WO2018111064A1 - System for monitoring and controlling water stress in order to optimise oil extraction - Google Patents

System for monitoring and controlling water stress in order to optimise oil extraction Download PDF

Info

Publication number
WO2018111064A1
WO2018111064A1 PCT/MX2016/000141 MX2016000141W WO2018111064A1 WO 2018111064 A1 WO2018111064 A1 WO 2018111064A1 MX 2016000141 W MX2016000141 W MX 2016000141W WO 2018111064 A1 WO2018111064 A1 WO 2018111064A1
Authority
WO
WIPO (PCT)
Prior art keywords
plants
plant
irrigation
chains
vision
Prior art date
Application number
PCT/MX2016/000141
Other languages
Spanish (es)
French (fr)
Inventor
Isaac Abraham HERRERA CADENA
Efraín CONTRERAS MAGAÑA
Hiram GUTIÉRREZ LIZÁRRAGA
Original Assignee
Herrera Cadena Isaac Abraham
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herrera Cadena Isaac Abraham filed Critical Herrera Cadena Isaac Abraham
Priority to PCT/MX2016/000141 priority Critical patent/WO2018111064A1/en
Publication of WO2018111064A1 publication Critical patent/WO2018111064A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention has its preponderant field of application in the field of hydroponic crops for oil production.
  • NDVI Standardized Vegetation Difference Index
  • US patent US9451745 details a wireless multi-band sensor that measures the temperature of the plant cup temperature and the spectral reflectance over five bands, also includes a wireless transmitter to transmit data from the microprocessor to a remote receiver.
  • the data is used to detect variations in the spectral signature due to plant stress (for example, illness, or physical damage) due to the bottom of the soil and to qualify temperature data.
  • the data provides information for the decision support algorithms related to the start of automatic irrigation programming.
  • the DE10002880 patent details the registration of plant and vegetation growth that includes the use of active and passive light.
  • the plants are illuminated with passive light using sunlight and active light through groups of light emitting diodes (LEDs), using different wavelengths to develop reflection and fluorescence spectra.
  • the readings are classified to show the measures of growth.
  • the measurements are evaluated to determine factors such as the leaf surface index, chlorophyll content, causes of disease and water stress of the plant.
  • the CN205049524 patent describes a water stress monitoring system, where it induces sensors for acoustic emission, temperature, humidity, light intensity and C02 concentration, the data collected by the sensors are processed in a monitoring unit (PC), in order to measure water stress for proper plant growth.
  • PC monitoring unit
  • Figure 1 is a general diagram of the system components for measuring
  • FIG. 2 is a scheme of the system in question, where an example of arrangement for the hydroponics system and the positioning of the vision systems is illustrated.
  • a control system is shown in Figure 1, where the input is the Critical Normalized Vegetation Difference index [Block 1] so that the plant does not die, and is compared with the measurement of the spectrometer sensor [Block 2].
  • the system processing unit [Block 3] compares these two values and, based on the result obtained, sends or not sends electrical signals to activate the actuators of the hydroponic system corresponding to solenoid valves and water pump [Block 4].
  • the spectrometer sensor [Block 5] continues to take images to measure the state of the plant, so that the processing unit [Block 3] verifies that an optimum level of water stress is being taken [Block 6] for the production of oils.
  • FIG. 2 illustrates, where the NFT type hydroponic system case is presented, the vision sensor [Element SI] and the spectrometer sensor [Element S2] are placed in perpendicular planes. Solenoid valves [EV Elements] are indicated, one for each plant chain [Elements C].

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Forests & Forestry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Analytical Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Pathology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Hydroponics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to a scalable system for monitoring and controlling water stress in plants in order to optimise the production of oils. The system comprises a hydroponics system having an independent supply means for each series of plants. Also included is an RGB vision sensor, a near infrared spectrometer sensor for obtaining the normalized difference vegetation index at the critical point of dehydration of the plants.

Description

SISTEMA DE MONITOREO Y CONTROL DE ESTRÉS HÍDRICO  WATER STRESS CONTROL AND MONITORING SYSTEM
PARA OPTIMIZACIÓN DE EXTRACCIÓN DE ACEITES  FOR OIL EXTRACTION OPTIMIZATION
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención tiene su campo de aplicación preponderante en el ámbito de cultivos hidropónicos para producción de aceites. The present invention has its preponderant field of application in the field of hydroponic crops for oil production.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La tecnología de índice de Diferencia de Vegetación Normalizado (NDVI, pos sus siglas en inglés) tiene múltiples aplicaciones en agricultura para estudios de vegetación, estado vegetativo y distribución espacial de la densidad de vegetación. Los índices de vegetación son combinaciones de las bandas espectrales, cuya fundón es realzar la vegetación en función de su respuesta espectral y atenuar los detalles de otros elementos como el suelo, la iluminación, el agua, etc. La presente invención está enfocada al monitoreo de estrés hídrico de plantas basado en imágenes híper- espectrales del tejido vegetal en un cultivo hidropónico. A continuación, se presenta un listado de patentes que se relacionan con la presente invención, con la intención de hacer una comparación entre ellas. The Standardized Vegetation Difference Index (NDVI) technology has multiple applications in agriculture for studies of vegetation, vegetative status and spatial distribution of vegetation density. Vegetation indices are combinations of the spectral bands, whose purpose is to enhance vegetation based on their spectral response and attenuate the details of other elements such as soil, lighting, water, etc. The present invention is focused on monitoring water stress of plants based on hyper-spectral images of plant tissue in a hydroponic crop. Below is a list of patents that relate to the present invention, with the intention of making a comparison between them.
Se han propuesto distintos tipos de mediciones ópticas en la agricultura para la detección del estado vegetativo: en la patente CN 105181632 se han empleado para proporcionar a los usuarios información en tiempo real sobre el crecimiento de los cultivos, en la número US9075008 para proporcionar el tratamiento de una o más de las plantas basadas en el índice de clorofila invariante al agua, para estimar el potencial de rendimiento del cultivo y la respuesta del cultivo a fertilizante de nitrógeno en la patente US20150379702. Different types of optical measurements have been proposed in agriculture for the detection of vegetative state: in CN patent 105181632 they have been used to provide users with real-time information on crop growth, in number US9075008 to provide treatment of one or more of the plants based on the invariant chlorophyll index to water, to estimate the crop yield potential and the crop response to nitrogen fertilizer in US20150379702.
La patente estadounidense US9451745 detalla un sensor inalámbrico de múltiples bandas que mide la radiación de la temperatura de la copa de la planta y la reflectancia espectral sobre cinco bandas, además incluye un transmisor inalámbrico para transmitir datos desde el microprocesador a un receptor remoto. Los datos se utilizan para detectar variaciones en la firma espectral debido al estrés de la planta (por ejemplo, enfermedad, o daño físico) debido al fondo del suelo y para calificar los datos de temperatura. Los datos proporcionan información para los algoritmos de apoyo a la toma de decisiones relacionados con el inicio de la programación automática del riego. Así mismo la patente DE10002880 detalla el registro de crecimiento de plantas y vegetación que incluye empleo de luz activa y pasiva. Las plantas se iluminan con luz pasiva usando luz solar y luz activa a través de grupos de diodos emisores de luz (LED), utilizando diferentes longitudes de onda para desarrollar espectros de reflexión y fluorescencia. Las lecturas se clasifican para mostrar las medidas del crecimiento. Las mediciones se evalúan para determinar factores tales como el índice de superficie foliar, contenido de clorofila, causas de enfermedad y el estrés hídrico de la planta. US patent US9451745 details a wireless multi-band sensor that measures the temperature of the plant cup temperature and the spectral reflectance over five bands, also includes a wireless transmitter to transmit data from the microprocessor to a remote receiver. The data is used to detect variations in the spectral signature due to plant stress (for example, illness, or physical damage) due to the bottom of the soil and to qualify temperature data. The data provides information for the decision support algorithms related to the start of automatic irrigation programming. In addition, the DE10002880 patent details the registration of plant and vegetation growth that includes the use of active and passive light. The plants are illuminated with passive light using sunlight and active light through groups of light emitting diodes (LEDs), using different wavelengths to develop reflection and fluorescence spectra. The readings are classified to show the measures of growth. The measurements are evaluated to determine factors such as the leaf surface index, chlorophyll content, causes of disease and water stress of the plant.
Por otro lado, la patente CN205049524 describe un sistema de monitorización de estrés hídrico, en donde induye sensores de emisión acústica, de temperatura, de humedad, de intensidad de luz y de concentración de C02, los datos recabados por los sensores se procesan en una unidad de monitorización (PC), con el fin de medir el estrés hídrico para el adecuado crecimiento de las plantas. On the other hand, the CN205049524 patent describes a water stress monitoring system, where it induces sensors for acoustic emission, temperature, humidity, light intensity and C02 concentration, the data collected by the sensors are processed in a monitoring unit (PC), in order to measure water stress for proper plant growth.
DESCRIPCION DETALLADA DE LA INVENCIÓN Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo por lo que no deben considerarse como una limitante para dicha invención. Breve descripción de las figuras: DETAILED DESCRIPTION OF THE INVENTION The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example and should not be considered as a limitation on said invention. Brief description of the figures:
La figura 1 es un diagrama general de los componentes del sistema para medición de Figure 1 is a general diagram of the system components for measuring
NVDI de la presente invención. La figura 2 es un esquema del sistema en cuestión, donde se ilustra un ejemplo de arreglo para el sistema de hidroponía y la colocación de los sistemas de visión. En la Figura 1 se muestra un sistema de control, donde la entrada es el índice de Diferencia de Vegetación Normalizado crítico [Bloque 1] para que la planta no muera, y se compara con la medición del sensor espectrómetro [Bloque 2]. La unidad de procesamiento del sistema [Bloque 3] compara estos dos valores y, con base en resultado obtenido, envía o no señales eléctricas para activar los actuadores del sistema hidropónico correspondientes a electroválvulas y bomba de agua [Bloque 4]. Nuevamente el sensor espectrómetro [Bloque 5] continúa tomando imágenes para medición del estado de la planta, para que la unidad de procesamiento [Bloque 3] verifique que se está teniendo un nivel de estrés hídrico óptimo [Bloque 6] para la producción de aceites. NVDI of the present invention. Figure 2 is a scheme of the system in question, where an example of arrangement for the hydroponics system and the positioning of the vision systems is illustrated. A control system is shown in Figure 1, where the input is the Critical Normalized Vegetation Difference index [Block 1] so that the plant does not die, and is compared with the measurement of the spectrometer sensor [Block 2]. The system processing unit [Block 3] compares these two values and, based on the result obtained, sends or not sends electrical signals to activate the actuators of the hydroponic system corresponding to solenoid valves and water pump [Block 4]. Again the spectrometer sensor [Block 5] continues to take images to measure the state of the plant, so that the processing unit [Block 3] verifies that an optimum level of water stress is being taken [Block 6] for the production of oils.
Como ilustra la Figura 2, donde se presenta el caso de sistema hidropónico tipo NFT, el sensor de visión [Elemento SI] y el sensor espectrómetro [Elemento S2] se colocan en planos perpendiculares. Se indican las electroválvulas [Elementos EV], una por cada cadena de plantas [Elementos C]. As Figure 2 illustrates, where the NFT type hydroponic system case is presented, the vision sensor [Element SI] and the spectrometer sensor [Element S2] are placed in perpendicular planes. Solenoid valves [EV Elements] are indicated, one for each plant chain [Elements C].

Claims

REIVINDICACIONES
La presente invención reclama: 1. Un sistema escalable de monitoreo y control de estrés hídrico vegetal para optimizar la producción y extracción de aceites, constituido por los siguientes elementos y etapas: The present invention claims: 1. A scalable system of monitoring and control of plant water stress to optimize the production and extraction of oils, consisting of the following elements and stages:
a. Un sistema hídropónico conformado por distintas cadenas de plantas con fuente común de irrigación, estructurado de tal forma que dos cadenas no se encuentran en un mismo plano ortogonal, b. Una electroválvula para cada cadena de plantas que permite o limita la irrigación a dicha cadena,  to. A hydronic system consisting of different plant chains with a common source of irrigation, structured in such a way that two chains are not in the same orthogonal plane, b. One solenoid valve for each plant chain that allows or limits irrigation to said chain,
c. un dispositivo de bombeo hidráulico que circula la mezcla de agua con nutrientes hacia las distintas cadenas de vegetales,  C. a hydraulic pumping device that circulates the mixture of water with nutrients to the different vegetable chains,
d. Un sensor de visión RGB que captura imágenes bidimensionales desde un área de visión perpendicular al plano de las hojas de dichas plantas en su estado de turgencia óptimo,  d. An RGB vision sensor that captures two-dimensional images from an area of vision perpendicular to the plane of the leaves of said plants in their optimum turgor state,
e. Un algoritmo utilizado para identificar el nivel de turgencia de las plantas mediante un método de visión artificial de estimación de posición y orientación de las hojas de dichas plantas,  and. An algorithm used to identify the level of turgor of the plants by means of an artificial vision method of estimating the position and orientation of the leaves of said plants,
f. Un dispositivo espectrómetro de infrarrojo cercano que lee la reflectancia difusa, en la forma de log(l/R), de todas o algunas de las plantas del sistema hídropónico desde un área de visión paralelo al plano de las hojas de dichas plantas en su estado de turgencia óptimo, g. Un controlador que recibe los datos del sensor de visión RGB y ejecuta el algoritmo de visión artificial mencionado, también obtiene información del espectrómetro y analiza la curva de radiación reflectada obtenida para obtener el índice de Diferencia de Vegetación Normalizado (NDVI). A través de un método estadístico de regresión estima el tiempo restante para llegar al límite de la planta antes de la muerte de la misma y, con base en el resultado, permite o limita la irrigación a las cadenas de dichas plantas. F. A near-infrared spectrometer device that reads the diffuse reflectance, in the form of a log (l / R), of all or some of the plants of the humidonic system from an area of vision parallel to the plane of the leaves of said plants in their state of optimal turgidity, g. A controller that receives the RGB vision sensor data and executes the aforementioned artificial vision algorithm, also obtains information from the spectrometer and analyzes the reflected radiation curve obtained to obtain the Normalized Vegetation Difference Index (NDVI). Through a statistical regression method, estimate the remaining time to reach the plant limit before the death of the plant and, based on the result, allows or limits irrigation to the chains of these plants.
2. Un sistema como el especificado en Reivindicación 1, donde la técnica del sistema hidropónico puede ser: i) de película nutritiva (NFT), ii) de flujo profundo (DFT), iii) de irrigación por spray o iv) con sustrato. 2. A system as specified in Claim 1, wherein the hydroponic system technique can be: i) nutritive film (NFT), ii) deep flow (DFT), iii) spray irrigation or iv) with substrate.
3. Un sistema como el especificado en Reivindicación 1, donde se incluye un mayor número de electroválvulas para permitir la irrigación especializada a una o un par de plantas. 3. A system as specified in Claim 1, wherein a larger number of solenoid valves is included to allow specialized irrigation to one or a couple of plants.
4. Un sistema como el especificado en Reivindicación 1, donde se incluye una interface para verificación de proceso de monitoreo que puede ser: i) una pantalla, ii) un módulo de comunicación inalámbrica para desplegar una aplicación multi-dispositivo, iii) un módulo de conexión a Internet para desplegar información en una página web. 4. A system as specified in Claim 1, which includes an interface for verification of the monitoring process which may be: i) a screen, ii) a wireless communication module for deploying a multi-device application, iii) a module Internet connection to display information on a web page.
PCT/MX2016/000141 2016-12-15 2016-12-15 System for monitoring and controlling water stress in order to optimise oil extraction WO2018111064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000141 WO2018111064A1 (en) 2016-12-15 2016-12-15 System for monitoring and controlling water stress in order to optimise oil extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000141 WO2018111064A1 (en) 2016-12-15 2016-12-15 System for monitoring and controlling water stress in order to optimise oil extraction

Publications (1)

Publication Number Publication Date
WO2018111064A1 true WO2018111064A1 (en) 2018-06-21

Family

ID=62559032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000141 WO2018111064A1 (en) 2016-12-15 2016-12-15 System for monitoring and controlling water stress in order to optimise oil extraction

Country Status (1)

Country Link
WO (1) WO2018111064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111612777A (en) * 2020-05-23 2020-09-01 福州大学 Soybean mapping method based on leaf aging and water loss index

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015366A (en) * 1975-04-11 1977-04-05 Advanced Decision Handling, Inc. Highly automated agricultural production system
JPH05123068A (en) * 1991-11-06 1993-05-21 Kubota Corp Capillary hydroponic culture apparatus
US5936245A (en) * 1996-06-03 1999-08-10 Institut Francais Du Petrole Method and system for remote sensing of the flammability of the different parts of an area flown over by an aircraft
KR20050012099A (en) * 2003-09-01 2005-01-31 정경균 Terraced Hydroponic Culture Apparatus
JP2008199902A (en) * 2007-02-16 2008-09-04 Ehime Univ Plant cultivation apparatus in plant cultivation facility
JP2009044999A (en) * 2007-08-20 2009-03-05 Iseki & Co Ltd Plant cultivation controller
CN101881725A (en) * 2010-06-11 2010-11-10 浙江大学 Automatic monitoring system of greenhouse crop growth conditions based on reflection spectrum
CN102495005A (en) * 2011-11-17 2012-06-13 江苏大学 Method for diagnosing crop water deficit through hyperspectral image technology
MX2013003449A (en) * 2010-09-27 2014-02-17 Consejo Nac Invest Cient Tec Automatic phenotyping platform.
US20140283451A1 (en) * 2013-03-21 2014-09-25 Disney Enterprises, Inc. Hydroponic array for the individualized delivery of nutrients
WO2015045219A1 (en) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 Hydroponic apparatus
CN105139243A (en) * 2015-07-30 2015-12-09 甘霖 Quality monitoring and marketing system for indoor cultivated vegetables and fruits and implementation method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015366A (en) * 1975-04-11 1977-04-05 Advanced Decision Handling, Inc. Highly automated agricultural production system
JPH05123068A (en) * 1991-11-06 1993-05-21 Kubota Corp Capillary hydroponic culture apparatus
US5936245A (en) * 1996-06-03 1999-08-10 Institut Francais Du Petrole Method and system for remote sensing of the flammability of the different parts of an area flown over by an aircraft
KR20050012099A (en) * 2003-09-01 2005-01-31 정경균 Terraced Hydroponic Culture Apparatus
JP2008199902A (en) * 2007-02-16 2008-09-04 Ehime Univ Plant cultivation apparatus in plant cultivation facility
JP2009044999A (en) * 2007-08-20 2009-03-05 Iseki & Co Ltd Plant cultivation controller
CN101881725A (en) * 2010-06-11 2010-11-10 浙江大学 Automatic monitoring system of greenhouse crop growth conditions based on reflection spectrum
MX2013003449A (en) * 2010-09-27 2014-02-17 Consejo Nac Invest Cient Tec Automatic phenotyping platform.
CN102495005A (en) * 2011-11-17 2012-06-13 江苏大学 Method for diagnosing crop water deficit through hyperspectral image technology
US20140283451A1 (en) * 2013-03-21 2014-09-25 Disney Enterprises, Inc. Hydroponic array for the individualized delivery of nutrients
WO2015045219A1 (en) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 Hydroponic apparatus
CN105139243A (en) * 2015-07-30 2015-12-09 甘霖 Quality monitoring and marketing system for indoor cultivated vegetables and fruits and implementation method thereof

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
DATABASE EPODOC Database accession no. CN -201010200985-A *
DATABASE EPODOC Database accession no. CN -201110363667-A *
DATABASE EPODOC Database accession no. CN -201510459582-A *
DATABASE EPODOC Database accession no. JP - 2007036123 - A *
DATABASE EPODOC Database accession no. JP - 2007213553 - A *
DATABASE EPODOC Database accession no. JP - 28961991 - A *
DATABASE EPODOC Database accession no. KR -20030060841-A *
DATABASE WPI Derwent World Patents Index; AN 2008-K78255, RECUPERADO *
DATABASE WPI Derwent World Patents Index; AN 2012-J14441, RECUPERADO *
DATABASE WPI Derwent World Patents Index; AN 2015-81113H *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111612777A (en) * 2020-05-23 2020-09-01 福州大学 Soybean mapping method based on leaf aging and water loss index
CN111612777B (en) * 2020-05-23 2022-07-22 福州大学 Soybean mapping method based on leaf aging and water loss index

Similar Documents

Publication Publication Date Title
KR102301658B1 (en) Apparatus for growing plant and control method of the same
Ezenne et al. Current and potential capabilities of UAS for crop water productivity in precision agriculture
CN114007411B (en) Gardening lighting device with LiDAR sensing
Calcante et al. Evaluation of “ground sensing” optical sensors for diagnosis of Plasmopara viticola on vines
Caturegli et al. Spectral reflectance of tall fescue (Festuca Arundinacea Schreb.) under different irrigation and nitrogen conditions
Demirel et al. Yield estimate using spectral indices in eggplant and bell pepper grown under deficit irrigation
Martin et al. Laboratory evaluation of the GreenSeeker handheld optical sensor to variations in orientation and height above canopy
Tung et al. Evaluation of water potentials of leafy vegetables using hyperspectral imaging
WO2018111064A1 (en) System for monitoring and controlling water stress in order to optimise oil extraction
Kittas et al. Reflectance indices for the detection of water stress in greenhouse tomato (Solanum lycopersicum)
KR20210065607A (en) Method of determining status of plant growth and apparatus for growing plant using the same
Marcos et al. Light spectra optimization in indoor plant growth for internet of things
Calvão et al. Remote sensing in food production-a review
Atherton et al. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants prior to visual disease symptoms
Gallo et al. New solutions for the automatic early detection of diseases in vineyards through ground sensing approaches integrating LiDAR and optical sensors
Negrete Artificial vision in Mexican agriculture, a new techlogy for increase food security
Mathushika et al. Smart Farming Using Artificial Intelligence, the Internet of Things, and Robotics: A Comprehensive Review
AU2018238226B2 (en) A monitoring device, a system and a method for monitoring a status of fruits
Botyanszka A Review of Imaging and Sensing Technologies for Field Phenotyping
US20230003856A1 (en) Time-of-flight sensing for horticulture
KR102645282B1 (en) Apparatus, Server and System for Plant Management based on Deep Learning
Borra-Serrano et al. A view from above: the use of drones and image-based phenotyping in breeding and production of woody ornamentals
de Menezes Freitas et al. Hyperspectral characterization and estimation models for agronomic parameters of coffee cultivars after pruning
Singh et al. Qualitative analysis of walnut trees rootstock using airborne remote sensing
Pham Overview of IoT development in Agriculture and Applications in Vietnam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923978

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 29.11.2019.

122 Ep: pct application non-entry in european phase

Ref document number: 16923978

Country of ref document: EP

Kind code of ref document: A1