WO2018116532A1 - 耐食部材 - Google Patents

耐食部材 Download PDF

Info

Publication number
WO2018116532A1
WO2018116532A1 PCT/JP2017/031528 JP2017031528W WO2018116532A1 WO 2018116532 A1 WO2018116532 A1 WO 2018116532A1 JP 2017031528 W JP2017031528 W JP 2017031528W WO 2018116532 A1 WO2018116532 A1 WO 2018116532A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
resistant member
coating material
dlc film
coating
Prior art date
Application number
PCT/JP2017/031528
Other languages
English (en)
French (fr)
Inventor
奥平宏行
Original Assignee
Smc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc株式会社 filed Critical Smc株式会社
Priority to KR1020197021087A priority Critical patent/KR102397701B1/ko
Priority to JP2018557530A priority patent/JP6933791B2/ja
Priority to EP17884795.0A priority patent/EP3556900B1/en
Priority to MX2019007179A priority patent/MX2019007179A/es
Priority to CN201780078712.7A priority patent/CN110121569A/zh
Priority to BR112019012811-5A priority patent/BR112019012811B1/pt
Priority to US16/470,693 priority patent/US11457766B2/en
Priority to RU2019122300A priority patent/RU2743353C9/ru
Publication of WO2018116532A1 publication Critical patent/WO2018116532A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/63Adding a layer before coating ceramic layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/60Coating surfaces by vapour deposition, e.g. PVD, CVD

Definitions

  • the present invention relates to a corrosion-resistant member in which a diamond-like carbon film is formed on the surface of a base material made of aluminum or an aluminum alloy.
  • devices that handle foods and beverages may come into contact with water, salt water, acidic or alkaline foods and beverages, cleaning agents, disinfecting / disinfecting agents, and the like.
  • a corrosion-resistant member having corrosion resistance.
  • Such a corrosion-resistant member is generally made of stainless steel as described in, for example, Japanese Patent Application Laid-Open No. 2003-160839.
  • stainless steel is excellent in corrosion resistance, it has a high density among metal materials and tends to have high material costs and processing costs. For this reason, in the corrosion-resistant member made of stainless steel, there is a concern that the weight increases or the manufacturing cost increases. Further, stainless steel has low lubricity and is likely to be worn by adhesion. That is, since the slidability is low, it is difficult to use the corrosion-resistant member as a shaft member that slides against a mating member such as a bearing.
  • Japanese Patent Application Laid-Open No. 2001-191292 discloses a corrosion-resistant member that is improved in corrosion resistance and the like by forming an anodized film on the surface of a base material made of aluminum by anodizing or coating with a fluororesin. Proposed.
  • Aluminum has a lower density than stainless steel and can reduce material costs and processing costs. Therefore, by using aluminum instead of stainless steel, it is possible to reduce the weight and cost of the corrosion-resistant member.
  • the main object of the present invention is to provide a corrosion-resistant member capable of reducing the weight and cost, and improving the slidability and wear resistance without reducing the hardness of the base material. is there.
  • Another object of the present invention is to provide a corrosion-resistant member exhibiting excellent corrosion resistance against strong acids and strong alkalis.
  • a corrosion-resistant member which is a base material made of aluminum or an aluminum alloy, amorphous carbon (aC) or hydrogenated amorphous carbon (a-).
  • a corrosion-resistant member comprising a diamond-like carbon film made of C: H) and a coating material filled with at least open pores of the diamond-like carbon film and containing an epoxy resin.
  • the corrosion-resistant member according to the present invention has a lower density than stainless steel and the like, and is provided with a base material made of aluminum or aluminum alloy capable of reducing material costs and processing costs, thereby reducing weight and cost. Can be achieved.
  • a diamond-like carbon film (hereinafter also simply referred to as a DLC film) made of aC or aC: H is formed on the surface of the substrate.
  • aC and aC: H are ratios of sp 2 bonds to sp 3 bonds compared to tetrahedral amorphous carbon (ta-C) and hydrogenated tetrahedral amorphous carbon (ta-C: H). Is large and flexible.
  • the DLC film made of aC or aC: H can be satisfactorily bonded to the surface of a base material made of relatively soft aluminum or aluminum alloy with a desired thickness. Difficult to peel from.
  • this DLC film has high hardness and excellent lubricity. That is, the corrosion resistant member provided with the DLC film on the base material can exhibit excellent slidability and wear resistance over a long period of time.
  • the open pores which are pores communicating with the outside of the DLC film, are filled with a coating material.
  • the DLC film is sealed with the coating material.
  • This coating material contains an epoxy resin having higher corrosion resistance than other resin materials. Accordingly, as described above, the corrosion resistance of the corrosion-resistant member can be improved satisfactorily due to the fact that the DLC film is difficult to peel from the substrate.
  • this coating material can be formed by a so-called baking process in which a resin material containing an epoxy resin or a solvent is applied to a base material on which a DLC film is formed and heated.
  • This baking process can be performed, for example, at a temperature of 140 to 180 ° C. or lower, in other words, a temperature at which the hardness of the base material does not decrease. Therefore, for example, unlike the case where the fluororesin coating is provided by high-temperature baking, there is no concern that the base material becomes high temperature when the coating material is provided, and the hardness thereof decreases. For this reason, the corrosion-resistant member which can be used suitably as a machine part can be obtained.
  • this corrosion-resistant member by providing a base material made of aluminum or an aluminum alloy, the weight can be reduced and the cost can be reduced, and the DLC film formed on the surface of the base material is slidable. Also excellent in wear resistance. Furthermore, since the DLC film is sealed with the above-mentioned coating material, it is excellent not only against water and salt water, but also against sterilizing / disinfecting agents such as strong acids and strong alkalis and sodium hypochlorite. Shows corrosion resistance. Furthermore, the coating material can be provided without a high temperature that lowers the hardness of the substrate.
  • the coating material further contains titanium oxide and carbon black.
  • the corrosion resistance of the corrosion resistant member can be further improved, and in particular, the acid resistance can be significantly improved. Therefore, it is possible to obtain a corrosion-resistant member that exhibits excellent corrosion resistance even against strong acids.
  • the coating material preferably has a mass ratio of epoxy resin, titanium oxide, and carbon black of 5: 1: 1 to 20:10:10.
  • the corrosion resistance of the corrosion resistant member in particular, the acid resistance can be improved more effectively.
  • the coating material preferably further contains chromium oxide.
  • the corrosion resistance of the corrosion-resistant member can be further improved, and in particular, the alkali resistance can be remarkably improved. Therefore, it is possible to obtain a corrosion-resistant member that exhibits excellent corrosion resistance even against strong alkalis.
  • the coating material preferably has a mass ratio of 5: 1 to 20:10 between the epoxy resin and chromium oxide.
  • the corrosion resistance of the corrosion resistant member in particular, the alkali resistance can be improved more effectively.
  • the diamond-like carbon film includes an intermediate layer containing aluminum and amorphous carbon (aC) or hydrogenated amorphous carbon (aC: H) constituting the diamond-like carbon film. It is preferably formed on the surface of the substrate.
  • the intermediate layer constituted in this manner is well adapted to the base material because it contains aluminum which is a constituent metal of the base material, and contains aC or aC: H constituting the DLC film. Fits well with DLC film. For this reason, the intermediate layer is firmly bonded to both the base material and the DLC film. Through this intermediate layer, the DLC film can be firmly bonded to the substrate. As a result, it is possible to maintain excellent slidability and wear resistance based on the high hardness and high lubricity of the DLC film and excellent corrosion resistance based on the DLC film and coating material over a long period of time.
  • the coating material preferably forms a coating layer that covers at least a part of the diamond-like carbon film.
  • the acid or alkali reaches the DLC film or the base material because at least a part of the DLC film is covered with the coating layer. it can. Thereby, the corrosion resistance of the corrosion-resistant member can be further improved.
  • the surface of the diamond-like carbon film is exposed from the coating layer in a state where the open pores are filled with the coating material.
  • the sliding surface exposed by the DLC film can utilize the excellent slidability and wear resistance of the DLC film as it is. Can be suitably used.
  • the open pores of the DLC film on the sliding surface are filled with coating material, excellent corrosion resistance against water, salt water, strong acid, strong alkali, disinfectant / disinfectant (sodium hypochlorite), etc. is maintained. can do. That is, this corrosion-resistant member has excellent slidability and wear resistance, and corrosion resistance.
  • the sliding surface slides with a counterpart material and the material of the counterpart material is any one of stainless steel, polyacetal resin, and polytetrafluoroethylene (PTFE).
  • the wear of both the sliding surface and the mating member and the wear of the corrosion-resistant member can be effectively suppressed, and the durability of the corrosion-resistant member and the mating material can be improved.
  • the material of the counterpart material is stainless steel
  • the stainless steel is more preferably one of SUS304, SUS303, and SUS316.
  • fluorine-based grease is interposed between the sliding surface and the counterpart material.
  • the wear of the sliding surface and the mating member can be further satisfactorily suppressed by the fluorine-based grease.
  • This fluorine-based grease is excellent in corrosion resistance compared to other greases. Moreover, even if it contacts a drink or a foodstuff, it can be set as a safe structure by using the fluorine-type grease of the lubricant for food machinery.
  • the above corrosion-resistant member can be suitably used as a shaft member having the counterpart material as a bearing member. This is because the corrosion-resistant member has both the slidability and wear resistance of the sliding surface with respect to the bearing member and the corrosion resistance of the entire shaft member.
  • the above-mentioned corrosion-resistant member preferably constitutes an apparatus for handling beverages or foods.
  • the corrosion-resistant member is excellent in corrosion resistance, for example, even when it comes into contact with water, salt water, acidic or alkaline foods and beverages, cleaning agents, disinfecting / disinfecting agents, etc., corrosion can be effectively avoided.
  • both the DLC film and the coating material can be configured to be safe even when they come into contact with beverages or foods. Therefore, by configuring a device for handling beverages or foods with the corrosion-resistant member, it is possible to improve the corrosion resistance while maintaining the food safety of the device, and it is also possible to reduce the weight and cost. It becomes.
  • FIG. 1 is a schematic cross-sectional view of a main part of a corrosion-resistant member and a counterpart material according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the corrosion-resistant member of FIG.
  • the corrosion-resistant member according to the present invention can be suitably used as, for example, a device for handling beverages or foods.
  • the apparatus include machinery used when mixing, kneading, stirring, pulverizing, heating, drying, cooling, filling, packaging, storage, and the like of beverages or foods.
  • this corrosion-resistant member can be particularly suitably applied as a shaft member constituting a rotating shaft or a linear motion shaft of various processing machines used for, for example, kneading, stirring, and pulverizing beverages or foods. Therefore, in this embodiment, the corrosion-resistant member is a shaft member, and an example in which a sliding bearing device for food processing is configured together with a counterpart material that is a bearing member that slidably supports the corrosion-resistant member will be described.
  • the apparatus to which the corrosion-resistant member is applied is not limited to one that handles beverages or foods, and may not include a counterpart material.
  • Each of the corrosion-resistant member and the mating member is not limited to the shaft member and the bearing member.
  • the corrosion-resistant member may be a cylinder body, and the mating member may be a piston or the like.
  • the corrosion-resistant member 10 is a shaft member that constitutes a rotating shaft, and constitutes a sliding bearing device 14 together with a mating member 12 that is a bearing member.
  • the corrosion-resistant member 10 includes a base material 16, a diamond-like carbon film (DLC film) 18, and a coating material 20.
  • DLC film diamond-like carbon film
  • the base material 16 is a solid shaft made of aluminum or an aluminum alloy.
  • A2017, A6060, ADC12, A5052 etc. which are specified by Japanese Industrial Standard (JIS) are mentioned.
  • the DLC film 18 is formed on the surface of the base material 16 via the intermediate layer 22, and is made of amorphous carbon (aC) or hydrogenated amorphous carbon (aC: H).
  • aC and aC: H are ratios of sp 2 bonds to sp 3 bonds compared to tetrahedral amorphous carbon (ta-C) and hydrogenated tetrahedral amorphous carbon (ta-C: H). Is a large diamond-like carbon. Further, aC is composed only of carbon elements, and ac: H contains hydrogen.
  • the preferred thickness of the DLC film 18 is 1 to 4 ⁇ m, more preferably 2.5 to 3.5 ⁇ m.
  • the preferred Vickers hardness of the DLC film 18 is 1000 to 4000 HV, and more preferably 1400 to 3000 HV.
  • the intermediate layer 22 contains a metal (aluminum) constituting the base material 16 and aC or aC: H (hereinafter collectively referred to as DLC) constituting the DLC film 18.
  • DLC a metal (aluminum) constituting the base material 16 and aC or aC: H (hereinafter collectively referred to as DLC) constituting the DLC film 18.
  • the composition ratio of aluminum increases as it approaches the base material 16, while the composition ratio of DLC decreases. In other words, as the distance from the base material 16 decreases, the composition ratio of aluminum decreases. It is preferable that the composition ratio of DLC becomes large.
  • the intermediate layer 22 becomes an inclined layer in which the composition ratio of aluminum / DLC changes in the thickness direction, and the intermediate layer 22 can be more firmly bonded to each of the base material 16 and the DLC film 18.
  • the thickness of the intermediate layer 22 is not particularly limited, but it is sufficient to set it to about 0.01 to 1.0 ⁇ m.
  • FIG. 2 is an enlarged cross-sectional view of the main part of the corrosion-resistant member 10. As shown in FIG. 2, among the defects generated in the DLC film 18 and the intermediate layer 22, there are open pores 24 that communicate with the outside through the surface of the DLC film 18. The coating material 20 is filled in at least such open pores 24. That is, the DLC film 18 is sealed with the coating material 20.
  • the coating material 20 fills the open pores 24 and forms the coating layer 20a that covers the portion of the DLC film 18 excluding the sliding surface 26.
  • the sliding surface 26 is a portion that slides with the counterpart material 12.
  • the open pores 24 of the sliding surface 26 are also filled with the coating material 20.
  • the thickness of the coating layer 20a may be appropriately set according to the application, shape, usage environment, and the like of the corrosion resistant member 10. For example, when the thickness is 5 to 30 ⁇ m, the corrosion resistance of the corrosion resistant member 10 is good. It becomes possible to improve.
  • Coating material 20 contains an epoxy resin, and preferably further contains titanium oxide and carbon black, or chromium oxide.
  • the coating material 20 contains an epoxy resin, titanium oxide, and carbon black, these suitable mass ratios (epoxy resin: titanium oxide: carbon black) are 5: 1: 1 to 20:10:10. . Thereby, the corrosion resistance of the corrosion-resistant member 10, especially the acid resistance can be effectively improved.
  • the coating material 20 contains an epoxy resin and chromium oxide
  • the preferred mass ratio (epoxy resin: chromium oxide) is 5: 1 to 20:10.
  • the corrosion resistance of the corrosion-resistant member 10, especially the alkali resistance can be effectively improved.
  • the mating member 12 is a bearing member that holds the corrosion-resistant member 10 so as to be capable of rotating and sliding, and the inner peripheral surface of the mating material 12 and the sliding surface 26 of the corrosion-resistant member 10 slide.
  • the material of the counterpart material 12 is not particularly limited, but for example, stainless steel, polyacetal resin, polytetrafluoroethylene (PTFE), and the like are suitable.
  • the stainless steel used as the material of the counterpart material 12 is SUS304, SUS303, SUS316, or the like.
  • a fluorine grease 28 of a food machine lubricant is interposed between the sliding surface 26 of the corrosion-resistant member 10 and the inner peripheral surface of the mating member 12 so as to cover the sliding surface 26. It is preferable to do. In this case, the wear of the sliding surface 26 and the counterpart material 12 can be satisfactorily suppressed by the fluorine-based grease 28. Further, the fluorine-based grease 28 is excellent in corrosion resistance as compared with other greases, and is safe even when in contact with a beverage or food.
  • the corrosion resistant member 10 according to the present embodiment is basically configured as described above. Hereinafter, an example of the manufacturing method of the corrosion-resistant member 10 will be described.
  • the substrate 16 is subjected to plasma cleaning using argon ions or the like. Thereby, the adhesion of the intermediate layer 22 formed thereafter can be further strengthened.
  • the intermediate layer 22 and the DLC film 18 are formed on the base material 16 by sputtering using an inert gas such as argon and a graphite target.
  • middle layer 22 and the DLC film 18 can be formed into a film by not only said method but a well-known method.
  • various physical vapor deposition methods PVD
  • various chemical vapor deposition methods are adopted. (CVD) can be employed.
  • a coating process for coating the DLC film 18 with a resin material for forming the coating material 20 is performed.
  • the resin material for forming the coating material 20 that does not contain any of titanium oxide, carbon black, and chromium oxide include those containing 3% by mass of an epoxy resin and the remaining solvent.
  • the resin material for forming the coating material 20 containing titanium oxide and carbon black As a suitable example of the resin material for forming the coating material 20 containing titanium oxide and carbon black, 5 to 20% by mass of an epoxy resin, 1 to 10% by mass of titanium oxide, and 1 to 10%. What contains the carbon black of a mass% and the remainder solvent is mentioned.
  • the resin material for forming the coating material 20 containing chromium oxide contains 5 to 20% by mass of an epoxy resin, 1 to 10% by mass of chromium oxide, and the remaining solvent. To do.
  • the resin material is filled in the open pores 24 of the DLC film 18, and a coating film that covers the entire DLC film 18 is formed by the resin material.
  • known coating methods such as brush coating, roller coating, spray coating, bar coater, roll coater, baking coating, and dip coating can be employed.
  • the resin material coated on the base material 16 is heated at, for example, a temperature of 180 ° C. or less to perform a baking process. Thereby, the resin material is cured and the coating material 20 is formed. That is, the coating material 20 is filled in the open pores 24 of the DLC film 18, and the entire DLC film 18 is covered with the coating layer 20a that is a cured coating film.
  • the coating material 20 can be formed by a baking process at a relatively low temperature without lowering the hardness of the base material. Therefore, for example, unlike the case where the fluororesin coating is provided by high-temperature baking, there is no concern that the base material 16 becomes high temperature when the coating material 20 is provided, and the hardness thereof decreases.
  • a removal step of removing the coating material 20 at the site that becomes the sliding surface 26 of the corrosion-resistant member 10 is performed to expose the DLC film 18 from the coating layer 20a.
  • the removing step can be performed using a known method such as cutting or polishing.
  • the corrosion-resistant member 10 is obtained.
  • the sliding bearing device 14 is obtained by assembling the mating member 12 to the corrosion-resistant member 10 so that the inner peripheral surface of the mating member 12 slides on the sliding surface 26.
  • the corrosion-resistant member 10 includes the base material 16 made of aluminum or an aluminum alloy.
  • Aluminum or aluminum alloy has a lower density than stainless steel and the like, and can reduce material costs and processing costs. For this reason, by providing said base material 16, it becomes possible to aim at the weight reduction of the corrosion-resistant member 10, and cost reduction.
  • the DLC film 18 covering the substrate 16 is made of aC or aC: H having a large ratio of sp 2 bonds to sp 3 bonds, so that the DLC film 18 is rich in flexibility. Therefore, the DLC film 18 can be formed with a desired thickness even on the surface of the base material 16 made of relatively soft aluminum or aluminum alloy, and the base material 16 and the DLC film 18 can be bonded well. can do.
  • the DLC film 18 exhibits good slidability based on a low coefficient of friction, and also exhibits good wear resistance based on high hardness. Therefore, by providing such a DLC film 18, the slidability and wear resistance of the corrosion-resistant member 10 can be improved satisfactorily.
  • An intermediate layer 22 containing aluminum and aC or aC: H is interposed between the DLC film 18 and the substrate 16. Since the intermediate layer 22 configured in this manner includes the constituent metals of the base material 16, the intermediate layer 22 conforms well to the base material 16 and includes aC or aC: H constituting the DLC film 18. Furthermore, it is well adapted to the DLC film 18. For this reason, the intermediate layer 22 is firmly bonded to both the base material 16 and the DLC film 18. Through the intermediate layer 22, the DLC film 18 can be firmly bonded to the base material 16.
  • the DLC film 18 and the intermediate layer 22 are sealed with a coating material 20, and the portion of the DLC film 18 excluding the sliding surface 26 is further covered with a coating layer 20 a made of the coating material 20.
  • the coating material 20 contains an epoxy resin having higher corrosion resistance than other resin materials.
  • the corrosion-resistant member 10 By sealing with such a coating material 20, even when acid, alkali, or the like is in contact, it can be prevented that they reach the substrate 16 through the open pores 24. In addition, at the portion covered with the coating layer 20a of the corrosion-resistant member 10, it is possible to more effectively avoid acid, alkali, or the like from reaching the DLC film 18 or the base material 16. As a result, the corrosion-resistant member 10 exhibits excellent corrosion resistance not only against water and salt water, but also against strong acids and strong alkalis and sterilizing / disinfecting agents such as sodium hypochlorite.
  • the corrosion resistance of the corrosion-resistant member 10 can be further improved, and particularly the acid resistance can be remarkably improved. Therefore, it is possible to obtain the corrosion-resistant member 10 that exhibits excellent corrosion resistance against strong acids.
  • the corrosion resistance of the corrosion-resistant member 10 can be further improved, and in particular, the alkali resistance can be remarkably improved. Therefore, it is possible to obtain the corrosion-resistant member 10 exhibiting excellent corrosion resistance against strong alkalis.
  • the corrosion-resistant member 10 can be improved by providing the sliding surface 26.
  • the coating material 20 is also filled in the open pores 24 of the DLC film 18 on the sliding surface 26, excellent corrosion resistance can be maintained even if the sliding surface 26 is provided. That is, the corrosion-resistant member 10 can have both excellent slidability and wear resistance and corrosion resistance.
  • the intermediate layer 22 is provided, but the intermediate layer 22 may not be provided.
  • the sliding surface 26 is provided.
  • the entire DLC film 18 may be covered with the coating layer 20a without providing the sliding surface 26.
  • the corrosion-resistant member 10 can be suitably used for applications other than sliding members as members that require high corrosion resistance.
  • the entire DLC film 18 may be exposed without providing the coating layer 20 a on the corrosion-resistant member 10. In this case, the entire corrosion-resistant member 10 exhibits excellent slidability and wear resistance.
  • Example 1 As the base material 16, a solid shaft body made of A6061-T6, having a diameter of 10 mm and a length of 50 mm, was subjected to mirror polishing. The intermediate layer 22 and the DLC film 18 were formed on the base material 16 so as to have a total thickness of 2.0 to 2.2 ⁇ m. The average Vickers hardness on the surface of the DLC film 18 was 1350 HV. In addition, average Vickers hardness is measured according to the test method of JIS Z 2244, and is a three-point average value when the load is 10 gf. The same applies to the average Vickers hardness shown below.
  • epoxy resin is 3.0% by mass
  • xylene is 17.0% by mass
  • ethylbenzene is 11.0% by mass
  • n-butanol is 5.0 to 10.0% by mass.
  • 1.0-5.0% by mass of isobotanol 1.0-5.0% by mass of ethylene glycol monobutyl ether, 0.1-1.0% by mass of methanol, 0.8% by mass of formaldehyde, melamine resin Containing 16.0% by mass of alkyd resin and 37.0% by mass of alkyd resin.
  • the resin member is applied to the DLC film 18 and subjected to a baking process, whereby the open pores 24 of the DLC film 18 are sealed with the coating material 20 and the thickness of the DLC film 18 is covered so as to cover the entire DLC film 18.
  • a corrosion resistant member 10 was obtained by forming a coating layer 20a having a thickness of 0.0 to 26.0 ⁇ m. This is the test member of Example 1.
  • the average Vickers hardness of the coating layer 20a surface of Example 1 was 12HV.
  • Example 2 As a resin material for forming the coating material 20, epoxy resin is 5 to 20% by mass, titanium oxide is 1 to 10% by mass, carbon black is 1 to 10% by mass, xylene is 5 to 15% by mass, and methyl ethyl ketone is 15%. -25% by mass, 2-ethoxyethyl acetate 5-15% by mass, toluene 10-20% by mass, ethylene glycol monobutyl ether 1-10% by mass, and coating layer 20a
  • the corrosion-resistant member 10 was obtained in the same manner as in Example 1 except that the thickness of was 21.0 to 25.0 ⁇ m.
  • Example 3 As resin materials, 5-20% by mass of epoxy resin, 1-10% by mass of chromic oxide, 15-25% by mass of 1,2-dichloroethane, 5-15% by mass of methyl isobutyl ketone, 5% of methyl ethyl ketone -15% by weight, diacetone alcohol 10-20% by weight, ethanol containing 10-20% by weight, and the thickness of the coating layer 20a was 25.0-30.0 ⁇ m Except for this, the corrosion-resistant member 10 was obtained in the same manner as in Example 1. This is the test member of Example 3. That is, the test member of Example 3 includes the coating material 20 containing chromium oxide. In addition, the average Vickers hardness of the coating layer 20a surface of Example 3 was 20HV.
  • Example 4 A corrosion-resistant member 10 obtained in the same manner as in Example 1 except that A2017 is selected as the material of the base material 16 is used as a test member in Example 4.
  • a corrosion-resistant member 10 obtained in the same manner as in Example 2 except that A2017 is selected as the material of the base material 16 is used as a test member of Example 5.
  • a corrosion-resistant member 10 obtained in the same manner as the test member of Example 2 is used as the test member of Example 6 except that ADC 12 is selected as the material of the base material 16.
  • Comparative Example 1 For comparison, a test member made of only the same base material 16 as in Example 1 was used as Comparative Example 1. That is, the test member of Comparative Example 1 does not include any of the intermediate layer 22, the DLC film 18, and the coating material 20.
  • Comparative Example 2 A test member produced in the same manner as in Example 1 except that the coating material 20 was not provided was designated as Comparative Example 2. That is, in the test member of Comparative Example 2, the DLC film 18 is not sealed with the coating material 20.
  • Comparative Example 3 A test member in which the same base material 16 as in Example 1 was anodized to form an anodized film (Al 2 O 3 ) having a thickness of 13.0 to 16.0 ⁇ m was defined as Comparative Example 3.
  • the anodized film of the test member of Comparative Example 3 was sealed and coated with the same coating material 20 as in Example 1 to form a coating layer 20a having a thickness of 22.0 to 26.0 ⁇ m.
  • the test member of Comparative Example 4 was obtained.
  • a test member of Comparative Example 5 was obtained in the same manner as Comparative Example 4 except that the same coating material 20 as in Example 2 was selected.
  • the average Vickers hardness on the surface of the anodized film in the test members of Comparative Examples 3 to 5 was 320 HV.
  • Comparative Example 6 A test member produced in the same manner as in Example 4 except that the coating material 20 was not provided was designated as Comparative Example 6. That is, in the test member of Comparative Example 6, the DLC film 18 is not sealed with the coating material 20.
  • Corrosion resistance evaluation tests were performed using the test members of Examples 1 to 6 and Comparative Examples 1 to 6 described above and seven different liquids A to G.
  • the test members of Examples 1 to 3 and Comparative Examples 1 to 3 and 5 were subjected to a corrosion resistance evaluation test for liquid A (pH 3.5) which is a Pilsner beer.
  • liquid A pH 3.5
  • the amount of change in weight before and after the entire test member was immersed in liquid A at room temperature for 30 days was determined. It can be determined that the smaller the change in weight, the more the corrosion of the test member is suppressed and the higher the corrosion resistance.
  • Liquid B is a 3.0% by mass aqueous solution of a food-related acidic detergent containing 35.0% by mass of phosphoric acid as a main component.
  • Liquid C is a 3.0% by mass aqueous solution of a food-related alkaline detergent containing 15.0% by mass of sodium hydroxide as a main component.
  • test members of Examples 1 to 6 having both the DLC film 18 and the coating material 20 are the test members of the comparative example 1 consisting of only the base material 16 and the DLC film for all liquids A to G. It turned out that the corrosion resistance superior to the test member of the comparative examples 2 and 6 which consists only of 18 and the test member of the comparative example 3 which consists only of an anodic oxide film is shown.
  • test members of Examples 2, 5, and 6 including the coating material 20 containing the epoxy resin, titanium oxide, and carbon black exhibit excellent corrosion resistance against all the liquids A to G, but are strong acids. It was found that A and B exhibit particularly excellent corrosion resistance.
  • test member of Example 3 including the coating material 20 containing an epoxy resin and chromium oxide exhibits excellent corrosion resistance against all liquids, but is particularly excellent against liquids C to F which are strong alkalis. It was found to show corrosion resistance.
  • the corrosion-resistant member 10 includes the DLC film 18 sealed and covered with the coating material 20 containing the epoxy resin, thereby sterilizing strong acid and strong alkali, sodium hypochlorite, and the like. -Excellent corrosion resistance against disinfectants.
  • the corrosion resistance can be improved as compared with the case where only the epoxy resin is contained, and in particular, the acid resistance can be remarkably improved.
  • the corrosion resistance can be improved as compared with the case where only the epoxy resin is contained, and in particular, the alkali resistance can be remarkably improved.
  • the Vickers hardness of the DLC film 18 of Examples 1 to 6 is 1350 HV, which is significantly higher than the Vickers hardness 320 HV of the anodic oxide films of Comparative Examples 3 to 5.
  • the corrosion-resistant member 10 provided with the DLC film 18 is excellent also in slidability and abrasion resistance.
  • test members of Comparative Examples 4 and 5 including the anodized film sealed with the coating material 20 it is possible to improve the corrosion resistance as compared with the test member of Comparative Example 1 including no film. Although there is a lack of slidability and wear resistance.
  • Example 5 except that the base material 16 has a disk shape with a diameter of 40 mm and a thickness of 7 mm, and the sliding surface 26 is formed by removing the coating layer 20a on the end surface.
  • the corrosion-resistant member 10 was obtained and used as a test member.
  • the frictional wear characteristic evaluation between the sliding surface 26 and a mating material made of a plurality of types of materials was performed by a ball-on-disk method using the test member as a disk and the mating material as a pin.
  • the load, linear velocity, rotational speed, and sliding distance were set to 1 kgf, 1000 mm / second, 660 rpm, and 1 km, respectively.
  • the counterpart material was a solid shaft having a diameter of 10 mm.
  • the material of this counterpart is stainless steel (SUS303), polyacetal resin (POM), polytetrafluoroethylene (PTFE), high silicon alloy (NH41), die casting aluminum alloy (ADC12), lead bronze casting (LBC) Brass (C3604), cast aluminum bronze (CAC703), carbon steel for machine structure (S45C) were selected.
  • SUS303 stainless steel
  • POM polyacetal resin
  • PTFE polytetrafluoroethylene
  • NH41 high silicon alloy
  • ADC12 die casting aluminum alloy
  • LBC lead bronze casting
  • CAC703 cast aluminum bronze
  • carbon steel for machine structure S45C
  • the material of the counterpart material 12 is any one of stainless steel, polyacetal resin (POM), and polytetrafluoroethylene (PTFE). Both wears can be effectively suppressed, and the durability of the corrosion-resistant member 10 and the counterpart material 12 can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Cookers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

耐食部材(10)は、アルミニウム又はアルミニウム合金からなる基材(16)と、基材(16)の表面に形成されるアモルファスカーボン(a-C)又は水素化アモルファスカーボン(a-C:H)からなるダイヤモンドライクカーボン皮膜(18)と、少なくともダイヤモンドライクカーボン皮膜(18)の開気孔(24)に充填されエポキシ樹脂を含有するコーティング材(20)とを備える。

Description

耐食部材
 本発明は、アルミニウム又はアルミニウム合金からなる基材の表面にダイヤモンドライクカーボン皮膜が形成された耐食部材に関する。
 例えば、食品や飲料を扱う装置等は、水、塩水、酸性又はアルカリ性の食品や飲料、洗浄剤、殺菌・消毒剤等と接触する場合がある。このような環境下においても腐食が生じることを回避するため、上記の装置等は、耐食性を有する耐食部材を用いて構成される。このような耐食部材としては、例えば、特開2003-160839号公報に記載されるように、ステンレス鋼からなるものが一般的である。
 しかしながら、ステンレス鋼は耐食性に優れるものの、金属材料のなかでも密度が大きく、しかも、材料費や加工費が高い傾向にある。このため、ステンレス鋼からなる耐食部材では、重量が増大してしまったり、製造コストが嵩んだりする懸念がある。さらに、ステンレス鋼は、潤滑性が低く凝着による摩耗等が生じ易い。すなわち、摺動性が低いため、耐食部材を、軸受等の相手材と摺動する軸部材等として用いることも困難である。
 そこで、特開2001-191292号公報には、アルミニウムからなる基材の表面に、アルマイト処理により陽極酸化皮膜を形成することや、フッ素樹脂コーティングを行うことで耐食性等の向上を図った耐食部材が提案されている。アルミニウムは、ステンレス鋼に比して密度が小さく、材料費や加工費を削減することが可能である。このため、ステンレス鋼に代えてアルミニウムを用いることで、耐食部材の軽量化や、低コスト化を図ることが可能になる。
 上記のように、基材に陽極酸化皮膜やフッ素樹脂コーティングを設けた耐食部材では、強酸や強アルカリ等が接触した場合に、基材の腐食を十分に抑制することが困難であり、耐食性が不足する懸念がある。また、基材に陽極酸化皮膜やフッ素樹脂コーティングを設けても、耐食部材の摺動性や耐摩耗性を十分に向上させることは困難である。さらに、基材に対する高温焼き付けによってフッ素樹脂コーティングを設ける場合、基材が高温となって、その硬度が低下してしまう懸念がある。
 本発明の主たる目的は、基材の硬度を低下させることなく、軽量化及び低コスト化を図ることや、摺動性及び耐摩耗性の向上を図ることが可能な耐食部材を提供することにある。
 本発明の別の目的は、強酸や強アルカリ等に対して優れた耐食性を示す耐食部材を提供することにある。
 本発明の一実施形態によれば、耐食部材であって、アルミニウム又はアルミニウム合金からなる基材と、前記基材の表面に形成されるアモルファスカーボン(a-C)又は水素化アモルファスカーボン(a-C:H)からなるダイヤモンドライクカーボン皮膜と、少なくとも前記ダイヤモンドライクカーボン皮膜の開気孔に充填されエポキシ樹脂を含有するコーティング材と、を備える耐食部材が提供される。
 本発明に係る耐食部材は、ステンレス鋼等に比して密度が小さく、材料費や加工費を削減することが可能なアルミニウム又はアルミニウム合金からなる基材を備えることで、軽量化や低コスト化を図ることができる。
 この基材の表面には、a-C又はa-C:Hからなるダイヤモンドライクカーボン皮膜(以下、単にDLC皮膜ともいう)が形成されている。a-C及びa-C:Hは、テトラへドラルアモルファスカーボン(ta-C)及び水素化テトラヘドラルアモルファスカーボン(ta-C:H)に比して、sp3結合に対するsp2結合の割合が大きく、柔軟性が高い。
 このため、a-C又はa-C:HからなるDLC皮膜は、比較的柔らかいアルミニウム又はアルミニウム合金からなる基材の表面に対しても、所望の厚さで良好に接合することでき、基材から剥離し難い。また、このDLC皮膜は、高硬度であり、潤滑性にも優れる。つまり、このDLC皮膜を基材に設けた耐食部材では、優れた摺動性及び耐摩耗性を長期にわたって良好に示すことができる。
 また、DLC皮膜の外部に通じる気孔である開気孔には、コーティング材が充填されている。換言すると、DLC皮膜はコーティング材によって封孔されている。このコーティング材は、他の樹脂材料等に比して、耐食性が高いエポキシ樹脂を含む。従って、上記の通り、DLC皮膜が基材から剥離し難いことも相俟って、耐食部材の耐食性を良好に向上させることが可能である。
 さらに、このコーティング材は、DLC皮膜が形成された基材に対して、エポキシ樹脂や溶媒を含む樹脂材料を塗布して加熱する、いわゆる焼き付け処理によって形成することができる。この焼き付け処理は、例えば、140~180℃以下の温度、換言すると、基材の硬度が低下することのない温度で行うことが可能である。従って、例えば、高温焼き付けによってフッ素樹脂コーティングを設ける場合とは異なり、コーティング材を設ける際に基材が高温となって、その硬度が低下してしまうような懸念がない。このため、機械部品として好適に用いることが可能な耐食部材を得ることができる。
 以上から、この耐食部材では、アルミニウム又はアルミニウム合金からなる基材を備えることで、軽量化や低コスト化を図ることができ、しかも、該基材の表面に形成されたDLC皮膜によって摺動性及び耐摩耗性にも優れる。さらに、DLC皮膜が、上記のコーティング材により封孔されるため、水や塩水に対してのみならず、強酸及び強アルカリや、次亜塩素酸ナトリウム等の殺菌・消毒剤に対しても優れた耐食性を示す。さらにまた、このコーティング材は、基材の硬度が低下するような高温とすることなく設けることができる。
 上記の耐食部材において、前記コーティング材は、酸化チタンと、カーボンブラックとをさらに含有することが好ましい。この場合、耐食部材の耐食性のさらなる向上を図ることができ、特に耐酸性を顕著に向上させることができる。従って、強酸に対しても優れた耐食性を示す耐食部材を得ることができる。
 上記の耐食部材において、前記コーティング材は、エポキシ樹脂と、酸化チタンと、カーボンブラックとの質量比が、5:1:1~20:10:10であることが好ましい。この場合、耐食部材の耐食性、なかでも耐酸性を一層効果的に向上させることができる。
 上記の耐食部材において、前記コーティング材は、酸化クロムをさらに含有することが好ましい。この場合、耐食部材の耐食性のさらなる向上を図ることができ、特に耐アルカリ性を顕著に向上させることができる。従って、強アルカリに対しても優れた耐食性を示す耐食部材を得ることができる。
 上記の耐食部材において、前記コーティング材は、エポキシ樹脂と、酸化クロムとの質量比が、5:1~20:10であることが好ましい。この場合、耐食部材の耐食性、なかでも耐アルカリ性を一層効果的に向上させることができる。
 上記の耐食部材において、前記ダイヤモンドライクカーボン皮膜は、アルミニウムと、前記ダイヤモンドライクカーボン皮膜を構成するアモルファスカーボン(a-C)又は水素化アモルファスカーボン(a-C:H)とを含有する中間層を介して前記基材の表面に形成されることが好ましい。
 このように構成される中間層は、基材の構成金属であるアルミニウムを含むために基材に対して良好になじみ、且つDLC皮膜を構成するa-C又はa-C:Hを含むためにDLC皮膜に対しても良好になじむ。このため、中間層は、基材及びDLC皮膜の双方に対して堅牢に接合する。この中間層を介することで、DLC皮膜を基材に堅牢に接合することができる。その結果、DLC皮膜の高硬度や高潤滑性に基づく優れた摺動性及び耐摩耗性や、DLC皮膜及びコーティング材に基づく優れた耐食性を、長期にわたって良好に維持することが可能になる。
 上記の耐食部材において、前記コーティング材は、前記ダイヤモンドライクカーボン皮膜の少なくとも一部を覆うコーティング層を形成することが好ましい。この場合、耐食部材に酸やアルカリが接触しても、DLC皮膜の少なくとも一部がコーティング層によって覆われている分、該酸やアルカリがDLC皮膜ないしは基材まで到達することを効果的に回避できる。これによって、耐食部材の耐食性を一層良好に向上させることができる。
 上記の耐食部材において、前記開気孔に前記コーティング材が充填された状態で、前記ダイヤモンドライクカーボン皮膜の表面を、前記コーティング層から露呈させた摺動面を有することが好ましい。このように、DLC皮膜が露呈する摺動面では、該DLC皮膜の優れた摺動性及び耐摩耗性をそのまま活かすことができるため、該摺動面を設けることにより、耐食部材を摺動部材として好適に用いることが可能になる。この際、摺動面におけるDLC皮膜の開気孔にもコーティング材が充填されているため、水、塩水、強酸、強アルカリ、殺菌・消毒剤(次亜塩素酸ナトリウム)等に対する優れた耐食性を維持することができる。すなわち、この耐食部材は、優れた摺動性及び耐摩耗性と、耐食性とを兼ね備える。
 上記の耐食部材において、前記摺動面は、相手材と摺動し、前記相手材の材料は、ステンレス鋼、ポリアセタール樹脂、ポリテトラフルオロエチレン(PTFE)の何れかであることが好ましい。この場合、摺動面及び相手材の両方の摩耗や、耐食部材の摩耗を効果的に抑制することができ、耐食部材や相手材の耐久性を向上させることができる。前記相手材の材料をステンレス鋼とした場合、該ステンレス鋼は、SUS304、SUS303、SUS316の何れかであることが一層好ましい。
 上記の耐食部材において、前記摺動面と前記相手材との間に、フッ素系グリスが介在することが好ましい。この場合、フッ素系グリスによって、摺動面及び相手材の摩耗をさらに良好に抑制することができる。このフッ素系グリスは、他のグリスに比して耐食性に優れる。また、食品機械用潤滑剤のフッ素系グリスを用いることで、たとえ、飲料又は食品に接触しても安全な構成とすることができる。
 上記の耐食部材は、前記相手材を軸受部材とする軸部材として好適に用いることができる。この耐食部材は、軸受部材に対する摺動面の摺動性及び耐摩耗性と、軸部材全体の耐食性とを兼ね備えるためである。
 上記の耐食部材は、飲料又は食品を扱う装置を構成することが好ましい。上記の通り、耐食部材は耐食性に優れるため、例えば、水、塩水、酸性又はアルカリ性の食品や飲料、洗浄剤、殺菌・消毒剤等と接触しても、腐食することを効果的に回避できる。また、DLC皮膜及びコーティング材の何れも、飲料又は食品に接触しても安全な構成とすることができる。従って、耐食部材によって、飲料又は食品を扱う装置を構成することによって、該装置の食品安全性を維持しつつ、耐食性を向上させることができ、しかも、軽量化や低コスト化を図ることも可能となる。
 添付した図面と協同する次の好適な実施の形態例の説明から、上記の目的、特徴及び利点がより明らかとなるだろう。
図1は、本発明の実施形態に係る耐食部材と相手材との要部概略断面図である。 図2は、図1の耐食部材の要部拡大断面図である。
 以下、本発明に係る耐食部材につき好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
 本発明に係る耐食部材は、例えば、飲料又は食品を扱う装置を構成するものとして好適に用いることができる。なお、前記装置としては、例えば、飲料又は食品の原料や製品を混合、混練、撹拌、粉砕、加熱、乾燥、冷却、充填、包装、貯蔵等する際に用いられる機械類が挙げられる。
 また、この耐食部材は、例えば、飲料又は食品の混練、撹拌、粉砕等に使用される各種加工機械の回転軸又は直動軸を構成する軸部材として特に好適に適用することができる。そこで、本実施形態では、耐食部材は軸部材であり、該耐食部材を摺動自在に支持する軸受部材である相手材とともに、食品加工用のすべり軸受け装置を構成する例について説明する。しかしながら、耐食部材が適用される装置は、飲料又は食品を扱うものに限定されず、相手材を備えていなくてもよい。また、耐食部材及び相手材のそれぞれは、軸部材及び軸受部材であることに限定されず、例えば、耐食部材がシリンダボディであり、相手部材がピストン等であってもよい。
 図1に示すように、本実施形態に係る耐食部材10は、回転軸を構成する軸部材であり、軸受部材である相手材12とともにすべり軸受装置14を構成する。耐食部材10は、基材16と、ダイヤモンドライクカーボン皮膜(DLC皮膜)18と、コーティング材20とを備える。
 基材16は、アルミニウム又はアルミニウム合金からなる中実軸である。なお、アルミニウム合金の好適な例としては、日本工業規格(JIS)に規格されるA2017、A6060、ADC12、A5052等が挙げられる。
 DLC皮膜18は、中間層22を介して基材16の表面に形成され、アモルファスカーボン(a-C)又は水素化アモルファスカーボン(a-C:H)からなる。a-C及びa-C:Hは、テトラへドラルアモルファスカーボン(ta-C)及び水素化テトラヘドラルアモルファスカーボン(ta-C:H)に比して、sp3結合に対するsp2結合の割合が大きいダイヤモンドライクカーボンである。また、a-Cは炭素元素のみからなり、a-c:Hは水素を含有する。
 また、DLC皮膜18の好ましい厚さは1~4μmであり、一層好ましくは2.5~3.5μmである。DLC皮膜18の好ましいビッカース硬さは1000~4000HVであり、一層好ましくは1400~3000HVである。DLC皮膜18の厚さ及びビッカース硬さのそれぞれを上記の範囲に設定することにより、後述するように、耐食部材10の摺動性及び耐摩耗性や、耐食性を良好に向上させることが可能になる。
 中間層22は、基材16を構成する金属(アルミニウム)と、DLC皮膜18を構成するa-C又はa-C:H(以下、これらを総称してDLCともいう)とを含有する。中間層22は、基材16に近接するにつれてアルミニウムの組成比が大きくなる一方でDLCの組成比が小さくなること、換言すると、基材16から離間するにつれ、アルミニウムの組成比が小さくなる一方でDLCの組成比が大きくなることが好ましい。この場合、中間層22は、その厚み方向においてアルミニウム/DLCの組成比が変化する傾斜層となり、基材16及びDLC皮膜18の各々と中間層22とをより堅牢に接合することが可能になる。中間層22の厚さは、特に限定されるものではないが、0.01~1.0μm程度に設定すれば十分である。
 図2は、耐食部材10の要部拡大断面図である。図2に示すように、DLC皮膜18及び中間層22に生じる欠陥のなかには、DLC皮膜18の表面を介して外部に通じる開気孔24が存在する。コーティング材20は、少なくとも、このような開気孔24に充填されている。つまり、DLC皮膜18はコーティング材20によって封孔されている。
 本実施形態では、コーティング材20は、開気孔24に充填されるとともに、DLC皮膜18の摺動面26を除く部位を被覆するコーティング層20aを形成する。なお、摺動面26は、後述するように、相手材12と摺動する部位であり、勿論、該摺動面26の開気孔24にもコーティング材20が充填されている。コーティング層20aの厚さは、耐食部材10の用途や形状、使用環境等に応じて適宜設定すればよいが、例えば、該厚さを5~30μmとした場合に、耐食部材10の耐食性を良好に向上させることが可能になる。
 コーティング材20は、エポキシ樹脂を含有し、酸化チタン及びカーボンブラック、又は酸化クロムをさらに含有することが好ましい。コーティング材20がエポキシ樹脂と、酸化チタン及びカーボンブラックとを含有する場合、これらの好適な質量比(エポキシ樹脂:酸化チタン:カーボンブラック)は、5:1:1~20:10:10である。これによって、耐食部材10の耐食性、なかでも耐酸性を効果的に向上させることができる。
 一方、コーティング材20がエポキシ樹脂及び酸化クロムを含有する場合、これらの好適な質量比(エポキシ樹脂:酸化クロム)は、5:1~20:10である。この場合、耐食部材10の耐食性、なかでも耐アルカリ性を効果的に向上させることができる。
 図1に示すように、相手材12は、耐食部材10を回転摺動可能に保持する軸受部材であり、該相手材12の内周面と耐食部材10の摺動面26とが摺動する。相手材12の材料は、特に限定されるものではないが、例えば、ステンレス鋼、ポリアセタール樹脂、ポリテトラフルオロエチレン(PTFE)等が好適である。また、相手材12の材料となるステンレス鋼は、SUS304、SUS303、SUS316等とすることが好ましい。これらの材料を選定することによって、後述するように、摺動面26及び相手材12の両方の摩耗を効果的に抑制することができ、耐食部材10及び相手材12の耐久性を一層向上させることができる。
 図1に示すように、耐食部材10の摺動面26と相手材12の内周面との間には、該摺動面26を覆うように食品機械用潤滑剤のフッ素系グリス28が介在することが好ましい。この場合、フッ素系グリス28によって摺動面26及び相手材12の摩耗を良好に抑制できる。また、このフッ素系グリス28は、他のグリスに比して耐食性に優れるとともに、飲料又は食品に接触しても安全である。
 本実施形態に係る耐食部材10は、基本的には上記のように構成される。以下、耐食部材10の製造方法の一例について説明する。
 先ず、基材16に対して、アルゴンイオン等を用いたプラズマ洗浄を行う。これによって、この後に形成される中間層22の密着を一層強固にすることができる。次に、アルゴン等の不活性ガスと、グラファイトターゲットとを用いたスパッタリングによって、基材16に中間層22及びDLC皮膜18を形成する。
 なお、中間層22及びDLC皮膜18は、上記の方法に限らず、公知の方法によって成膜することができる。例えば、a-CからなるDLC皮膜18を形成する場合は種々の物理蒸着法(PVD)を採用することができ、a-C:HからなるDLC皮膜18を形成する場合は種々の化学蒸着法(CVD)を採用することができる。
 次に、コーティング材20を形成するための樹脂材料をDLC皮膜18に塗装する塗装工程を行う。酸化チタン及びカーボンブラック、酸化クロムの何れも含有しないコーティング材20を形成するための樹脂材料の好適な例としては、3質量%のエポキシ樹脂と、残部の溶媒とを含有するものが挙げられる。
 また、酸化チタン及びカーボンブラックを含有するコーティング材20を形成するための樹脂材料の好適な例としては、5~20質量%のエポキシ樹脂と、1~10質量%の酸化チタンと、1~10質量%のカーボンブラックと、残部の溶媒とを含有するものが挙げられる。
 さらに、酸化クロムを含有するコーティング材20を形成するための樹脂材料の好適な例としては、5~20質量%のエポキシ樹脂と、1~10質量%の酸化クロムと、残部の溶媒とを含有するものが挙げられる。
 塗装工程によって、DLC皮膜18の開気孔24に前記樹脂材料を充填するとともに、該樹脂材料によってDLC皮膜18の全体を覆う塗装膜を形成する。なお、塗装工程では、ハケ塗り、ローラー塗り、吹付塗装、バーコーター、ロールコーター、焼付塗装、浸漬塗り等、公知の塗装方法を採用することができる。
 次に、基材16に塗装した樹脂材料を、例えば、180℃以下の温度で加熱して、焼き付け処理を行う。これにより、樹脂材料が硬化してコーティング材20が形成される。すなわち、DLC皮膜18の開気孔24内にコーティング材20が充填されるとともに、硬化した塗装膜であるコーティング層20aによりDLC皮膜18の全体が覆われる。
 このように、コーティング材20は、基材の硬度が低下することのない比較的低い温度での焼き付け処理によって形成することが可能である。従って、例えば、高温焼き付けによってフッ素樹脂コーティングを設ける場合とは異なり、コーティング材20を設ける際に基材16が高温となって、その硬度が低下してしまう懸念がない。
 次に、耐食部材10の摺動面26となる部位のコーティング材20を除去する除去工程を行い、コーティング層20aからDLC皮膜18を露呈させる。除去工程は、切削、研磨等の公知の手法を用いて行うことができる。
 これによって、耐食部材10が得られる。そして、相手材12の内周面が摺動面26と摺動するように耐食部材10に対して相手材12を組み付けることですべり軸受装置14が得られるに至る。
 上記したように、耐食部材10は、アルミニウム又はアルミニウム合金からなる基材16を備える。アルミニウム又はアルミニウム合金は、ステンレス鋼等に比して密度が小さく、材料費や加工費を削減することが可能である。このため、上記の基材16を備えることで、耐食部材10の軽量化や、低コスト化を図ることが可能になる。
 基材16を覆うDLC皮膜18は、sp3結合に対するsp2結合の割合が大きいa-C又はa-C:Hからなるので柔軟性に富む。従って、比較的軟質なアルミニウム又はアルミニウム合金からなる基材16の表面に対しても、DLC皮膜18を所望の厚さで形成することができ、且つ基材16とDLC皮膜18とを良好に接合することができる。また、DLC皮膜18は、摩擦係数が低いことに基づき良好な摺動性を示すとともに、高硬度であることに基づき良好な耐摩耗性を示す。従って、このようなDLC皮膜18を設けることにより、耐食部材10の摺動性及び耐摩耗性を良好に向上させることができる。
 DLC皮膜18と基材16との間には、アルミニウムと、a-C又はa-C:Hとを含有する中間層22が介在する。このように構成される中間層22は、基材16の構成金属を含むために基材16に対して良好になじみ、且つDLC皮膜18を構成するa-C又はa-C:Hを含むためにDLC皮膜18に対しても良好になじむ。このため、中間層22は、基材16及びDLC皮膜18の双方に対して堅牢に接合する。この中間層22を介することで、DLC皮膜18を基材16に堅牢に接合できる。その結果、基材16からDLC皮膜18が剥離することを抑制できるため、耐食部材10の摺動面26では、DLC皮膜18の優れた摺動性及び耐摩耗性を長期にわたって良好に維持することが可能になる。
 DLC皮膜18及び中間層22は、コーティング材20によって封孔され、DLC皮膜18の摺動面26を除く部位は、さらにコーティング材20からなるコーティング層20aによって被覆されている。このコーティング材20は、他の樹脂材料等に比して耐食性が高いエポキシ樹脂を含有する。
 このようなコーティング材20で封孔されることで、たとえ、酸やアルカリ等が接触した場合であっても、これらが開気孔24を介して基材16に到達することを回避できる。また、耐食部材10のコーティング層20aで覆われた部位では、酸やアルカリ等がDLC皮膜18ないしは基材16まで到達することをより一層効果的に回避できる。その結果、この耐食部材10は、水や塩水に対してのみならず、強酸及び強アルカリや、次亜塩素酸ナトリウム等の殺菌・消毒剤に対しても優れた耐食性を示す。
 また、コーティング材20が、酸化チタン及びカーボンブラックをさらに含有する場合、耐食部材10の耐食性のさらなる向上を図ることができ、特に耐酸性を顕著に向上させることができる。従って、強酸に対しても優れた耐食性を示す耐食部材10を得ることができる。
 コーティング材20が、酸化クロムをさらに含有する場合、耐食部材10の耐食性のさらなる向上を図ることができ、特に耐アルカリ性を顕著に向上させることができる。従って、強アルカリに対しても優れた耐食性を示す耐食部材10を得ることができる。
 一方、コーティング層20aからDLC皮膜18が露呈する摺動面26では、該DLC皮膜18の優れた摺動性及び耐摩耗性をそのまま活かすことができる。従って、摺動面26を設けることにより、耐食部材10の摺動性及び耐摩耗性を向上させることができる。摺動面26におけるDLC皮膜18の開気孔24にも勿論コーティング材20が充填されているため、摺動面26を設けても優れた耐食性を維持できる。すなわち、この耐食部材10では、優れた摺動性及び耐摩耗性と、耐食性とを兼ね備えることができる。
 本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能である。
 例えば、上記の実施形態に係る耐食部材10では、中間層22を備えることとしたが、中間層22を備えていなくてもよい。
 上記の実施形態に係る耐食部材10では、摺動面26を設けることとしたが、該摺動面26を設けず、DLC皮膜18の全体をコーティング層20aで被覆してもよい。この場合、耐食部材10の耐食性を特に良好に向上させることができるため、高い耐食性が求められる部材として、摺動部材以外の用途にも耐食部材10を好適に用いることができる。これとは逆に、耐食部材10にコーティング層20aを設けず、DLC皮膜18の全体を露呈させてもよい。この場合、耐食部材10の全体が優れた摺動性及び耐摩耗性を示す。
 以下、本発明を実施例によって詳述するが、本発明が当該実施例に限定されるものではないことは勿論である。
 [実施例1]
 基材16として、A6061-T6からなり、直径が10mm、長さが50mmである中実軸体の表面に鏡面研磨を施したものを選定した。この基材16に対して、中間層22及びDLC皮膜18を合計厚さが2.0~2.2μmとなるように形成した。DLC皮膜18表面の平均ビッカース硬さは1350HVであった。なお、平均ビッカース硬さは、JIS Z 2244の試験方法に従って測定したものであり、荷重を10gfとした場合の3点平均値である。以下に示す平均ビッカース硬さについても同じである。
 コーティング材20を形成するための樹脂材料として、エポキシ樹脂を3.0質量%、キシレンを17.0質量%、エチルベンゼンを11.0質量%、n-ブタノールを5.0~10.0質量%、イソボタノールを1.0~5.0質量%、エチレングリコールモノブチルエーテルを1.0~5.0質量%、メタノールを0.1~1.0質量%、ホルムアルデヒドを0.8質量%、メラミン樹脂を16.0質量%、アルキド樹脂を37.0質量%の割合で含有するものを選定した。この樹脂部材をDLC皮膜18に塗装し、焼き付け処理を施すことで、コーティング材20によって、DLC皮膜18の開気孔24を封孔するとともに、該DLC皮膜18の全体を覆うように厚さが22.0~26.0μmのコーティング層20aを形成して耐食部材10を得た。これを実施例1の試験部材とする。なお、実施例1のコーティング層20a表面の平均ビッカース硬さは12HVであった。
 [実施例2]
 コーティング材20を形成するための樹脂材料として、エポキシ樹脂を5~20質量%、酸化チタンを1~10質量%、カーボンブラックを1~10質量%、キシレンを5~15質量%、メチルエチルケトンを15~25質量%、酢酸2-エトキシエチルを5~15質量%、トルエンを10~20質量%、エチレングリコールモノブチルエーテルを1~10質量%の割合で含有するものを選定したこと、及びコーティング層20aの厚さを21.0~25.0μmとしたことを除いて、実施例1と同様にして耐食部材10を得た。これを実施例2の試験部材とする。すなわち、実施例2の試験部材は、酸化チタン及びカーボンブラックを含有するコーティング材20を備える。なお、実施例2のコーティング層20a表面の平均ビッカース硬さは50HVであった。
 [実施例3]
 樹脂材料として、エポキシ樹脂を5~20質量%、酸化第2クロムを1~10質量%、1,2ジ-クロロエタンを15~25質量%、メチルイソブチルケトンを5~15質量%、メチルエチルケトンを5~15質量%、ジアセトンアルコールを10~20質量%、エタノールを10~20質量%の割合で含有するものを選定したこと、及びコーティング層20aの厚さを25.0~30.0μmとしたことを除いて、実施例1と同様にして耐食部材10を得た。これを実施例3の試験部材とする。すなわち、実施例3の試験部材は、酸化クロムを含有するコーティング材20を備える。なお、実施例3のコーティング層20a表面の平均ビッカース硬さは20HVであった。
 [実施例4~6]
 基材16の材料としてA2017を選定したことを除いて、実施例1と同様にして得た耐食部材10を実施例4の試験部材とする。基材16の材料としてA2017を選定したことを除いて、実施例2と同様にして得た耐食部材10を実施例5の試験部材とする。基材16の材料としてADC12を選定したことを除いて、実施例2の試験部材と同様にして得た耐食部材10を実施例6の試験部材とする。
 [比較例1]
 比較のため、実施例1と同一の基材16のみからなる試験部材を比較例1とした。すなわち、比較例1の試験部材は、中間層22、DLC皮膜18、コーティング材20の何れも備えていない。
 [比較例2]
 コーティング材20を設けていないことを除いて、実施例1と同様に作製した試験部材を比較例2とした。すなわち、比較例2の試験部材では、DLC皮膜18がコーティング材20によって封孔されていない。
 [比較例3~5]
 実施例1と同一の基材16に対して陽極酸化処理を施して、厚さ13.0~16.0μmの陽極酸化皮膜(Al23)を形成した試験部材を比較例3とした。比較例3の試験部材の陽極酸化皮膜を、実施例1と同一のコーティング材20で封孔するとともに被覆して、厚さが22.0~26.0μmのコーティング層20aを形成し、これを比較例4の試験部材とした。実施例2と同一のコーティング材20を選定したことを除いて、比較例4と同様にして比較例5の試験部材を得た。なお、比較例3~5の試験部材における陽極酸化皮膜表面の平均ビッカース硬さは320HVであった。
 [比較例6]
 コーティング材20を設けていないことを除いて、実施例4と同様に作製した試験部材を比較例6とした。すなわち、比較例6の試験部材は、DLC皮膜18がコーティング材20によって封孔されていない。
 以上の実施例1~6及び比較例1~6の試験部材と、互いに異なる7種の液体A~Gとを用いて耐食性評価試験を行った。第1に、実施例1~3及び比較例1~3、5の試験部材について、ピルスナー系ビールである液体A(pH3.5)に対する耐食性評価試験を行った。具体的には、液体Aに上記の試験部材の全体を常温で30日間浸漬させる前と後とにおける重量の変化量を求めた。この重量の変化量が小さいほど、試験部材の腐食等が抑制され、耐食性が高いと判断することができる。
 第2に、実施例1~5及び比較例1~3、5、6の試験部材について、液体B(pH1.0)に対する耐食性評価試験を、第1の試験と同様にして行った。液体Bは、主成分としてリン酸を35.0質量%含有する食品関連用酸性洗剤の3.0質量%水溶液である。
 第3に、実施例1~4及び比較例1~3、5、6の試験部材について、液体C(pH11.0)に対する耐食性評価試験を、第1の試験と同様にして行った。液体Cは、水酸化ナトリウムを主成分として15.0質量%含有する食品関連用アルカリ性洗剤の3.0質量%水溶液である。
 第4に、実施例1~3及び比較例5の試験部材について、水酸化ナトリウムの0.04質量%水溶液である液体D(pH12.0)に対する耐食性評価試験を、第1の試験と同様にして行った。
 第5に、実施例1~3の試験部材について、水酸化ナトリウムの0.4質量%水溶液である液体E(pH13.0)に対する耐食性評価試験を、第1の試験と同様にして行った。
 第6に、実施例1~6及び比較例5の試験部材について、水酸化ナトリウムの4.0質量%水溶液である液体F(pH14.0)に対する耐食性評価試験を、第1の試験と同様にして行った。
 第7に、実施例1~3及び比較例1、3、4の試験部材について、濃度が500ppmの次亜塩素酸ナトリウム水溶液(消毒・殺菌剤)である液体Gに対する耐食性評価試験を、第1の試験と同様にして行った。また、実施例4、5の試験部材について、液体Gに浸漬する期間を17日間としたことを除いて、第1の試験と同様にして耐食性評価試験を行った。
 第1~第7の試験の結果を表1に示す
Figure JPOXMLDOC01-appb-T000001
 表1から、DLC皮膜18及びコーティング材20の両方を備える実施例1~6の試験部材は、全ての液体A~Gに対して、基材16のみからなる比較例1の試験部材、DLC皮膜18のみからなる比較例2、6の試験部材、陽極酸化皮膜のみからなる比較例3の試験部材よりも優れた耐食性を示すことが分かった。
 エポキシ樹脂と、酸化チタン及びカーボンブラックとを含有するコーティング材20を備える実施例2、5、6の試験部材は、全ての液体A~Gに対して優れた耐食性を示すが、強酸である液体A、Bに対して特に優れた耐食性を示すことが分かった。
 エポキシ樹脂と、酸化クロムとを含有するコーティング材20を備える実施例3の試験部材は、全ての液体に対して優れた耐食性を示すが、強アルカリである液体C~Fに対して特に優れた耐食性を示すことが分かった。
 以上から、本実施形態に係る耐食部材10は、エポキシ樹脂を含有するコーティング材20によって封孔及び被覆されたDLC皮膜18を備えることで、強酸及び強アルカリや、次亜塩素酸ナトリウム等の殺菌・消毒剤に対して優れた耐食性を示す。
 また、コーティング材20が、酸化チタン及びカーボンブラックをさらに含有する場合、エポキシ樹脂のみを含有する場合よりも耐食性を向上させることができ、なかでも耐酸性を顕著に向上させることができる。
 一方、コーティング材20が、酸化クロムをさらに含有する場合、エポキシ樹脂のみを含有する場合よりも耐食性を向上させることができ、なかでも耐アルカリ性を顕著に向上させることができる。
 さらに、上記の通り、実施例1~6のDLC皮膜18のビッカース硬さは1350HVであり、比較例3~5の陽極酸化皮膜のビッカース硬さ320HVに比して著しく大きい。また、DLC皮膜18によれば、陽極酸化皮膜では得られない、優れた摺動性及び耐摩耗性を得られる。このため、DLC皮膜18を備える耐食部材10は、摺動性及び耐摩耗性にも優れる。
 一方、コーティング材20で封孔された陽極酸化皮膜を備える比較例4、5の試験部材では、何らの皮膜も備えない比較例1の試験部材等に比して耐食性を向上させることが可能であるものの、摺動性及び耐摩耗性が不足する。
 次に、基材16の形状を直径40mm、厚さが7mmである円板状とした点と、端面のコーティング層20aを除去して摺動面26を形成した点とを除き、実施例5と同様にして耐食部材10を得て、試験部材とした。そして、この摺動面26と、複数種類の材料からなる相手材との間の摩擦摩耗特性評価を、試験部材をディスクとし、相手材をピンとするボールオンディスク法によって行った。
 具体的には、荷重、線速度、回転速度及び摺動距離のそれぞれを、1kgf、1000mm/秒、660rpm、1kmに設定した。また、相手材を、直径が10mmの中実軸体とした。この相手材の材料としては、ステンレス鋼(SUS303)、ポリアセタール樹脂(POM)、ポリテトラフルオロエチレン(PTFE)、ハイシリコン合金(NH41)と、ダイカスト用アルミ合金(ADC12)、鉛青銅鋳物(LBC)、真鍮(C3604)、アルミニウム青銅鋳物(CAC703)、機械構造用炭素鋼(S45C)を選定した。その結果を、表2に示す
Figure JPOXMLDOC01-appb-T000002
 表2から、耐食部材10の摺動面26と摺動する相手材の材料をSUS303とした場合、耐食部材10及び相手材の両方の摩耗量を低減させることができることが分かった。また、耐食部材10の摺動面26と摺動する相手材の材料をPOM、PTFEとすることで、耐食部材10の摩耗量を効果的に低減させることができることが分かった。
 すなわち、本実施形態に係る耐食部材10では、相手材12の材料をステンレス鋼、ポリアセタール樹脂(POM)、ポリテトラフルオロエチレン(PTFE)の何れかとすることで、摺動面26及び相手材12の両方の摩耗を効果的に抑制することができ、耐食部材10や相手材12の耐久性を向上させることができる。

Claims (13)

  1.  アルミニウム又はアルミニウム合金からなる基材(16)と、
     前記基材(16)の表面に形成されるアモルファスカーボン(a-C)又は水素化アモルファスカーボン(a-C:H)からなるダイヤモンドライクカーボン皮膜(18)と、
     少なくとも前記ダイヤモンドライクカーボン皮膜(18)の開気孔(24)に充填されエポキシ樹脂を含有するコーティング材(20)と、を備えることを特徴とする耐食部材(10)。
  2.  請求項1記載の耐食部材(10)において、
     前記コーティング材(20)は、酸化チタンと、カーボンブラックとをさらに含有することを特徴とする耐食部材(10)。
  3.  請求項2記載の耐食部材(10)において、
     前記コーティング材(20)は、質量比で、エポキシ樹脂:酸化チタン:カーボンブラック=5:1:1~20:10:10であることを特徴とする耐食部材(10)。
  4.  請求項1記載の耐食部材(10)において、
     前記コーティング材(20)は、酸化クロムをさらに含有することを特徴とする耐食部材(10)。
  5.  請求項4記載の耐食部材(10)において、
     前記コーティング材(20)は、質量比で、エポキシ樹脂:酸化クロム=5:1~20:10であることを特徴とする耐食部材(10)。
  6.  請求項1記載の耐食部材(10)において、
     前記ダイヤモンドライクカーボン皮膜(18)は、アルミニウムと、前記ダイヤモンドライクカーボン皮膜(18)を構成するアモルファスカーボン(a-C)又は水素化アモルファスカーボン(a-C:H)とを含有する中間層(22)を介して前記基材(16)の表面に形成されることを特徴とする耐食部材(10)。
  7.  請求項1~6の何れか1項に記載の耐食部材(10)において、
     前記コーティング材(20)は、前記ダイヤモンドライクカーボン皮膜(18)の少なくとも一部を覆うコーティング層(20a)を形成することを特徴とする耐食部材(10)。
  8.  請求項7記載の耐食部材(10)において、
     前記開気孔(24)に前記コーティング材(20)が充填された状態で、前記ダイヤモンドライクカーボン皮膜(18)の表面を、前記コーティング層(20a)から露呈させた摺動面(26)を有することを特徴とする耐食部材(10)。
  9.  請求項8記載の耐食部材(10)において、
     前記摺動面(26)は、相手材(12)と摺動し、
     前記相手材(12)の材料は、ステンレス鋼、ポリアセタール樹脂、ポリテトラフルオロエチレンの何れかであることを特徴とする耐食部材(10)。
  10.  請求項9記載の耐食部材(10)において、
     前記相手材(12)の材料となるステンレス鋼は、SUS304、SUS303、SUS316の何れかであることを特徴とする耐食部材(10)。
  11.  請求項9記載の耐食部材(10)において、
     前記摺動面(26)と前記相手材(12)との間に、フッ素系グリス(28)が介在することを特徴とする耐食部材(10)。
  12.  請求項9に記載の耐食部材(10)において、
     前記相手材(12)を軸受部材とする軸部材であることを特徴とする耐食部材(10)。
  13.  請求項1記載の耐食部材(10)において、
     飲料又は食品を扱う装置を構成することを特徴とする耐食部材(10)。
PCT/JP2017/031528 2016-12-19 2017-09-01 耐食部材 WO2018116532A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020197021087A KR102397701B1 (ko) 2016-12-19 2017-09-01 내부식성 부재
JP2018557530A JP6933791B2 (ja) 2016-12-19 2017-09-01 耐食部材
EP17884795.0A EP3556900B1 (en) 2016-12-19 2017-09-01 Corrosion-resistant member
MX2019007179A MX2019007179A (es) 2016-12-19 2017-09-01 Miembro resistente a corrosion.
CN201780078712.7A CN110121569A (zh) 2016-12-19 2017-09-01 耐腐蚀部件
BR112019012811-5A BR112019012811B1 (pt) 2016-12-19 2017-09-01 Elemento resistente à corrosão
US16/470,693 US11457766B2 (en) 2016-12-19 2017-09-01 Corrosion-resistant member
RU2019122300A RU2743353C9 (ru) 2016-12-19 2017-09-01 Коррозионностойкий элемент конструкции

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016245205 2016-12-19
JP2016-245205 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018116532A1 true WO2018116532A1 (ja) 2018-06-28

Family

ID=62626314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031528 WO2018116532A1 (ja) 2016-12-19 2017-09-01 耐食部材

Country Status (9)

Country Link
US (1) US11457766B2 (ja)
EP (1) EP3556900B1 (ja)
JP (1) JP6933791B2 (ja)
KR (1) KR102397701B1 (ja)
CN (1) CN110121569A (ja)
MX (1) MX2019007179A (ja)
RU (1) RU2743353C9 (ja)
TW (1) TWI751192B (ja)
WO (1) WO2018116532A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826615A (zh) * 2020-06-23 2020-10-27 佛山市东鹏陶瓷有限公司 一种对黄铜或锌合金基材镀膜的方法
CN115286974A (zh) * 2022-09-05 2022-11-04 福建刺桐花涂料科技有限公司 环保环氧水性烤漆涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191292A (ja) 2000-01-06 2001-07-17 Chubu Corporation 食品切削装置
JP2003160839A (ja) 2001-11-22 2003-06-06 Nippon Yakin Kogyo Co Ltd 食品プラント用ステンレス鋼
JP2008069372A (ja) * 2006-09-12 2008-03-27 Hitachi Ltd 硬質炭素被膜を有する部材
WO2009099226A1 (ja) * 2008-02-06 2009-08-13 Kanagawa Prefecture Dlc被覆摺動部材及びその製造方法
JP2011089172A (ja) * 2009-10-22 2011-05-06 Yoshitaka Mitsuda ダイヤモンドライクカーボン皮膜形成部材及びその製造方法
JP2016041790A (ja) * 2014-08-19 2016-03-31 住友ベークライト株式会社 樹脂膜の製造方法
JP2016120704A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 摺動部材およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340212A (en) * 1961-11-09 1967-09-05 Minnesota Mining & Mfg Electrical insulating resin composition of epoxy resin, acid-terminated polyester and stannous octoate
SU1552676A3 (ru) * 1988-06-08 1994-06-30 Станишевский Андрей Владимирович Способ металлизации поверхности полимерных материалов в вакууме
JP2002147460A (ja) * 2000-11-10 2002-05-22 Citizen Watch Co Ltd すべりスライド用摺動部材及びその製造方法
JP4838709B2 (ja) * 2004-03-30 2011-12-14 トーヨーエイテック株式会社 基材の製造方法
JP5033432B2 (ja) * 2007-01-30 2012-09-26 株式会社豊田自動織機 摺動部品
RU2365672C1 (ru) * 2007-12-27 2009-08-27 Государственное образовательное учреждение высшего профессионального образования "Московский Инженерно-Физический Институт (государственный университет)" Способ получения антифрикционных тонких пленок
WO2011014974A1 (en) * 2009-08-07 2011-02-10 Oerlikon Trading Ag, Trübbach Tribology combined with corrosion resistance: a new family of pvd- and pacvd coatings
BR112014007978A2 (pt) 2011-10-03 2017-04-11 Exxonmobil Res & Eng Co método para revestir dispositivos tubulares em operações de perfuração, completação e produção de petróleo e gás
DE102013110394B4 (de) * 2013-09-20 2016-10-27 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Chirurgisches Instrument mit einer spannungsfesten, elektrisch isolierenden Beschichtung
JP5727569B2 (ja) * 2013-10-03 2015-06-03 トーカロ株式会社 Dlc膜被覆部材の製造方法およびdlc膜被覆部材
JP6200343B2 (ja) * 2014-02-10 2017-09-20 大同メタル工業株式会社 摺動部材
DE112015002269T5 (de) * 2014-05-15 2017-02-09 Daido Metal Company Ltd. Gleitharzzusammensetzung und Gleitelement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191292A (ja) 2000-01-06 2001-07-17 Chubu Corporation 食品切削装置
JP2003160839A (ja) 2001-11-22 2003-06-06 Nippon Yakin Kogyo Co Ltd 食品プラント用ステンレス鋼
JP2008069372A (ja) * 2006-09-12 2008-03-27 Hitachi Ltd 硬質炭素被膜を有する部材
WO2009099226A1 (ja) * 2008-02-06 2009-08-13 Kanagawa Prefecture Dlc被覆摺動部材及びその製造方法
JP2011089172A (ja) * 2009-10-22 2011-05-06 Yoshitaka Mitsuda ダイヤモンドライクカーボン皮膜形成部材及びその製造方法
JP2016041790A (ja) * 2014-08-19 2016-03-31 住友ベークライト株式会社 樹脂膜の製造方法
JP2016120704A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 摺動部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3556900A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826615A (zh) * 2020-06-23 2020-10-27 佛山市东鹏陶瓷有限公司 一种对黄铜或锌合金基材镀膜的方法
CN115286974A (zh) * 2022-09-05 2022-11-04 福建刺桐花涂料科技有限公司 环保环氧水性烤漆涂料及其制备方法

Also Published As

Publication number Publication date
CN110121569A (zh) 2019-08-13
RU2019122300A (ru) 2021-01-18
JPWO2018116532A1 (ja) 2019-10-24
MX2019007179A (es) 2019-09-05
US11457766B2 (en) 2022-10-04
US20200085236A1 (en) 2020-03-19
EP3556900A1 (en) 2019-10-23
BR112019012811A2 (pt) 2019-11-26
TW201823037A (zh) 2018-07-01
TWI751192B (zh) 2022-01-01
JP6933791B2 (ja) 2021-09-08
RU2743353C9 (ru) 2022-01-12
EP3556900B1 (en) 2024-03-27
EP3556900A4 (en) 2020-07-29
KR102397701B1 (ko) 2022-05-13
KR20190096407A (ko) 2019-08-19
RU2019122300A3 (ja) 2021-01-18
RU2743353C2 (ru) 2021-02-17

Similar Documents

Publication Publication Date Title
JP5021904B2 (ja) フッ素樹脂塗膜
WO2018116532A1 (ja) 耐食部材
MXPA03009941A (es) Hoja de metal recubierta con aditivos antimicrobianos.
WO2012086393A1 (ja) ボールジョイント
KR102009409B1 (ko) 티타늄 버퍼 층을 갖는 dlc 코팅 사이징 롤러
JP2005516164A (ja) セラミック製転がり要素及び鋼製内輪又は外輪を有する転がり軸受
Hong et al. Self-lubricating PEO coating on an Al alloy produced by vacuum impregnation post-treatment
US6875330B2 (en) Process for coating workpieces with bearing metal
CA2847014A1 (en) Lubricious composite oxide coating and process for making the same
US10533606B2 (en) Air bearing shaft assembly with surface layer
JPH10325414A (ja) 直動装置
Podgornik et al. Improvement in galling performance through surface engineering
BR112019012811B1 (pt) Elemento resistente à corrosão
JP4067222B2 (ja) 耐摩耗性、耐指紋性および意匠性に優れた透明フッ素樹脂被覆ステンレス鋼板
US7147926B2 (en) Corrosion-resistant and stain-resistant component and method for manufacturing same
JP2004082685A (ja) 塗装ステンレス鋼板およびそれを用いた積層パネルおよび扉ならびに積層パネルの製造方法
JP2005195094A (ja) 組立部品
EP3477136B1 (en) Air bearing
Recanati et al. Engineering the next generation of carbon based (DLC) coatings for demanding applications
JP2002339982A (ja) 転がり軸受用保持器
罗状子 et al. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys
JP6829028B2 (ja) 転動装置
CN114635115A (zh) 一种与润滑油摩擦改性添加剂强协同作用的减摩耐磨涂层
JP2006177449A (ja) すべり軸受、ハウジングおよび軸受ユニット
JPH09168352A (ja) 魚釣り用リールの構成部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012811

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197021087

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017884795

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112019012811

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190619