WO2018113109A1 - 一种射频功率放大器及其增益控制电路 - Google Patents

一种射频功率放大器及其增益控制电路 Download PDF

Info

Publication number
WO2018113109A1
WO2018113109A1 PCT/CN2017/076859 CN2017076859W WO2018113109A1 WO 2018113109 A1 WO2018113109 A1 WO 2018113109A1 CN 2017076859 W CN2017076859 W CN 2017076859W WO 2018113109 A1 WO2018113109 A1 WO 2018113109A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
feedback
circuit
input signal
gain control
Prior art date
Application number
PCT/CN2017/076859
Other languages
English (en)
French (fr)
Inventor
周勇
李辰
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018113109A1 publication Critical patent/WO2018113109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a radio frequency power amplifier and a gain control circuit thereof.
  • wireless communication terminals use RF power amplifiers to increase the power strength of the signal so that the signal can be transmitted through the antenna.
  • 5G, 5th-Generation the gain requirements of the wireless communication system for the RF power amplifier are increasing.
  • the size of the wireless communication terminal is getting smaller and smaller, and the integration is becoming more and more Therefore, the need to implement multi-mode multi-frequency in a single chip becomes more and more urgent, which requires the gain of the RF power amplifier to be controlled and switched under the condition of miniaturization and low cost of the hardware device.
  • embodiments of the present invention are expected to provide a radio frequency power amplifier and its gain control.
  • the circuit in order to ensure phase continuity, is designed to enable flexible control and switching of the gain of the RF power amplifier so that the gain variation is not limited by the bias voltage and current.
  • an embodiment of the present invention provides a gain control circuit for a radio frequency power amplifier, where the circuit includes: a feedback unit and an amplifying unit;
  • the feedback unit has: a first access end, a bias access end, a first output end, and a feedback circuit; wherein
  • the first access end is configured to access a driving switch signal
  • the biasing access terminal is configured to receive the bias voltage and the feedback signal; the feedback signal is obtained by the amplifying unit amplifying the initial input signal of the first DC blocking capacitor;
  • a feedback circuit configured to control attenuation of the feedback signal according to the driving switch signal, and obtain the attenuated first-stage input signal
  • a first output end configured to output the first stage input signal to the amplifying unit
  • the amplifying unit has: a second access end, a bias access end, a second output end, and an amplifying circuit;
  • a second access end configured to access the initial input signal and the first stage input signal
  • biasing access terminal configured to access the bias voltage; the bias voltage is used to maintain a normal working state of the amplifying unit;
  • An amplifying circuit configured to amplify the initial input signal and feed back the amplified feedback signal to the feedback circuit; and amplify the first stage input signal to obtain the amplified output signal;
  • a second output configured to output the output signal
  • the feedback circuit includes: a first RLC direct connection circuit, a second RLC direct connection circuit, and a switch S;
  • One end of the switch S is connected to one end of the first RLC direct connection circuit, the other end of the switch S is connected to one end of the second RLC direct connection circuit, and the switch S is configured to implement the first RLC Disconnection and connection between the direct connection circuit and the second RLC direct connection circuit, the switch An operating state of S is controlled by the driving switch signal; an end of the first RLC direct connection circuit not connected to the switch S is configured to access the bias voltage and the feedback signal; An end of the RLC direct connection circuit that is not connected to the switch S is configured to output the first stage input signal to the amplifying unit.
  • the amplifying circuit includes the first amplifier and the second amplifier; wherein
  • the first amplifier is configured to amplify the initial input signal, and feed back the amplified feedback signal to the feedback circuit; and, the first stage input signal is amplified, and The amplified second stage input signal is output to the second amplifier;
  • the second amplifier is configured to amplify the second stage input signal and obtain the amplified output signal.
  • the first amplifier includes: a first power transistor and a first inductor; wherein
  • the base of the first power tube is configured to connect the initial input signal and the first stage input signal; the collector of the first power tube is connected to one end of the first inductor, and is configured to be connected Entering the bias voltage, outputting the feedback signal to the feedback circuit, and outputting the second stage input signal to the second amplifier; an emitter of the first power tube is grounded; the first inductor The other end is connected to the power supply.
  • the second amplifier includes: a second power transistor and a second inductor; wherein
  • the base of the second power tube is connected to the collector of the first power tube through a matching network, and is configured to access the second stage input signal; the collector of the second power tube and the second One end of the inductor is connected to be configured to access the bias voltage; the emitter of the second power tube is grounded; and the other end of the second inductor is connected to a power source.
  • the drive switch signal includes a high level and a low level;
  • the switch S of the feedback circuit When the drive switch signal is at a high level, the switch S of the feedback circuit is in a closed state, the feedback loop in the feedback unit is turned on, and the gain of the gain control circuit is reduced; wherein the feedback loop By the first power tube, the first RLC circuit, and the second RLC Circuit composition
  • the switch S of the feedback circuit When the drive switch signal is at a low level, the switch S of the feedback circuit is in an open state, the feedback loop in the feedback unit is turned off, and the gain of the gain control circuit is unchanged.
  • the feedback unit is at least one; when the feedback unit is two or more, each feedback unit corresponds to one of the first amplifiers in parallel to form a gain attenuating unit, and each gain
  • the attenuation units are connected by a matching network.
  • an embodiment of the present invention provides a radio frequency power amplifier, where the radio frequency power amplifier includes: a driving switch signal generating circuit, a bias voltage generating circuit, and any of the gain control circuits described above;
  • the drive switch signal generating circuit is configured to generate a drive switch signal
  • the bias voltage generating circuit is configured to generate a bias voltage
  • the gain control circuit is configured to control and switch the gain of the RF power amplifier.
  • an embodiment of the present invention provides a working method of a gain control circuit, where the method includes:
  • the gain control circuit is connected to the initial input signal and the drive switch signal; wherein the gain control circuit is any of the gain control circuits described above;
  • the gain control circuit amplifies the initial input signal to obtain the amplified feedback signal
  • the gain control circuit When the driving switch signal is at a high level, the gain control circuit attenuates the feedback signal to obtain the attenuated first-stage input signal;
  • the gain control circuit amplifies the first stage input signal to obtain the amplified output signal.
  • the embodiment of the invention provides a radio frequency power amplifier and a gain control circuit thereof, which can control the conduction and disconnection of the feedback loop in the feedback unit by using an externally provided driving switch signal, thereby realizing flexible control of the overall circuit gain and
  • the gain of the circuit is free from the limitation of the bias voltage and current on the overall circuit gain, and the phase jump caused by the gain attenuation is small.
  • FIG. 1 is a schematic structural diagram 1 of a gain control circuit of a radio frequency power amplifier according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of a gain control circuit of a radio frequency power amplifier according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram 3 of a gain control circuit of a radio frequency power amplifier according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram 4 of a gain control circuit of a radio frequency power amplifier according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a radio frequency power amplifier according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a working method of a gain control circuit according to an embodiment of the present invention.
  • the figure shows a gain control circuit of a radio frequency power amplifier according to an embodiment of the present invention.
  • the gain control circuit 530 includes: a feedback unit 10 and an amplifying unit 20; ,
  • the feedback unit 10 has a first access terminal c configured to access a drive switch signal Vcontrol, a bias access terminal a configured to access a bias voltage and a feedback signal, and the feedback signal is the amplification
  • the unit 20 is obtained by amplifying the initial input signal of the first DC blocking capacitor.
  • the feedback circuit 100 is configured to control the attenuation of the feedback signal according to the driving switch signal, and obtain the first stage after the attenuation.
  • Input signal a first output terminal b, configured to output the first stage input signal to the amplifying unit 20;
  • the amplifying unit 20 has: a second access terminal b configured to access the initial input letter No. RFin and the first stage input signal; the biasing access terminal a is configured to access the bias voltage; the bias voltage is used to maintain a normal working state of the amplifying unit; the amplifying circuit 200, the configuration To amplify the initial input signal, and feed back the amplified feedback signal to the feedback circuit 100; and amplify the first stage input signal to obtain the amplified output signal RFout
  • the second output terminal d is configured to output the output signal RFout.
  • the feedback circuit 100 includes: a first RLC direct connection circuit 101, a second RLC direct connection circuit 102, and a switch S; wherein one end of the switch S is connected to the first RLC One end of the direct connection circuit 101, the other end of the switch S is connected to one end of the second RLC direct connection circuit 102, and the switch S is configured to implement the first RLC direct connection circuit 101 and the second RLC
  • the disconnection and connection between the direct connection circuits 102, the operating state of the switch S is controlled by the drive switch signal Vcontrol;
  • the first RLC direct connection circuit 101 has no end a connected to the switch S, configured In order to access the bias voltage and the feedback signal;
  • the second end of the second RLC direct connection circuit 102 that is not connected to the switch S is configured to output the first stage input signal to the amplifying unit 20;
  • the first RLC direct connection circuit 101 specifically includes: a second resistor R2, a second DC blocking capacitor C2, and a third inductor L3; and the second RLC direct connection circuit 102
  • the method includes a first resistor R1, a third DC blocking capacitor C3, and a fourth inductor L4.
  • the amplifying unit 20 includes: a first amplifier 201 and a second amplifier 202;
  • the first amplifier 201 is configured to amplify the initial input signal, and feed back the amplified feedback signal to the feedback circuit 100; and, the first stage input signal is amplified, and Outputting the amplified second stage input signal to the second amplifier 202;
  • the second amplifier 202 is configured to amplify the second stage input signal and obtain the amplified output signal RFout.
  • the first amplifier 201 includes: a first power tube Q1 and a first inductor L1; wherein
  • the base b of the first power tube Q1 is configured to access the initial input signal and the first stage input signal; the collector of the first power tube Q1 and one end of the first inductor L1 Connecting, configured to access the bias voltage, output the feedback signal to the feedback circuit, and output the second stage input signal to the second amplifier 202; the emitter of the first power tube Q1 is grounded The other end of the first inductor L1 is connected to the power source VCC.
  • the second amplifier 202 includes: a second power tube Q2 and a second inductor L2; wherein
  • the base f of the second power tube Q2 is connected to the collector of the first power tube Q1 through a matching network, and is configured to access the second stage input signal; the collector of the second power tube Q2 One end e of the second inductor L2 is connected to be configured to access the bias voltage; the emitter of the second power tube Q2 is grounded; the other end of the second inductor L2 is connected to the power source VCC; the matching network Configured for impedance matching, power combining, and improved gain flatness.
  • the first power tube Q1 and the first RLC direct circuit 101 and the second RLC direct circuit 102 form a feedback loop;
  • a collector of a power tube Q1 is connected to one end of the first RLC direct connection circuit 101, and a base of the first power tube Q1 is connected to one end of the second RLC direct connection circuit 102, the first RLC
  • the other end of the direct connection circuit 101 and the other end of the second RLC direct connection circuit 102 are connected and disconnected by a switch S, and the open and closed states of the switch S are driven by the drive switch signal. Vcontrol control.
  • the opening and the conduction of the feedback loop can be controlled by driving the switch signal Vcontrol, thereby realizing the control and switching of the overall circuit gain; for example, when the drive switch signal Vcontrol is at a high level, the feedback circuit
  • the switch S is in a closed state, the feedback loop in the feedback unit 10 is turned on, the gain of the gain control circuit is lowered, the overall circuit is in a medium gain or low gain mode; when the drive switch signal Vcontrol is low
  • the switch S of the feedback circuit is in an off state, and the feedback list
  • the feedback loop in element 10 is turned off, the gain of the gain control circuit is unchanged, and the overall circuit is in a high gain mode.
  • the feedback unit 10 may be one or two or more.
  • each feedback unit 10 corresponds to one of the first amplifiers 201 in parallel, thereby forming a gain attenuating unit, and each of the gain attenuating units can be connected through a matching network.
  • the matching network is configured for impedance matching, power combining, and increasing gain flatness.
  • the operating state of the feedback unit in each gain attenuating unit can also be controlled by an externally provided driving switch signal, thereby achieving flexible control and switching of the overall circuit gain.
  • the embodiment of the invention provides a gain control circuit for a radio frequency power amplifier, which introduces a feedback loop and controls the conduction and disconnection of the feedback loop by using an externally provided driving switch signal, thereby realizing control and switching of the overall circuit gain.
  • the gain of the circuit is not limited by the bias voltage and current, and the phase jump caused by the gain attenuation is small.
  • the embodiment of the present invention provides a structure diagram of a gain control circuit of a radio frequency power amplifier in practical engineering applications.
  • the circuit includes two parallel circuits.
  • the switch S1 when the externally supplied driving switch signal Vcontrol_1 is at a high level, the switch S1 is closed, and the feedback loops Q1, R2, C3, L5, R1, C2, L4 are turned on, so that the collector of the first power tube Q1 is turned on.
  • the voltage is fed back to the input base of the first power transistor Q1 through the feedback loop, and the gain of the primary output signal of the first amplifier 201 including the first power transistor Q1 is lowered, thereby causing the gain of the entire circuit to become low;
  • the switch S2 is closed, and the feedback loops Q2, R4, C5, L7, R3, C4, and L6 are turned on, so that the collector voltage of the second power transistor Q2 passes through the feedback loop feedback.
  • the gain of the secondary output signal of the first amplifier 201 including the second power transistor Q2 is lowered, thereby causing the gain of the entire circuit to become low.
  • the feedback unit 10 when the drive switch signals Vcontrol_1 and Vcontrol_2 are both low, the feedback unit 10 is in an inoperative state, at which time the overall circuit is in a high gain mode (eg, the gain can reach 30 dB); when driving the switch signals Vcontrol_1 and Vcontrol_2 When the level is high and the other is low, the overall circuit will be switched to the medium gain mode (eg, the gain is attenuated between 15dB and 20dB); when the drive switch signals Vcontrol_1 and Vcontrol_2 are both high, the overall circuit will be Switch to low gain mode (eg gain attenuation to 10dB).
  • the medium gain mode eg, the gain is attenuated between 15dB and 20dB
  • the drive switch signals Vcontrol_1 and Vcontrol_2 when the drive switch signals Vcontrol_1 and Vcontrol_2 are both high, the overall circuit will be Switch to low gain mode (eg gain attenuation to 10dB).
  • the gain control circuit of the radio frequency power amplifier provided by the embodiment of the present invention introduces multiple feedback loops, and can use the externally provided driving switch signal to correspondingly control the working state of the feedback loop, thereby realizing multi-stage gain.
  • the flexible control and switching eliminates the limitation of bias current and voltage on gain variation.
  • the figure shows a radio frequency power amplifier according to an embodiment of the present invention.
  • the radio frequency power amplifier 50 can include: driving switch signal generation. a circuit 510, a bias voltage generating circuit 520, and a gain control circuit 530 according to the first embodiment; wherein
  • the drive switch signal generating circuit 510 is configured to generate a drive switch signal
  • the bias voltage generating circuit 520 is configured to generate a bias voltage
  • the gain control circuit 530 is configured to control and switch the gain of the radio frequency power amplifier.
  • the figure shows a working method of a gain control circuit 530 according to an embodiment of the present invention.
  • the working method may include:
  • the gain control circuit accesses the initial input signal and the driving switch signal.
  • the gain control circuit amplifies the initial input signal to obtain the amplified feedback signal
  • the gain control circuit when the driving switch signal is at a high level, the gain control circuit attenuates the feedback signal to obtain the attenuated first-stage input signal;
  • the gain control circuit amplifies the first stage input signal to obtain the amplified output signal.
  • the gain control circuit 530 directly amplifies the feedback signal to obtain the amplified output signal.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Amplifiers (AREA)

Abstract

一种射频功率放大器及其增益控制电路(530),该电路(530)包括反馈单元(10)和放大单元(20);其中,所述反馈单元(10),配置为接入驱动开关信号、偏置电压和经第一隔直电容的初始输入信号被所述放大单元(20)放大后的反馈信号;以及,配置为根据所述驱动开关信号控制对所述反馈信号的衰减,并输出所述衰减后的第一级输入信号给所述放大单元(20);所述放大单元(20),配置为接入所述初始输入信号、所述第一级输入信号和所述偏置电压;以及,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给反馈电路(100);以及,配置为对所述第一级输入信号进行放大,输出所述放大后的输出信号。

Description

一种射频功率放大器及其增益控制电路 技术领域
本发明涉及通信技术领域,尤其涉及一种射频功率放大器及其增益控制电路。
背景技术
当前,随着无线射频***的发展,各种无线通信终端得到了广泛应用。这些无线通信终端都用射频功率放大器来提高信号的功率强度,从而使得信号可以通过天线进行发射。随着第五代(5G,5th-Generation)通信***的到来,无线通信***对射频功率放大器的增益要求愈发提高,另一方面,无线通信终端的体积也越来越小,集成度越来越高;因此,在单个芯片中实现多模多频的需求也就愈发迫切,这就要求在硬件设备小型化和低成本的条件下,射频功率放大器的增益能够进行控制和切换。
现有的增益控制和切换方法主要有两种:(1)通过在不同信号通道进行切换来实现增益的切换;但是,因为需要不同增益的信号通道才能实现增益的切换,所以造成芯片面积不可避免地过大;另外,不同信号通道的切换来实现增益的切换会导致相位出现不连续。(2)通过外部结构来调整偏置电路输出的电压或者电流值,这种方法可以实现灵活小巧的增益切换结构,同时对偏置电压和电流的调节可以保证切换增益前后相位的连续性;但是,由于需要保证功率放大器的正常工作,所以偏置电压和电流的调节受到一定限制,从而导致增益的变化有限。
发明内容
有鉴于此,本发明实施例期望提供一种射频功率放大器及其增益控制 电路,在保证相位连续性的前提下,旨在能够实现射频功率放大器增益的灵活控制与切换,使得增益的变化不受偏置电压和电流的限制。
本发明实施例提供的技术方案是这样实现的:
第一方面,本发明实施例提供了一种射频功率放大器的增益控制电路,所述电路包括:反馈单元和放大单元;其中,
所述反馈单元,具有:第一接入端、偏置接入端、第一输出端及反馈电路;其中,
第一接入端,配置为接入驱动开关信号;
偏置接入端,配置为接入偏置电压和反馈信号;所述反馈信号是所述放大单元对经第一隔直电容的初始输入信号进行放大后得到的;
反馈电路,配置为根据所述驱动开关信号控制对所述反馈信号的衰减,并得到所述衰减后的第一级输入信号;
第一输出端,配置为输出所述第一级输入信号给所述放大单元;
所述放大单元,具有:第二接入端、偏置接入端、第二输出端及放大电路;其中,
第二接入端,配置为接入所述初始输入信号和所述第一级输入信号;
偏置接入端,配置为接入所述偏置电压;所述偏置电压用于维持所述放大单元的正常工作状态;
放大电路,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给所述反馈电路;以及,对所述第一级输入信号进行放大,得到所述放大后的输出信号;
第二输出端,配置为输出所述输出信号;
在上述电路中,所述反馈电路包括:第一RLC直连电路、第二RLC直连电路和开关S;其中,
所述开关S的一端连接所述第一RLC直连电路的一端,所述开关S的另一端连接所述第二RLC直连电路的一端,且所述开关S配置为实现所述第一RLC直连电路和所述第二RLC直连电路之间的断开与连接,所述开关 S的工作状态被所述驱动开关信号控制;所述第一RLC直连电路中没有和所述开关S连接的一端,配置为接入所述偏置电压和所述反馈信号;所述第二RLC直连电路中没有和所述开关S连接的一端,配置为输出所述第一级输入信号给所述放大单元。
在上述电路中,所述放大电路包括所述第一放大器和所述第二放大器;其中,
所述第一放大器,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给所述反馈电路;以及,对所述第一级输入信号进行放大,并将得到所述放大后的第二级输入信号输出给所述第二放大器;
所述第二放大器,配置为对所述第二级输入信号进行放大,并得到所述放大后的输出信号。
在上述电路中,所述第一放大器,包括:第一功率管和第一电感;其中,
所述第一功率管的基极,配置为接入所述初始输入信号和所述第一级输入信号;所述第一功率管的集电极与所述第一电感的一端连接,配置为接入所述偏置电压、输出所述反馈信号给所述反馈电路以及输出所述第二级输入信号给所述第二放大器;所述第一功率管的发射极接地;所述第一电感的另一端接电源。
在上述电路中,所述第二放大器,包括:第二功率管和第二电感;其中,
所述第二功率管的基极与所述第一功率管的集电极通过匹配网络相连,配置为接入所述第二级输入信号;所述第二功率管的集电极与所述第二电感的一端连接,配置为接入所述偏置电压;所述第二功率管的发射极接地;所述第二电感的另一端接电源。
在上述电路中,所述驱动开关信号包括高电平和低电平;其中,
当所述驱动开关信号为高电平时,所述反馈电路的开关S为闭合状态,所述反馈单元中的反馈回路被导通,所述增益控制电路的增益被降低;其中,所述反馈回路由所述第一功率管、所述第一RLC电路以及第二RLC 电路组成;
当所述驱动开关信号为低电平时,所述反馈电路的开关S为断开状态,所述反馈单元中的反馈回路被断开,所述增益控制电路的增益不变。
在上述电路中,所述反馈单元至少为一个;当所述反馈单元为两个或者两个以上时,每个反馈单元对应并联一个所述第一放大器,组成一个增益衰减单元,且每个增益衰减单元之间通过匹配网络相连。
第二方面,本发明实施例提供了一种射频功率放大器,所述射频功率放大器包括:驱动开关信号产生电路、偏置电压产生电路和上述任一所述的增益控制电路;其中,
所述驱动开关信号产生电路,配置为产生驱动开关信号;
所述偏置电压产生电路,配置为产生偏置电压;
所述增益控制电路,配置为控制与切换所述射频功率放大器的增益。
第三方面,本发明实施例提供了一种增益控制电路的工作方法,所述方法包括:
增益控制电路接入初始输入信号和驱动开关信号;其中,所述增益控制电路为上述任一所述的增益控制电路;
所述增益控制电路对所述初始输入信号进行放大,得到所述放大后的反馈信号;
当所述驱动开关信号为高电平时,所述增益控制电路对所述反馈信号进行衰减,得到所述衰减后的第一级输入信号;
所述增益控制电路对所述第一级输入信号进行放大,得到所述放大后的输出信号。
本发明实施例提供了一种射频功率放大器及其增益控制电路,该电路能够利用外部提供的驱动开关信号控制反馈单元中反馈回路的导通与断开,从而实现了整体电路增益的灵活控制和切换;另外,由于整体电路增益的改变主要受反馈回路的影响,因此,该电路增益的变化摆脱了偏置电压和电流对整体电路增益的限制,且增益衰减带来的相位跳变较小。
附图说明
图1为本发明实施例提供的射频功率放大器的增益控制电路结构示意图一;
图2为本发明实施例提供的射频功率放大器的增益控制电路结构示意图二;
图3为本发明实施例提供的射频功率放大器的增益控制电路结构示意图三;
图4为本发明实施例提供的射频功率放大器的增益控制电路结构示意图四;
图5为本发明实施例提供的一种射频功率放大器的结构示意图;
图6为本发明实施例提供的一种增益控制电路的工作方法示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例一
如图1所示,该图给出了本发明实施例提供的一种射频功率放大器的增益控制电路,从图中可以看出,该增益控制电路530包括:反馈单元10和放大单元20;其中,
所述反馈单元10,具有:第一接入端c,配置为接入驱动开关信号Vcontrol;偏置接入端a,配置为接入偏置电压和反馈信号;所述反馈信号是所述放大单元20对经第一隔直电容的初始输入信号进行放大后得到的;反馈电路100,配置为根据所述驱动开关信号控制对所述反馈信号的衰减,并得到所述衰减后的第一级输入信号;第一输出端b,配置为输出所述第一级输入信号给所述放大单元20;
所述放大单元20,具有:第二接入端b,配置为接入所述初始输入信 号RFin和所述第一级输入信号;偏置接入端a,配置为接入所述偏置电压;所述偏置电压用于维持所述放大单元的正常工作状态;放大电路200,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给所述反馈电路100;以及,对所述第一级输入信号进行放大,得到所述放大后的输出信号RFout;第二输出端d,配置为输出所述输出信号RFout。
示例性地,如图3所示,所述反馈电路100包括:第一RLC直连电路101、第二RLC直连电路102和开关S;其中,所述开关S的一端连接所述第一RLC直连电路101的一端,所述开关S的另一端连接所述第二RLC直连电路102的一端,且所述开关S配置为实现所述第一RLC直连电路101和所述第二RLC直连电路102之间的断开与连接,所述开关S的工作状态被所述驱动开关信号Vcontrol控制;所述第一RLC直连电路101中没有和所述开关S连接的一端a,配置为接入所述偏置电压和所述反馈信号;所述第二RLC直连电路102中没有和所述开关S连接的一端b,配置为输出所述第一级输入信号给所述放大单元20;
需要说明的是,所述第一RLC直连电路101,如图3所示,具体包括:第二电阻R2、第二隔直电容C2和第三电感L3;所述第二RLC直连电路102,包括:第一电阻R1、第三隔直电容C3和第四电感L4。
示例性地,如图2所示,所述放大单元20包括:第一放大器201和第二放大器202;其中,
所述第一放大器201,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给所述反馈电路100;以及,对所述第一级输入信号进行放大,并将得到所述放大后的第二级输入信号输出给所述第二放大器202;
所述第二放大器202,配置为对所述第二级输入信号进行放大,并得到所述放大后的输出信号RFout。
在一实施例中,如图3所示,所述第一放大器201包括:第一功率管Q1和第一电感L1;其中,
所述第一功率管Q1的基极b,配置为接入所述初始输入信号和所述第一级输入信号;所述第一功率管Q1的集电极与所述第一电感L1的一端a连接,配置为接入所述偏置电压、输出所述反馈信号给所述反馈电路以及输出所述第二级输入信号给所述第二放大器202;所述第一功率管Q1的发射极接地;所述第一电感L1的另一端接电源VCC。
所述第二放大器202,包括:第二功率管Q2和第二电感L2;其中,
所述第二功率管Q2的基极f与所述第一功率管Q1的集电极通过匹配网络相连,配置为接入所述第二级输入信号;所述第二功率管Q2的集电极与所述第二电感L2的一端e连接,配置为接入所述偏置电压;所述第二功率管Q2的发射极接地;所述第二电感L2的另一端接电源VCC;所述匹配网络配置为阻抗匹配、功率合成和提高增益平坦度。
需要说明的是,从图3中可以直观地看出,所述第一功率管Q1与所述第一RLC直连电路101以及第二RLC直连电路102组成一个反馈回路;其中,所述第一功率管Q1的集电极与所述第一RLC直连电路101的一端连接、所述第一功率管Q1的基极与所述第二RLC直连电路102的一端连接,所述第一RLC直连电路101的另一端与所述第二RLC直连电路102的另一端通过开关S来实现两者之间的连接与断开,且开关S的断开与闭合状态由所述驱动开关信号Vcontrol控制。由此可知,可以通过驱动开关信号Vcontrol来控制反馈回路的断开与导通,从而实现整体电路增益的控制与切换;例如,当所述驱动开关信号Vcontrol为高电平时,所述反馈电路的开关S为闭合状态,所述反馈单元10中的反馈回路被导通,所述增益控制电路的增益被降低,整体电路处于中增益或低增益模式;当所述驱动开关信号Vcontrol为低电平时,所述反馈电路的开关S为断开状态,所述反馈单 元10中的反馈回路被断开,所述增益控制电路的增益不变,整体电路处于高增益模式。
还需要说明的是,为了满足多模多频通信***的增益需求,所述反馈单元10可以是一个,也可以是两个或者两个以上。当所述反馈单元10为两个或者两个以上时,每个反馈单元10对应并联一个所述第一放大器201,从而组成一个增益衰减单元,且每个增益衰减单元之间可以通过匹配网络相连;其中,所述匹配网络配置为阻抗匹配、功率合成和提高增益平坦度。对于多个并联的增益衰减单元,同样可以通过外部提供的驱动开关信号来控制每个增益衰减单元中反馈单元的工作状态,从而实现整体电路增益的灵活控制与切换。
本发明实施例提供了一种射频功率放大器的增益控制电路,该电路引入反馈回路,并利用外部提供的驱动开关信号控制反馈回路的导通与断开,从而实现了整体电路增益的控制与切换;另外,由于整体电路增益的改变主要受反馈回路的影响,因此,该电路增益的变化不受偏置电压和电流的限制,且增益衰减带来的相位跳变较小。
实施例二
为了方便对上述技术方案的理解,本发明实施例给出了一种实际工程应用中的射频功率放大器的增益控制电路结构图,参见图4,从图中可以看出,该电路包括并联的两个反馈单元10以及每个反馈单元对应连接的第一放大器201,即该电路包括两个增益衰减单元,因此初始输入信号RFin可以经过两级增益变换。在一实施例中,当外部提供的驱动开关信号Vcontrol_1为高电平时,开关S1闭合,反馈回路Q1、R2、C3、L5、R1、C2、L4导通,使得第一功率管Q1的集电极电压经过所述反馈回路反馈到第一功率管Q1的输入端基极,此时包含第一功率管Q1的第一放大器201的初级输出信号的增益被降低,从而导致整个电路的增益变低;同理,当 外部提供的驱动开关信号Vcontrol_2为高电平时,开关S2闭合,反馈回路Q2、R4、C5、L7、R3、C4、L6导通,使得第二功率管Q2的集电极电压经过所述反馈回路反馈到第二功率管Q2的输入端基极,此时包含第二功率管Q2的第一放大器201的次级输出信号的增益被降低,从而导致整个电路的增益变低。
因此,当驱动开关信号Vcontrol_1和Vcontrol_2均为低电平时,反馈单元10处于不工作状态,此时整体电路处于高增益模式(如增益可以达到30dB);当驱动开关信号Vcontrol_1和Vcontrol_2中的任意一个为高电平、另一个为低电平时,整体电路将被切换到中增益模式(如增益衰减到15dB到20dB之间);当驱动开关信号Vcontrol_1和Vcontrol_2均为高电平时,整体电路将被切换到低增益模式(如增益衰减到10dB)。
由此可知,本发明实施例提供的一种射频功率放大器的增益控制电路,其引入了多个反馈回路,能够利用外部提供的驱动开关信号来对应控制反馈回路的工作状态,从而实现多级增益的灵活控制与切换,摆脱了偏置电流和电压对增益变化的限制。
实施例三
基于前述相同的技术构思,如图5所示,该图给出了本发明实施例提供的一种射频功率放大器,从图中可以看出,所述射频功率放大器50可以包括:驱动开关信号产生电路510、偏置电压产生电路520和上述实施例一所述的增益控制电路530;其中,
所述驱动开关信号产生电路510,配置为产生驱动开关信号;
所述偏置电压产生电路520,配置为产生偏置电压;
所述增益控制电路530,配置为控制与切换所述射频功率放大器的增益。
实施例四
基于前述相同的技术构思,如图6所示,该图给出了本发明实施例提供的一种增益控制电路530的工作方法,从图中可以看出,该工作方法可以包括:
S610、增益控制电路接入初始输入信号和驱动开关信号;
S620、所述增益控制电路对所述初始输入信号进行放大,得到所述放大后的反馈信号;
S630、当所述驱动开关信号为高电平时,所述增益控制电路对所述反馈信号进行衰减,得到所述衰减后的第一级输入信号;
S640、所述增益控制电路对所述第一级输入信号进行放大,得到所述放大后的输出信号。
可以理解地,当所述驱动开关信号为低电平时,所述增益控制电路530将所述反馈信号直接进行放大,得到所述放大后的输出信号。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (9)

  1. 一种射频功率放大器的增益控制电路,所述电路包括:反馈单元和放大单元;其中,
    所述反馈单元,具有:
    第一接入端,配置为接入驱动开关信号;
    偏置接入端,配置为接入偏置电压和反馈信号;所述反馈信号是所述放大单元对经第一隔直电容的初始输入信号进行放大后得到的;
    反馈电路,配置为根据所述驱动开关信号控制对所述反馈信号的衰减,并得到所述衰减后的第一级输入信号;
    第一输出端,配置为输出所述第一级输入信号给所述放大单元;
    所述放大单元,具有:
    第二接入端,配置为接入所述初始输入信号和所述第一级输入信号;
    偏置接入端,配置为接入所述偏置电压;所述偏置电压配置为维持所述放大单元的正常工作状态;
    放大电路,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给所述反馈电路;以及,对所述第一级输入信号进行放大,得到所述放大后的输出信号;
    第二输出端,配置为输出所述输出信号。
  2. 根据权利要求1所述的增益控制电路,其中,所述反馈电路具体包括:第一RLC直连电路、第二RLC直连电路和开关S;其中,
    所述开关S的一端连接所述第一RLC直连电路的一端,所述开关S的另一端连接所述第二RLC直连电路的一端,且所述开关S配置为实现所述第一RLC直连电路和所述第二RLC直连电路之间的断开与连接,所述开关S的工作状态被所述驱动开关信号控制;所述第一RLC直连电路中没有和所述开关S连接的一端,配置为接入所述偏置电压和所述反馈信号;所述 第二RLC直连电路中没有和所述开关S连接的一端,配置为输出所述第一级输入信号给所述放大单元。
  3. 根据权利要求1所述的增益控制电路,其中,所述放大电路包括所述第一放大器和所述第二放大器;其中,
    所述第一放大器,配置为对所述初始输入信号进行放大,并将所述放大后得到的反馈信号反馈给所述反馈电路;以及,对所述第一级输入信号进行放大,并将得到所述放大后的第二级输入信号输出给所述第二放大器;
    所述第二放大器,配置为对所述第二级输入信号进行放大,并得到所述放大后的输出信号。
  4. 根据权利要求3所述的增益控制电路,其中,所述第一放大器包括:第一功率管和第一电感;其中,
    所述第一功率管的基极,配置为接入所述初始输入信号和所述第一级输入信号;所述第一功率管的集电极与所述第一电感的一端连接,配置为接入所述偏置电压、输出所述反馈信号给所述反馈电路以及输出所述第二级输入信号给所述第二放大器;所述第一功率管的发射极接地;所述第一电感的另一端接电源。
  5. 根据权利要求3所述的增益控制电路,其中,所述第二放大器包括:第二功率管和第二电感;其中,
    所述第二功率管的基极与所述第一功率管的集电极通过匹配网络相连,配置为接入所述第二级输入信号;所述第二功率管的集电极与所述第二电感的一端连接,配置为接入所述偏置电压;所述第二功率管的发射极接地;所述第二电感的另一端接电源。
  6. 根据权利要求1至5任一项所述的增益控制电路,其中,所述驱动开关信号包括高电平和低电平;其中,
    当所述驱动开关信号为高电平时,所述反馈电路的开关S为闭合状态, 所述反馈单元中的反馈回路被导通,所述增益控制电路的增益被降低;其中,所述反馈回路由所述第一功率管、所述第一RLC电路以及第二RLC电路组成;
    当所述驱动开关信号为低电平时,所述反馈电路的开关S为断开状态,所述反馈单元中的反馈回路被断开,所述增益控制电路的增益不变。
  7. 根据权利要求3所述的增益控制电路,其中,所述反馈单元至少为一个;当所述反馈单元为两个或者两个以上时,每个反馈单元对应并联一个所述第一放大器,组成一个增益衰减单元,且每个增益衰减单元之间通过匹配网络相连。
  8. 一种射频功率放大器,所述射频功率放大器包括:驱动开关信号产生电路、偏置电压产生电路和权利要求1至7任一项所述的增益控制电路;其中,
    所述驱动开关信号产生电路,配置为产生驱动开关信号;
    所述偏置电压产生电路,配置为产生偏置电压;
    所述增益控制电路,配置为控制与切换所述射频功率放大器的增益。
  9. 一种增益控制电路的工作方法,所述方法包括:
    增益控制电路接入初始输入信号和驱动开关信号;其中,所述增益控制电路为权利要求1至7任一项所述的增益控制电路;
    所述增益控制电路对所述初始输入信号进行放大,得到所述放大后的反馈信号;
    当所述驱动开关信号为高电平时,所述增益控制电路对所述反馈信号进行衰减,得到所述衰减后的第一级输入信号;
    所述增益控制电路对所述第一级输入信号进行放大,得到所述放大后的输出信号。
PCT/CN2017/076859 2016-12-20 2017-03-15 一种射频功率放大器及其增益控制电路 WO2018113109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611188118.7 2016-12-20
CN201611188118.7A CN108206679A (zh) 2016-12-20 2016-12-20 一种射频功率放大器及其增益控制电路

Publications (1)

Publication Number Publication Date
WO2018113109A1 true WO2018113109A1 (zh) 2018-06-28

Family

ID=62603660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076859 WO2018113109A1 (zh) 2016-12-20 2017-03-15 一种射频功率放大器及其增益控制电路

Country Status (2)

Country Link
CN (1) CN108206679A (zh)
WO (1) WO2018113109A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193476B (zh) * 2020-02-27 2022-10-14 广州慧智微电子股份有限公司 一种放大器及放大方法
CN112653406B (zh) * 2020-11-27 2023-03-03 深圳供电局有限公司 生物电势放大器和生理信号测量***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005637A (ja) * 2004-06-17 2006-01-05 Sony Corp 可変利得増幅器
CN203261299U (zh) * 2013-05-22 2013-10-30 贵州中科汉天下电子有限公司 一种射频功率放大器的增益调节电路
CN203608163U (zh) * 2013-11-27 2014-05-21 广州钧衡微电子科技有限公司 射频功率放大器的增益控制电路
CN104753477A (zh) * 2013-12-30 2015-07-01 国民技术股份有限公司 功率放大器及其增益切换电路
CN106169915A (zh) * 2016-06-30 2016-11-30 唯捷创芯(天津)电子技术股份有限公司 多增益模式功率放大器、芯片及通信终端
CN106788298A (zh) * 2015-11-20 2017-05-31 厦门宇臻集成电路科技有限公司 一种功率放大电器增益切换电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104246A (en) * 1999-05-25 2000-08-15 International Business Machines Corporation Variable gain RF amplifier with switchable bias injection and feedback
CN201726369U (zh) * 2010-07-02 2011-01-26 苏州英诺迅科技有限公司 具有可调预失真功能的射频功率放大器电路
US9853616B2 (en) * 2013-04-25 2017-12-26 Intergrated Device Technology, Inc. Low noise variable gain amplifier utilizing variable feedback techniques with constant input/output impedance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005637A (ja) * 2004-06-17 2006-01-05 Sony Corp 可変利得増幅器
CN203261299U (zh) * 2013-05-22 2013-10-30 贵州中科汉天下电子有限公司 一种射频功率放大器的增益调节电路
CN203608163U (zh) * 2013-11-27 2014-05-21 广州钧衡微电子科技有限公司 射频功率放大器的增益控制电路
CN104753477A (zh) * 2013-12-30 2015-07-01 国民技术股份有限公司 功率放大器及其增益切换电路
CN106788298A (zh) * 2015-11-20 2017-05-31 厦门宇臻集成电路科技有限公司 一种功率放大电器增益切换电路
CN106169915A (zh) * 2016-06-30 2016-11-30 唯捷创芯(天津)电子技术股份有限公司 多增益模式功率放大器、芯片及通信终端

Also Published As

Publication number Publication date
CN108206679A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
US7288991B2 (en) Power control circuit for accurate control of power amplifier output power
US7928799B2 (en) Power amplifying apparatus and mobile communication terminal
TW516266B (en) Constant impedance for switchable amplifier with power control
JP4330549B2 (ja) 高周波電力増幅装置
WO2018001380A1 (zh) 多增益模式功率放大器、芯片及通信终端
JP5141389B2 (ja) 電力増幅器
JP2023529848A (ja) 高周波パワーアンプ、高周波フロントエンドモジュール及び通信端末
JP2004173231A (ja) ドハティ増幅器を用いた信号増幅装置
TW201103252A (en) Cascode amplifier with protection circuitry
US20130127528A1 (en) Power amplifier and amplification method thereof
TW201429156A (zh) 電子系統、射頻功率放大器及其偏壓點動態調整方法
KR20160055492A (ko) 바이어스 회로 및 이를 갖는 전력 증폭기
WO2018113109A1 (zh) 一种射频功率放大器及其增益控制电路
CN116961690B (zh) 双模射频前端模组
US7782133B2 (en) Power amplifier with output power control
TWI617131B (zh) 放大電路
CN117395761A (zh) 电源和偏置可调的射频前端模组及射频芯片
CN113422583A (zh) 低噪声放大电路、射频前端模组及控制方法
US8648661B1 (en) Current limiting circuit
EP2760130B1 (en) Bias circuit
US7282995B2 (en) Variable gain amplifier
US8860506B2 (en) Amplifying apparatus
JP2000022452A (ja) 電力増幅器
WO2018139399A1 (ja) 電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路
CN216929980U (zh) 一种电压击穿可控的功率放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884513

Country of ref document: EP

Kind code of ref document: A1