WO2018116860A1 - 電路異常検出装置、及びそれを備える開閉器 - Google Patents

電路異常検出装置、及びそれを備える開閉器 Download PDF

Info

Publication number
WO2018116860A1
WO2018116860A1 PCT/JP2017/044106 JP2017044106W WO2018116860A1 WO 2018116860 A1 WO2018116860 A1 WO 2018116860A1 JP 2017044106 W JP2017044106 W JP 2017044106W WO 2018116860 A1 WO2018116860 A1 WO 2018116860A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
switching element
power supply
abnormality detection
Prior art date
Application number
PCT/JP2017/044106
Other languages
English (en)
French (fr)
Inventor
翔 毛
宏一 山添
澤田 知行
省互 一村
航 原田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780078906.7A priority Critical patent/CN110088871B/zh
Publication of WO2018116860A1 publication Critical patent/WO2018116860A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
    • H02H3/253Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage for multiphase applications, e.g. phase interruption

Definitions

  • the present disclosure relates to an electric circuit abnormality detection device and a switch including the same. More specifically, the present disclosure relates to an electric circuit abnormality detection device that detects the presence or absence of an abnormality in an electric circuit to be detected, and a switch including the same.
  • an earth leakage breaker that forcibly opens a main contact when a leakage current flowing through a main circuit is detected or a phase failure of a neutral wire is detected (see, for example, Patent Document 1).
  • the earth leakage protection IC for detecting the earth leakage current
  • the phase failure protection IC for detecting the phase failure of the neutral wire
  • the earth leakage protection IC and the phase failure protection IC
  • a power supply circuit section for supplying an operating voltage.
  • the AC voltage is rectified by a diode bridge, and the pulsating voltage output from the diode bridge is stepped down by a series circuit of a plurality of resistors.
  • the power supply circuit unit obtains the operating voltages of the leakage protection IC and the phase loss protection IC by making the voltage stepped down by a series circuit of a plurality of resistors constant by a Zener diode and smoothing it by a smoothing capacitor. .
  • the pulsating voltage output from the diode bridge is stepped down by a series circuit of a plurality of resistors, so that the internal temperature of the earth leakage breaker can rise due to the heat generated by the resistors. There is sex.
  • An object of the present disclosure is to provide an electric circuit abnormality detection device capable of reducing heat generation in a power supply circuit unit, and a switch including the same.
  • the electric circuit abnormality detection device includes an abnormality detection unit that detects whether there is an abnormality in an electric circuit to be detected, and a power supply circuit unit that outputs a power supply voltage to the abnormality detection unit.
  • the power supply circuit unit includes an input terminal unit, a power storage unit, an output terminal unit, a switch unit, a voltage detection unit, and a control unit.
  • the electric circuit to be detected is electrically connected to the input terminal portion.
  • the power storage unit is charged by a DC voltage input to the input terminal unit.
  • the abnormality detection unit is electrically connected to the output terminal unit.
  • the output terminal unit is a terminal unit for outputting a voltage charged in the power storage unit to the abnormality detection unit as the power supply voltage.
  • the switch unit is configured to change a state of the power storage unit between a charge state in which a charge current flows from the electric circuit to be detected to the power storage unit via the input terminal unit and a charge stop state in which a charge current does not flow to the power storage unit. Switch to one.
  • the voltage detection unit detects the power supply voltage output from the power storage unit to the abnormality detection unit.
  • the control unit controls the switch unit according to a detection result of the voltage detection unit.
  • the switch includes the electric circuit abnormality detection device and a power switch that is electrically connected to the electric circuit to be detected.
  • the power switch is controlled by the electric circuit abnormality detection device based on a detection result of the abnormality detection unit.
  • FIG. 1 is a circuit diagram of a switch including an electrical path abnormality detection device according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram of a switch according to Modification 1 of the embodiment of the present disclosure.
  • FIG. 3 is a circuit diagram of a switch according to Modification 2 of the embodiment of the present disclosure.
  • the electric circuit abnormality detection device 10 is provided in a switch 1 with a leakage breaker function.
  • the switch 1 is housed in a distribution board installed in a building such as a house, and is used as a main switch.
  • the switch 1 is electrically connected to the four electric paths 2 in, for example, a three-phase four-wire distribution system that supplies three-phase AC power using the four electric paths 2.
  • the switch 1 has an earth leakage cutoff function and functions to cut off the power supply to the load when a ground fault occurs.
  • the switch 1 is electrically connected to four electric circuits 2 from an AC power source 3.
  • a conductive member 4 that is electrically connected to each of the four electric paths 2 is housed inside the switch 1.
  • the four electric circuits 2 include an R-phase electric circuit 2R, an S-phase electric circuit 2S, a T-phase electric circuit 2T, and an N-phase electric circuit 2N.
  • the four conductive members 4 include an R-phase conductive member 4R, an S-phase conductive member 4S, a T-phase conductive member 4T, and an N-phase conductive member 4N.
  • Switch 1 is an earth leakage circuit breaker having an earth leakage detection function.
  • the switch 1 includes an electrical path abnormality detection device 10 and four contacts 5b (power switches) that are electrically connected to the four conductive members 4, respectively.
  • the electric circuit abnormality detection device 10 detects the presence or absence of abnormality in the electric circuit 2 to be detected, and the contact 5b is controlled based on the abnormality detection result by the electric circuit abnormality detection device 10.
  • the electric circuit abnormality detection device 10 includes a power supply circuit unit 20 and an abnormality detection unit 60.
  • the abnormality detection unit 60 uses the four electric circuits 2 electrically connected to the AC power supply 3 as detection targets, and detects the presence / absence of an abnormality in the four electric circuits 2 that are detection targets.
  • the abnormality detection unit 60 of the present embodiment detects that there is an abnormality in the electric circuit 2 when detecting a leakage current in any of the four electric circuits 2.
  • the power supply circuit unit 20 obtains electric power from the electric circuit 2 to be detected and outputs the power supply voltage V1 to the abnormality detection unit 60.
  • the power supply circuit unit 20 includes an input terminal unit 21, an output terminal unit 22, a power storage unit 30, a switch unit 40, and a voltage detection unit 50.
  • the conductive member 4 that is electrically connected to the electric circuit 2 to be detected is electrically connected to the input terminal portion 21.
  • the input terminal unit 21 includes a pair of input terminals 21a and 21b.
  • the input terminal 21a is electrically connected to the DC output terminal on the positive side of the full-wave rectifiers 11 and 12 via the solenoid coil 5a.
  • the input terminal 21 b is electrically connected to the DC output terminal on the negative side of the full-wave rectifiers 11 and 12.
  • the T-phase conductive member 4T is electrically connected to one AC input terminal
  • the S-phase conductive member 4S is electrically connected to the other AC input terminal. Connected.
  • the R-phase conductive member 4R is electrically connected to one AC input terminal
  • the N-phase conductive member 4N is electrically connected to the other AC input terminal. It is connected. That is, the power supply circuit unit 20 generates a power supply voltage for the abnormality detection unit 60 or the like from either an AC voltage of about 220 V between the R phase and the T phase and an AC voltage of about 220 V between the S phase and the N phase.
  • the input terminals 21a and 21b may be components (terminals) for connecting electric wires or the like, but may be, for example, leads of electronic components or part of a conductor formed as wiring on a circuit board.
  • R-phase conductive member 4R the S-phase conductive member 4S, the T-phase conductive member 4T, and the N-phase conductive member 4N connected to the AC input terminals of the full-wave rectifiers 11 and 12.
  • a protective element or the like may be connected.
  • the power storage unit 30 is, for example, a capacitor and is charged by a DC voltage input from the electric circuit 2 via the input terminals 21a and 21b.
  • the abnormality detection unit 60 is electrically connected to the output terminal unit 22.
  • the output terminal unit 22 includes a pair of output terminals 22a and 22b.
  • the abnormality detection unit 60 is electrically connected between the output terminal 22a and the output terminal 22b.
  • the power storage unit 30 is electrically connected between the output terminal 22a and the output terminal 22b, and a voltage (charge voltage) charged in the power storage unit 30 is output to the abnormality detection unit 60 as the power supply voltage V1.
  • the A Zener diode 33 for overvoltage protection is electrically connected between the output terminal 22a and the output terminal 22b.
  • the switch unit 40 switches the state of the power storage unit 30 between a charging state in which a charging current flows from the electric circuit 2 to be detected to the power storage unit 30 and a charging stop state in which the charging current does not flow through the power storage unit 30.
  • the switch part 40 is controlled by the voltage detection part 50 to either a charge state or a charge stop state.
  • the voltage detection unit 50 that is a control unit controls the switch unit 40 to either the charging state or the charging stop state based on the power supply voltage V ⁇ b> 1 of the power storage unit 30. That is, the voltage detection unit 50 also functions as a control unit that controls the switch unit 40 according to the detection result of the voltage detection unit 50, but the voltage detection unit 50 and the control unit are configured by separate circuits. May be.
  • the switch unit 40 of this embodiment includes a first switching element 41 and a second switching element 42.
  • the first switching element 41 and the power storage unit 30 are electrically connected in series between the input terminal 21a and the input terminal 21b.
  • a resistor 31 as a first impedance element and a second switching element 42 are electrically connected in series between the input terminal 21a and the input terminal 21b.
  • each of the first switching element 41 and the second switching element 42 is an N-channel enhancement type MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the drain electrode of the first switching element 41 is electrically connected to the input terminal 21a.
  • the power storage unit 30 is electrically connected between the source electrode of the first switching element 41 and the input terminal 21b.
  • a resistor 31 is electrically connected between the input terminal 21 a and the drain electrode of the second switching element 42.
  • the source electrode of the second switching element 42 is electrically connected to the input terminal 21b.
  • the gate electrode of the first switching element 41 is electrically connected to the connection point between the resistor 31 and the second switching element 42.
  • the gate electrode of the second switching element 42 is electrically connected to the output terminal of the voltage detection unit 50.
  • a capacitor 32 for preventing noise is electrically connected between the input terminal 21a and the input terminal 21b.
  • the voltage detection unit 50 detects the voltage (that is, the power supply voltage of the abnormality detection unit 60) V1 charged in the power storage unit 30.
  • the switch unit 40 of this embodiment is controlled according to the detection result of the voltage detection unit 50. That is, the switch unit 40 changes the state of the power storage unit 30 between the charge state and the charge stop according to the level of the power supply voltage V1 detected by the voltage detection unit 50 and a predetermined reference voltage (charge start voltage and charge stop voltage). It is controlled to switch to any of the states.
  • the charge stop voltage is set to a voltage higher than the charge start voltage. Both the voltage value of the charge stop voltage and the charge start voltage are voltage values at which the abnormality detection unit 60 can operate. In this embodiment, the charge stop voltage is set to about 5.3 V, and the charge start voltage is about 4.6 V. Is set to
  • the voltage detection unit 50 applies a voltage higher than the threshold voltage to the gate electrode of the second switching element 42, turns on the second switching element 42, and turns on the first switching element 41.
  • the power storage unit 30 is set in a charge stop state by turning off.
  • the voltage detection unit 50 turns off the second switching element 42 and turns on the first switching element 41 to put the power storage unit 30 in a charged state.
  • the term “exceeds” includes the case where one of the two values exceeds the other.
  • “exceeding” here may be “more than”. That is, whether or not to include the case where the two values are equal can be arbitrarily changed depending on the setting of the reference voltage or the like, so there is no technical difference between “exceeding” and “exceeding”. Similarly, “less than” may be “less than”.
  • the voltage detection unit 50 also includes a power supply voltage V1 (charge start voltage) when the second switching element 42 is turned on from off and a power supply voltage V1 (charge stop when the second switching element 42 is turned off from on. Hysteresis is provided between the voltage and the voltage. That is, a predetermined voltage difference is provided between the reference voltage when the second switching element 42 is turned on from off and the reference voltage when the second switching element 42 is turned on from off. Is stable.
  • the charge stop voltage is set to a voltage higher than the charge start voltage, but the charge stop voltage and the charge start voltage may be set to the same voltage.
  • the voltage detection unit 50 is a hysteresis comparator circuit using an operational amplifier, for example, and the operational amplifier operates with the power supply voltage V1 of the power storage unit 30.
  • the voltage detection unit 50 starts operating. From the point in time when power is supplied to the switch 1, the voltage detection unit 50 starts operating. This time is shorter than that of a microcomputer that requires processing such as initialization.
  • the abnormality detection unit 60 includes a signal processing unit 61 configured by an integrated circuit, a current transformer 62 that is a zero-phase current transformer, a resistor 63, a diode circuit 64, and a low-pass filter 65.
  • the current transformer 62 includes a core 62a and an output winding 62b provided on the core 62a.
  • the core 62a is formed in an annular shape from a ferromagnetic material such as ferrite.
  • Conductive members 4R, 4S, 4T, and 4N electrically connected to the four electric paths 2R, 2S, 2T, and 2N are inserted into the core 62a. If any of the four electric paths 2 is grounded, an unbalance occurs between the currents flowing through the conductive members 4R, 4S, 4T, and 4N penetrating the core 62a, and a current flows through the output winding 62b.
  • the resistor 63 is electrically connected between both ends of the output winding 62b of the current transformer 62. Between both ends of the resistor 63, an output voltage V2 having a voltage value proportional to the magnitude of the current flowing through the output winding 62b is generated.
  • the diode circuit 64 includes two diodes connected in parallel with the resistor 63.
  • the two diodes included in the diode circuit 64 are connected in opposite directions.
  • the two diodes of the diode circuit 64 flow current only in one direction from the anode to the cathode only when the voltage is equal to or higher than a predetermined forward voltage (slice voltage, for example, 1 V). Therefore, when the output voltage V2 of the current transformer 62 is lower than the forward voltage of the diode, such as normal leakage, the diode circuit 64 does not pass current.
  • the low pass filter 65 is composed of a resistor and a capacitor.
  • the voltage across the resistor 63 (the output voltage of the current transformer 62) V2 is input to the signal processing unit 61 via the low-pass filter 65.
  • the low-pass filter 65 passes a signal component below a predetermined cutoff frequency and attenuates a signal component (noise component) having a frequency higher than the cutoff frequency. Therefore, the noise component input to the signal processing unit 61 by the low-pass filter 65. Is suppressed.
  • the signal processing unit 61 controls the thyristor 70 based on the output voltage V2 of the current transformer 62.
  • the solenoid coil 5a, the diode 71, and the thyristor 70 are electrically connected in series.
  • a snubber circuit 72 composed of a resistor and a capacitor is connected between both ends of the thyristor 70.
  • the signal processing unit 61 determines that the leakage current is not flowing and turns off the thyristor 70. If the thyristor 70 is off, the current flowing through the solenoid coil 5a is smaller than the current value required to turn the contact 5b from on to off, and the contact 5b is turned on. Therefore, AC power is supplied from the AC power supply 3 to the load side via the switch 1.
  • the signal processing unit 61 determines that a leakage current has flowed and turns on the thyristor 70.
  • the thyristor 70 is turned on and the current flowing through the solenoid coil 5a becomes larger than the current value required to turn the contact 5b from on to off, the iron core is driven by the electromagnetic force of the solenoid coil 5a, and the contact 5b is driven by the iron core.
  • the opening / closing mechanism is driven. As a result, the contact 5b is turned off, and the power supply from the AC power supply 3 to the load is interrupted.
  • the conductive member 13 is inserted into the core 62a of the current transformer 62 in order to generate a pseudo unbalanced state.
  • One end of the conductive member 13 is electrically connected to the N-phase conductive member 4N.
  • the other end of the conductive member 13 is electrically connected to the R-phase conductive member 4 ⁇ / b> R via an operation check switch 14 and a resistor 15.
  • the voltage of the input terminal 21a of the power supply circuit unit 20 increases due to the pulsating voltage generated between the DC output terminals of the full-wave rectifiers 11 and 12, and the voltage level of the gate electrode of the first switching element 41 exceeds the threshold voltage.
  • the first switching element 41 is turned on.
  • a charging current flows through the power storage unit 30 and the voltage across the power storage unit 30 (power supply voltage V1) increases.
  • the voltage across the power storage unit 30 (power supply voltage V1) is output to the voltage detection unit 50 and the abnormality detection unit 60.
  • the abnormality detection unit 60 starts operating.
  • the voltage detection unit 50 starts operation, and the voltage value of the power supply voltage V1 of the power storage unit 30 and a predetermined value The level is compared with the reference voltage (charge stop voltage and charge start voltage).
  • voltage detection unit 50 turns off second switching element 42 and turns on first switching element 41 to charge power storage unit 30 with the state of power storage unit 30.
  • the charging state is such that a current flows.
  • the voltage (power supply voltage V1) at both ends of the power storage unit 30 gradually increases.
  • the voltage detection unit 50 When the voltage value of the power supply voltage V1 exceeds the charge stop voltage, the voltage detection unit 50 outputs a control signal having a voltage value higher than the threshold voltage to the gate electrode of the second switching element 42, turn on.
  • the second switching element 42 When the second switching element 42 is turned on, the first switching element 41 is turned off, and a charging stop state in which a charging current does not flow to the power storage unit 30 is entered.
  • the power storage unit 30 is discharged and operating power is supplied to the abnormality detection unit 60 in a charging stop state in which the charging current does not flow to the power storage unit 30, the voltage (power supply voltage V1) across the power storage unit 30 gradually increases. descend.
  • the voltage detection unit 50 turns off the second switching element 42.
  • the first switching element 41 is turned on, and the state of the power storage unit 30 is in the charged state. In the charged state, a charging current flows through the power storage unit 30, and the power supply voltage V1 of the power storage unit 30 gradually increases.
  • the voltage (power supply voltage V1) charged in the power storage unit 30 is controlled between the charge start voltage and the charge stop voltage, and the abnormality detection unit 60 can operate.
  • a power supply voltage V1 is supplied to the abnormality detection unit 60.
  • the switch unit 40 is controlled to be in either the charged state or the charging stopped state based on the power supply voltage V1 of the power storage unit 30 detected by the voltage detecting unit 50, thereby detecting an abnormality.
  • the power supply voltage V1 at which the unit 60 can operate is supplied to the abnormality detection unit 60. Therefore, compared to a case where the power supply circuit unit is configured by a circuit that steps down the input voltage with a resistor, power loss is reduced and heat generation of the power supply circuit unit 20 can be suppressed.
  • the switch 1 is also required to be downsized. However, when the switch 1 is downsized, the cross-sectional area of the conductive member 4 becomes small, so that the internal temperature of the switch 1 can rise due to the temperature rise of the conductive member 4. There is sex. In the switch 1 provided with the power supply circuit unit 20 according to the present embodiment, since the heat generation of the power supply circuit unit 20 is suppressed, an increase in the internal temperature of the switch 1 is suppressed and the switch 1 is downsized. Can do.
  • the switch 1 has an overcurrent protection function
  • a bimetal is connected in the middle of the conductive member 4.
  • a bimetal curves by the Joule heat which generate
  • the switch 1 having an overcurrent protection function when the internal temperature of the switch 1 rises due to heat generated by the power supply circuit unit 20, the current value when the bimetal moves the switch mechanism to turn off the contact 5b may vary. is there.
  • the power supply circuit unit is a circuit that steps down the input voltage with a resistor
  • the current flowing through the resistor may be reduced, and a sufficient output may not be obtained.
  • a desired output can be obtained by charging the power storage unit 30 even when the input voltage is low.
  • the switching period of the first switching element 41 and the second switching element 42 is about several tens of Hz, and the switching frequency is lower than that of a general switching power supply circuit, so that loss due to switching can be reduced.
  • the abnormality detection unit 60 detects whether or not a leakage state in which a leakage current flows in the electric circuit 2 has occurred.
  • the output voltage V2 of the current transformer 62 is lower than the threshold voltage, so the signal processing unit 61 turns off the thyristor 70.
  • the contact 5b since the current value of the current flowing through the solenoid coil 5a is smaller than the current value required to turn the contact 5b from on to off, the contact 5b is turned on, and the switch 1 supplies the AC power to the load. The supply is not shut off.
  • the switch 1 of this embodiment turns off the contact 5b when the abnormality detection unit 60 detects that there is an abnormality, the power supply to the load can be cut off.
  • a resistor 34 as a second impedance element may be electrically connected between the first switching element 41 and the power storage unit 30. Since the resistor 34 is electrically connected between the first switching element 41 and the power storage unit 30, the charging current flowing through the power storage unit 30 is limited by the resistor 34. Therefore, when the first switching element 41 is switched from off to on, it is possible to suppress a sudden increase in the current flowing through the power storage unit 30.
  • the second impedance element is the resistor 34, but it may be a circuit component (eg, a thermistor) having a predetermined impedance.
  • the low-pass filter 51 is electrically connected between the output terminal of the voltage detector 50 and the control terminal (gate electrode) of the second switching element 42. Also good.
  • the low-pass filter 51 can reduce a noise component flowing out from the voltage detection unit 50 to the input terminal unit 21 via the second switching element 42.
  • the low-pass filter 51 shown in FIG. 2 is an RC filter circuit composed of a resistor and a capacitor. However, other circuit configurations may be used as long as a predetermined cut-off frequency can be obtained.
  • the switch unit 40 may be configured by one switching element 43 as shown in FIG.
  • the switching element 43 is an N-channel enhancement type MOSFET.
  • the drain electrode of the switching element 43 is electrically connected to the input terminal 21a.
  • the power storage unit 30 is electrically connected between the source electrode of the switching element 43 and the input terminal 21b.
  • a resistor 31 is electrically connected between the drain electrode and the gate electrode of the switching element 43.
  • the gate electrode of the switching element 43 is electrically connected to the output terminal of the voltage detection unit 50.
  • the output of the voltage detection unit 50 is, for example, an open collector output. If the voltage value of the power supply voltage V1 is equal to or lower than the charge stop voltage, the output terminal of the voltage detection unit 50 is in an open state.
  • the output terminal of the voltage detection unit 50 is in an open state. Therefore, if the voltage value of the gate electrode of the switching element 43 becomes a voltage value higher than the threshold voltage. The switching element 43 is turned on. Thereby, the switch unit 40 is controlled so as to put the power storage unit 30 in a charged state, that is, the control unit (voltage detection unit 50) controls the switch unit 40 so as to put the power storage unit 30 in a charged state.
  • the power supply voltage V1 of the unit 30 gradually increases.
  • the voltage (power supply voltage V1) charged in the power storage unit 30 is controlled between the charge start voltage and the charge stop voltage, and the abnormality detection unit 60 can operate.
  • a power supply voltage V1 is supplied to the abnormality detection unit 60.
  • each of the first switching element 41 and the second switching element 42 is a MOSFET, but may be a semiconductor switching element such as a bipolar transistor.
  • the first impedance element connected in series with the second switching element 42 is the resistor 31, but may be a circuit component (for example, a thermistor) having a predetermined impedance.
  • the abnormality detection unit 60 detects a state in which a leakage current flows in the electric circuit 2, but the detection target of the abnormality detection unit 60 is not limited to the electric leakage in the electric circuit 2.
  • the abnormality detection unit 60 may detect an overvoltage generated due to a phase failure of the neutral wire as an abnormality in the electric circuit 2. If the neutral wire is missing, excessive voltage between R phase and N phase, between S phase and N phase, or between T phase and N phase due to imbalance of the load connected to R phase, S phase, and T phase. May occur.
  • the abnormality detection unit 60 monitors the voltage between the R phase and the N phase, between the S phase and the N phase, and between the T phase and the N phase, and turns on the thyristor 70 when the voltage of each phase exceeds a predetermined upper limit value. Turn off 5b. Thereby, the abnormality detection unit 60 can detect an overvoltage state in which the voltage of the electric circuit 2 to be detected exceeds a predetermined upper limit value as an abnormality of the electric circuit 2.
  • the abnormality detection unit 60 may detect a low voltage state in which the voltage of the electric circuit 2 to be detected is lower than a predetermined lower limit value as an abnormality of the electric circuit 2.
  • the AC voltage supplied from the AC power supply 3 may fluctuate, and the operation of the load becomes unstable when the AC voltage supplied from the AC power supply 3 drops below the voltage necessary for the load to operate. there is a possibility.
  • the abnormality detection unit 60 monitors the voltage between the R phase and the N phase, between the S phase and the N phase, and between the T phase and the N phase, and turns off the thyristor 70 when the voltage of each phase falls below a predetermined lower limit value.
  • the contact 5b may be turned off.
  • the abnormality detection part 60 can detect the low voltage state in which the voltage of the electric circuit 2 to be detected is lower than a predetermined lower limit as an abnormality of the electric circuit 2.
  • the electric circuit abnormality detection device (10) includes an abnormality detection unit (60) that detects whether there is an abnormality in the electric circuit (2) to be detected, and an abnormality detection unit ( 60) and a power supply circuit section (20) for outputting a power supply voltage.
  • the power supply circuit unit (20) includes an input terminal unit (21), a power storage unit (30), an output terminal unit (22), a switch unit (40), a voltage detection unit (50), and a control unit (50).
  • the electric circuit 2 to be detected is electrically connected to the input terminal portion (21).
  • the power storage unit (30) is charged by a DC voltage input to the input terminal unit (21).
  • the abnormality detection unit (60) is electrically connected to the output terminal unit (22).
  • the output terminal unit (22) is a terminal unit for outputting the voltage charged in the power storage unit (30) to the abnormality detection unit (60) as the power supply voltage (V1).
  • the switch unit (40) changes the state of the power storage unit (30) between a charge state in which a charging current flows from the electric circuit (2) to be detected to the power storage unit (30) via the input terminal unit (21) and the power storage unit (30). ) Is switched to one of the charge stop states where no charge current flows.
  • the voltage detector (50) detects the power supply voltage (V1) output from the power storage unit (30) to the abnormality detector (60).
  • the control unit (50) controls the switch unit (40) according to the detection result of the voltage detection unit (50).
  • the switch unit (40) switches the state of the power storage unit (30) to either the charged state or the charge stop state according to the detection result of the voltage detection unit (50), so that the power storage unit (30 ) Is charging. Therefore, the electric circuit abnormality detection device (10) can reduce the power loss as compared with the case where the input voltage is stepped down by the resistor, and can suppress the temperature rise of the power supply circuit unit (20).
  • the switch unit (40) is controlled so that the state of the power storage unit (30) is set to the charge stop state.
  • the state of the power storage unit (30) is controlled to the charge stop state, so the power supply voltage (V1) of the power storage unit (30) is equal to or lower than the charge stop voltage. Can be controlled.
  • the switch unit (40) includes the first switching element (41) and the second switching element (42).
  • the first switching element (41) is electrically connected in series with the power storage unit (30) between the input terminal parts (21), and the second switching element (42) controls the first switching element (41). Electrically connected to the terminal.
  • the controller (50) turns off the other of the first switching element (41) and the second switching element (42).
  • the switch unit (40) is controlled.
  • control unit (50) controls the second switching element (42), thereby controlling the first switching element (41) electrically connected directly to the power storage unit (30).
  • the state of 30) can be switched to either the charged state or the charged stop state.
  • the power storage unit (30) and the first switching element (41) are electrically connected in series between the input terminal unit (21). Has been.
  • the control unit (50) switches the switch unit (40) so that the second switching element (42) is turned off. Control.
  • the second switching element (42) is turned off and the first switching element (41) is turned on, so that the state of the power storage unit (30) Can be charged.
  • the first impedance element (31) and the second switching element (42) are electrically connected in series between the input terminal portions (21). Connected to.
  • a control terminal (gate electrode) of the first switching element (41) is electrically connected to a connection point between the first impedance element (31) and the second switching element (42).
  • the power storage unit (30) when the power supply voltage (V1) exceeds the charge stop voltage, the power storage unit (30) is brought into a charge stop state, and when the power supply voltage (V1) becomes equal to or lower than the charge start voltage, the power storage unit (30) is put into a charge state. be able to.
  • the charge stop state since the current flows to the second switching element (42) via the first impedance element (31), the current flowing to the second switching element (42) is reduced by the first impedance element (31). Can do. Therefore, power consumption can be reduced and temperature rise in the power supply circuit section (20) can be suppressed.
  • the power supply circuit unit (20) includes the first switching element (41) and the power storage unit (30). A second impedance element (34) electrically connected therebetween is further provided.
  • the voltage detection unit (50) also functions as a control unit.
  • a voltage detection part (50) outputs the control signal which controls a 2nd switching element (42) according to the detection result of a power supply voltage (V1).
  • the power supply circuit unit (20) may further include a low-pass filter (51) electrically connected between the voltage detection unit (50) and the control terminal of the second switching element (42).
  • the noise component flowing out from the voltage detection unit 50 to the input terminal unit (21) via the second switching element (42) can be reduced by the low-pass filter (51).
  • an abnormality detected by the abnormality detection unit (60) is detected as a leakage current in the electric circuit (2) to be detected. At least one of a flowing state, an overvoltage state, and an undervoltage state.
  • the overvoltage state is a state in which the voltage of the electric circuit (2) to be detected exceeds the upper limit value
  • the low voltage state is a state in which the voltage of the electric circuit 2 to be detected is lower than the lower limit value.
  • the abnormality detection unit (60) can detect at least one of a state in which a leakage current flows in the electric circuit (2) to be detected, an overvoltage state, and a constant voltage state.
  • the switch (1) according to the ninth aspect includes an electric circuit abnormality detecting device (10) according to any one of the first to eighth aspects, and a power switch (10) electrically connected to the electric circuit (2) to be detected. 5b).
  • the power switch (5b) is controlled by the electric circuit abnormality detection device (10) based on the detection result of the abnormality detection unit (60).
  • the switch (1) which suppressed the heat_generation

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Keying Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本開示の目的は、電源回路部の発熱を低減することである。電源回路部(20)は、蓄電部(30)と、スイッチ部(40)と、電圧検出部(50)と、制御部(50)とを備える。蓄電部(30)は、異常検出部(60)の検出対象の電路から入力端子部(21)に入力される直流電圧によって充電される。蓄電部(30)に充電された電圧は電源電圧(V1)として異常検出部(60)に出力される。スイッチ部(40)は、蓄電部(30)の状態を充電状態と充電停止状態とのいずれかに切り替える。電圧検出部(50)は、電源電圧(V1)を検出する。制御部(50)は、電圧検出部(50)の検出結果に応じてスイッチ部(40)を制御する。

Description

電路異常検出装置、及びそれを備える開閉器
 本開示は、電路異常検出装置、及びそれを備える開閉器に関する。より詳細には、本開示は、検出対象の電路の異常の有無を検出する電路異常検出装置、及びそれを備える開閉器に関する。
 従来、主回路に流れる漏電電流を検出するか、又は中性線の欠相を検出すると、主接点を強制開極する漏電遮断器が提案されている(例えば特許文献1参照)。特許文献1の漏電遮断器では、漏電電流を検出するための漏電保護用ICと、中性線の欠相を検出するための欠相保護用ICと、漏電保護用ICと欠相保護用ICとに動作電圧を供給する電源回路部とを備えている。電源回路部では、交流電圧をダイオードブリッジで整流し、ダイオードブリッジから出力される脈流電圧を複数の抵抗の直列回路で降圧する。さらに、電源回路部では、複数の抵抗の直列回路で降圧した電圧をツェナーダイオードで定電圧化し、平滑コンデンサで平滑することによって、漏電保護用IC及び欠相保護用ICの動作電圧を得ている。
 特許文献1の漏電遮断器の電源回路部では、ダイオードブリッジから出力される脈流電圧を複数の抵抗の直列回路で降圧しているので、抵抗の発熱によって漏電遮断器の内部温度が上昇する可能性がある。
特開2003-7191号公報
 本開示の目的は、電源回路部の発熱を低減できる電路異常検出装置、及びそれを備える開閉器を提供することにある。
 本開示の一態様の電路異常検出装置は、検出対象の電路の異常の有無を検出する異常検出部と、前記異常検出部に電源電圧を出力する電源回路部とを備える。前記電源回路部は、入力端子部と、蓄電部と、出力端子部と、スイッチ部と、電圧検出部と、制御部と、を備える。前記入力端子部には、前記検出対象の電路が電気的に接続される。前記蓄電部は、前記入力端子部に入力される直流電圧によって充電される。前記出力端子部には、前記異常検出部が電気的に接続されている。前記出力端子部は、前記蓄電部に充電された電圧を前記電源電圧として前記異常検出部に出力するための端子部である。前記スイッチ部は、前記蓄電部の状態を、前記検出対象の電路から前記入力端子部を介して前記蓄電部に充電電流が流れる充電状態と前記蓄電部に充電電流が流れない充電停止状態とのいずれかに切り替える。前記電圧検出部は、前記蓄電部から前記異常検出部に出力される前記電源電圧を検出する。前記制御部は、前記スイッチ部を前記電圧検出部の検出結果に応じて制御する。
 本開示の一態様の開閉器は、前記電路異常検出装置と、前記検出対象の電路に電気的に接続される電力スイッチとを備える。前記電力スイッチは、前記電路異常検出装置によって前記異常検出部の検出結果に基づいて制御される。
図1は、本開示の一実施形態に係る電路異常検出装置を備えた開閉器の回路図である。 図2は、本開示の一実施形態の変形例1に係る開閉器の回路図である。 図3は、本開示の一実施形態の変形例2に係る開閉器の回路図である。
 以下に説明する実施形態は、本開示の種々の実施形態の一つに過ぎない。本開示の実施形態は、下記実施形態に限定されることはなく、この実施形態以外も含み得る。また、下記の実施形態は、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
 (1)電路異常検出装置及び開閉器の構成
 本実施形態に係る電路異常検出装置10は、図1に示すように、漏電遮断機能付きの開閉器1に備えられている。開閉器1は、例えば住宅などの建物に設置される分電盤に収納され、主開閉器として使用される。開閉器1は、例えば三相交流電力を4本の電路2を用いて供給する三相4線式の配電方式において、4本の電路2に電気的に接続されている。開閉器1は、漏電遮断機能を有しており、地絡の発生時に負荷への電力供給を遮断するように機能する。
 開閉器1には交流電源3からの4本の電路2が電気的に接続されている。開閉器1の内部には、4本の電路2にそれぞれ電気的に接続される導電部材4が収納されている。ここにおいて、4本の電路2は、R相の電路2Rと、S相の電路2Sと、T相の電路2Tと、N相の電路2Nとを含む。また、4つの導電部材4は、R相の導電部材4Rと、S相の導電部材4Sと、T相の導電部材4Tと、N相の導電部材4Nとを含む。以下の説明において、特定の電路について説明する場合は電路2R、2S、2T、2Nと記載し、電路2R、2S、2T、2Nを区別せずに説明する場合は電路2と記載する。同様に、特定の導電部材について説明する場合は導電部材4R、4S、4T、4Nと記載し、導電部材4R、4S、4T、4Nを区別せずに説明する場合は導電部材4と記載する。
 開閉器1は、漏電検知機能を有する漏電遮断器である。開閉器1は、電路異常検出装置10と、4つの導電部材4にそれぞれ電気的に接続される4つの接点5b(電力スイッチ)とを備えている。電路異常検出装置10は検出対象の電路2での異常の有無を検出しており、接点5bは電路異常検出装置10による異常の検出結果に基づいて制御される。
 以下に、電路異常検出装置10及び開閉器1の各部の構成を説明する。
 電路異常検出装置10は、電源回路部20と、異常検出部60とを備えている。
 異常検出部60は、交流電源3に電気的に接続された4本の電路2を検出対象とし、検出対象である4本の電路2の異常の有無を検出する。本実施形態の異常検出部60は、4本の電路2のいずれかで漏電電流を検出すると、電路2に異常があると検出する。
 電源回路部20は、検出対象の電路2から電力を得て、異常検出部60に電源電圧V1を出力する。
 電源回路部20は、入力端子部21と、出力端子部22と、蓄電部30と、スイッチ部40と、電圧検出部50とを備える。
 入力端子部21には、検出対象の電路2に電気的に接続された導電部材4が電気的に接続される。入力端子部21は一対の入力端子21a,21bを備えている。入力端子21aは、ソレノイドコイル5aを介して、全波整流器11,12の正極側の直流出力端子に電気的に接続されている。入力端子21bは全波整流器11,12の負極側の直流出力端子に電気的に接続されている。また、全波整流器11の一対の交流入力端子のうち、一方の交流入力端子にはT相の導電部材4Tが電気的に接続され、他方の交流入力端子にはS相の導電部材4Sが電気的に接続されている。全波整流器12の一対の交流入力端子のうち、一方の交流入力端子にはR相の導電部材4Rが電気的に接続され、他方の交流入力端子にはN相の導電部材4Nが電気的に接続されている。つまり、電源回路部20は、R相-T相間の約220Vの交流電圧、及び、S相-N相間の約220Vの交流電圧のいずれかから、異常検出部60などの電源電圧を生成する。ここで、入力端子21a,21bは、電線などを接続するための部品(端子)でもよいが、例えば電子部品のリードや、回路基板に配線として形成された導電体の一部でもよい。また、全波整流器11,12の交流入力端子に接続されるR相の導電部材4R、S相の導電部材4S、T相の導電部材4T、及びN相の導電部材4Nの各相間にはサージ保護素子などが接続されていてもよい。
 蓄電部30は例えばコンデンサであり、電路2から入力端子21a,21bを介して入力される直流電圧によって充電される。
 出力端子部22には異常検出部60が電気的に接続される。出力端子部22は一対の出力端子22a,22bを備えている。出力端子22aと出力端子22bとの間には異常検出部60が電気的に接続されている。また、出力端子22aと出力端子22bとの間には蓄電部30が電気的に接続されており、蓄電部30に充電された電圧(充電電圧)が電源電圧V1として異常検出部60に出力される。なお、出力端子22aと出力端子22bとの間には過電圧保護のためのツェナーダイオード33が電気的に接続されている。
 スイッチ部40は、蓄電部30の状態を、検出対象の電路2から蓄電部30に充電電流が流れる充電状態と、蓄電部30に充電電流が流れない充電停止状態とのいずれかに切り替える。本実施形態ではスイッチ部40は、電圧検出部50によって充電状態と充電停止状態とのいずれかに制御される。換言すると、制御部である電圧検出部50が、蓄電部30の電源電圧V1に基づいて、スイッチ部40を充電状態と充電停止状態とのいずれかに制御する。つまり、電圧検出部50が、スイッチ部40を電圧検出部50の検出結果に応じて制御する制御部の機能を兼ねているが、電圧検出部50と制御部とが別々の回路で構成されていてもよい。
 本実施形態のスイッチ部40は第1スイッチング素子41と第2スイッチング素子42とを備えている。入力端子21aと入力端子21bとの間には、第1スイッチング素子41と蓄電部30とが電気的に直列に接続されている。また、入力端子21aと入力端子21bとの間には、第1インピーダンス要素である抵抗器31と、第2スイッチング素子42とが電気的に直列に接続されている。具体的には、第1スイッチング素子41及び第2スイッチング素子42はそれぞれNチャンネル・エンハンスメント形のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。第1スイッチング素子41のドレイン電極は入力端子21aに電気的に接続されている。第1スイッチング素子41のソース電極と入力端子21bとの間には蓄電部30が電気的に接続されている。また、入力端子21aと第2スイッチング素子42のドレイン電極との間には抵抗器31が電気的に接続されている。第2スイッチング素子42のソース電極は入力端子21bに電気的に接続されている。第1スイッチング素子41のゲート電極は、抵抗器31と第2スイッチング素子42との接続点に電気的に接続されている。第2スイッチング素子42のゲート電極は電圧検出部50の出力端子に電気的に接続されている。なお、入力端子21aと入力端子21bの間にはノイズ防止のためのコンデンサ32が電気的に接続されている。
 電圧検出部50は、蓄電部30に充電された電圧(つまり異常検出部60の電源電圧)V1を検出する。本実施形態のスイッチ部40は、電圧検出部50の検出結果に応じて制御される。すなわち、スイッチ部40は、電圧検出部50によって検出された電源電圧V1と所定の基準電圧(充電開始電圧及び充電停止電圧)との高低に応じて、蓄電部30の状態を充電状態と充電停止状態とのいずれかに切り替えるように制御される。充電停止電圧は充電開始電圧よりも高い電圧に設定されている。充電停止電圧及び充電開始電圧の電圧値は両方ともに異常検出部60が動作可能な電圧値であり、本実施形態では充電停止電圧は約5.3Vに設定され、充電開始電圧は約4.6Vに設定されている。
 電圧検出部50は、電源電圧V1が充電停止電圧を超えると、第2スイッチング素子42のゲート電極にスレショルド電圧よりも高い電圧を印加し、第2スイッチング素子42をオン、第1スイッチング素子41をオフにして、蓄電部30を充電停止状態とする。電圧検出部50は、電源電圧V1が充電開始電圧以下になると、第2スイッチング素子42をオフ、第1スイッチング素子41をオンにして、蓄電部30を充電状態とする。
 ここにおいて、電圧等の2値間の比較において、「超える」としているところは、2値の一方が他方を超えている場合を含む。ただし、これに限らず、ここでいう「超える」としているところは、「以上」であってもよい。つまり、2値が等しい場合を含むか否かは、基準電圧等の設定次第で任意に変更できるので、「超える」か「以上」かに技術上の差異はない。同様に、「以下」としているところは「未満」であってもよい。
 また、電圧検出部50は、第2スイッチング素子42がオフからオンになるときの電源電圧V1(充電開始電圧)と、第2スイッチング素子42がオンからオフになるときの電源電圧V1(充電停止電圧)との間にヒステリシスを設けている。つまり、第2スイッチング素子42がオフからオンになるときの基準電圧と、第2スイッチング素子42がオンからオフになるときの基準電圧との間に所定の電圧差を設けており、スイッチ部40の動作が安定する。本実施形態では充電停止電圧は充電開始電圧よりも高い電圧に設定されているが、充電停止電圧と充電開始電圧とは同じ電圧に設定されていてもよい。
 電圧検出部50は、例えばオペアンプを用いたヒステリシス・コンパレータ回路であり、オペアンプは蓄電部30の電源電圧V1で動作する。蓄電部30の電源電圧V1がオペアンプの動作可能な電圧を超えると、電圧検出部50は動作を開始するので、開閉器1に電力が供給された時点から電圧検出部50が動作を開始するまでの時間は、初期化などの処理が必要なマイクロコンピュータに比べて短くなる。
 異常検出部60は、集積回路で構成される信号処理部61と、零相変流器である変流器62と、抵抗器63と、ダイオード回路64と、ローパスフィルタ65とを備える。
 変流器62は、コア62aと、コア62aに設けられた出力巻線62bとを備えている。コア62aは、フェライトなどの強磁性体材により環状に形成されている。コア62aには、4本の電路2R,2S,2T,2Nにそれぞれ電気的に接続された導電部材4R,4S,4T,4Nが挿入されている。4本の電路2のいずれかが地絡すると、コア62aを貫通する導電部材4R,4S,4T,4Nに流れる電流間で不平衡が発生し、出力巻線62bに電流が流れる。
 抵抗器63は、変流器62の出力巻線62bの両端間に電気的に接続されている。抵抗器63の両端間には、出力巻線62bに流れる電流の大きさに比例した電圧値の出力電圧V2が発生する。
 ダイオード回路64は、抵抗器63と並列に接続された2個のダイオードを備える。ダイオード回路64が備える2個のダイオードは互いに逆向きに接続されている。ダイオード回路64の2個のダイオードは、所定の順方向電圧(スライス電圧、例えば1V)以上のときにのみ、アノードからカソードへ一方向にのみ電流を流す。したがって、通常漏電など変流器62の出力電圧V2がダイオードの順方向電圧よりも低い場合には、ダイオード回路64は電流を流さない。また、重地絡や雷サージなど変流器62の出力電圧V2がダイオードの順方向電圧以上になる場合には、ダイオード回路64のダイオードに電流が流れる。この結果、重地絡や雷サージなどの場合には、信号処理部61に入力される電圧が、変流器62の出力電圧V2よりも低くなる。
 ローパスフィルタ65は抵抗器とコンデンサとで構成される。抵抗器63の両端間の電圧(変流器62の出力電圧)V2がローパスフィルタ65を介して信号処理部61に入力される。ローパスフィルタ65は所定のカットオフ周波数以下の信号成分を通過させ、カットオフ周波数よりも高い周波数の信号成分(ノイズ成分)を減衰させるので、ローパスフィルタ65によって信号処理部61に入力されるノイズ成分が抑制される。
 信号処理部61は、変流器62の出力電圧V2に基づいて、サイリスタ70を制御する。ここで、全波整流器11,12の直流出力端子間に、ソレノイドコイル5aとダイオード71とサイリスタ70とが電気的に直列に接続されている。サイリスタ70の両端間には、抵抗器とコンデンサとで構成されるスナバ回路72が接続されている。
 信号処理部61は、変流器62の出力電圧V2が所定のしきい値電圧以下であれば、漏電電流が流れていないと判断して、サイリスタ70をオフにする。サイリスタ70がオフであれば、ソレノイドコイル5aに流れる電流は、接点5bをオンからオフにするのに必要な電流値よりも小さくなり、接点5bはオンになる。したがって、交流電源3から開閉器1を介して負荷側に交流電力が供給される。
 信号処理部61は、変流器62の出力電圧V2が所定のしきい値電圧を超えると、漏電電流が流れたと判断して、サイリスタ70をオンにする。サイリスタ70がオンになり、ソレノイドコイル5aに流れる電流が、接点5bをオンからオフにするのに必要な電流値よりも大きくなると、ソレノイドコイル5aの電磁力で鉄心が駆動され、鉄心によって接点5bの開閉機構が駆動される。これにより、接点5bがオフになり、交流電源3から負荷への電力供給が遮断される。
 また、変流器62のコア62aには、疑似的に不平衡状態を発生させるために導電部材13が挿入されている。導電部材13の一端は、N相の導電部材4Nに電気的に接続されている。導電部材13の他端は、動作確認用のスイッチ14と抵抗器15とを介して、R相の導電部材4Rに電気的に接続されている。
 (2)動作説明
 以下に、本実施形態の電路異常検出装置10及び開閉器1の動作について説明する。
 (2.1)電源回路部の動作
 開閉器1に電路2が接続されて、交流電源3からの交流電力が開閉器1に供給されると、全波整流器11,12の直流出力端子間に交流電源3からの交流電圧を全波整流した脈流電圧が発生する。ここで、サイリスタ70がオフの状態では、ソレノイドコイル5aには接点5bをオフにするのに必要な電流が流れず、接点5bはオンになる。
 全波整流器11,12の直流出力端子間に発生する脈流電圧によって、電源回路部20の入力端子21aの電圧が増加し、第1スイッチング素子41のゲート電極の電圧レベルがスレショルド電圧を超えると、第1スイッチング素子41がオンになる。第1スイッチング素子41がオンになると、蓄電部30に充電電流が流れ、蓄電部30の両端間の電圧(電源電圧V1)が増加する。
 蓄電部30の両端間の電圧(電源電圧V1)は電圧検出部50と異常検出部60とに出力される。
 電源電圧V1の電圧値が、異常検出部60が動作するのに必要な電圧値を超えると、異常検出部60が動作を開始する。
 また、電源電圧V1の電圧値が、電圧検出部50が動作可能な電圧範囲の最小値を超えると、電圧検出部50は動作を開始し、蓄電部30の電源電圧V1の電圧値と所定の基準電圧(充電停止電圧及び充電開始電圧)との高低を比較する。
 電源電圧V1の電圧値が充電停止電圧以下であれば、電圧検出部50は、第2スイッチング素子42をオフ、第1スイッチング素子41をオンにして、蓄電部30の状態を蓄電部30に充電電流が流れる充電状態とする。このとき、蓄電部30に充電電流が流れることによって、蓄電部30の両端の電圧(電源電圧V1)が徐々に増加する。
 電源電圧V1の電圧値が充電停止電圧を超えると、電圧検出部50は、第2スイッチング素子42のゲート電極に、スレショルド電圧よりも電圧値が高い制御信号を出力し、第2スイッチング素子42をオンにする。第2スイッチング素子42がオンになると、第1スイッチング素子41がオフになり、蓄電部30に充電電流が流れない充電停止状態となる。蓄電部30に充電電流が流れない充電停止状態で、蓄電部30が放電して異常検出部60に動作電力が供給されると、蓄電部30の両端間の電圧(電源電圧V1)が徐々に低下する。
 その後、蓄電部30の電源電圧V1が充電開始電圧以下になると、電圧検出部50は、第2スイッチング素子42をオフにする。このとき、入力端子21aの電圧値が第1スイッチング素子41のスレッショルド電圧を超えると、第1スイッチング素子41がオンになり、蓄電部30の状態が充電状態となる。充電状態では蓄電部30に充電電流が流れて、蓄電部30の電源電圧V1が徐々に増加する。
 電源回路部20が上記のような動作を繰り返すことによって、蓄電部30に充電された電圧(電源電圧V1)が充電開始電圧と充電停止電圧との間に制御され、異常検出部60が動作可能な電源電圧V1が異常検出部60に供給される。
 このように、本実施形態では、電圧検出部50によって検出された蓄電部30の電源電圧V1に基づいてスイッチ部40が充電状態と充電停止状態とのいずれかに制御されることで、異常検出部60が動作可能な電源電圧V1が異常検出部60に供給される。したがって、電源回路部が入力電圧を抵抗器で降圧する回路で構成される場合に比べて、電力損失が少なくなり、電源回路部20の発熱を抑制できる。
 開閉器1においても小型化の要求があるが、開閉器1を小型化した場合、導電部材4の断面積が小さくなるため、導電部材4の温度上昇により開閉器1の内部温度が上昇する可能性がある。本実施形態の電源回路部20を備えた開閉器1では、電源回路部20の発熱が抑制されているので、開閉器1の内部温度の上昇が抑制され、開閉器1の小型化を図ることができる。
 また、開閉器1が過電流保護機能を備える場合、導電部材4の途中にバイメタルが接続される。そして、導電部材4に過電流が流れることで発生するジュール熱でバイメタルが湾曲すると、バイメタルが開閉機構を動かして接点5bをオフにするように構成されている。過電流保護機能を備える開閉器1では、電源回路部20の発熱によって開閉器1の内部温度が上昇すると、バイメタルが開閉機構を動かして接点5bをオフにするときの電流値がばらつく可能性がある。このような過電流保護機能を備える開閉器1に本実施形態の電源回路部20が適用された場合、電源回路部20の発熱が抑制されることで、開閉器1の内部温度の上昇が抑制される。したがって、バイメタルが接点5bをオフにするときの電流値のばらつきを低減できる。
 また、電源回路部が入力電圧を抵抗器で降圧する回路の場合、入力電圧が低すぎると、抵抗器に流れる電流が小さくなり、十分な出力が得られない可能性がある。それに対して、本実施形態の電源回路部20では入力電圧が低い場合でも蓄電部30に充電することで、所望の出力を得ることができる。
 また、開閉器1に交流電力が供給されると、第1スイッチング素子41を介して蓄電部30に充電電流が流れるので、電源が必要な制御回路を備えるスイッチング電源回路に比べて、蓄電部30の電源電圧V1の立ち上がりが早くなるという利点もある。
 また、第1スイッチング素子41及び第2スイッチング素子42のスイッチングの周期は数十Hz程度であり、一般的なスイッチング電源回路に比べてスイッチング周波数が低いので、スイッチングによる損失を低減できる。
 (2.2)異常検出部の動作
 異常検出部60が動作可能な電源電圧V1が電源回路部20から異常検出部60に出力されると、異常検出部60は、検出対象の電路2における異常の有無を検出する動作を行う。
 異常検出部60は、電路2において漏電電流が流れる漏電状態が発生しているか否かを検出する。
 漏電電流が流れていない状態では、変流器62の出力電圧V2がしきい値電圧よりも低くなるので、信号処理部61はサイリスタ70をオフにする。このとき、ソレノイドコイル5aに流れる電流の電流値は、接点5bをオンからオフにするのに必要な電流値よりも小さいので、接点5bはオンになり、開閉器1は負荷への交流電力の供給を遮断していない。
 一方、電路2のいずれかが地絡して漏電電流が流れると、電路2に流れる電流が不平衡状態になり、変流器62の出力電圧V2がしきい値電圧以上になるので、信号処理部61はサイリスタ70をオンにする。このとき、ソレノイドコイル5aに流れる電流の電流値は、接点5bをオンからオフにするのに必要な電流値以上になるので、接点5bがオフになり、開閉器1は負荷への交流電力の供給を遮断する。
 このように、本実施形態の開閉器1は、異常検出部60が異常有りと検出すると、接点5bをオフにするので、負荷への電力供給を遮断することができる。
 (3)変形例
 以下に、上記実施形態の変形例に係る電路異常検出装置及びそれを備える開閉器を列記する。なお、以下に説明する変形例の各構成は、上記実施形態で説明した各構成と適宜組み合わせて適用可能である。
 (3.1)変形例1
 上記の実施形態において、図2に示すように、第1スイッチング素子41と蓄電部30との間に第2インピーダンス要素である抵抗器34が電気的に接続されていてもよい。第1スイッチング素子41と蓄電部30との間に抵抗器34が電気的に接続されているので、抵抗器34によって蓄電部30に流れる充電電流が制限される。したがって、第1スイッチング素子41がオフからオンに切り替わったときに、蓄電部30に流れる電流が急激に増加するのを抑制できる。図2の回路例では第2インピーダンス要素は抵抗器34であるが、所定のインピーダンスを有する回路部品(例えばサーミスタなど)でもよい。
 また、上記の実施形態において、図2に示すように、電圧検出部50の出力端と第2スイッチング素子42の制御端子(ゲート電極)との間に、ローパスフィルタ51が電気的に接続されてもよい。ローパスフィルタ51によって、電圧検出部50から第2スイッチング素子42を介して入力端子部21に流出するノイズ成分を低減できる。ここにおいて、図2に示すローパスフィルタ51は、抵抗器とコンデンサとで構成されるRCフィルタ回路であるが、所定のカットオフ周波数が得られるのであれば、他の回路構成でもよい。
 (3.2)変形例2
 上記の実施形態及び変形例1において、図3に示すように、スイッチ部40が1つのスイッチング素子43で構成されていてもよい。
 スイッチング素子43はNチャンネル・エンハンスメント形のMOSFETである。スイッチング素子43のドレイン電極は入力端子21aに電気的に接続されている。スイッチング素子43のソース電極と入力端子21bとの間には蓄電部30が電気的に接続されている。スイッチング素子43のドレイン電極とゲート電極との間には抵抗器31が電気的に接続されている。スイッチング素子43のゲート電極は電圧検出部50の出力端子に電気的に接続されている。
 ここで、電源回路部20の動作について説明する。
 開閉器1に電路2が接続されて、交流電源3からの交流電力が開閉器1に供給されると、全波整流器11,12の直流出力端子間に交流電源3からの交流電圧を全波整流した脈流電圧が発生する。ここで、サイリスタ70がオフの状態では、ソレノイドコイル5aには接点5bをオフにするのに必要な電流が流れず、接点5bはオンになる。
 全波整流器11,12の直流出力端子間に発生する脈流電圧によって、電源回路部20の入力端子21aの電圧が増加し、スイッチング素子43のゲート電極の電圧レベルがスレショルド電圧を超えると、スイッチング素子43がオンになる。ここで、電圧検出部50の出力は例えばオープンコレクタ出力であり、電源電圧V1の電圧値が充電停止電圧以下であれば、電圧検出部50の出力端子はオープン状態となっている。
 スイッチング素子43がオンになると、蓄電部30に充電電流が流れ、蓄電部30の両端間の電圧(電源電圧V1)が増加する。
 その後、電源電圧V1の電圧値が充電停止電圧を超えると、電圧検出部50の出力端子はグランドに短絡された状態となり、スイッチング素子43がオフになる。これにより、スイッチ部40は、蓄電部30を充電停止状態とするように制御され、蓄電部30の電源電圧V1は徐々に低下する。
 その後、電源電圧V1の電圧値が充電開始電圧を下回ると、電圧検出部50の出力端子がオープン状態となるので、スイッチング素子43のゲート電極の電圧値がスレショルド電圧よりも高い電圧値になれば、スイッチング素子43がオンになる。これにより、スイッチ部40は、蓄電部30を充電状態とするように制御され、つまり、制御部(電圧検出部50)が蓄電部30を充電状態とするようにスイッチ部40を制御し、蓄電部30の電源電圧V1が徐々に増加する。
 電源回路部20が上記のような動作を繰り返すことで、蓄電部30に充電された電圧(電源電圧V1)は充電開始電圧と充電停止電圧との間に制御され、異常検出部60が動作可能な電源電圧V1が異常検出部60に供給される。
 (3.3)その他の変形例
 上記の実施形態及び変形例1では、第1スイッチング素子41及び第2スイッチング素子42はそれぞれMOSFETであるが、例えばバイポーラトランジスタなどの半導体スイッチング素子でもよい。
 上記の実施形態及び変形例1において、第2スイッチング素子42と直列に接続された第1インピーダンス要素は抵抗器31であるが、所定のインピーダンスを有する回路部品(例えばサーミスタなど)でもよい。
 上記の実施形態及び変形例1、2では、異常検出部60が、電路2に漏電電流が流れる状態を検出しているが、異常検出部60の検出対象は電路2の漏電に限定されない。
 異常検出部60は、電路2の異常として、中性線の欠相によって発生する過電圧を検出してもよい。中性線が欠相した場合、R相、S相、T相にそれぞれ接続されている負荷のアンバランスによって、R相-N相間、S相-N相間、T相-N相間に過大な電圧が発生する可能性がある。異常検出部60は、R相-N相間、S相-N相間、T相-N相間の電圧を監視し、各相の電圧が所定の上限値を超えると、サイリスタ70をオンにして、接点5bをオフにする。これにより、異常検出部60は、電路2の異常として、検出対象の電路2の電圧が所定の上限値を超える過電圧状態を検知することができる。
 また、異常検出部60は、電路2の異常として、検出対象の電路2の電圧が所定の下限値を下回る低電圧状態を検出してもよい。交流電源3から供給される交流電圧は変動する可能性があり、交流電源3から供給される交流電圧が、負荷が動作するのに必要な電圧よりも低下すると、負荷の動作が不安定になる可能性がある。ここで、異常検出部60は、R相-N相間、S相-N相間、T相-N相間の電圧を監視し、各相の電圧が所定の下限値を下回ると、サイリスタ70をオフにして、接点5bをオフにしてもよい。これにより、異常検出部60は、電路2の異常として、検出対象の電路2の電圧が所定の下限値を下回る低電圧状態を検知することができる。
 (4)まとめ
 以上説明したように、第1の態様の電路異常検出装置(10)は、検出対象の電路(2)の異常の有無を検出する異常検出部(60)と、異常検出部(60)に電源電圧を出力する電源回路部(20)とを備える。電源回路部(20)は、入力端子部(21)と、蓄電部(30)と、出力端子部(22)と、スイッチ部(40)と、電圧検出部(50)と、制御部(50)とを備える。入力端子部(21)には検出対象の電路2が電気的に接続される。蓄電部(30)は、入力端子部(21)に入力される直流電圧によって充電される。出力端子部(22)には異常検出部(60)が電気的に接続される。出力端子部(22)は、蓄電部(30)に充電された電圧を電源電圧(V1)として異常検出部(60)に出力するための端子部である。スイッチ部(40)は、蓄電部(30)の状態を、検出対象の電路(2)から入力端子部(21)を介して蓄電部(30)に充電電流が流れる充電状態と蓄電部(30)に充電電流が流れない充電停止状態とのいずれかに切り替える。電圧検出部(50)は、蓄電部(30)から異常検出部(60)に出力される電源電圧(V1)を検出する。制御部(50)は、スイッチ部(40)を電圧検出部(50)の検出結果に応じて制御する。
 このように、スイッチ部(40)は、電圧検出部(50)の検出結果に応じて蓄電部(30)の状態を充電状態と充電停止状態とのいずれかに切り替えることで、蓄電部(30)を充電している。したがって、電路異常検出装置(10)は、入力電圧を抵抗器で降圧する場合に比べて電力損失を低減でき、電源回路部(20)の温度上昇を抑制できる。
 第2の態様の電路異常検出装置(10)では、第1の態様において、制御部(50)は、電圧検出部(50)によって検出された電源電圧(V1)が充電停止電圧を超えると、蓄電部(30)の状態を充電停止状態とするようにスイッチ部(40)を制御する。
 このように、電源電圧(V1)が充電停止電圧を超えると、蓄電部(30)の状態が充電停止状態に制御されるので、蓄電部(30)の電源電圧(V1)を充電停止電圧以下に制御できる。
 第3の態様の電路異常検出装置(10)では、第1又は第2の態様において、スイッチ部(40)が第1スイッチング素子(41)と第2スイッチング素子(42)とを備える。第1スイッチング素子(41)は、入力端子部(21)の間に蓄電部(30)と電気的に直列に接続され、第2スイッチング素子(42)は、第1スイッチング素子(41)の制御端子に電気的に接続される。制御部(50)は、第1スイッチング素子(41)及び第2スイッチング素子(42)の一方がオンになると、第1スイッチング素子(41)及び第2スイッチング素子(42)の他方がオフになるようにスイッチ部(40)を制御する。
 これにより、制御部(50)が第2スイッチング素子(42)を制御することによって、蓄電部(30)と電気的に直接に接続された第1スイッチング素子(41)を制御し、蓄電部(30)の状態を充電状態と充電停止状態とのいずれかに切り替えることができる。
 第4の態様の電路異常検出装置(10)では、第3の態様において、入力端子部(21)の間に蓄電部(30)と第1スイッチング素子(41)とが電気的に直列に接続されている。制御部(50)は、電圧検出部(50)によって検出された電源電圧(V1)が充電開始電圧以下であれば、第2スイッチング素子(42)がオフになるようにスイッチ部(40)を制御する。
 これにより、電源電圧(V1)が充電開始電圧以下であれば、第2スイッチング素子(42)がオフになって、第1スイッチング素子(41)がオンになるので、蓄電部(30)の状態を充電状態とすることができる。
 第5の態様の電路異常検出装置(10)では、第3の態様において、入力端子部(21)の間に第1インピーダンス要素(31)と第2スイッチング素子(42)とが電気的に直列に接続される。第1スイッチング素子(41)の制御端子(ゲート電極)が、第1インピーダンス要素(31)と第2スイッチング素子(42)との接続点に電気的に接続される。制御部(50)は、電圧検出部(50)によって検出された電源電圧(V1)が充電停止電圧を超えると、第2スイッチング素子(42)がオンになり、電源電圧(V1)が充電開始電圧以下であれば、第2スイッチング素子(42)がオフになるようにスイッチ部(40)を制御する。
 これにより、電源電圧(V1)が充電停止電圧を超えると、蓄電部(30)を充電停止状態とし、電源電圧(V1)が充電開始電圧以下になると、蓄電部(30)を充電状態とすることができる。充電停止状態では、第1インピーダンス要素(31)を介して第2スイッチング素子(42)に電流が流れるので、第2スイッチング素子(42)に流れる電流を第1インピーダンス要素(31)で低減することができる。よって、電力消費を低減し、電源回路部(20)での温度上昇を抑制できる。
 第6の態様の電路異常検出装置(10)では、第3~第5のいずれか1つの態様において、電源回路部(20)が、第1スイッチング素子(41)と蓄電部(30)との間に電気的に接続された第2インピーダンス要素(34)を、更に備える。
 これにより、第1スイッチング素子(41)がオフからオンになったときに、蓄電部(30)に流れる充電電流が第2インピーダンス要素(34)によって低減されるので、蓄電部(30)に急激に電流が流れ込むのを抑制できる。
 第7の態様の電路異常検出装置(10)では、第3~第6のいずれか1つの態様において、電圧検出部(50)が制御部の機能を兼ねる。電圧検出部(50)は、電源電圧(V1)の検出結果に応じて第2スイッチング素子(42)を制御する制御信号を出力する。電源回路部(20)は、電圧検出部(50)と第2スイッチング素子(42)の制御端子との間に電気的に接続されたローパスフィルタ(51)を、更に備えてもよい。
 これにより、ローパスフィルタ(51)によって電圧検出部50から第2スイッチング素子(42)を介して入力端子部(21)に流出するノイズ成分を低減できる。
 第8の態様の電路異常検出装置(10)では、第1~第7のいずれか1つの態様において、異常検出部(60)が検出する異常が、検出対象の電路(2)に漏電電流が流れる状態、過電圧状態、及び低電圧状態の少なくとも1つである。ここで、過電圧状態は、検出対象の電路(2)の電圧が上限値を超える状態であり、低電圧状態は、検出対象の電路2の電圧が下限値を下回る状態である。
 例えば、中性線欠相が発生すると各相の電路2の電圧が通常時の倍の電圧となる可能性がある。また、交流電源(3)の異常によって各相の電路(2)の電圧が不足する可能性もある。第8の態様によれば、異常検出部(60)により、検出対象の電路(2)に漏電電流が流れる状態、過電圧状態、定電圧状態の少なくとも1つを検出することができる。
 第9の態様の開閉器(1)は、第1~第8のいずれか1つの態様の電路異常検出装置(10)と、検出対象の電路(2)に電気的に接続される電力スイッチ(5b)とを備える。電力スイッチ(5b)は、電路異常検出装置(10)によって異常検出部(60)の検出結果に基づいて制御される。
 これにより、電源回路部(20)の発熱を抑制した開閉器(1)を提供することができる。
 1 開閉器
 2,2R,2S,2T,2N 電路
 5b リレー接点(電力スイッチ)
 10 電路異常検出装置
 20 電源回路部
 21 入力端子部
 22 出力端子部
 30 蓄電部
 31 抵抗器(第1インピーダンス要素)
 34 抵抗器(第2インピーダンス要素)
 40 スイッチ部
 41 第1スイッチング素子
 42 第2スイッチング素子
 43 スイッチング素子
 50 電圧検出部(制御部)
 51 ローパスフィルタ
 60 異常検出部

Claims (9)

  1.  検出対象の電路の異常の有無を検出する異常検出部と、前記異常検出部に電源電圧を出力する電源回路部とを備え、
     前記電源回路部は、
      前記検出対象の電路が電気的に接続される入力端子部と、
      前記入力端子部に入力される直流電圧によって充電される蓄電部と、
      前記異常検出部が電気的に接続され、前記蓄電部に充電された電圧を前記電源電圧として前記異常検出部に出力するための出力端子部と、
      前記蓄電部の状態を、前記検出対象の電路から前記入力端子部を介して前記蓄電部に充電電流が流れる充電状態と前記蓄電部に充電電流が流れない充電停止状態とのいずれかに切り替えるスイッチ部と、
      前記蓄電部から前記異常検出部に出力される前記電源電圧を検出する電圧検出部と、
      前記スイッチ部を前記電圧検出部の検出結果に応じて制御する制御部と、を備える
     ことを特徴とする電路異常検出装置。
  2.  前記制御部は、前記電圧検出部によって検出された前記電源電圧が充電停止電圧を超えると、前記蓄電部の状態を前記充電停止状態とするように前記スイッチ部を制御する
     ことを特徴とする請求項1に記載の電路異常検出装置。
  3.  前記スイッチ部が、前記入力端子部の間に前記蓄電部と電気的に直列に接続された第1スイッチング素子と、前記第1スイッチング素子の制御端子に電気的に接続された第2スイッチング素子とを備え、
     前記制御部は、前記第1スイッチング素子及び前記第2スイッチング素子の一方がオンになると、前記第1スイッチング素子及び前記第2スイッチング素子の他方がオフになるように前記スイッチ部を制御する
     ことを特徴とする請求項1又は2に記載の電路異常検出装置。
  4.  前記入力端子部の間に前記蓄電部と前記第1スイッチング素子とが電気的に直列に接続されており、
     前記制御部は、前記電圧検出部によって検出された前記電源電圧が充電開始電圧以下であれば、前記第2スイッチング素子がオフになるように前記スイッチ部を制御する
     ことを特徴とする請求項3に記載の電路異常検出装置。
  5.  前記入力端子部の間に第1インピーダンス要素と前記第2スイッチング素子とが電気的に直列に接続されており、
     前記第1スイッチング素子の制御端子が、前記第1インピーダンス要素と前記第2スイッチング素子との接続点に電気的に接続されており、
     前記制御部は、前記電圧検出部によって検出された前記電源電圧が充電停止電圧を超えると、前記第2スイッチング素子がオンになるように制御し、前記電圧検出部によって検出された前記電源電圧が充電開始電圧以下であれば、前記第2スイッチング素子がオフになるように前記スイッチ部を制御する
     ことを特徴とする請求項3に記載の電路異常検出装置。
  6.  前記電源回路部が、前記第1スイッチング素子と前記蓄電部との間に電気的に接続された第2インピーダンス要素を、更に備える
     ことを特徴とする請求項3~5のいずれか1項に記載の電路異常検出装置。
  7.  前記電圧検出部が前記制御部の機能を兼ねており、
     前記電圧検出部は、前記電源電圧の検出結果に応じて前記第2スイッチング素子を制御する制御信号を出力しており、
     前記電源回路部は、前記電圧検出部と前記第2スイッチング素子の制御端子との間に電気的に接続されたローパスフィルタを、更に備える
     ことを特徴とする請求項3~6のいずれか1項に記載の電路異常検出装置。
  8.  前記異常検出部が検出する異常が、前記検出対象の電路に漏電電流が流れる状態、前記検出対象の電路の電圧が上限値を超える過電圧状態、及び前記検出対象の電路の電圧が下限値を下回る低電圧状態の少なくとも1つである
     ことを特徴とする請求項1~7のいずれか1項に記載の電路異常検出装置。
  9.  請求項1~8のいずれか1項に記載の電路異常検出装置と、前記検出対象の電路に電気的に接続される電力スイッチとを備え、
     前記電力スイッチは、前記電路異常検出装置によって前記異常検出部の検出結果に基づいて制御される
     ことを特徴とする開閉器。
     
PCT/JP2017/044106 2016-12-20 2017-12-08 電路異常検出装置、及びそれを備える開閉器 WO2018116860A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780078906.7A CN110088871B (zh) 2016-12-20 2017-12-08 电气路径故障检测器和包括该故障检测器的断路器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016247198A JP6839813B2 (ja) 2016-12-20 2016-12-20 電路異常検出装置、及びそれを備える開閉器
JP2016-247198 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116860A1 true WO2018116860A1 (ja) 2018-06-28

Family

ID=62627336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044106 WO2018116860A1 (ja) 2016-12-20 2017-12-08 電路異常検出装置、及びそれを備える開閉器

Country Status (3)

Country Link
JP (1) JP6839813B2 (ja)
CN (1) CN110088871B (ja)
WO (1) WO2018116860A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970159A (zh) * 2018-11-14 2021-06-15 三菱电机株式会社 电压跳闸装置及断路器
TWI752500B (zh) * 2019-05-24 2022-01-11 日商三菱電機股份有限公司 斷路器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240045321A (ko) * 2021-09-30 2024-04-05 파나소닉 아이피 매니지먼트 가부시키가이샤 차단 장치 및 구동 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316231A (ja) * 1999-04-28 2000-11-14 Hitachi Ltd 漏電警報機能付回路遮断器及び漏電遮断器
JP2004022231A (ja) * 2002-06-13 2004-01-22 Toshiba Corp 転流コンデンサの充電装置
JP2007042638A (ja) * 2005-08-02 2007-02-15 Schneider Electric Industries Sas 昇圧手段を含む電源回路を備えた電子引外し装置およびそのような引外し装置を含む回路遮断器
JP2011120366A (ja) * 2009-12-03 2011-06-16 Panasonic Corp 過電圧保護装置
JP2013182680A (ja) * 2012-02-29 2013-09-12 Mitsubishi Electric Corp 漏電遮断器
JP2016021297A (ja) * 2014-07-14 2016-02-04 富士電機機器制御株式会社 漏電遮断器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108455A (ja) * 2009-11-16 2011-06-02 Kawamura Electric Inc 電子式ブレーカ
FR3008242B1 (fr) * 2013-07-05 2015-09-04 Schneider Electric Ind Sas Dispositif de protection differentielle pour un appareil de coupure, et appareil de coupure electrique comportant un tel dispositif
CN104300516B (zh) * 2014-05-05 2017-04-19 西南交通大学 一种基于Buck变换器的单向变压型高压直流断路器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316231A (ja) * 1999-04-28 2000-11-14 Hitachi Ltd 漏電警報機能付回路遮断器及び漏電遮断器
JP2004022231A (ja) * 2002-06-13 2004-01-22 Toshiba Corp 転流コンデンサの充電装置
JP2007042638A (ja) * 2005-08-02 2007-02-15 Schneider Electric Industries Sas 昇圧手段を含む電源回路を備えた電子引外し装置およびそのような引外し装置を含む回路遮断器
JP2011120366A (ja) * 2009-12-03 2011-06-16 Panasonic Corp 過電圧保護装置
JP2013182680A (ja) * 2012-02-29 2013-09-12 Mitsubishi Electric Corp 漏電遮断器
JP2016021297A (ja) * 2014-07-14 2016-02-04 富士電機機器制御株式会社 漏電遮断器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970159A (zh) * 2018-11-14 2021-06-15 三菱电机株式会社 电压跳闸装置及断路器
CN112970159B (zh) * 2018-11-14 2023-10-20 三菱电机株式会社 电压跳闸装置及断路器
TWI752500B (zh) * 2019-05-24 2022-01-11 日商三菱電機股份有限公司 斷路器

Also Published As

Publication number Publication date
JP2018101549A (ja) 2018-06-28
CN110088871A (zh) 2019-08-02
JP6839813B2 (ja) 2021-03-10
CN110088871B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
US8614866B2 (en) Hybrid switch circuit
US9742185B2 (en) DC circuit breaker and method of use
US7423854B2 (en) Interruption circuit with improved shield
US7751161B2 (en) Leakage current detection and interruption circuit
US8482885B2 (en) Hybrid switch circuit
US9397494B2 (en) Electrical monitoring device and method for safeguarding the protective function of a type A residual current device (RCD)
US10498138B2 (en) Protective circuit for a current transformer and current transformer with a protection circuit
US9876438B2 (en) Converter unit system having inrush-current suppression circuit
US20060002043A1 (en) Overcurrent protection for circuit interrupting devices
CN105610120A (zh) 用于监控并响应于电子电路断路器内的电源和/或检测电路故障的装置和方法
KR101463044B1 (ko) 보호 계전기용 자체 전원 공급회로
US11588321B2 (en) Low-voltage protection switch unit
JP7273813B2 (ja) 負荷を一時的過電圧および過渡過電圧の両方から保護するための回路配置
WO2018116860A1 (ja) 電路異常検出装置、及びそれを備える開閉器
CA3004038C (en) Methods and apparatus to disable a trip circuit during self test in ground fault circuit interrupters
US6961226B2 (en) Method and system for providing power to circuit breakers
JPH11299082A (ja) 過電圧保護機能付き漏電遮断装置
KR101287727B1 (ko) 접지를 이용한 전기기기와 전자기기의 동작차단기능이 부가된 안전장치
US20220045503A1 (en) Electronic switch
RU2242829C2 (ru) Устройство контроля сопротивления изоляции и защиты электрических машин и аппаратов (варианты)
US20240044998A1 (en) Leakage current detection and interruption device for power cord and related electrical connectors and electrical appliances
EP3945650A1 (en) Electronic circuit breaker control unit
EP3512059A2 (en) Power supply device for protective relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883087

Country of ref document: EP

Kind code of ref document: A1