsorption cross-sectional area of the gas molecules. Specifically, the specific surface area is obtained by calculating the nitrogen adsorption amount by the BET method and setting the adsorption cross-sectional area of the nitrogen molecule to 0.162 nm 2 .
  • the specific surface area is sometimes called a specific surface area (SSA).
  • the specific surface area according to the present embodiment is a specific surface area when nitrogen is used as a gas molecule and nitrogen is adsorbed on the spherical activated carbon at a liquid nitrogen temperature.
  • the specific surface area can be adjusted by, for example, the degree of activation described later.
  • the specific surface area of the spherical activated carbon according to the present embodiment is preferably 100 m 2 / g or more, more preferably 300 meters 2 / g or more, more preferably 400 meters 2 / g or more. If the specific surface area is 100 m 2 / g or more, it is considered that the adsorption function by the spherical activated carbon is sufficiently exhibited.
  • the specific surface area is preferably as large as possible from the above viewpoint, but may be in a range in which the intended adsorption function of the spherical activated carbon is sufficiently obtained, and may be, for example, 4000 m 2 / g or less.
  • Other materials may be attached to the spherical activated carbon according to the present embodiment.
  • other substances include known substances that can be attached to activated carbon, such as acids, alkalis, and metals.
  • the acid include non-volatile acids such as phosphoric acid and sulfuric acid, and organic acids such as citric acid and malic acid.
  • the alkali include potassium carbonate, sodium carbonate, potassium hydroxide, and sodium hydroxide.
  • the metal include transition elements such as platinum, silver, iron, and cobalt, and compounds thereof.
  • the spherical activated carbon according to the present embodiment preferably has a dust amount of 2000 ⁇ g or less per 1 g of the spherical activated carbon.
  • the spherical activated carbon according to the present embodiment preferably has an underwater shaking wear rate of 5% or less.
  • the spherical activated carbon according to the present embodiment preferably has an aspect ratio of 0.7 or more.
  • the spherical activated carbon according to the present embodiment is impregnated with alkali or acid.
  • the spherical activated carbon according to the present embodiment pressure loss and dust amount are suppressed. Therefore, such spherical activated carbon can be used for many purposes. Moreover, compared with the conventional activated carbon, the spherical activated carbon which concerns on this embodiment has favorable crack resistance.
  • the method for producing the spherical activated carbon according to the present embodiment is not particularly limited as long as the spherical activated carbon having the above-described characteristics can be obtained.
  • the manufacturing method hereinafter only this "manufacturing method" of the spherical activated carbon concerning this embodiment is described.
  • Heavy hydrocarbon oil is used as a raw material for the spherical activated carbon.
  • the heavy hydrocarbon oil include one or more selected from the group consisting of petroleum tar, coal tar, ethylene bottom oil, and the like.
  • ethylene bottom oil can be obtained by distillation under reduced pressure of the light bottom oil produced during ethylene production.
  • a fossil fuel-derived or plant-derived resin containing a furan resin or a phenol resin may be used as a raw material for the spherical activated carbon.
  • this production method includes (1) production of crosslinked heavy pitch, (2) addition of additives to crosslinked heavy pitch, (3) molding of crosslinked heavy pitch, (4) addition. It includes six steps: extraction of the agent, (5) infusibilization, and (6) firing and activation. Hereinafter, each process is demonstrated in order.
  • crosslinked heavy pitch In this production method, a crosslinked heavy pitch is first produced. As will be described later, the cross-linked heavy pitch manufacturing process ensures moderate incompatibility with the viscosity-adjusting additive made of an aromatic compound. This is a necessary process.
  • cross-linked heavy pitch for example, a heavy hydrocarbon oil that is liquid at room temperature may be subjected to a cross-linking treatment and a heat treatment. Thereby, a solid cross-linked heavy pitch can be obtained at room temperature.
  • a specific method for producing a crosslinked heavy pitch is described in, for example, Japanese Patent No. 4349627.
  • additives examples include viscosity adjusting additives such as naphthalene, which will be described later.
  • a spherical pitch can be obtained by adding an additive to the crosslinked heavy pitch and heating and mixing, and then molding the crosslinked heavy pitch.
  • the additive to be added to the heavy heavy hydrocarbon oil-derived crosslinked heavy pitch is a boiling point of 200 ° C. or higher, preferably 205 ° C. or higher, more preferably 210 ° C. or higher.
  • a compound or a mixture thereof is preferred.
  • Such preferable additives include one or more selected from the group consisting of naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, biphenyl and the like. .
  • the additive is preferably naphthalene.
  • the lower limit of the amount of the additive to the cross-linked heavy pitch is preferably 26% by mass or more, more preferably 27%. It is at least 28% by mass, more preferably 28% by mass.
  • the additive amount is less than or equal to the lower limit value, sufficient pores may not be formed for the resulting porous spherical pitch.
  • the upper limit is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • the addition amount of the additive is not less than the upper limit value, the production amount may be lowered because the amount of the crosslinked heavy pitch in the mixture of the heavy crosslinked pitch and the additive is relatively small.
  • strength of the spherical activated carbon obtained may become inadequate.
  • the amount of the additive within this range, it is possible to efficiently extract the additive from the spherical pitch and form sufficient pores with respect to the obtained porous spherical pitch in the process described later. If the pores of the porous pitch are sufficient, in the infusibilization step described later, the crosslinking reaction by the oxidation reaction proceeds to the inside of the porous spherical pitch, and carbonization is performed while maintaining the spherical shape of the porous spherical pitch. be able to. For example, if the amount of naphthalene added is 25% by mass, the pores of the porous pitch may become insufficient and melt.
  • the pore formed by the said additive is contained in a part of pore volume of the spherical activated carbon in the range whose pore diameter is 50 nm or more and 10,000 nm or less.
  • a crosslinked heavy pitch with an additive is molded. At that time, it is preferable to make the mixture of the crosslinked heavy pitch and the additive uniform in advance.
  • the mixture of the crosslinked heavy pitch and the additive is preferably heated to form a molten mixture.
  • the formation of the crosslinked heavy pitch may be performed in a molten mixture state, or may be performed by pulverizing the molten mixture after cooling and stirring in hot water. In order to facilitate the subsequent extraction step of the additive, it is preferable to form the crosslinked heavy pitch so as to obtain a spherical pitch having a particle diameter of 6.0 mm or less.
  • the spherical pitch can be obtained, for example, by using a water containing a suspending agent as a dispersion medium and melt-dispersing a uniform mixture of the crosslinked heavy pitch and the additive under normal pressure or pressure.
  • a method for obtaining a spherical pitch for example, the method disclosed in Japanese Patent Publication No. 59-10930 may be referred to. Specifically, a mixture of a crosslinked heavy pitch and a viscosity adjusting additive is extruded in a molten state into a rod shape, or a stretched one is cooled and solidified, and the resulting rod-like pitch is crushed, After making the length / diameter ratio a rod-like pitch of 5 or less, it may be formed into a spherical shape by stirring and mixing in a suspending agent-containing hot water at a temperature equal to or higher than the softening point of the rod-like pitch.
  • the size of the rod-like pitch described above determines the average particle diameter of the spherical activated carbon. Therefore, in order to make the average particle diameter of the spherical activated carbon 1.5 mm or more and 4.0 mm or less, it is preferable that the longitudinal size of the rod-like pitch is about 1.5 to 10 mm. Further, the diameter of the die when extruding the rod-like pitch is preferably about 1.5 mm to 10 mm.
  • the rod-like pitch is softened and deformed into a spherical pitch by placing the rod-like pitch obtained as described above in hot water heated to a temperature higher than the softening point of the mixture of the crosslinked heavy pitch and the additive.
  • the temperature of the hot water when the molten mixture of the crosslinked heavy pitch and the additive is cooled and pulverized and stirred in hot water (hereinafter, this temperature is referred to as “spheroidizing temperature”) What is necessary is just to set suitably according to the viscosity of the molten mixture of crystallization pitch and an additive.
  • the lower limit value of the spheroidizing temperature is preferably 95 ° C. or higher, more preferably 97 ° C. or higher, and further preferably 98 ° C. or higher.
  • the upper limit is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and still more preferably 110 ° C. or lower.
  • the stirring force is weak, the spherical pitch may settle and the spherical pitch may be fused.
  • the stirring force is too high, there is a possibility that the spherical pitch may be broken due to the shearing force. For this reason, it is preferable to appropriately select an optimal stirring mechanism and stirring rotation speed that allow the spherical pitch to float and flow in hot water.
  • the means for causing the spherical pitch to flow is not limited to stirring, and other appropriate methods may be used.
  • the hot water containing the suspending agent has a role of improving the dispersibility of the spherical pitch and preventing the spherical pitches from being fused to each other. For this reason, in the present embodiment, it is preferable to obtain a spherical pitch by melting and dispersing the mixture of the crosslinked heavy pitch and the additive in hot water.
  • examples of the suspending agent include polyvinyl alcohol (hereinafter also referred to as “PVA”), xanthan gum, partially saponified polyvinyl acetate, methyl cellulose, carboxymethyl cellulose, polyacrylic acid and salts thereof, polyethylene glycol and ether thereof.
  • PVA polyvinyl alcohol
  • xanthan gum partially saponified polyvinyl acetate
  • methyl cellulose carboxymethyl cellulose
  • polyacrylic acid and salts thereof polyethylene glycol and ether thereof
  • examples of the suspending agent include water-soluble polymer compounds such as derivatives, ester derivative starches, and gelatin.
  • the concentration of the suspending agent may be appropriately set. Note that the higher the concentration of the suspending agent, the lower the sedimentation rate of the spherical pitch. According to this, the spherical pitch can be dispersed with a smaller stirring force and the tearing of the spherical pitch due to the shearing force is suppressed. can do.
  • the lower limit value of the content of PVA with respect to the hot water described above is 0.1% by mass or more, preferably 0.15% by mass or more, more preferably 0.8%. It is 23 mass% or more, More preferably, it is 0.3 mass% or more.
  • the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
  • the lower limit of the hot water temperature is preferably 95 ° C. or higher, more preferably 97 ° C. or higher, and still more preferably 98 ° C. or higher.
  • the upper limit is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and still more preferably 110 ° C. or lower.
  • a thickener may be used in combination with the suspending agent, or only the thickener may be used alone.
  • the liquid ratio is preferably high with respect to the quantitative ratio between the rod-like pitch and the hot water containing the suspending agent. Thereby, the influence of the small particle diameter by the collision of rod-shaped pitch etc. or an irregular shape is reduced.
  • the inside of the spherical pitch is presumed to have a sea-island structure of the crosslinked heavy pitch and the additive. For this reason, in this manufacturing method, by removing the additive portion contained in the spherical pitch using a solvent, a hole serving as a passage for oxygen gas is formed with respect to the spherical pitch in the subsequent infusibilization step. It is preferable to do.
  • the mass ratio of the solvent to the spherical pitch slurry is preferably 7 or more, more preferably 9 or more, and even more preferably 13.
  • the mass ratio of the solvent to the spherical pitch slurry is less than 7, the additives inside the particles may not be sufficiently extracted, and in the subsequent infusibilization step, holes that serve as oxygen gas passages for the spherical pitch are formed. Sometimes it cannot be formed.
  • Examples of the solvent for extracting and removing the additive from the spherical pitch include aliphatic compounds.
  • the aliphatic compound include aliphatic hydrocarbons such as butane, pentane, hexane, and heptane, mixtures of mainly aliphatic hydrocarbons such as naphtha and kerosene, and aliphatic alcohols such as methanol, ethanol, propanol, and butanol.
  • n-hexane is preferably used.
  • the mass ratio of n-hexane and the spherical pitch slurry is preferably 7 or more, more preferably 9 or more, and further preferably 13 or more. If the mass ratio of n-hexane and the slurry of the spherical pitch is less than 7, the additive inside the particles may not be sufficiently extracted, and in the subsequent infusibilization step, oxygen gas becomes a passage for the spherical pitch. The hole may not be formed.
  • the softening point of the porous spherical pitch is greatly influenced by the softening point of the crosslinked heavy pitch. If the softening point is too low, the porous spherical pitch may be softened or melted during heat treatment for infusibility described later, which is not preferable.
  • the higher the softening point of the porous spherical pitch the better.
  • the softening point of the porous spherical pitch is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C., and further preferably 220 ° C. or higher. It is 280 degrees C or less.
  • the toluene insoluble content of the porous spherical pitch has a good correlation with the carbonization yield from the pitch, and the higher the toluene insoluble content, the higher the carbonization yield tends to be. Therefore, the toluene insoluble content is preferably 40% or more, more preferably 50% or more.
  • the toluene-insoluble matter can be measured by a known method, for example, by the method described in paragraph 0030 of Patent Document 1.
  • a porous spherical infusible pitch that is infusible to heat is formed from the porous spherical pitch.
  • an oxidizing gas is uniformly diffused to the inside of the porous spherical pitch using the pores formed by extracting the additive from the spherical pitch, and a crosslinking treatment is performed.
  • a porous spherical infusible pitch can be formed. More specifically, for example, a gas is flowed to the porous spherical pitch in the fluidized bed, and is 100 ° C. or higher and 350 ° C. or lower, preferably 120 ° C. or higher and 320 ° C. or lower, more preferably 130 ° C. or higher and 300 ° C. What is necessary is just to heat below.
  • an oxidizing gas such as O 2 , O 3 , SO 3 , NO 2 , or air, or a mixed gas obtained by diluting these oxidizing gases with an inert gas such as nitrogen, carbon dioxide, or water vapor is used.
  • an inert gas such as nitrogen, carbon dioxide, or water vapor is used.
  • the degree of the crosslinking treatment can be judged by, for example, the oxygen content by elemental analysis of the porous pitch after the oxidation treatment obtained by elemental analysis.
  • the oxygen content should just be 5 mass% or more, Preferably it is 8 mass% or more and 25 mass% or less, More preferably, it is 10 mass% or more, 23 mass% or less, More preferably, it is 11 mass% or more, 21 It is preferable to carry out the oxidation treatment so as to be not more than mass%.
  • a spherical carbon molded body can be obtained by heat-treating the porous spherical infusibilized pitch in a non-oxidizing atmosphere gas at 600 ° C. or higher, preferably 650 ° C. or higher, more preferably 700 ° C. or higher.
  • the spherical carbon molded body is fired and activated by a conventional method.
  • the activation treatment is performed on the spherical carbon molded body in an activation gas atmosphere mainly composed of a mild oxidizing gas such as carbon dioxide and water vapor.
  • an activation gas atmosphere mainly composed of a mild oxidizing gas such as carbon dioxide and water vapor.
  • the activated gas is allowed to act on the spherical carbon molded body at 600 ° C. or higher, more preferably 650 ° C. or higher, and still more preferably 700 ° C. or higher.
  • other substances such as acid, alkali, or metal may be further added to the spherical activated carbon obtained as described above.
  • a known method may be used to attach other substances to the spherical activated carbon. For example, if a metal is attached or supported on spherical activated carbon, this spherical activated carbon can be used as a catalyst or the like.
  • the average particle diameter of the activated carbon was evaluated according to JIS K 1474. Specifically, a cumulative grain size diagram is created in accordance with JIS K 1474, and a vertical line is drawn from the intersection of the vertical line of the 50% point on the horizontal axis and the cumulative grain size diagram to indicate the intersection. The aperture (mm) was determined, and the value of the aperture was taken as the average particle size.
  • pore diameter and pore volume About the pore diameter and pore volume of activated carbon, the pore diameter and pore volume of activated carbon were measured using the pore volume mercury porosimeter by the mercury intrusion method ("AUTOPORE 9200" by MICROMERITICS). Specifically, activated carbon was put into a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes. Next, mercury was introduced into the sample container and gradually pressurized to pressurize mercury into the pores of the activated carbon. And the pore volume distribution of the activated carbon was calculated from the relationship between the pressure at this time and the intrusion amount of mercury using the following calculation formulas.
  • the surface tension of mercury is 484 dyne / cm
  • the contact angle between mercury and carbon is 130 degrees
  • the pressure P is MPa
  • the pore diameter D is ⁇ m
  • the following formula D 1.24 / P (Formula 4)
  • the pore volume in the range of the pore diameter of 50 to 10000 nm in this example corresponds to the volume of mercury that is injected into the corresponding mercury injection pressure range.
  • the dust amount of the activated carbon was evaluated by the following procedure. 1) A membrane filter (ADVANTEC diameter 47 mm, opening 1 ⁇ m) was dried at 110 ° C. for 1 hour, allowed to cool in a desiccator, and then weighed to 0.1 mg with a precision scientific balance. 2) 5 g of the dried sample was taken in a 100 ml Erlenmeyer flask and weighed to 0.1 mg with a precision scientific balance. 3) 100 ml of pure water was added to the Erlenmeyer flask, and it was put on an ultrasonic cleaner (Bransonic desktop ultrasonic cleaner 1510J-MT manufactured by Emerson Japan) for 3 minutes.
  • an ultrasonic cleaner Bransonic desktop ultrasonic cleaner 1510J-MT manufactured by Emerson Japan
  • Carbon dust amount (BA) / S (Formula 5)
  • the underwater shaking wear rate of the activated carbon was evaluated by the following method. 1) A membrane filter (aperture 0.3 ⁇ m) previously dried at 110 ° C. for 1 hour was allowed to cool in a desiccator, and then weighed to 0.1 mg with a precision scientific balance.
  • Underwater shaking wear rate (%) (ba) / s ⁇ 100 (Formula 6) a: Mass of membrane filter before filtration (g) b: Mass of membrane filter after filtration (g) s: Mass of sample (g) [Specific surface area] Using a specific surface area measuring device (“FLOWSORB III” manufactured by MICROMERTIICS) with a specific surface area continuous flow type gas adsorption method, the gas adsorption amount of the sample (carbonaceous material) was measured, and the specific surface area was calculated by the BET equation. .
  • FLOWSORB III manufactured by MICROMERTIICS
  • the sample was filled into a sample tube, and the following operation was performed while flowing a helium gas containing 30 vol% nitrogen into the sample tube, and the amount of nitrogen adsorbed on the sample was determined. That is, the sample tube was cooled to ⁇ 196 ° C., and nitrogen was adsorbed on the sample. The sample tube was then returned to room temperature. At this time, the amount of nitrogen desorbed from the porous spherical carbonaceous material sample was measured with a thermal conductivity detector, and was defined as the amount of adsorbed gas (v).
  • V m 1 / (v ⁇ (1-x)) (Expression 7)
  • v is an actually measured adsorption amount (cm 3 / g)
  • x is a relative pressure.
  • the aspect ratio of the sample was calculated using a digital microscope (“VHX-700F” manufactured by KEYENCE).
  • the aspect ratio was calculated from the length ratio of the major axis to the minor axis so as to be 1 at the maximum.
  • the average value of the aspect ratios of 30 particles was defined as the aspect ratio.
  • the crushing strength was determined by the following method. That is, 32 sample particles of spherical activated carbon were randomly extracted, and the hardness at the moment when the sample particles were crushed was measured using a simple particle hardness meter (manufactured by Tsutsui Riken Kikai Co., Ltd.). The maximum value and the minimum value were excluded from the measured hardness value, and the average value of the measured hardness values of the 30 sample particles was calculated as the crushing strength of the sample particles.
  • Example 1 Bottom oil (ethylene bottom oil) produced in the production of ethylene with a specific gravity (ratio of the mass of the sample at 15 ° C and the mass of equal volume of pure water at 4 ° C) of 1.08 in a stainless steel pressure vessel with an internal volume of 25 liters 10.0 kg was charged. Air was blown from the lower part of the reaction vessel at 3.7 L / min, and an air blowing reaction was performed at 230 to 250 ° C. under a pressure of 0.4 MPa for 4 hours and 20 minutes. Thus, 9.5 kg of air blowing tar was obtained.
  • the resulting air blowing tar (3.0 kg) was heat-heavy at 385 ° C., and the light components were further distilled off under reduced pressure to obtain 1.4 kg of air blowing pitch.
  • the pitch obtained had a softening point of 203 ° C. and a toluene insoluble content of 58%.
  • the crushed material was spheroidized by stirring and dispersing, then cooled, and the aqueous polyvinyl alcohol solution was replaced with water to obtain a spherical pitch formed body slurry. Most of the water was removed by filtration, and then naphthalene in the spherical pitch slurry was extracted and removed with n-hexane 7 times the weight of the spherical pitch slurry to obtain a porous spherical pitch.
  • the porous spherical pitch obtained in this way was heated from room temperature to 150 ° C. over 1 hour using heated bed through heated air, and then heated to 260 ° C. at a temperature rising rate of 150 ° C. to 20 ° C./h.
  • the temperature was maintained at 260 ° C. for 1 hour for oxidation.
  • a porous spherical infusibilized pitch that was infusible to heat was obtained.
  • the porous spherical infusibilized pitch was activated using a fluidized bed in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until a packing density of 0.79 g / ml was obtained to obtain spherical activated carbon.
  • the obtained spherical activated carbon was evaluated for average particle size, pore size distribution, dust amount, underwater shaking wear rate, specific surface area, aspect ratio and crushing strength.
  • Examples 2 to 8 As shown in Tables 1 and 2, the pitch amount when the air blowing pitch and naphthalene are melt-mixed, the amount of naphthalene, the amount of the rod-shaped molded body charged when spheroidizing, the spheroidizing temperature, the polyvinyl alcohol concentration, and when extracting naphthalene Activated carbons of Examples 2 to 8 were obtained by the same operation as Example 1 except that the amount of n-hexane and the packing density after activation were changed.
  • Example 9 As shown in Table 1, the pitch amount when melt-blending air blowing pitch and naphthalene, the amount of naphthalene, the size of the rod-shaped molded body, the amount of rod-shaped molded body charged when spheroidizing, the spheroidizing temperature, the polyvinyl alcohol concentration, and naphthalene A porous spherical pitch was obtained by the same operation as in Example 1 except that the amount of n-hexane at the time of extraction was adjusted.
  • the resulting porous spherical pitch was heated from room temperature to 150 ° C. over 1 hour while passing heated air in a stationary layer, and then heated from 150 ° C. to 260 ° C. at a temperature increase rate of 20 ° C./h. Thereafter, the mixture was oxidized at 260 ° C. for 1 hour. Thus, a porous spherical infusibilized pitch that was infusible to heat was obtained. Subsequently, the porous spherical infusibilized pitch was subjected to an activation treatment in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until the packing density became 0.70 g / ml, to obtain activated carbon.
  • Example 10 As shown in Table 1, the pitch amount when melt-blending air blowing pitch and naphthalene, the amount of naphthalene, the size of the rod-shaped molded body, the amount of rod-shaped molded body charged when spheroidizing, the spheroidizing temperature, the polyvinyl alcohol concentration, and naphthalene A porous spherical pitch was obtained by the same operation as in Example 1 except that the amount of n-hexane at the time of extraction was adjusted.
  • the obtained porous spherical pitch was heated from room temperature to 150 ° C. for 1 hour while passing heated air in a stationary layer, and then heated from 150 ° C. to 300 ° C. at a temperature increase rate of 20 ° C./h. Thereafter, it was oxidized at 300 ° C. for 1 hour.
  • a porous spherical infusibilized pitch that was infusible to heat was obtained.
  • the porous spherical infusibilized pitch was activated with a stationary layer in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until the packing density became 0.68 g / ml to obtain activated carbon.
  • Example 11 Using xanthan gum as a suspending agent, as shown in Table 1, the pitch amount when melt-blending air blowing pitch and naphthalene, the amount of naphthalene, the size of the rod-shaped molded body, the amount of rod-shaped molded body charged when spheroidized, spherical A porous spherical pitch was obtained in the same manner as in Example 1, except that the crystallization temperature, the xanthan gum concentration, and the amount of n-hexane at the time of extracting naphthalene were adjusted.
  • the obtained porous spherical pitch was heated from room temperature to 150 ° C. for 1 hour while passing heated air in a stationary layer, and then heated from 150 ° C. to 300 ° C. at a temperature increase rate of 20 ° C./h. Thereafter, it was oxidized at 300 ° C. for 1 hour.
  • a porous spherical infusibilized pitch that was infusible to heat was obtained.
  • the porous spherical infusibilized pitch was subjected to an activation treatment in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until the packing density became 0.70 g / ml, to obtain activated carbon.
  • Example 5 The same evaluation as Example 1 was performed for spherical white rabbit X7000H (Osaka Gas Chemical Co., Ltd.).
  • Example 6 The same evaluation as in Example 1 was performed for Kuraray Coal SW (Kuraray Chemical Co., Ltd.).
  • “size” means the size of the rod-shaped formed body
  • “charge amount” means the charged amount of the rod-shaped formed body.
  • the “suspending agent” is, for example, PVA.
  • “Rhex” means the hexane mass ratio at the time of extraction, and more specifically, the mass ratio of n-hexane to the spherical pitch slurry (n-hexane amount / spherical pitch slurry amount).
  • D1 means melting
  • D2 means that all are oval
  • Vp1 means the pore volume in the range of 10 to 10,000 nm
  • Vp2 means the pore volume in the range of 50 to 10000 nm.
  • Asw means underwater shaking wear rate
  • Rasp means aspect ratio
  • Sp means crushing strength.
  • the present invention can be suitably used as, for example, activated carbon for separation process, purification, catalyst, solvent recovery and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This spherical activated carbon is integrally molded. This spherical activated carbon has an average particle diameter of from 1.5 mm to 4.0 mm (inclusive); and the pore volume of pores having a pore diameter within the range of from 50 nm to 10,000 nm (inclusive) in this spherical activated carbon is within the range of from 0.01 ml/g to 0.24 ml/g (inclusive).

Description

球状活性炭およびその製造方法Spherical activated carbon and method for producing the same
 本発明は、球状活性炭および当該球状活性炭の製造方法に関する。 The present invention relates to a spherical activated carbon and a method for producing the spherical activated carbon.
 化学工業において、活性炭は分離プロセス、精製、触媒、あるいは溶剤回収への利用、さらには、地球環境汚染問題と関連する排水処理、公害対策、あるいは医療用途、と多岐にわたって利用されている。 In the chemical industry, activated carbon is widely used for separation processes, purification, catalysts, or solvent recovery, as well as wastewater treatment, pollution countermeasures, and medical uses related to global environmental pollution problems.
 例えば非特許文献1には、粉末状の活性炭および平均粒子径が数mm程度の粒状活性炭が開示されている。 For example, Non-Patent Document 1 discloses powdered activated carbon and granular activated carbon having an average particle diameter of several millimeters.
 また、石油タールまたはエチレンボトム油等の重質炭化水素油を原料とした活性炭(特許文献1)、および樹脂を原料とした活性炭(特許文献2)が知られている。 Also known are activated carbon (Patent Document 1) using heavy hydrocarbon oil such as petroleum tar or ethylene bottom oil (Patent Document 1) and activated carbon using resin as a raw material (Patent Document 2).
日本国公開特許公報「特開2005-119947号公報」Japanese Patent Publication “JP 2005-119947 A” 日本国公開特許公報「特開2000-233916号公報」Japanese Patent Publication “JP 2000-233916 A”
 ところで、活性炭を使用する場合には、圧力損失を低下すること及びダストを抑制することが求められている。 Incidentally, when using activated carbon, it is required to reduce pressure loss and suppress dust.
 活性炭をカラム等の装置に充填し、目的物質を一定濃度含む流体を流通させて使用する場合には、目的物質に対する体積当たりの効果を最大化するためには活性炭粒子を密に充填させる必要がある。 When activated carbon is packed in a device such as a column and a fluid containing the target substance is circulated and used, it is necessary to pack the activated carbon particles closely in order to maximize the effect per volume on the target substance. is there.
 しかしながら、活性炭の粒子径が小さい場合、あるいは活性炭によるダスト発生量が多い場合には、活性炭の粒子間空隙が塞がれてしまう。また、これらの場合には、装置フィルター等の目詰まりにより圧力損失が大きくなり、その結果、装置への負荷が大きくなってしまうと考えられる。また、活性炭を用いて大流量の流体を扱う場合には、粒子径の小さい活性炭または発生するダストが飛散する虞がある。 However, when the particle diameter of the activated carbon is small or when the amount of dust generated by the activated carbon is large, the gap between the particles of the activated carbon is blocked. Further, in these cases, it is considered that pressure loss increases due to clogging of the device filter and the like, and as a result, the load on the device increases. Further, when a large flow rate fluid is handled using activated carbon, activated carbon having a small particle diameter or generated dust may be scattered.
 また、活性炭と目的物質とを含む流体(気体または液体)を接触させた後、活性炭および目的物質のそれぞれを分離する場合には、例えば濾過等の処理が必要である。ところが活性炭の粒子が小さい、またはダスト発生量が多いと、これらを分離するための手間やコストがかかってしまう。 Also, when separating each of the activated carbon and the target substance after contacting the fluid (gas or liquid) containing the activated carbon and the target substance, a treatment such as filtration is required. However, when the activated carbon particles are small or the amount of dust generated is large, it takes time and cost to separate them.
 特に、上述した粉末状の活性炭は基本的に粒度が小さいため、装置に充填して使用する際には圧力損失が大きくなってしまうとともに、流体処理量に制約があると考えられる。 In particular, since the powdered activated carbon described above basically has a small particle size, it is considered that the pressure loss becomes large and the amount of fluid treatment is restricted when the apparatus is used by being filled in the apparatus.
 また、このように粉末状の活性炭を用いる場合には、大流量の流体を処理する際に粉末が飛散してしまう虞がある。 Also, when powdered activated carbon is used in this way, there is a risk that the powder will be scattered when processing a large flow rate of fluid.
 これに対して、平均粒子径が数mm程度の粒状の活性炭であれば、充填時の圧力損失を低減し、大流量の流体処理が可能であるとも考えらえる。 On the other hand, if the granular activated carbon has an average particle diameter of about several millimeters, it can be considered that pressure loss during filling is reduced and fluid treatment with a large flow rate is possible.
 しかしながら、従来、粒状の活性炭の製造方法においては、一般に粉末炭を粘結剤と混合して粒状に造粒する方式が用いられている。つまり、従来の製造方法によって得られる粒状の活性炭は一体成型されたものではない。そのため、従来の粒状活性炭は強度が弱いことから、そのような粒状活性炭を装置に充填して使用すると、ダストが多量に発生してしまい、流体との分離が困難であると考えられる。 However, conventionally, in a method for producing granular activated carbon, generally a method is used in which powdered charcoal is mixed with a binder and granulated into granules. That is, the granular activated carbon obtained by the conventional manufacturing method is not integrally molded. For this reason, since the strength of conventional granular activated carbon is weak, when such granular activated carbon is filled in an apparatus and used, a large amount of dust is generated and it is considered difficult to separate from the fluid.
 また、従来の粒状の活性炭は、一般的にヤシ殻炭等を利用しているため、不純物が多く、ダスト以外の不純物溶出等も問題となることが考えられる。 In addition, since conventional granular activated carbon generally uses coconut shell charcoal and the like, there are many impurities, and it is considered that impurities other than dust may become a problem.
 このようなことから、圧力損失およびダストを抑制可能な活性炭の開発が求められている。 Therefore, development of activated carbon that can suppress pressure loss and dust is required.
 本発明者らは上記課題を解決すべく鋭意検討を行った結果、粒子径が数mm程度の一体成形された球状活性炭によれば、圧力損失およびダストを抑制することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the integrally formed spherical activated carbon having a particle diameter of several millimeters can suppress pressure loss and dust. It came to complete.
 すなわち、本発明は、平均粒子径が1.5mm以上、4.0mm以下であり、一体成形された球状活性炭であって、細孔径が50nm以上、10000nm以下の範囲における細孔容積が0.01ml/g以上、0.24ml/g以下の範囲である球状活性炭を提供するものである。 That is, the present invention is an integrally formed spherical activated carbon having an average particle diameter of 1.5 mm or more and 4.0 mm or less, and a pore volume in the range of pore diameters of 50 nm or more and 10,000 nm or less is 0.01 ml. / G or more and 0.24 ml / g or less of the spherical activated carbon is provided.
 さらに、本発明は、上述した特徴を有する球状活性炭の製造方法を提供する。 Furthermore, this invention provides the manufacturing method of the spherical activated carbon which has the characteristics mentioned above.
 本発明によれば、圧力損失およびダストを抑制可能な活性炭を提供することができる。 According to the present invention, activated carbon capable of suppressing pressure loss and dust can be provided.
 以下、本発明に係る球状活性炭の一実施形態について、具体的に説明する。 Hereinafter, an embodiment of the spherical activated carbon according to the present invention will be specifically described.
 〔球状活性炭〕
 本実施形態に係る球状活性炭(以下、単に「球状活性炭」ともいう)は、その平均粒子径が1.5mm以上、4.0mm以下であり、細孔径50nm以上、10000nm以下の範囲における細孔容積が0.01ml/g以上、0.24ml/g以下である。なお細孔径および細孔容積の詳細な説明は後述する。
[Spherical activated carbon]
The spherical activated carbon according to the present embodiment (hereinafter, also simply referred to as “spherical activated carbon”) has an average particle diameter of 1.5 mm or more and 4.0 mm or less, and a pore volume in a range of pore diameters of 50 nm or more and 10,000 nm or less. Is 0.01 ml / g or more and 0.24 ml / g or less. Detailed description of the pore diameter and pore volume will be described later.
 本明細書において、球状活性炭とは、球形状の活性炭を意味する。球状活性炭の球形状の度合いは特に限定されるものではないが、好ましくはアスペクト比で0.7以上であり、より好ましくは0.8以上であり、さらに好ましくは0.9以上である。アスペクト比は、長径に対する短径の比である。長径および短径は、公知の方法により、例えば、球状活性炭の投影像における最大長さおよび最小長さの平均値として、求められる。アスペクト比が1に近いほど、球状活性炭は真球に近くなる。なお、球状活性炭のアスペクト比が0.7以上であれば、球状活性炭を使用する際に、球状活性炭の粒子同士の衝突による摩耗がより低減されるため、ダストの発生を十分に抑制することができる。 In the present specification, the spherical activated carbon means a spherical activated carbon. The degree of the spherical shape of the spherical activated carbon is not particularly limited, but it is preferably 0.7 or more in aspect ratio, more preferably 0.8 or more, and further preferably 0.9 or more. The aspect ratio is the ratio of the minor axis to the major axis. The major axis and the minor axis are obtained by a known method, for example, as an average value of the maximum length and the minimum length in the projected image of the spherical activated carbon. The closer the aspect ratio is to 1, the closer the spherical activated carbon is to a true sphere. In addition, if the aspect ratio of the spherical activated carbon is 0.7 or more, when using the spherical activated carbon, wear due to the collision between the particles of the spherical activated carbon is further reduced, so that generation of dust can be sufficiently suppressed. it can.
 本実施形態に係る球状活性炭は、一体成形された球状活性炭である。「一体成形された球状活性炭」とは、一次粒子として成型され、かつ球状を有する活性炭を意味する。本実施形態に係る球状活性炭は、後述する細孔径および細孔容積を有しており、よって、多孔性および球状を有する一次粒子の活性炭、とも言える。本実施形態に係る球状活性炭は、例えば凝集粒子の焼結体のような従来の球状活性炭に対して、機械的強度に優れる。たとえば、本実施形態に係る球状活性炭は、従来の球状活性炭に比べて、高い圧潰強力を有し、あるいは、低い水中振とう摩耗率を有する。 The spherical activated carbon according to the present embodiment is an integrally molded spherical activated carbon. “Integrally molded spherical activated carbon” means activated carbon molded as primary particles and having a spherical shape. The spherical activated carbon according to the present embodiment has a pore diameter and a pore volume, which will be described later. Therefore, it can be said that the activated carbon is a primary particle having porosity and a spherical shape. The spherical activated carbon according to the present embodiment is superior in mechanical strength to a conventional spherical activated carbon such as a sintered body of aggregated particles. For example, the spherical activated carbon according to the present embodiment has a high crushing strength or a low underwater shaking wear rate as compared with the conventional spherical activated carbon.
 (平均粒子径)
 本実施形態に係る球状活性炭の平均粒子径の下限値は、球状活性炭の充填層の圧力損失の上昇を抑制する観点から、1.5mm以上、好ましくは1.7mm以上、より好ましくは1.8mm、さらに好ましくは2.0mm以上である。また、その上限値は、充填層における球状活性炭と流体との十分な上記接触性を実現する観点から、4.0mm以下、好ましくは3.5mm以下、より好ましくは3.0mm以下である。平均粒子径がこの範囲にあることで、球状活性炭の粒子間空隙を十分に大きくすることができる。したがってこのような球状活性炭であれば、カラムや分離塔等の装置に球状活性炭を充填し、目的物質を含む流体を接触させた際に、圧力損失を十分に小さくすることができる。
(Average particle size)
The lower limit value of the average particle diameter of the spherical activated carbon according to the present embodiment is 1.5 mm or more, preferably 1.7 mm or more, more preferably 1.8 mm, from the viewpoint of suppressing an increase in pressure loss of the packed bed of spherical activated carbon. More preferably, it is 2.0 mm or more. Moreover, the upper limit is 4.0 mm or less, preferably 3.5 mm or less, more preferably 3.0 mm or less from the viewpoint of realizing sufficient contact between the spherical activated carbon and the fluid in the packed bed. When the average particle diameter is in this range, the interparticle voids of the spherical activated carbon can be sufficiently increased. Therefore, with such a spherical activated carbon, the pressure loss can be sufficiently reduced when the spherical activated carbon is packed in an apparatus such as a column or a separation tower and a fluid containing the target substance is brought into contact therewith.
 本実施形態において、球状活性炭の平均粒子径はJIS K 1474に準じて評価することができる。すなわちJIS K 1474の操作から得られた結果より、球状活性炭の粒度累計線図を作成する。横軸の50%の点の垂直線と粒度累計線図との交点から、縦軸に水平線を引いて交点の示すふるいの目開き(mm)を求める。この目開きの値を球状活性炭の平均粒子径とする。 In this embodiment, the average particle diameter of the spherical activated carbon can be evaluated according to JIS K 1474. That is, based on the result obtained from the operation of JIS K 1474, a cumulative particle size diagram of spherical activated carbon is created. From the intersection of the vertical line of the 50% point on the horizontal axis and the cumulative grain size diagram, a horizontal line is drawn on the vertical axis to obtain the mesh opening (mm) indicated by the intersection. The value of this opening is taken as the average particle diameter of the spherical activated carbon.
 (細孔径)
 本明細書において、細孔径とは、球状活性炭が有する細孔の細孔直径を意味する。本実施形態において、細孔径および細孔容積は、例えば公知の水銀圧入法によって測定することができる。また、細孔径および細孔容積は、例えば後述する架橋重質化ピッチの性状、架橋重質化ピッチ中の添加剤の種類、または、溶剤による当該添加剤の抽出の条件等によって調整することが可能である。
(Pore diameter)
In this specification, the pore diameter means the pore diameter of the pores possessed by the spherical activated carbon. In the present embodiment, the pore diameter and pore volume can be measured by, for example, a known mercury intrusion method. The pore diameter and pore volume can be adjusted by, for example, the properties of the crosslinked heavy pitch described later, the type of additive in the crosslinked heavy pitch, or the conditions for extracting the additive with a solvent. Is possible.
 (細孔容積)
 本明細書において、細孔容積とは、活性炭の特定の細孔径範囲における細孔の体積を意味する。
(Pore volume)
In the present specification, the pore volume means the pore volume in a specific pore diameter range of the activated carbon.
 本実施形態に係る球状活性炭における、細孔径が50nm以上、10000nm以下の範囲における細孔容積の下限値は、球状活性炭の後述する製造方法における生産性の低下を抑制する観点から0.01ml/g以上、好ましくは0.02ml/g以上、より好ましくは0.03ml/g以上、さらに好ましくは0.05g/ml以上である。また、その上限値は、球状活性炭の圧潰強力低下を防止する観点から、0.24ml/g以下、好ましくは0.22ml/g以下、より好ましくは0.20ml/g以下、さらに好ましくは0.18ml/g以下である。 In the spherical activated carbon according to the present embodiment, the lower limit value of the pore volume in the range of the pore diameter of 50 nm or more and 10000 nm or less is 0.01 ml / g from the viewpoint of suppressing the decrease in productivity in the manufacturing method of spherical activated carbon described later. As mentioned above, Preferably it is 0.02 ml / g or more, More preferably, it is 0.03 ml / g or more, More preferably, it is 0.05 g / ml or more. Moreover, the upper limit is 0.24 ml / g or less, preferably 0.22 ml / g or less, more preferably 0.20 ml / g or less, and still more preferably 0.20 ml / g or less, from the viewpoint of preventing reduction in crushing strength of the spherical activated carbon. 18 ml / g or less.
 また、本実施形態に係る球状活性炭における、細孔径10nm以上、10000nm以下の範囲における細孔容積の下限値は、球状活性炭の生産性の低下を抑制する観点から、0.01ml/g以上であり、好ましくは0.02ml/g以上であり、より好ましくは0.03ml/g以上であり、さらに好ましくは0.04ml/以上である。また、その上限値は、球状活性炭の圧潰強力低下を防止する観点から、0.28ml/g以下であり、好ましくは0.27ml/g以下であり、より好ましくは0.26ml/g以下であり、さらに好ましくは0.25ml/gであり、最も好ましくは0.24ml/g以下である。 In the spherical activated carbon according to the present embodiment, the lower limit of the pore volume in the range of the pore diameter of 10 nm or more and 10000 nm or less is 0.01 ml / g or more from the viewpoint of suppressing the productivity of the spherical activated carbon. , Preferably it is 0.02 ml / g or more, More preferably, it is 0.03 ml / g or more, More preferably, it is 0.04 ml / g or more. In addition, the upper limit is 0.28 ml / g or less, preferably 0.27 ml / g or less, more preferably 0.26 ml / g or less, from the viewpoint of preventing reduction in the crushing strength of the spherical activated carbon. More preferably, it is 0.25 ml / g, and most preferably 0.24 ml / g or less.
 本実施形態によれば、球状活性炭が上記の範囲を満たすことで、後述する不融化時に必要な孔を十分に形成することができるため、効率良く不融化を行うことができ、球状の活性炭をつくることができる。また、球状活性炭の吸着能に関与しにくい細孔容積が増えることを抑制することができるため、球状活性炭の密度が高くなり、球状活性炭の体積当たりの性能が向上する。 According to the present embodiment, since the spherical activated carbon satisfies the above range, holes necessary for infusibility described later can be sufficiently formed, so that the infusible can be efficiently performed. Can be made. Moreover, since it can suppress that the pore volume which is hard to participate in the adsorption capacity of spherical activated carbon can be suppressed, the density of spherical activated carbon becomes high and the performance per volume of spherical activated carbon improves.
 本実施形態において、細孔容積は、例えば公知の水銀圧入法によって評価することができる。 In this embodiment, the pore volume can be evaluated by, for example, a known mercury intrusion method.
 (圧潰強力)
 本実施形態に係る球状活性炭は、一次粒子であることから、凝集粒子の焼結による従来の球状活性炭に比べて高い機械的強度を有する。本実施形態の球状活性炭の圧潰強力は、好ましくは1.20kg/個以上であり、より好ましくは1.25kg/個以上であり、さらに好ましくは1.30kg/個である。圧潰強力は、例えば球状活性炭の用途に応じて十分な大きさを有していればよく、例えば、10.0kg/個以下であってよい。
(Crushing strength)
Since the spherical activated carbon according to the present embodiment is primary particles, it has higher mechanical strength than conventional spherical activated carbon obtained by sintering aggregated particles. The crushing strength of the spherical activated carbon of the present embodiment is preferably 1.20 kg / piece or more, more preferably 1.25 kg / piece or more, and further preferably 1.30 kg / piece. The crushing strength may be sufficient, for example, depending on the use of the spherical activated carbon, and may be, for example, 10.0 kg / piece or less.
 圧潰強力は、以下の方法によって測定することができる。すなわち、球状活性炭の試料粒子を(例えば32粒)無造作に抜出し、簡易粒体硬度計(筒井理化学器械株式会社製)を用い、試料粒子が潰れた瞬間の硬度を測定する。そして、硬度の測定値のうちの最大値、最小値を除き、残りの測定値(例えば30粒の測定値)の平均値を算出し、これをその球状活性炭の圧潰強力とする。 The crushing strength can be measured by the following method. That is, sample particles of spherical activated carbon (for example, 32 particles) are randomly extracted, and the hardness at the moment when the sample particles are crushed is measured using a simple particle hardness meter (manufactured by Tsutsui Riken Kikai Co., Ltd.). Then, the average value of the remaining measurement values (for example, measurement values of 30 grains) is calculated except for the maximum value and the minimum value among the measurement values of hardness, and this is set as the crushing strength of the spherical activated carbon.
 (ダスト量)
 本明細書において、ダストとは、球状活性炭に含まれる微粉を意味する。また、ダスト量とは、このダストの量を意味し、具体的には後述するダスト量の測定により算出される量である。
(Dust amount)
In this specification, dust means fine powder contained in spherical activated carbon. The dust amount means the amount of dust, and is specifically an amount calculated by measuring the dust amount described later.
 本実施形態において、球状活性炭1g当たりに含まれるダスト量は、球状活性炭の充填層における圧力損失の上昇を抑制する観点、および、球状活性炭の分離能を十分に発現させる観点から、好ましくは2000μg以下であり、より好ましくは1500μg以下であり、さらに好ましくは1200μg以下であり、最も好ましくは1000μg以下ある。ダスト量は、少ないほど好ましく、その下限値は0μg以上であってよい。 In the present embodiment, the amount of dust contained per gram of spherical activated carbon is preferably 2000 μg or less from the viewpoint of suppressing an increase in pressure loss in the packed bed of spherical activated carbon and fully expressing the separation ability of the spherical activated carbon. More preferably, it is 1500 μg or less, more preferably 1200 μg or less, and most preferably 1000 μg or less. The smaller the amount of dust, the better. The lower limit may be 0 μg or more.
 本実施形態に係る球状活性炭のダスト量は、後述する特定の方法によって測定することができる。ダスト量は、例えば、一体成型による製造方法によって低減させることが可能である。 The dust amount of the spherical activated carbon according to the present embodiment can be measured by a specific method described later. The amount of dust can be reduced, for example, by a manufacturing method using integral molding.
 (水中振とう摩耗率)
 球状活性炭を水中に入れ、水中で振とうすると、球状活性炭同士が衝突することによって球状活性炭が削れ、剥がれ落ちる。本実施形態では、このときの剥がれ落ちた球状活性炭の量から水中振とう摩耗率を算出する。具体的には、水中振とう摩耗率は、以下の式から算出することができる。
(Underwater shaking wear rate)
When spherical activated carbon is put in water and shaken in water, the spherical activated carbon collides with each other and the spherical activated carbon is scraped and peeled off. In this embodiment, the underwater shaking wear rate is calculated from the amount of the spherical activated carbon that has been peeled off. Specifically, the underwater shaking wear rate can be calculated from the following equation.
 水中振とう摩耗率(%)=(A-B)/A×100(%) ・・・(式1)
   A:水中振とう前の球状活性炭の質量(g)
   B:水中振とう後の球状活性炭の質量(g)
 本実施形態に係る球状活性炭の水中振とう摩耗率は、好ましくは5%以下であり、より好ましくは4.5%以下である。なお、水中振とう摩耗率が低いほど、球状活性炭の強度は大きくなるため、球状活性炭同士が衝突することによって発生するダスト量は少なくなる。
Underwater shaking wear rate (%) = (AB) / A × 100 (%) (Formula 1)
A: Mass of spherical activated carbon before shaking in water (g)
B: Mass of spherical activated carbon after shaking in water (g)
The underwater shaking wear rate of the spherical activated carbon according to the present embodiment is preferably 5% or less, and more preferably 4.5% or less. In addition, since the intensity | strength of spherical activated carbon becomes so large that an underwater shake wear rate is low, the amount of dust generated when spherical activated carbon collides will decrease.
 (比表面積)
 比表面積とは、評価する物質に気体分子を吸着させ、吸着した気体分子の量と、気体分子の吸着断面積の比から求められるものである。具体的には、比表面積は、窒素吸着量をBET法により計算し、窒素分子の吸着断面積を0.162nmとして求められる。なお、比表面積はspecific surface area(SSA)と呼ばれることもある。
(Specific surface area)
The specific surface area is obtained from the ratio of the amount of gas molecules adsorbed to the substance to be evaluated and the amount of adsorbed gas molecules to the adsorption cross-sectional area of the gas molecules. Specifically, the specific surface area is obtained by calculating the nitrogen adsorption amount by the BET method and setting the adsorption cross-sectional area of the nitrogen molecule to 0.162 nm 2 . The specific surface area is sometimes called a specific surface area (SSA).
 本実施形態に係る比表面積は、気体分子に窒素を用い、液体窒素温度下で窒素を球状活性炭に吸着させたときの比表面積である。比表面積は、例えば、後述の賦活の程度によって調整することが可能である。 The specific surface area according to the present embodiment is a specific surface area when nitrogen is used as a gas molecule and nitrogen is adsorbed on the spherical activated carbon at a liquid nitrogen temperature. The specific surface area can be adjusted by, for example, the degree of activation described later.
 本実施形態に係る球状活性炭の比表面積は、球状活性炭の吸着機能の発揮の観点から、好ましくは100m/g以上であり、より好ましくは300m/g以上であり、さらに好ましくは400m/g以上である。比表面積が100m/g以上であれば、球状活性炭による吸着機能が十分に発揮されるものと考えられる。比表面積は、大きいほど上記の観点から好ましいが、球状活性炭の所期の吸着機能が十分に得られる範囲にあればよく、例えば4000m/g以下であってよい。 The specific surface area of the spherical activated carbon according to the present embodiment, from the viewpoint of exerting the adsorption function of the spherical activated carbon, is preferably 100 m 2 / g or more, more preferably 300 meters 2 / g or more, more preferably 400 meters 2 / g or more. If the specific surface area is 100 m 2 / g or more, it is considered that the adsorption function by the spherical activated carbon is sufficiently exhibited. The specific surface area is preferably as large as possible from the above viewpoint, but may be in a range in which the intended adsorption function of the spherical activated carbon is sufficiently obtained, and may be, for example, 4000 m 2 / g or less.
 本実施形態に係る球状活性炭は、他の物質が添着されていてもよい。他の物質としては、例えば、酸、アルカリ、および金属等の、活性炭に添着することの可能な公知の物質が挙げられる。酸としては、具体的には、例えば、リン酸、硫酸等の不揮発性の酸、クエン酸、リンゴ酸等の有機酸等を挙げることができる。また、アルカリとしては、具体的には、例えば、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム等を挙げることができる。また、金属としては、具体的には、例えば、白金、銀、鉄、コバルト等の遷移元素およびその化合物等を挙げることができる。 Other materials may be attached to the spherical activated carbon according to the present embodiment. Examples of other substances include known substances that can be attached to activated carbon, such as acids, alkalis, and metals. Specific examples of the acid include non-volatile acids such as phosphoric acid and sulfuric acid, and organic acids such as citric acid and malic acid. Specific examples of the alkali include potassium carbonate, sodium carbonate, potassium hydroxide, and sodium hydroxide. Specific examples of the metal include transition elements such as platinum, silver, iron, and cobalt, and compounds thereof.
 このように、本実施形態に係る球状活性炭は、当該球状活性炭1g当たりに含まれるダスト量が2000μg以下であることが好ましい。 Thus, the spherical activated carbon according to the present embodiment preferably has a dust amount of 2000 μg or less per 1 g of the spherical activated carbon.
 さらに、本実施形態に係る球状活性炭は、水中振とう摩耗率が5%以下あることが好ましい。 Furthermore, the spherical activated carbon according to the present embodiment preferably has an underwater shaking wear rate of 5% or less.
 さらに、本実施形態に係る球状活性炭は、アスペクト比が0.7以上であることが好ましい。 Furthermore, the spherical activated carbon according to the present embodiment preferably has an aspect ratio of 0.7 or more.
 さらに、本実施形態に係る球状活性炭は、アルカリ又は酸が添着されていることが好ましい。 Furthermore, it is preferable that the spherical activated carbon according to the present embodiment is impregnated with alkali or acid.
 本実施形態に係る球状活性炭によれば、圧力損失およびダスト量が抑制される。そのため、このような球状活性炭を多用途に用いることができる。また、従来の活性炭と比較して、本実施形態に係る球状活性炭は、耐割れ性も良好である。 According to the spherical activated carbon according to the present embodiment, pressure loss and dust amount are suppressed. Therefore, such spherical activated carbon can be used for many purposes. Moreover, compared with the conventional activated carbon, the spherical activated carbon which concerns on this embodiment has favorable crack resistance.
 本実施形態に係る球状活性炭の製造方法は、上述した特徴を有する球状活性炭が得られるものであれば特に限定されるものではない。以下では、本実施形態に係る球状活性炭の製造方法(以下、単に「本製造方法」ともいう)の一実施形態について説明する。 The method for producing the spherical activated carbon according to the present embodiment is not particularly limited as long as the spherical activated carbon having the above-described characteristics can be obtained. Below, one Embodiment of the manufacturing method (henceforth only this "manufacturing method") of the spherical activated carbon concerning this embodiment is described.
 〔球状活性炭の製造方法〕
 (原料)
 本製造方法では、球状活性炭の原料として、重質炭化水素油を使用する。重質炭化水素油としては、例えば、石油タール、石炭タールまたはエチレンボトム油等からなる群から選択される1種または2種以上を挙げることができる。
[Production method of spherical activated carbon]
(material)
In this production method, heavy hydrocarbon oil is used as a raw material for the spherical activated carbon. Examples of the heavy hydrocarbon oil include one or more selected from the group consisting of petroleum tar, coal tar, ethylene bottom oil, and the like.
 このうちエチレンボトム油であれば、エチレン製造時に生成するボトム油の軽質分を減圧蒸留して得ることができる。 Among these, ethylene bottom oil can be obtained by distillation under reduced pressure of the light bottom oil produced during ethylene production.
 また、フラン樹脂またはフェノール樹脂を含む、化石燃料由来もしくは植物由来の樹脂を球状活性炭の原料としてもよい。 Also, a fossil fuel-derived or plant-derived resin containing a furan resin or a phenol resin may be used as a raw material for the spherical activated carbon.
 本製造方法は、詳細には、(1)架橋重質化ピッチの製造、(2)架橋重質化ピッチへの添加剤の添加、(3)架橋重質化ピッチの成形、(4)添加剤の抽出、(5)不融化および(6)焼成・賦活の6つの工程を含むものである。以下、各工程について順に説明する。 In detail, this production method includes (1) production of crosslinked heavy pitch, (2) addition of additives to crosslinked heavy pitch, (3) molding of crosslinked heavy pitch, (4) addition. It includes six steps: extraction of the agent, (5) infusibilization, and (6) firing and activation. Hereinafter, each process is demonstrated in order.
 (1)架橋重質化ピッチの製造
 本製造方法では、初めに架橋重質化ピッチを製造する。この架橋重質化ピッチの製造工程は、後述するように、芳香族化合物からなる粘度調整用添加物との適度な非相溶性を確保し、さらには添加剤の抽出工程において、球状ピッチの多孔化に必要な工程である。
(1) Production of crosslinked heavy pitch In this production method, a crosslinked heavy pitch is first produced. As will be described later, the cross-linked heavy pitch manufacturing process ensures moderate incompatibility with the viscosity-adjusting additive made of an aromatic compound. This is a necessary process.
 架橋重質化ピッチは、例えば、常温で液状の重質化炭化水素油を架橋処理および熱処理をすればよい。これにより、常温で固体の架橋重質化ピッチを得ることができる。架橋重質化ピッチの具体的な製造方法は、例えば特許第4349627号公報に記載されている。 For the cross-linked heavy pitch, for example, a heavy hydrocarbon oil that is liquid at room temperature may be subjected to a cross-linking treatment and a heat treatment. Thereby, a solid cross-linked heavy pitch can be obtained at room temperature. A specific method for producing a crosslinked heavy pitch is described in, for example, Japanese Patent No. 4349627.
 (2)架橋重質化ピッチへの添加剤の添加
 次に、得られた架橋重質化ピッチに添加剤を加えることで、架橋重質化ピッチの粘度を調整し、架橋重質化ピッチを球状化に適した粘度にする。
(2) Addition of additive to crosslinked heavy pitch Next, the viscosity of the crosslinked heavy pitch is adjusted by adding an additive to the obtained crosslinked heavy pitch, Viscosity suitable for spheroidization.
 添加剤としては、例えば後述するナフタレン等の粘度調整用添加剤等を挙げることができる。 Examples of additives include viscosity adjusting additives such as naphthalene, which will be described later.
 架橋重質化ピッチに対し添加剤を加えて加熱混合した後、架橋重質化ピッチを成形することで球状ピッチが得られる。 A spherical pitch can be obtained by adding an additive to the crosslinked heavy pitch and heating and mixing, and then molding the crosslinked heavy pitch.
 本製造方法において、重質炭化水素油由来の架橋重質化ピッチに加える添加剤は、沸点200℃以上、好ましくは205℃以上、より好ましくは210℃以上であり、2または3環の芳香族化合物又はその混合物であることが好ましい。 In this production method, the additive to be added to the heavy heavy hydrocarbon oil-derived crosslinked heavy pitch is a boiling point of 200 ° C. or higher, preferably 205 ° C. or higher, more preferably 210 ° C. or higher. A compound or a mixture thereof is preferred.
 このような好ましい添加剤の具体例としては、例えば、ナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、ビフェニル等からなる群から選択される1種または2種以上を挙げることができる。このうち、添加剤はナフタレンであることが好ましい。 Specific examples of such preferable additives include one or more selected from the group consisting of naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, biphenyl and the like. . Of these, the additive is preferably naphthalene.
 架橋重質化ピッチに対する添加剤の添加量は、架橋重質化ピッチと添加剤との混合物の全量を100質量%とする場合、その下限値は、好ましくは26質量%以上、より好ましくは27質量%以上、さらに好ましくは28質量%である。添加剤の添加量が下限値以下の場合、得られる多孔性球状ピッチに対して十分な孔を形成することができないことがある。また、その上限値は、好ましくは50質量%以下であり、より好ましくは45質量%以下であり、さらに好ましくは40質量%以下である。添加剤の添加量が上限値以上の場合、架橋重質化ピッチと添加剤との混合物中の架橋重質化ピッチ量が相対的に少なくなるために、製造効率が低下することがある。また、後述する工程において必要以上の抽出孔が形成されるため、得られる球状活性炭の強度が不十分になることがある。添加剤の量をこの範囲とすることで、後述する工程において、球状ピッチから添加剤を効率良く抽出し、得られる多孔性球状ピッチに対して十分な孔を形成することができる。なお、多孔性ピッチの孔が十分であれば、後述する不融化工程において、多孔性球状ピッチ成の内部まで酸化反応による架橋反応が進行し、多孔性球状ピッチの球状を保ちながら炭素化を行うことができる。なお、例えばナフタレン添加量を25質量%とすると、多孔性ピッチの孔が不十分となり溶融することがある。 When the total amount of the mixture of the cross-linked heavy pitch and the additive is 100% by mass, the lower limit of the amount of the additive to the cross-linked heavy pitch is preferably 26% by mass or more, more preferably 27%. It is at least 28% by mass, more preferably 28% by mass. When the additive amount is less than or equal to the lower limit value, sufficient pores may not be formed for the resulting porous spherical pitch. Moreover, the upper limit is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 40% by mass or less. When the addition amount of the additive is not less than the upper limit value, the production amount may be lowered because the amount of the crosslinked heavy pitch in the mixture of the heavy crosslinked pitch and the additive is relatively small. Moreover, since the extraction hole more than necessary is formed in the process mentioned later, the intensity | strength of the spherical activated carbon obtained may become inadequate. By setting the amount of the additive within this range, it is possible to efficiently extract the additive from the spherical pitch and form sufficient pores with respect to the obtained porous spherical pitch in the process described later. If the pores of the porous pitch are sufficient, in the infusibilization step described later, the crosslinking reaction by the oxidation reaction proceeds to the inside of the porous spherical pitch, and carbonization is performed while maintaining the spherical shape of the porous spherical pitch. be able to. For example, if the amount of naphthalene added is 25% by mass, the pores of the porous pitch may become insufficient and melt.
 なお、上記添加剤によって形成される孔は、細孔径が50nm以上、10000nm以下の範囲における球状活性炭の細孔容積の一部に含まれる。 In addition, the pore formed by the said additive is contained in a part of pore volume of the spherical activated carbon in the range whose pore diameter is 50 nm or more and 10,000 nm or less.
 (3)架橋重質化ピッチの成形
 次に、添加剤を加えた架橋重質化ピッチを成形する。その際、予め架橋重質化ピッチと添加剤との混合物を均一にしておくことが好ましい。架橋重質化ピッチと添加剤との混合物は、加熱することで溶融混合物とすることが好ましい。
(3) Molding of crosslinked heavy pitch Next, a crosslinked heavy pitch with an additive is molded. At that time, it is preferable to make the mixture of the crosslinked heavy pitch and the additive uniform in advance. The mixture of the crosslinked heavy pitch and the additive is preferably heated to form a molten mixture.
 架橋重質化ピッチの成形は、溶融混合物の状態で行ってもよく、あるいは、溶融混合物を冷却後粉砕し、熱水中で撹拌する等によって行ってもよい。なお、後の添加剤の抽出工程を容易にするためには、粒子径6.0mm以下の球状ピッチとなるように架橋重質化ピッチを成形することが好ましい。 The formation of the crosslinked heavy pitch may be performed in a molten mixture state, or may be performed by pulverizing the molten mixture after cooling and stirring in hot water. In order to facilitate the subsequent extraction step of the additive, it is preferable to form the crosslinked heavy pitch so as to obtain a spherical pitch having a particle diameter of 6.0 mm or less.
 球状ピッチは、例えば懸濁剤を含む水を分散媒とし、常圧又は加圧下で、架橋重質化ピッチと添加剤の均一混合物を溶融分散することで得ることができる。 The spherical pitch can be obtained, for example, by using a water containing a suspending agent as a dispersion medium and melt-dispersing a uniform mixture of the crosslinked heavy pitch and the additive under normal pressure or pressure.
 その他、球状ピッチを得るための方法として、例えば特公昭59-10930号公報に開示の方法を参考としてもよい。具体的には、架橋重質化ピッチと粘度調整用添加剤との混合物を溶融状態で押出して棒状としたもの、またはそれを延伸したものを冷却固化し、得られる棒状ピッチを破砕して、長さ/直径の比が5以下の棒状ピッチとした後、棒状ピッチの軟化点以上の温度で、懸濁剤含有熱水中に撹拌混合させて球状に成形してもよい。 In addition, as a method for obtaining a spherical pitch, for example, the method disclosed in Japanese Patent Publication No. 59-10930 may be referred to. Specifically, a mixture of a crosslinked heavy pitch and a viscosity adjusting additive is extruded in a molten state into a rod shape, or a stretched one is cooled and solidified, and the resulting rod-like pitch is crushed, After making the length / diameter ratio a rod-like pitch of 5 or less, it may be formed into a spherical shape by stirring and mixing in a suspending agent-containing hot water at a temperature equal to or higher than the softening point of the rod-like pitch.
 本実施形態では、上述した棒状ピッチのサイズが球状活性炭の平均粒子径を決定づける。したがって、球状活性炭の平均粒子径を1.5mm以上、4.0mm以下とするためには、棒状ピッチの長手方向のサイズは、1.5~10mm程度とすることが好ましい。また、棒状ピッチを押し出す際の口金の口径は、1.5mm~10mm程度とすることが好ましい。 In the present embodiment, the size of the rod-like pitch described above determines the average particle diameter of the spherical activated carbon. Therefore, in order to make the average particle diameter of the spherical activated carbon 1.5 mm or more and 4.0 mm or less, it is preferable that the longitudinal size of the rod-like pitch is about 1.5 to 10 mm. Further, the diameter of the die when extruding the rod-like pitch is preferably about 1.5 mm to 10 mm.
 上記のようにして得られた棒状ピッチを、架橋重質化ピッチと添加剤との混合物の軟化点以上に加熱した熱水中に入れることで、棒状ピッチは軟化変形し、球状ピッチとなる。 The rod-like pitch is softened and deformed into a spherical pitch by placing the rod-like pitch obtained as described above in hot water heated to a temperature higher than the softening point of the mixture of the crosslinked heavy pitch and the additive.
 また、架橋重質化ピッチと添加剤との溶融混合物を冷却後粉砕し、熱水中で撹拌する際の熱水の温度(以下、この温度を「球状化温度」という)は、架橋重質化ピッチと添加剤との溶融混合物の粘度に応じて適宜設定すればよい。 The temperature of the hot water when the molten mixture of the crosslinked heavy pitch and the additive is cooled and pulverized and stirred in hot water (hereinafter, this temperature is referred to as “spheroidizing temperature”) What is necessary is just to set suitably according to the viscosity of the molten mixture of crystallization pitch and an additive.
 本実施形態において、球状化温度の下限値は、好ましくは95℃以上、より好ましくは97℃以上、さらに好ましくは98℃以上である。また、その上限値は、好ましくは120℃以下、より好ましくは115℃以下、さらに好ましくは110℃以下である。球状化温度をこの範囲に設定することで、球状ピッチを効率よく得ることができる。なお、球状化温度が低いと、架橋重質化ピッチと添加物との混合物が変形しないため、棒状ピッチを効率良く球状化することができない虞がある。一方、球状化温度が高すぎると、架橋重質化ピッチと添加物との溶融混合物が俵状になったり、またはこの溶融混合物がちぎれたりするため、最終的に得られる球状活性炭の粒子径が小さくなる虞がある。 In the present embodiment, the lower limit value of the spheroidizing temperature is preferably 95 ° C. or higher, more preferably 97 ° C. or higher, and further preferably 98 ° C. or higher. The upper limit is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and still more preferably 110 ° C. or lower. By setting the spheroidizing temperature within this range, a spherical pitch can be obtained efficiently. If the spheroidizing temperature is low, the mixture of the cross-linked heavy pitch and the additive does not deform, so that the rod-shaped pitch may not be spheroidized efficiently. On the other hand, if the spheroidizing temperature is too high, the melted mixture of the crosslinked heavy pitch and the additive becomes a cocoon-like shape, or the melted mixture is torn off. There is a risk of becoming smaller.
 なお、熱水中で棒状ピッチを球状化する際には、撹拌等をすることが好ましい。その際、撹拌力が弱いと、球状ピッチが沈降するとともに、球状ピッチ同士が融着してしまう虞がある。一方で、撹拌力が高すぎると、せん断力により球状ピッチの引きちぎれが発生してしまう虞がある。このようなことから、熱水中で球状ピッチが浮遊・流動するような最適な撹拌機構および撹拌回転数を適宜選択することが好ましい。なお、球状ピッチを流動させる手段としては、撹拌に限定されず、その他の適切な方法を用いてもよい。 In addition, when spheroidizing a rod-shaped pitch in hot water, it is preferable to stir. At this time, if the stirring force is weak, the spherical pitch may settle and the spherical pitch may be fused. On the other hand, if the stirring force is too high, there is a possibility that the spherical pitch may be broken due to the shearing force. For this reason, it is preferable to appropriately select an optimal stirring mechanism and stirring rotation speed that allow the spherical pitch to float and flow in hot water. The means for causing the spherical pitch to flow is not limited to stirring, and other appropriate methods may be used.
 さらに、本実施形態では、上記架橋重質化ピッチと上記添加剤との混合物を懸濁剤の存在下で熱水中に溶融懸濁分散させることがより好ましい。すなわち、棒状ピッチを球状化する際には、熱水中に懸濁剤を添加することがより好ましい。懸濁剤を含有する熱水は、球状ピッチの分散性を向上させるとともに、球状ピッチ同士が互いに融着することを防止する役割がある。このようなことから、本実施形態では、架橋重質化ピッチと添加剤との混合物を熱水中に溶融懸濁分散させて、球状ピッチを得ることが好ましい。 Furthermore, in this embodiment, it is more preferable to melt and disperse the mixture of the crosslinked heavy pitch and the additive in hot water in the presence of a suspending agent. That is, when spheroidizing the rod-shaped pitch, it is more preferable to add a suspending agent in hot water. The hot water containing the suspending agent has a role of improving the dispersibility of the spherical pitch and preventing the spherical pitches from being fused to each other. For this reason, in the present embodiment, it is preferable to obtain a spherical pitch by melting and dispersing the mixture of the crosslinked heavy pitch and the additive in hot water.
 本実施形態において、懸濁剤としては、例えばポリビニルアルコール(以下、「PVA」ともいう)、キサンタンガム、部分ケン化ポリ酢酸ビニル、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸及びその塩類、ポリエチレングリコール及びそのエーテル誘導体、エステル誘導体澱粉、ゼラチン等の水溶性高分子化合物等を挙げることができる。 In this embodiment, examples of the suspending agent include polyvinyl alcohol (hereinafter also referred to as “PVA”), xanthan gum, partially saponified polyvinyl acetate, methyl cellulose, carboxymethyl cellulose, polyacrylic acid and salts thereof, polyethylene glycol and ether thereof. Examples thereof include water-soluble polymer compounds such as derivatives, ester derivative starches, and gelatin.
 その際、懸濁剤の濃度は、適宜設定すればよい。なお、懸濁剤の濃度が高いほど、球状ピッチの沈降速度が低下する、これによれば、より小さい撹拌力で球状ピッチを分散させることができるとともに、せん断力による球状ピッチの引きちぎれ等を抑制することができる。 At that time, the concentration of the suspending agent may be appropriately set. Note that the higher the concentration of the suspending agent, the lower the sedimentation rate of the spherical pitch. According to this, the spherical pitch can be dispersed with a smaller stirring force and the tearing of the spherical pitch due to the shearing force is suppressed. can do.
 本実施形態では、懸濁剤としてPVAを用いた場合、上述した熱水に対するPVAの含有量の下限値は、0.1質量%以上、好ましくは0.15質量%以上、より好ましくは0.23質量%以上、さらに好ましくは0.3質量%以上である。また、その上限値は、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。 In this embodiment, when PVA is used as the suspending agent, the lower limit value of the content of PVA with respect to the hot water described above is 0.1% by mass or more, preferably 0.15% by mass or more, more preferably 0.8%. It is 23 mass% or more, More preferably, it is 0.3 mass% or more. Moreover, the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
 熱水の温度の下限値は、好ましくは95℃以上、より好ましくは97℃以上、さらに好ましくは98℃以上である。また、その上限値は、好ましくは120℃以下、より好ましくは115℃以下、さらに好ましくは110℃以下である。 The lower limit of the hot water temperature is preferably 95 ° C. or higher, more preferably 97 ° C. or higher, and still more preferably 98 ° C. or higher. The upper limit is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and still more preferably 110 ° C. or lower.
 さらに、本実施形態では、懸濁剤とともに増粘剤を併用してもよく、あるいは増粘剤のみを単独で使用してもよい。 Furthermore, in this embodiment, a thickener may be used in combination with the suspending agent, or only the thickener may be used alone.
 球状化する際に、棒状ピッチと懸濁剤を含有する熱水との量比については、液比が高いことが好ましい。これにより、棒状ピッチ同士の衝突等による小粒子径化や異形化の影響が低減される。 When spheroidizing, the liquid ratio is preferably high with respect to the quantitative ratio between the rod-like pitch and the hot water containing the suspending agent. Thereby, the influence of the small particle diameter by the collision of rod-shaped pitch etc. or an irregular shape is reduced.
 (4)添加剤の抽出
 次に、得られる球状ピッチ中に含まれる添加剤を除去し、後の不融化工程において、球状ピッチの内部まで酸化性ガスが拡散するための孔を形成する。
(4) Extraction of additive Next, the additive contained in the obtained spherical pitch is removed, and in the subsequent infusibilization step, a hole for diffusing the oxidizing gas to the inside of the spherical pitch is formed.
 本実施形態において、架橋重質化ピッチは添加剤との非相溶性を有することから、球状ピッチの内部は、架橋重質化ピッチと添加剤との海島構造をしていると推測される。このようなことから、本製造方法では、溶剤を用いて球状ピッチ中に含まれる添加剤部分を除去することによって、後の不融化工程において球状ピッチに対して酸素ガスの通り道となる孔を形成することが好ましい。 In this embodiment, since the crosslinked heavy pitch has incompatibility with the additive, the inside of the spherical pitch is presumed to have a sea-island structure of the crosslinked heavy pitch and the additive. For this reason, in this manufacturing method, by removing the additive portion contained in the spherical pitch using a solvent, a hole serving as a passage for oxygen gas is formed with respect to the spherical pitch in the subsequent infusibilization step. It is preferable to do.
 溶剤と球状ピッチのスラリーとの質量比は、好ましくは7以上であり、より好ましくは9以上であり、さらに好ましくは13である。溶剤と球状ピッチのスラリーとの質量比が7未満であると、粒子内部の添加剤が十分に抽出できないことがあり、後の不融化工程において球状ピッチに対して酸素ガスの通り道となる孔を形成することができないことがある。 The mass ratio of the solvent to the spherical pitch slurry is preferably 7 or more, more preferably 9 or more, and even more preferably 13. When the mass ratio of the solvent to the spherical pitch slurry is less than 7, the additives inside the particles may not be sufficiently extracted, and in the subsequent infusibilization step, holes that serve as oxygen gas passages for the spherical pitch are formed. Sometimes it cannot be formed.
 球状ピッチから添加剤を抽出し除去するための溶剤としては、脂肪族化合物が挙げられる。この脂肪族化合物には、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、ナフサ、ケロシン等の脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、ブタノール等の脂肪族アルコール類等が挙げられ、中でもn-ヘキサンが好適に用いられる。 Examples of the solvent for extracting and removing the additive from the spherical pitch include aliphatic compounds. Examples of the aliphatic compound include aliphatic hydrocarbons such as butane, pentane, hexane, and heptane, mixtures of mainly aliphatic hydrocarbons such as naphtha and kerosene, and aliphatic alcohols such as methanol, ethanol, propanol, and butanol. Among them, n-hexane is preferably used.
 その際、n-ヘキサンと球状ピッチのスラリーとの質量比は、好ましくは7以上であり、より好ましくは9以上であり、さらに好ましくは13以上である。n-ヘキサンと球状ピッチのスラリーとの質量比が7未満であると、粒子内部の添加剤が十分に抽出できないことがあり、後の不融化工程において球状ピッチに対して酸素ガスの通り道となる孔を形成することができないことがある。 At that time, the mass ratio of n-hexane and the spherical pitch slurry is preferably 7 or more, more preferably 9 or more, and further preferably 13 or more. If the mass ratio of n-hexane and the slurry of the spherical pitch is less than 7, the additive inside the particles may not be sufficiently extracted, and in the subsequent infusibilization step, oxygen gas becomes a passage for the spherical pitch. The hole may not be formed.
 本実施形態では、不融化時の酸素を内部まで拡散させるための孔を十分に形成させることが好ましい。そのためには、球状ピッチからの添加剤の抽出を十分に行うことが好ましい。 In this embodiment, it is preferable to sufficiently form holes for diffusing oxygen at the time of infusibilization to the inside. For that purpose, it is preferable to sufficiently extract the additive from the spherical pitch.
 このように溶剤を用いれば、球状ピッチの形状を維持したまま、添加剤のみを効率よく除去することができる。 If the solvent is used in this way, only the additive can be efficiently removed while maintaining the spherical pitch shape.
 本製造方法において球状ピッチから添加剤を除去すると、球状ピッチには添加剤が抽出されたことによる抜け穴が形成され、これにより均一な多孔性を有する多孔性球状ピッチが得られる。 When the additive is removed from the spherical pitch in this production method, a loophole is formed in the spherical pitch due to the extraction of the additive, thereby obtaining a porous spherical pitch having uniform porosity.
 本実施形態では、多孔性球状ピッチの軟化点は、架橋重質化ピッチの軟化点に大きく影響される。なお、軟化点が低すぎると後述する不融化のための熱処理時に、多孔性球状ピッチが軟化あるいは溶融する虞があり好ましくない。 In this embodiment, the softening point of the porous spherical pitch is greatly influenced by the softening point of the crosslinked heavy pitch. If the softening point is too low, the porous spherical pitch may be softened or melted during heat treatment for infusibility described later, which is not preferable.
 本実施形態において、多孔性球状ピッチの軟化点は高いほど好ましい。多孔性球状ピッチの軟化点を高くするには、架橋ピッチの重質化を進行させることが好ましい。この軟化点が高すぎると、架橋ピッチ中に異方性成分が生成し、架橋重質化ピッチの球状化、添加物の抽出、および後述する均一な賦活処理等が難しくなる虞がある。 In this embodiment, the higher the softening point of the porous spherical pitch, the better. In order to increase the softening point of the porous spherical pitch, it is preferable to increase the weight of the crosslinked pitch. If the softening point is too high, an anisotropic component is generated in the cross-linked pitch, and it may be difficult to spheroidize the heavy cross-linked pitch, extract additives, and perform a uniform activation process described later.
 このようなことから、本実施形態において、多孔性球状ピッチの軟化点は、好ましくは150℃以上、350℃以下であり、より好ましくは200℃以上、300℃であり、さらに好ましくは220℃以上、280℃以下である。 Therefore, in this embodiment, the softening point of the porous spherical pitch is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C., and further preferably 220 ° C. or higher. It is 280 degrees C or less.
 ところで、多孔性球状ピッチのトルエン不溶分はピッチからの炭化収率と良い相関関係があり、トルエン不溶分が高いほど炭素化収率が高くなる傾向がある。したがって、トルエン不溶分は、好ましくは40%以上であり、より好ましくは50%以上である。上記トルエン不溶分は、公知の方法によって測定することが可能であり、例えば、特許文献1の段落0030に記載の方法によって測定することが可能である。 Incidentally, the toluene insoluble content of the porous spherical pitch has a good correlation with the carbonization yield from the pitch, and the higher the toluene insoluble content, the higher the carbonization yield tends to be. Therefore, the toluene insoluble content is preferably 40% or more, more preferably 50% or more. The toluene-insoluble matter can be measured by a known method, for example, by the method described in paragraph 0030 of Patent Document 1.
 (5)不融化
 続いて、多孔性球状ピッチから、熱に対して不融性の多孔性球状不融化ピッチを形成する。本製造方法では、そのために、球状ピッチから添加剤を抽出することによって形成された孔を利用して、多孔性球状ピッチの内部まで均一に酸化性ガスを拡散させ、架橋処理を施す。これにより、多孔性球状不融化ピッチを形成することができる。より具体的には、例えば、流動層中で多孔性球状ピッチに対してガスを流し、100℃以上、350℃以下、好ましくは120℃以上、320℃以下、より好ましくは130℃以上、300℃以下で加熱すればよい。
(5) Infusibility Subsequently, a porous spherical infusible pitch that is infusible to heat is formed from the porous spherical pitch. In this production method, for this purpose, an oxidizing gas is uniformly diffused to the inside of the porous spherical pitch using the pores formed by extracting the additive from the spherical pitch, and a crosslinking treatment is performed. Thereby, a porous spherical infusible pitch can be formed. More specifically, for example, a gas is flowed to the porous spherical pitch in the fluidized bed, and is 100 ° C. or higher and 350 ° C. or lower, preferably 120 ° C. or higher and 320 ° C. or lower, more preferably 130 ° C. or higher and 300 ° C. What is necessary is just to heat below.
 酸化性ガスとしては、O、O、SO、NO、空気等の酸化性ガス、あるいはこれら酸化性ガスを窒素、炭酸ガス、水蒸気等の不活性気体で希釈した混合ガスを用いることができる。 As the oxidizing gas, an oxidizing gas such as O 2 , O 3 , SO 3 , NO 2 , or air, or a mixed gas obtained by diluting these oxidizing gases with an inert gas such as nitrogen, carbon dioxide, or water vapor is used. Can do.
 また、架橋処理の程度は、例えば元素分析により求めた酸化処理後の多孔性ピッチの元素分析による酸素含有量によって判断することができる。その際、酸素含有量は5質量%以上であればよく、好ましくは8質量%以上、25質量%以下、より好ましくは10質量%以上、23質量%以下、さらに好ましくは11質量%以上、21質量%以下となるように酸化処理を行うことが好ましい。 Further, the degree of the crosslinking treatment can be judged by, for example, the oxygen content by elemental analysis of the porous pitch after the oxidation treatment obtained by elemental analysis. In that case, the oxygen content should just be 5 mass% or more, Preferably it is 8 mass% or more and 25 mass% or less, More preferably, it is 10 mass% or more, 23 mass% or less, More preferably, it is 11 mass% or more, 21 It is preferable to carry out the oxidation treatment so as to be not more than mass%.
 (6)焼成・賦活
 最後に、多孔性球状不融化ピッチを焼成して炭素とし、この炭素に細孔を形成させる。なお、不融化工程で形成された球状活性炭の孔は、不融化時に酸素を拡散させるためのものである。この焼成・賦活工程を経た後で、最終的な吸着能をつかさどる細孔が球状活性炭に形成される。例えば、多孔性球状不融化ピッチを非酸化性雰囲気ガス中、600℃以上、好ましくは650℃以上、より好ましくは700℃以上で熱処理することによって、球状炭素成形体を得ることができる。
(6) Firing / Activation Finally, the porous spherical infusibilized pitch is fired into carbon, and pores are formed in this carbon. In addition, the hole of the spherical activated carbon formed in the infusibilization process is for diffusing oxygen at the time of infusibilization. After this calcination / activation step, pores that control the final adsorption ability are formed in the spherical activated carbon. For example, a spherical carbon molded body can be obtained by heat-treating the porous spherical infusibilized pitch in a non-oxidizing atmosphere gas at 600 ° C. or higher, preferably 650 ° C. or higher, more preferably 700 ° C. or higher.
 次いで、常法により、球状炭素成形体を焼成し、賦活化する。その際、二酸化炭素及び水蒸気等の穏和な酸化性ガスを主成分とする賦活性ガス雰囲気中、球状炭素成形体に対して、賦活処理する。これにより、本実施形態に係る球状活性炭を得ることができる。 Next, the spherical carbon molded body is fired and activated by a conventional method. At that time, the activation treatment is performed on the spherical carbon molded body in an activation gas atmosphere mainly composed of a mild oxidizing gas such as carbon dioxide and water vapor. Thereby, the spherical activated carbon which concerns on this embodiment can be obtained.
 本実施形態では、球状炭素成形体に対して、好ましくは600℃以上、より好ましくは650℃以上、さらに好ましくは700℃以上で賦活性ガスを作用させる。これにより、球状炭素成形体の炭素化および賦活を同時に進行させることもができるため、工程経済の観点から好ましい。 In the present embodiment, the activated gas is allowed to act on the spherical carbon molded body at 600 ° C. or higher, more preferably 650 ° C. or higher, and still more preferably 700 ° C. or higher. Thereby, since carbonization and activation of a spherical carbon molded object can also be advanced simultaneously, it is preferable from a viewpoint of process economy.
 本実施形態では、上述のようにして得られた球状活性炭に対して、さらに酸、アルカリ、又は金属等の他の物質を添着してもよい。球状活性炭に対する他の物質の添着は、公知の方法を用いればよい。例えば球状活性炭に金属を添着または担持させれば、この球状活性炭を触媒等として用いることができる。 In the present embodiment, other substances such as acid, alkali, or metal may be further added to the spherical activated carbon obtained as described above. A known method may be used to attach other substances to the spherical activated carbon. For example, if a metal is attached or supported on spherical activated carbon, this spherical activated carbon can be used as a catalyst or the like.
 次に、実施例を示しながら本発明についてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 [平均粒子径]
 活性炭の平均粒子径はJIS K 1474に準じて評価した。具体的には、JIS K 1474に準じて粒度累計線図を作成し、横軸の50%の点の垂直線と粒度累計線図との交点から、縦軸に水平線を引いて交点の示すふるいの目開き(mm)を求めて、この目開きの値を平均粒子径とした。
[Average particle size]
The average particle diameter of the activated carbon was evaluated according to JIS K 1474. Specifically, a cumulative grain size diagram is created in accordance with JIS K 1474, and a vertical line is drawn from the intersection of the vertical line of the 50% point on the horizontal axis and the cumulative grain size diagram to indicate the intersection. The aperture (mm) was determined, and the value of the aperture was taken as the average particle size.
 [細孔径および細孔容積]
 活性炭の細孔径および細孔容積について、水銀圧入法による細孔容積水銀ポロシメーター(MICROMERITICS社製「AUTOPORE 9200」)を用いて活性炭の細孔径および細孔容積を測定した。具体的には、活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気した。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を活性炭の細孔へ圧入した。そして、このときの圧力と水銀の圧入量との関係から、以下の各計算式を用いて活性炭の細孔容積分布を計算した。
[Pore diameter and pore volume]
About the pore diameter and pore volume of activated carbon, the pore diameter and pore volume of activated carbon were measured using the pore volume mercury porosimeter by the mercury intrusion method ("AUTOPORE 9200" by MICROMERITICS). Specifically, activated carbon was put into a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes. Next, mercury was introduced into the sample container and gradually pressurized to pressurize mercury into the pores of the activated carbon. And the pore volume distribution of the activated carbon was calculated from the relationship between the pressure at this time and the intrusion amount of mercury using the following calculation formulas.
 細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力のつり合いから、
   -πDγcosθ=π(D/2)・P ・・・(式2)
の関係式が成り立つ。従って、
   D=(-4γcosθ)/P ・・・(式3)
となる。
For the calculation of the pore diameter, when mercury is pressed into a cylindrical pore having a diameter (D) at a pressure (P), the surface tension of the mercury is “γ”, and the contact angle between the mercury and the pore wall is “θ”. ”From the balance of surface tension and pressure acting on the pore cross section,
−πDγcos θ = π (D / 2) 2 · P (Formula 2)
The following relational expression holds. Therefore,
D = (− 4γcos θ) / P (Formula 3)
It becomes.
 本明細書においては、水銀の表面張力を484dyne/cm、水銀と炭素との接触角を130度、圧力PをMPa、そして細孔直径Dをμmで表示し、下記式
   D=1.24/P ・・・(式4)
により圧力Pと細孔直径Dの関係を求めた。
In this specification, the surface tension of mercury is 484 dyne / cm, the contact angle between mercury and carbon is 130 degrees, the pressure P is MPa, and the pore diameter D is μm, and the following formula D = 1.24 / P (Formula 4)
Thus, the relationship between the pressure P and the pore diameter D was determined.
 なお、本実施例における細孔直径50~10000nmの範囲の細孔容積とは、対応する水銀圧入圧の範囲に圧入された水銀の体積に相当する。 Note that the pore volume in the range of the pore diameter of 50 to 10000 nm in this example corresponds to the volume of mercury that is injected into the corresponding mercury injection pressure range.
 [ダスト量の評価]
 活性炭のダスト量を以下の手順で評価した。
1)あらかじめメンブレンフィルター(ADVANTEC製直径47mm、目開き1μm)を110℃で1時間乾燥後、デシケーター中で放冷し、その後、精密科学天秤で0.1mgまで秤量した。
2)乾燥試料を100mlの三角フラスコに5gとり、精密科学天秤で0.1mgまで秤量した。
3)三角フラスコに純水を100ml加え、超音波洗浄機(日本エマソン製ブランソニック卓上型超音波洗浄器1510J-MT)に3分間かけた。
4)超音波後の懸濁液を目開き106μmのふるいでろ過し、ろ液をミリポアフィルター吸引装置にセットしたメンブレンフィルターでろ過した。上記3)の工程の三角フラスコ壁面は純水で流し、これもメンブレンフィルターでろ過した。
5)上記4)の工程でふるい上に残った試料を三角フラスコに戻し、純水100mlを加えた後、上記3)と上記4)の操作を計3回繰り返した。
6)ろ過後のメンブレンフィルターを110℃で1時間乾燥後、デシケーターの中で30分間放冷し、その後、精密科学天秤で0.1mgまで秤量した。
7)カーボンダスト量は次の式により算出した。
[Evaluation of dust amount]
The dust amount of the activated carbon was evaluated by the following procedure.
1) A membrane filter (ADVANTEC diameter 47 mm, opening 1 μm) was dried at 110 ° C. for 1 hour, allowed to cool in a desiccator, and then weighed to 0.1 mg with a precision scientific balance.
2) 5 g of the dried sample was taken in a 100 ml Erlenmeyer flask and weighed to 0.1 mg with a precision scientific balance.
3) 100 ml of pure water was added to the Erlenmeyer flask, and it was put on an ultrasonic cleaner (Bransonic desktop ultrasonic cleaner 1510J-MT manufactured by Emerson Japan) for 3 minutes.
4) The suspension after sonication was filtered through a sieve having an aperture of 106 μm, and the filtrate was filtered through a membrane filter set in a Millipore filter suction device. The wall of the Erlenmeyer flask in the step 3) was flushed with pure water, and this was also filtered with a membrane filter.
5) The sample remaining on the sieve in the step 4) was returned to the Erlenmeyer flask, 100 ml of pure water was added, and then the operations 3) and 4) were repeated 3 times.
6) The membrane filter after filtration was dried at 110 ° C. for 1 hour, allowed to cool in a desiccator for 30 minutes, and then weighed to 0.1 mg with a precision scientific balance.
7) The amount of carbon dust was calculated by the following formula.
 カーボンダスト量=(B-A)/S ・・・(式5)
     A:ろ過前のメンブレンフィルターの質量(g)
     B:ろ過後のメンブレンフィルターの質量(g)
     S:試料の質量(g)
 [水中振とう摩耗率]
 活性炭の水中振とう摩耗率を以下の方法で評価した。
1)あらかじめ110℃で1時間乾燥したメンブレンフィルター(目開き0.3μm)を、デシケーター中で放冷後、精密科学天秤で0.1mgまで秤量した。
2)乾燥試料約10gを0.1mgの桁まで計りとり、200ml分液ロートに移し入れ、純水を50ml加えた後、振とう機(いわき産業製KM-SHAKER モデルV-S 振幅40mm、振とう数250往復/分)で120分間振とうした。
3)懸濁液を目開き150μmのふるいでろ過し、メンブレンフィルターを用いてろ液を吸引ろ過した。上記2)の工程における分液ロート壁面は純水で流し、これもメンブレンフィルターでろ過した。
4)メンブレンフィルターを110℃30分乾燥後、デシケーターで30分間放冷し、メンブレンフィルターの質量を0.1mgまで正しく計った。
5)次式により、水中振とう摩耗率を計算した。
Carbon dust amount = (BA) / S (Formula 5)
A: Mass of membrane filter before filtration (g)
B: Mass of membrane filter after filtration (g)
S: Mass of sample (g)
[Underwater shaking wear rate]
The underwater shaking wear rate of the activated carbon was evaluated by the following method.
1) A membrane filter (aperture 0.3 μm) previously dried at 110 ° C. for 1 hour was allowed to cool in a desiccator, and then weighed to 0.1 mg with a precision scientific balance.
2) Weigh about 10 g of dry sample to the order of 0.1 mg, transfer to a 200 ml separatory funnel, add 50 ml of pure water, and shaker (KM-SHAKER model VS made by Iwaki Sangyo, amplitude 40 mm, shake) It was shaken for 120 minutes at a speed of 250 reciprocations / minute).
3) The suspension was filtered through a sieve having an opening of 150 μm, and the filtrate was suction filtered using a membrane filter. The separation funnel wall in the process 2) was flushed with pure water, and this was also filtered with a membrane filter.
4) After drying the membrane filter at 110 ° C. for 30 minutes, it was allowed to cool for 30 minutes with a desiccator, and the weight of the membrane filter was accurately measured to 0.1 mg.
5) Underwater shaking wear rate was calculated by the following formula.
   水中振とう摩耗率(%)=(b-a)/s×100 ・・・(式6)
   a:ろ過前のメンブレンフィルターの質量(g)
   b:ろ過後のメンブレンフィルターの質量(g)
   s:試料の質量(g)
 [比表面積]
 比表面積連続流通式のガス吸着法による比表面積測定器(MICROMERITICS社製「FLOWSORB III」)を用いて、試料(炭素質材料)のガス吸着量を測定し、BETの式により比表面積を計算した。
Underwater shaking wear rate (%) = (ba) / s × 100 (Formula 6)
a: Mass of membrane filter before filtration (g)
b: Mass of membrane filter after filtration (g)
s: Mass of sample (g)
[Specific surface area]
Using a specific surface area measuring device (“FLOWSORB III” manufactured by MICROMERTIICS) with a specific surface area continuous flow type gas adsorption method, the gas adsorption amount of the sample (carbonaceous material) was measured, and the specific surface area was calculated by the BET equation. .
 具体的には、試料を試料管に充填し、その試料管に窒素30vol%を含有するヘリウムガスを流しながら以下の操作を行い、試料への窒素吸着量を求めた。すなわち、試料管を-196℃に冷却し、試料に窒素を吸着させた。次に、試料管を室温に戻した。このとき多孔性球状炭素質物質試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量(v)とした。それから、BETの式から誘導された近似式:
  V=1/(v・(1-x)) ・・・(式7)
を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりVmを求め、次式:
  比表面積=4.35×V(m/g) ・・・(式8)
により試料の比表面積を計算した。なお、前記の各計算式で、vは実測される吸着量(cm/g)であり、xは相対圧力である。
Specifically, the sample was filled into a sample tube, and the following operation was performed while flowing a helium gas containing 30 vol% nitrogen into the sample tube, and the amount of nitrogen adsorbed on the sample was determined. That is, the sample tube was cooled to −196 ° C., and nitrogen was adsorbed on the sample. The sample tube was then returned to room temperature. At this time, the amount of nitrogen desorbed from the porous spherical carbonaceous material sample was measured with a thermal conductivity detector, and was defined as the amount of adsorbed gas (v). Then an approximation derived from the BET equation:
V m = 1 / (v · (1-x)) (Expression 7)
Vm is obtained by the one-point method (relative pressure x = 0.3) by nitrogen adsorption at the liquid nitrogen temperature using the following formula:
Specific surface area = 4.35 × V m (m 2 / g) (Formula 8)
Was used to calculate the specific surface area of the sample. In the above calculation formulas, v is an actually measured adsorption amount (cm 3 / g), and x is a relative pressure.
 [充填密度]
 JIS K1474-1991法に準じ、充填密度を測定した。
[Packing density]
The packing density was measured according to JIS K1474-1991 method.
 [アスペクト比]
 デジタルマイクロスコープ(KEYENCE社製「VHX-700F」)を用いて、試料のアスペクト比を計算した。
[aspect ratio]
The aspect ratio of the sample was calculated using a digital microscope (“VHX-700F” manufactured by KEYENCE).
 具体的には、平均的な抽出となるように試料粒子30粒をシャーレに広げ、1粒子の長軸と短軸の長さをデジタルマイクロスコープで測定した。そして、最大1となるように、長軸と短軸の長さ比からアスペクト比を算出した。以下の実施例等では、30粒子のアスペクト比の平均値をアスペクト比とした。 Specifically, 30 sample particles were spread in a petri dish so that average extraction was performed, and the lengths of the long axis and short axis of one particle were measured with a digital microscope. Then, the aspect ratio was calculated from the length ratio of the major axis to the minor axis so as to be 1 at the maximum. In the following examples and the like, the average value of the aspect ratios of 30 particles was defined as the aspect ratio.
 [圧潰強力]
 圧潰強力は、以下の方法によって求められた。すなわち、球状活性炭の試料粒子32粒を無造作に抜出し、簡易粒体硬度計(筒井理化学器械株式会社製)を用い、試料粒子が潰れた瞬間の硬度を測定した。硬度の測定値からその最大値および最小値を除き、30粒の試料粒子の硬度の測定値の平均値を算出してその試料粒子の圧潰強力、とした。
[Crushing strength]
The crushing strength was determined by the following method. That is, 32 sample particles of spherical activated carbon were randomly extracted, and the hardness at the moment when the sample particles were crushed was measured using a simple particle hardness meter (manufactured by Tsutsui Riken Kikai Co., Ltd.). The maximum value and the minimum value were excluded from the measured hardness value, and the average value of the measured hardness values of the 30 sample particles was calculated as the crushing strength of the sample particles.
 [実施例1]
 内容積25リットルのステンレス製耐圧容器に比重(15℃における試料の質量と4℃における等体積の純水の質量との比)1.08のエチレンの製造時に生成するボトム油(エチレンボトム油)10.0kgを仕込んだ。反応容器の下部より3.7L/minで空気を吹き込み0.4MPaの加圧下、230から250℃で、エアーブローイング反応を4時間20分行った。こうして、9.5kgのエアーブローイングタールを得た。得られたエアーブローイングタール3.0kgを385℃で熱重質化したのち、さらに軽質分を減圧留去することにより、エアーブローイングピッチ1.4kgを得た。得られたピッチは、軟化点が203℃、トルエン不溶分が58%であった。
[Example 1]
Bottom oil (ethylene bottom oil) produced in the production of ethylene with a specific gravity (ratio of the mass of the sample at 15 ° C and the mass of equal volume of pure water at 4 ° C) of 1.08 in a stainless steel pressure vessel with an internal volume of 25 liters 10.0 kg was charged. Air was blown from the lower part of the reaction vessel at 3.7 L / min, and an air blowing reaction was performed at 230 to 250 ° C. under a pressure of 0.4 MPa for 4 hours and 20 minutes. Thus, 9.5 kg of air blowing tar was obtained. The resulting air blowing tar (3.0 kg) was heat-heavy at 385 ° C., and the light components were further distilled off under reduced pressure to obtain 1.4 kg of air blowing pitch. The pitch obtained had a softening point of 203 ° C. and a toluene insoluble content of 58%.
 上記エアーブローイングピッチ0.72kgと、ナフタレン0.28kgを、攪拌翼のついた内容積1.5Lの耐圧容器に仕込み、200℃で溶融混合を行った後、140~160℃に冷却して押し出し、直径2mmの棒状成形体を得た。次いで、この棒状成形体を長さが約2.0mmから2.8mmになるように破砕した。懸濁剤としての1.2重量%のポリビニルアルコール(ケン化度=88%)を溶解して100℃に加熱した水溶液1L中に、前記の破砕物約450mlを投入した。破砕物を攪拌分散により球状化した後、冷却し、前記のポリビニルアルコール水溶液を水で置換することにより球状ピッチ成形体スラリーを得た。大部分の水をろ過により除去した後、球状ピッチスラリーの7倍重量のn-ヘキサンで球状ピッチスラリー中のナフタレンを抽出除去し、多孔性球状ピッチを得た。このようにして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、室温から150℃まで1時間で昇温したのち、150℃から20℃/hの昇温速度で260℃まで昇温した後、260℃にて1時間保持して酸化した。こうして、熱に対して不融性の多孔性球状不融化ピッチを得た。続いて、多孔性球状不融化ピッチを、流動床を用い、50vol%の水蒸気を含む窒素ガス雰囲気中850℃で充填密度0.79g/mlになるまで賦活処理して、球状活性炭を得た。得られた球状活性炭の、平均粒子径、細孔径分布、ダスト量、水中振とう摩耗率、比表面積、アスペクト比および圧潰強力について評価した。 The above air blowing pitch 0.72 kg and naphthalene 0.28 kg are charged into a 1.5 L internal pressure vessel equipped with a stirring blade, melt mixed at 200 ° C, then cooled to 140-160 ° C and extruded. A rod-shaped molded body having a diameter of 2 mm was obtained. Next, this rod-shaped compact was crushed so that the length was about 2.0 mm to 2.8 mm. About 450 ml of the crushed material was put into 1 L of an aqueous solution in which 1.2% by weight of polyvinyl alcohol (saponification degree = 88%) as a suspending agent was dissolved and heated to 100 ° C. The crushed material was spheroidized by stirring and dispersing, then cooled, and the aqueous polyvinyl alcohol solution was replaced with water to obtain a spherical pitch formed body slurry. Most of the water was removed by filtration, and then naphthalene in the spherical pitch slurry was extracted and removed with n-hexane 7 times the weight of the spherical pitch slurry to obtain a porous spherical pitch. The porous spherical pitch obtained in this way was heated from room temperature to 150 ° C. over 1 hour using heated bed through heated air, and then heated to 260 ° C. at a temperature rising rate of 150 ° C. to 20 ° C./h. Then, the temperature was maintained at 260 ° C. for 1 hour for oxidation. Thus, a porous spherical infusibilized pitch that was infusible to heat was obtained. Subsequently, the porous spherical infusibilized pitch was activated using a fluidized bed in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until a packing density of 0.79 g / ml was obtained to obtain spherical activated carbon. The obtained spherical activated carbon was evaluated for average particle size, pore size distribution, dust amount, underwater shaking wear rate, specific surface area, aspect ratio and crushing strength.
 [実施例2~8]
 表1および2に示すように、エアーブローイングピッチとナフタレンとを溶融混合する際のピッチ量ナフタレン量、球状化時の棒状成型体仕込み量、球状化温度、ポリビニルアルコール濃度、ナフタレンを抽出する際のn-ヘキサン量および賦活後の充填密度をそれぞれ変更した以外は、実施例1と同じ操作によって実施例2~8の活性炭を得た。
[Examples 2 to 8]
As shown in Tables 1 and 2, the pitch amount when the air blowing pitch and naphthalene are melt-mixed, the amount of naphthalene, the amount of the rod-shaped molded body charged when spheroidizing, the spheroidizing temperature, the polyvinyl alcohol concentration, and when extracting naphthalene Activated carbons of Examples 2 to 8 were obtained by the same operation as Example 1 except that the amount of n-hexane and the packing density after activation were changed.
 [実施例9]
 表1に示すように、エアーブローイングピッチとナフタレンとを溶融混合する際のピッチ量、ナフタレン量、棒状成形体サイズ、球状化時の棒状成型体仕込み量、球状化温度、ポリビニルアルコール濃度、ナフタレンを抽出する際のn-ヘキサン量を調整した以外は、実施例1と同じ操作で、多孔性球状ピッチを得た。
[Example 9]
As shown in Table 1, the pitch amount when melt-blending air blowing pitch and naphthalene, the amount of naphthalene, the size of the rod-shaped molded body, the amount of rod-shaped molded body charged when spheroidizing, the spheroidizing temperature, the polyvinyl alcohol concentration, and naphthalene A porous spherical pitch was obtained by the same operation as in Example 1 except that the amount of n-hexane at the time of extraction was adjusted.
 得られた多孔性球状ピッチを、静置層で、加熱空気を通じながら、室温から150℃まで1時間で昇温したのち、150℃から20℃/hの昇温速度で260℃まで昇温した後、260℃にて1時間保持して酸化した。こうして、熱に対して不融性の多孔性球状不融化ピッチを得た。続いて、多孔性球状不融化ピッチを、静置層で、50vol%の水蒸気を含む窒素ガス雰囲気中850℃で充填密度0.70g/mlになるまで賦活処理して、活性炭を得た。 The resulting porous spherical pitch was heated from room temperature to 150 ° C. over 1 hour while passing heated air in a stationary layer, and then heated from 150 ° C. to 260 ° C. at a temperature increase rate of 20 ° C./h. Thereafter, the mixture was oxidized at 260 ° C. for 1 hour. Thus, a porous spherical infusibilized pitch that was infusible to heat was obtained. Subsequently, the porous spherical infusibilized pitch was subjected to an activation treatment in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until the packing density became 0.70 g / ml, to obtain activated carbon.
 [実施例10]
 表1に示すように、エアーブローイングピッチとナフタレンとを溶融混合する際のピッチ量、ナフタレン量、棒状成形体サイズ、球状化時の棒状成型体仕込み量、球状化温度、ポリビニルアルコール濃度、ナフタレンを抽出する際のn-ヘキサン量を調整した以外は、実施例1と同じ操作で、多孔性球状ピッチを得た。
[Example 10]
As shown in Table 1, the pitch amount when melt-blending air blowing pitch and naphthalene, the amount of naphthalene, the size of the rod-shaped molded body, the amount of rod-shaped molded body charged when spheroidizing, the spheroidizing temperature, the polyvinyl alcohol concentration, and naphthalene A porous spherical pitch was obtained by the same operation as in Example 1 except that the amount of n-hexane at the time of extraction was adjusted.
 得られた多孔性球状ピッチを、静置層で、加熱空気を通じながら、室温から150℃まで1時間で昇温したのち、150℃から20℃/hの昇温速度で300℃まで昇温した後、300℃にて1時間保持して酸化した。こうして、熱に対して不融性の多孔性球状不融化ピッチを得た。続いて、多孔性球状不融化ピッチを、静置層で、50vol%の水蒸気を含む窒素ガス雰囲気中850℃で充填密度0.68g/mlになるまで賦活処理して、活性炭を得た。 The obtained porous spherical pitch was heated from room temperature to 150 ° C. for 1 hour while passing heated air in a stationary layer, and then heated from 150 ° C. to 300 ° C. at a temperature increase rate of 20 ° C./h. Thereafter, it was oxidized at 300 ° C. for 1 hour. Thus, a porous spherical infusibilized pitch that was infusible to heat was obtained. Subsequently, the porous spherical infusibilized pitch was activated with a stationary layer in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until the packing density became 0.68 g / ml to obtain activated carbon.
 [実施例11]
 懸濁剤としてキサンタンガムを使用し、表1に示すように、エアーブローイングピッチとナフタレンとを溶融混合する際のピッチ量、ナフタレン量、棒状成形体サイズ、球状化時の棒状成型体仕込み量、球状化温度、キサンタンガム濃度、ナフタレンを抽出する際のn-ヘキサン量を調整した以外は、実施例1と同じ操作で、多孔性球状ピッチを得た。
[Example 11]
Using xanthan gum as a suspending agent, as shown in Table 1, the pitch amount when melt-blending air blowing pitch and naphthalene, the amount of naphthalene, the size of the rod-shaped molded body, the amount of rod-shaped molded body charged when spheroidized, spherical A porous spherical pitch was obtained in the same manner as in Example 1, except that the crystallization temperature, the xanthan gum concentration, and the amount of n-hexane at the time of extracting naphthalene were adjusted.
 得られた多孔性球状ピッチを、静置層で、加熱空気を通じながら、室温から150℃まで1時間で昇温したのち、150℃から20℃/hの昇温速度で300℃まで昇温した後、300℃にて1時間保持して酸化した。こうして、熱に対して不融性の多孔性球状不融化ピッチを得た。続いて、多孔性球状不融化ピッチを、静置層で、50vol%の水蒸気を含む窒素ガス雰囲気中850℃で充填密度0.70g/mlになるまで賦活処理して、活性炭を得た。 The obtained porous spherical pitch was heated from room temperature to 150 ° C. for 1 hour while passing heated air in a stationary layer, and then heated from 150 ° C. to 300 ° C. at a temperature increase rate of 20 ° C./h. Thereafter, it was oxidized at 300 ° C. for 1 hour. Thus, a porous spherical infusibilized pitch that was infusible to heat was obtained. Subsequently, the porous spherical infusibilized pitch was subjected to an activation treatment in a nitrogen gas atmosphere containing 50 vol% of water vapor at 850 ° C. until the packing density became 0.70 g / ml, to obtain activated carbon.
 [比較例1]
 ピッチ0.75kg、ナフタレン量を0.25kgとした以外は、実施例1と同じ操作で活性炭を作成したところ、焼成・賦活の工程で多孔性球状不融化ピッチ成形体が溶融し、その形状(球状)を維持できなかった。
[Comparative Example 1]
Except that the pitch was 0.75 kg and the amount of naphthalene was 0.25 kg, activated carbon was prepared by the same operation as in Example 1. As a result, the porous spherical infusibilized pitch molded body was melted in the firing and activation process, and its shape ( (Spherical) could not be maintained.
 [比較例2]
 表1に示すように、エアーブローイングピッチとナフタレンの量、球状化温度、ポリビニルアルコール濃度およびヘキサン量を調整した以外は、実施例1と同様の操作で活性炭を作成したところ、焼成・賦活の工程で多孔性球状不溶性ピッチ成形体が溶融し、その形状(球状)を維持できなかった。
[Comparative Example 2]
As shown in Table 1, except that the amount of air blowing pitch and naphthalene, the spheroidizing temperature, the polyvinyl alcohol concentration and the amount of hexane were adjusted, activated carbon was prepared in the same manner as in Example 1, and the firing and activation steps were performed. As a result, the porous spherical insoluble pitch formed body melted, and its shape (spherical shape) could not be maintained.
 [比較例3]
 表1に示すように、エアーブローイングピッチとナフタレンの量、球状化温度およびポリビニルアルコール濃度を調整した以外は、実施例1と同様の操作で活性炭を作成した。その結果、架橋重質化ピッチの成形工程で得られたピッチ成形体の形状は全てが小判状であった。
[Comparative Example 3]
As shown in Table 1, activated carbon was prepared in the same manner as in Example 1 except that the air blowing pitch and the amount of naphthalene, the spheroidizing temperature, and the polyvinyl alcohol concentration were adjusted. As a result, the shape of the pitch formed body obtained in the step of forming the crosslinked heavy pitch was all oval.
 [比較例4]
 直径1.0mmの棒状成形体を長さが約1.0mmから1.5mmになるように破砕するとともに、表1に示すように、エアーブローイングピッチとナフタレンの量、球状化温度、ポリビニルアルコール濃度およびヘキサン量を調整した以外は、実施例1と同じ操作によって活性炭を得た。
[Comparative Example 4]
The rod-shaped molded body having a diameter of 1.0 mm was crushed so that the length was about 1.0 mm to 1.5 mm, and as shown in Table 1, the amount of air blowing pitch and naphthalene, spheroidizing temperature, polyvinyl alcohol concentration Activated carbon was obtained by the same operation as in Example 1 except that the amount of hexane was adjusted.
 [比較例5]
 球状白鷺X7000H(大阪ガスケミカル株式会社)について実施例1と同じ評価を行った。
[Comparative Example 5]
The same evaluation as Example 1 was performed for spherical white rabbit X7000H (Osaka Gas Chemical Co., Ltd.).
 [比較例6]
 クラレコールSW(クラレケミカル株式会社)について実施例1と同じ評価を行った。
[Comparative Example 6]
The same evaluation as in Example 1 was performed for Kuraray Coal SW (Kuraray Chemical Co., Ltd.).
 上述した各実施例および比較例の結果を表1及び2にまとめる。 Tables 1 and 2 summarize the results of the above examples and comparative examples.
 表1中、「サイズ」は、棒状成形体のサイズを意味し、「仕込み量」は、棒状成形体の仕込み量を意味する。また、「懸濁剤」は、例えばPVAである。また、「Rhex」は、抽出時のヘキサン質量比を意味し、より具体的には球状ピッチスラリーに対するn-ヘキサンの質量比(n-ヘキサン量/球状ピッチスラリー量)を意味する。 In Table 1, “size” means the size of the rod-shaped formed body, and “charge amount” means the charged amount of the rod-shaped formed body. The “suspending agent” is, for example, PVA. “Rhex” means the hexane mass ratio at the time of extraction, and more specifically, the mass ratio of n-hexane to the spherical pitch slurry (n-hexane amount / spherical pitch slurry amount).
 表2中、「D1」は、溶融を意味し、「D2」は、全てが小判状であることを意味する。また、「Vp1」は、10~10000nmの範囲における細孔容積を意味し、「Vp2」は、50~10000nmの範囲における細孔容積を意味する。また、「Asw」は、水中振とう摩耗率を意味し、「Rasp」は、アスペクト比を意味し、「Sp」は、圧潰強力を意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
In Table 2, “D1” means melting, and “D2” means that all are oval. “Vp1” means the pore volume in the range of 10 to 10,000 nm, and “Vp2” means the pore volume in the range of 50 to 10000 nm. “Asw” means underwater shaking wear rate, “Rasp” means aspect ratio, and “Sp” means crushing strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は、例えば分離プロセス、精製、触媒、または溶剤回収等のための活性炭として好適に利用することができる。 The present invention can be suitably used as, for example, activated carbon for separation process, purification, catalyst, solvent recovery and the like.

Claims (11)

  1.  平均粒子径が1.5mm以上、4.0mm以下であり、一体成形された球状活性炭であって、
     細孔径が50nm以上、10000nm以下の範囲における細孔容積が0.01ml/g以上、0.24ml/g以下の範囲であることを特徴とする球状活性炭。
    The average particle diameter is 1.5 mm or more and 4.0 mm or less, and the spherical activated carbon is integrally molded,
    A spherical activated carbon characterized by having a pore volume within a range of 0.01 ml / g or more and 0.24 ml / g or less in a pore diameter range of 50 nm or more and 10,000 nm or less.
  2.  圧潰強力が1.20kg/個以上であることを特徴とする請求項1に記載の球状活性炭。 2. The spherical activated carbon according to claim 1, wherein the crushing strength is 1.20 kg / piece or more.
  3.  上記球状活性炭1g当たりに含まれるダスト量が2000μg以下であることを特徴とする請求項1または2に記載の球状活性炭。 The spherical activated carbon according to claim 1 or 2, wherein the amount of dust contained per 1 g of the spherical activated carbon is 2000 µg or less.
  4.  水中振とう摩耗率が5%以下であることを特徴とする請求項1~3のいずれか1項に記載の球状活性炭。 The spherical activated carbon according to any one of claims 1 to 3, wherein the wear rate of underwater shaking is 5% or less.
  5.  アスペクト比が0.7以上であることを特徴とする請求項1~4のいずれか1項に記載の球状活性炭。 The spherical activated carbon according to any one of claims 1 to 4, wherein the aspect ratio is 0.7 or more.
  6.  アルカリ又は酸が添着されていることを特徴とする請求項1~5のいずれか1項に記載の球状活性炭。 The spherical activated carbon according to any one of claims 1 to 5, wherein alkali or acid is impregnated.
  7.  請求項1~6のいずれか1項に記載の球状活性炭を製造する方法であって、
     重質炭化水素油由来の架橋重質化ピッチに対して、添加剤として沸点が200℃以上の2または3環の芳香族化合物を加える工程と、
     上記架橋重質化ピッチと上記添加剤との混合物を熱水中に溶融懸濁分散させて、これにより得られる球状ピッチから溶剤を用いて添加剤を抽出し、多孔性球状ピッチを得る工程と、
     上記多孔性球状ピッチを不融化および焼成・賦活する工程とを含み、
     上記重質炭化水素油は、石油タール、石炭タールおよびエチレンボトム油からなる群から選択される1種またはそれ以上であり、
     上記熱水の温度は、95℃以上、120℃以下であり、
     上記溶剤は、脂肪族化合物であり、
     上記球状ピッチに対する上記溶剤の質量比が7以上であることを特徴とする球状活性炭の製造方法。
    A method for producing the spherical activated carbon according to any one of claims 1 to 6,
    A step of adding a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C. or higher as an additive to the heavy cross-linked heavy pitch derived from heavy hydrocarbon oil;
    A step of obtaining a porous spherical pitch by melting and suspending a mixture of the crosslinked heavy pitch and the additive in hot water, extracting the additive from the resulting spherical pitch using a solvent, and ,
    Including infusibilizing and firing / activating the porous spherical pitch,
    The heavy hydrocarbon oil is one or more selected from the group consisting of petroleum tar, coal tar and ethylene bottom oil,
    The temperature of the hot water is 95 ° C or higher and 120 ° C or lower,
    The solvent is an aliphatic compound,
    A method for producing a spherical activated carbon, wherein a mass ratio of the solvent to the spherical pitch is 7 or more.
  8.  上記架橋重質化ピッチと上記添加剤との混合物の全量を100質量%とする場合、上記添加剤の添加量は、26質量%以上、50質量%以下であることを特徴とする、請求項7に記載の球状活性炭の製造方法。 When the total amount of the mixture of the crosslinked heavy pitch and the additive is 100% by mass, the additive is added in an amount of 26% by mass or more and 50% by mass or less. A method for producing the spherical activated carbon according to claim 7.
  9.  上記添加剤がナフタレンであることを特徴とする請求項7または8に記載の球状活性炭の製造方法。 The method for producing a spherical activated carbon according to claim 7 or 8, wherein the additive is naphthalene.
  10.  上記架橋重質化ピッチと上記添加剤との混合物を懸濁剤の存在下で熱水中に溶融懸濁分散させることを特徴とする、請求項7~9のいずれか1項に記載の球状活性炭の製造方法。 The spherical shape according to any one of claims 7 to 9, wherein a mixture of the cross-linked heavy pitch and the additive is melt-suspended and dispersed in hot water in the presence of a suspending agent. A method for producing activated carbon.
  11.  上記懸濁剤は、ポリビニルアルコールおよびキサンタンガムの一方または両方であることを特徴とする請求項10に記載の球状活性炭の製造方法。 The method for producing a spherical activated carbon according to claim 10, wherein the suspending agent is one or both of polyvinyl alcohol and xanthan gum.
PCT/JP2017/044861 2016-12-21 2017-12-14 Spherical activated carbon and method for producing same WO2018116947A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018557719A JP6803398B2 (en) 2016-12-21 2017-12-14 Spherical activated carbon and its manufacturing method
CN201780068885.0A CN109923066B (en) 2016-12-21 2017-12-14 Spherical activated carbon and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016248438 2016-12-21
JP2016-248438 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018116947A1 true WO2018116947A1 (en) 2018-06-28

Family

ID=62626415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044861 WO2018116947A1 (en) 2016-12-21 2017-12-14 Spherical activated carbon and method for producing same

Country Status (4)

Country Link
JP (1) JP6803398B2 (en)
CN (1) CN109923066B (en)
TW (1) TWI651266B (en)
WO (1) WO2018116947A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020189778A (en) * 2019-05-24 2020-11-26 Jfeケミカル株式会社 Method for producing non-graphitizable carbon material
JP2023013960A (en) * 2021-07-16 2023-01-26 ピュアスフィア カンパニー リミテッド Filter for water treatment containing spherical active carbon
KR20230069355A (en) * 2021-11-12 2023-05-19 한국화학연구원 Method of preparing ultra-high specific surface area spherical activated carbon and the activated carbon thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039417A (en) * 2019-12-26 2020-04-21 南京公诚节能新材料研究院有限公司 Bio-based artificial aquatic weed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565313A (en) * 1979-06-26 1981-01-20 Kureha Chem Ind Co Ltd Detoxificating spherical active carbon and preparing the same
JP2005119947A (en) * 2003-09-25 2005-05-12 Kureha Chem Ind Co Ltd Method for manufacturing spherical active carbon
WO2010008072A1 (en) * 2008-07-18 2010-01-21 株式会社クレハ Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
JP2010269994A (en) * 2010-04-01 2010-12-02 Kureha Corp Method and device for removing phosphorus impurity or boron impurity from liquid polychlorosilane and agent for removing phosphorus impurity or boron impurity from liquid polychlorosilane
WO2014129614A1 (en) * 2013-02-22 2014-08-28 株式会社クレハ Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518825B1 (en) * 2003-09-25 2015-02-18 Kureha Corporation Process for producing spherical activated carbon
US20080063592A1 (en) * 2004-05-20 2008-03-13 Kuraray Chemical Co., Ltd Spherical Active Carbon And Process For Producing The Same
JP2006213544A (en) * 2005-02-02 2006-08-17 Kuraray Chem Corp Granular active carbon and its manufacturing method
CN101347718A (en) * 2008-07-17 2009-01-21 华东理工大学 Novel globular active carbon and use in desulfuration field
WO2014129410A1 (en) * 2013-02-20 2014-08-28 日本エンバイロケミカルズ株式会社 Granular activated carbon having many mesopores, and manufacturing method for same
CN103787331A (en) * 2014-02-28 2014-05-14 东北林业大学 Preparation method of pitch-based spherical activated carbon with rich meso pores
CN104326470A (en) * 2014-11-04 2015-02-04 东北林业大学 Method for preparing high specific surface area micron-scale spherical activated carbon from carboxymethyl cellulose
CN104923162A (en) * 2015-07-13 2015-09-23 长沙深橙生物科技有限公司 Molded active carbon free from bonding
CN105948038B (en) * 2016-05-13 2017-09-29 中国人民解放军国防科学技术大学 A kind of activated carbon microballon and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565313A (en) * 1979-06-26 1981-01-20 Kureha Chem Ind Co Ltd Detoxificating spherical active carbon and preparing the same
JP2005119947A (en) * 2003-09-25 2005-05-12 Kureha Chem Ind Co Ltd Method for manufacturing spherical active carbon
WO2010008072A1 (en) * 2008-07-18 2010-01-21 株式会社クレハ Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
JP2010269994A (en) * 2010-04-01 2010-12-02 Kureha Corp Method and device for removing phosphorus impurity or boron impurity from liquid polychlorosilane and agent for removing phosphorus impurity or boron impurity from liquid polychlorosilane
WO2014129614A1 (en) * 2013-02-22 2014-08-28 株式会社クレハ Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020189778A (en) * 2019-05-24 2020-11-26 Jfeケミカル株式会社 Method for producing non-graphitizable carbon material
JP7191766B2 (en) 2019-05-24 2022-12-19 Jfeケミカル株式会社 Method for producing non-graphitizable carbon material
JP2023013960A (en) * 2021-07-16 2023-01-26 ピュアスフィア カンパニー リミテッド Filter for water treatment containing spherical active carbon
JP7357966B2 (en) 2021-07-16 2023-10-10 ピュアスフィア カンパニー リミテッド Water treatment filter containing spherical activated carbon
KR20230069355A (en) * 2021-11-12 2023-05-19 한국화학연구원 Method of preparing ultra-high specific surface area spherical activated carbon and the activated carbon thereby
KR102595632B1 (en) 2021-11-12 2023-10-27 한국화학연구원 Method of preparing ultra-high specific surface area spherical activated carbon and the activated carbon thereby

Also Published As

Publication number Publication date
TW201823158A (en) 2018-07-01
CN109923066B (en) 2022-06-28
JPWO2018116947A1 (en) 2019-10-24
JP6803398B2 (en) 2020-12-23
CN109923066A (en) 2019-06-21
TWI651266B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6803398B2 (en) Spherical activated carbon and its manufacturing method
JP4855251B2 (en) Spherical activated carbon and method for producing the same
WO2018014659A1 (en) Carbon-based porous material, preparation method therefor and use thereof
JPWO2009008516A1 (en) Granule of carbon nanotube and method for producing the same
US20050214539A1 (en) Porous carbon structures and methods
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
US7781370B2 (en) Process for producing spherical activated carbon
JP4349627B2 (en) Method for producing spherical activated carbon
Zhang et al. Low-temperature organic solvent-based synthesis of amorphous porous carbon nanoparticles with high specific surface area at ambient atmosphere
WO2016140358A1 (en) Catalyst composite body
Guy et al. Synthesis and characterization of Cu doped activated carbon beads from chitosan
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP2009057239A (en) Activated carbon preparation method
CN110536863A (en) Carbon dust and preparation method thereof
JP4300045B2 (en) Method for producing metal oxide microspheres
JP2799187B2 (en) Porous graphitic carbon granules and support materials for chromatography using the same
WO2014168170A1 (en) Method for manufacturing non-aqueous electrolyte secondary battery negative electrode material
JP6868861B2 (en) Three-dimensional porous body containing carbon nanotubes and its manufacturing method
JP3197020B2 (en) Method for producing molecular sieve carbon
WO2018186003A1 (en) Method for producing porous carbon particles, and porous carbon particles
JP2018177564A (en) Method for producing porous carbon particle
JPH0292816A (en) Activated carbon and production thereof
JP4383069B2 (en) Spherical activated carbon for direct perfusion of blood and method for producing the same
Solovei et al. Synthesis of spherically shaped granulated carbon sorbent
JP4199028B2 (en) Method for producing powdered carbide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884122

Country of ref document: EP

Kind code of ref document: A1