WO2018107795A1 - 一种球磨剥离白石墨烯的方法 - Google Patents

一种球磨剥离白石墨烯的方法 Download PDF

Info

Publication number
WO2018107795A1
WO2018107795A1 PCT/CN2017/098056 CN2017098056W WO2018107795A1 WO 2018107795 A1 WO2018107795 A1 WO 2018107795A1 CN 2017098056 W CN2017098056 W CN 2017098056W WO 2018107795 A1 WO2018107795 A1 WO 2018107795A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball milling
ball
white graphene
surfactant
ketone
Prior art date
Application number
PCT/CN2017/098056
Other languages
English (en)
French (fr)
Inventor
段曦东
王剑
蒋后清
Original Assignee
广东纳路纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东纳路纳米科技有限公司 filed Critical 广东纳路纳米科技有限公司
Publication of WO2018107795A1 publication Critical patent/WO2018107795A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to the field of nano materials, in particular to a method for ball-peeling off white graphene.
  • White graphene (h-BN) is essentially a single layer or a small layer of h-BN.
  • the two-dimensional h-BN material Based on the unique two-dimensional structure of h-BN, the two-dimensional h-BN material has many excellent properties.
  • the two-dimensional h-BN has low density and high specific strength, and can be applied to modified multifunctional composite materials; it has a low friction coefficient and is a commonly used lubricant; it has high temperature resistance and is chemically stable in air above 1000 ° C.
  • h-BN Used in anti-oxidation coatings and other fields; large thermal conductivity, can be used as filler for thermal conductive composites; layered h-BN forbidden band width is 5.0-6.0 ev, with excellent insulation properties, single-layer H-BN tunnel
  • the barrier height is 3.07eV
  • the breakdown voltage is 7.95MV/cm, which is similar to that of SO 2
  • the surface of h-BN layer is smooth, the dangling bonds are relatively few, and the carrier trap is less.
  • h-BN is a graphene transistor.
  • the ideal carrier platform at the same time, due to its large forbidden band width, it can also be used as an ultraviolet laser detector.
  • h-BN is a good gas sensitive material with extremely high sensitivity to CO 2 , CH 4 , O 2 , H 2 , NO 2 and the like.
  • h-BN two-dimensional materials have many of the above-mentioned good properties, h-BN with excellent preparation performance on a large scale is still to be studied.
  • the yield of white graphene (h-BN) prepared by traditional micro-mechanical stripping is too low, which is only suitable for laboratory production; chemical liquid phase stripping is commonly used to toxic and harmful organic solvents, and its physical structure and electrons such as oxidation and ion intercalation The structure has a certain influence, and the prepared h-BN has poor electrical properties.
  • Chemical vapor deposition is commonly used to prepare high-performance single-layer or low-layer h-BN, but its cost and yield are affected. To the limit.
  • white graphene cannot mass-produce white graphene with high purity and excellent performance in a low-cost manner, which greatly limits its application, and improving the productivity of white graphene is one of the focuses of white graphene research.
  • white graphene similar to many other nanomaterials, white graphene has a large specific surface area. Under the action of van der Waals force, white graphene sheets will produce irreversible agglomeration, so its dispersion performance seriously affects its performance and application, and improves h-BN. Dispersibility is also the focus of current research.
  • the method can effectively strip white graphene particles, and the white graphene obtained by stripping has uniform particles, few layers, large area, and purity. High characteristics, can be well dispersed in alcohol and other solvents for dozens of days without agglomeration and sedimentation. Moreover, the method has simple operation process, low cost and high production efficiency, and is suitable for large-scale industrial production.
  • Step 1) mixing and dissolving white graphene (h-BN) powder, surfactant, and ball milling medium, and performing ball sealing at a ball milling speed of 200-800 rpm;
  • the mass ratio of the white graphene (h-BN) powder to the surfactant is 1:1-500:1, preferably 10:1-100:1; the white graphene (h-BN) and the ball milling medium are added.
  • the mass ratio is 2:1-1:10, preferably 1:1 to 1:5;
  • Step 2 After each ball milling for a period of time, continue to add the ball milling medium in step 1, the ball milling medium is added in an amount of 5% to 40% by mass of the white graphene, and the total ball milling time is 120-480 h;
  • Step 3 After the completion of the grinding, the obtained powder is washed with alcohol and then dried to obtain a ball-milled white graphene dispersion.
  • the grinding ball is ceramic or metal grinding ball
  • the ball to material ratio is 3:1
  • the surface energy of the ball milling medium is close to the surface energy of white graphene (25-40 mJ/m 2 )
  • the mechanical peeling has the most Good efficiency and quality.
  • adding an appropriate amount of ball milling media can buffer the impact of the zirconium ball during ball milling and adjust the viscosity range of the ball mill system.
  • the ball mill media must be added after grinding for a period of time. To control the viscosity of the ball mill system within a reasonable range.
  • the surfactant can effectively adsorb on the surface of the two-dimensional h-BN to form steric hindrance and charge steric hindrance, and the prepared white graphene can be dispersed in an aqueous solution of alcohol, acetone and the like for a long time without agglomeration and sedimentation.
  • the ball milling medium is added every 2 hours for the first 24 hours; the ball milling medium is added every 24 hours after the ball milling time exceeds 24 hours.
  • the ball milling medium is a low molecular weight alcohol and/or aqueous ketone solution.
  • the mass ratio of the low molecular weight alcohol and/or ketone to water is from 1:10 to 2:1, more preferably from 1:5 to 2:1.
  • the low molecular weight alcohol is at least one of methanol, ethanol, isopropanol, tert-butanol, and ethylene glycol; and the low molecular weight ketone is acetone.
  • the surfactant is at least one of a surfactant having a long-chain Lewis acid or a long-chain Lewis base.
  • the surfactant is at least one of a higher fatty acid, a fatty ketone, an alicyclic ketone, an aromatic ketone, and the like and a corresponding derivative thereof having a C atom number greater than 14 with a long-chain Lewis acid; or a long chain At least one of an olefin, an aromatic compound, an amine, an ether, and the like of the Lewis base.
  • the surfactant of the long-chain Lewis acid is: palmitic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, palmitic acid, octadecanone, 3-methylcyclotriene At least one of a ketone, cyclotetradecanone, 3-hexadecanone, palm aldehyde, cocoaldehyde, eicosanal, and the like;
  • the surfactant of the long-chain Lewis base is: palmamine, heptadecylamine, octadecylamine, oleylamine, cholestyramine, terminal aminopolyethylene glycol, polyphenylacetylene, polythiophene, polystyrene sulfonate At least one of sodium, dodecylbenzene, 4-dodecylaniline, polyoxyethylene octyl phenol ether, glycidyl 12-14 alkyl ether, hexaethylene glycol monohexadecyl ether, and the like .
  • the B and N atoms in h-BN have weak positive and negative points, respectively, and there is a ⁇ bond.
  • the surfactant with long-chain Lewis acid and long-chain Lewis base of the present invention can fully adsorb on h-BN to form a space position. Resistance and charge steric hindrance promotes grinding and prevents agglomeration of isolated h-BN nanosheets.
  • the white graphene sheet stripped by the invention has large particle size, thin thickness and large specific surface area: the thickness is less than 10 nm, the thickness of the thin skin can be as low as 1 nm, the particle size is distributed in the range of hundreds of nanometers to several micrometers, and the specific surface area is as high as 100-1500 m 2 /g.
  • the preparation process has no strong acid/alkali raw materials, toxic organic additives, etc., is environmentally friendly, has high production efficiency, large output, simple equipment, low cost and good application prospect.
  • Example 1 is a SEM photograph of white graphene prepared in Example 1;
  • Example 2 is an AFM photograph of white graphene prepared in Example 1.
  • the specific preparation process steps of the present embodiment weigh 100 g of white graphene (h-BN), 100 g of ethanol and 100 g of deionized water, measure 4 g of polythiophene, put into a ball mill jar, and stir to completely dissolve.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and milled at 500 rpm for 240 h. 24h before ball milling, 25g ethanol solution was added every 2h (ethanol: water mass ratio was 1:1); ball milling time was 24-72h, and 25g ethanol solution was added every 24h. After the ball milling time exceeds 72 h, 10 g of an aqueous ethanol solution is added every 24 hours to ensure that the ball mill system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • FIG. 1 is a SEM photograph of the product obtained in the present example, from which it can be seen that the obtained white graphene nanosheet has a particle diameter of more than 250 nm and a nanosheet thickness of less than 10 nm by ball mill peeling;
  • FIG. 2 is an atomic force microscope photo, h The thickness of the -BN sheet is 6 nm, and the thickness of part of the h-BN can be as low as about 1 nm.
  • the specific surface area was determined to be 180 m 2 /g.
  • the specific preparation process steps of this embodiment weigh 100 g of white graphene (h-BN), 100 g of ethanol and 100 g of deionized water in a ball mill jar, and stir uniformly with a glass rod. 10 g of oleylamine was weighed and placed in a ball mill jar and stirred to completely dissolve.
  • the ball mill jar was sealed, fixed on a ball mill, and the ball mill was started and milled at 450 rpm for 240 h.
  • 25 g of an aqueous ethanol solution was added every 2 hours.
  • the ball milling time was 24-72 h, and 25 g of an aqueous ethanol solution was added every 24 hours.
  • 10 g of an aqueous ethanol solution is added every 24 hours to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm and a nanosheet thickness of less than 10 nm; most of the h-BN sheets have a thickness of 4 nm, and a part of the h-BN has a thickness as low as about 1 nm.
  • the specific surface area was detected to be 320 m 2 /g.
  • the specific preparation process steps of this embodiment weigh 100 g of white graphene (h-BN), 100 g of acetone and 100 g of deionized water in a ball mill jar, and stir uniformly with a glass rod. 2 g of palmitic acid was weighed and placed in a ball mill jar, and stirred to dissolve completely.
  • h-BN white graphene
  • acetone 100 g
  • deionized water 100 g
  • 2 g of palmitic acid was weighed and placed in a ball mill jar, and stirred to dissolve completely.
  • the ball mill jar was sealed, fixed on a planetary ball mill, and the ball mill was started and milled at 450 rpm for 240 h.
  • 25 g of aqueous acetone solution was added every 2 hours.
  • the ball milling time was 24-72 h, and 25 g of aqueous acetone solution was added every 24 hours.
  • 10 g of aqueous acetone solution is added every 24 hours to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol and dried in a muffle furnace at 60 ° C to obtain a ball mill.
  • White graphene product After the ball milling, the white graphene is washed with alcohol and dried in a muffle furnace at 60 ° C to obtain a ball mill.
  • White graphene product After the ball milling, the white graphene is washed with alcohol and dried in a muffle furnace at 60 ° C to obtain a ball mill.
  • White graphene product is obtained by the white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm and a nanosheet thickness of less than 10 nm; most of the h-BN sheets have a thickness of 4 nm, and a part of the h-BN has a thickness as low as about 1 nm.
  • the specific surface area was determined to be 280 m 2 /g.
  • the specific preparation process steps of the present embodiment weigh 100 g of white graphene (h-BN), 50 g of acetone and 150 g of deionized water, measure 4 g of octadecylamine, put into a ball mill jar, and stir to completely dissolve.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and milled at 500 rpm for 240 h. 25 g of aqueous acetone solution was added every 2 h for the first 24 h during the ball milling process.
  • the ball milling time was 24-72 h, and 25 g of aqueous acetone solution was added every 24 hours. After the ball milling time exceeds 72 h, 10 g of aqueous acetone solution is added every 24 times to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm, and the nanosheet thicknesses are all less than 10 nm.
  • the thickness of most of the h-BN sheets is 3 nm, and the thickness of some of the h-BN sheets can be as low as about 1 nm.
  • the specific surface area was determined to be 380 m 2 /g.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and milled at 500 rpm for 240 h. 25 g of aqueous acetone solution was added every 2 h for the first 24 h during the ball milling process.
  • the ball milling time was 24-72 h, and 25 g of aqueous acetone solution was added every 24 hours. After the ball milling time exceeds 72 h, 10 g of aqueous acetone solution is added every 24 hours to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle size greater than 250 nm and the nanosheet thicknesses are all less than 10 nm; most of the h-BN sheets have a thickness of 4 nm, and a portion of the h-BN has a thickness as low as about 1 nm.
  • the specific surface area was determined to be 250 m 2 /g.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and ball milled at 700 rpm for 150 h.
  • 40 g of t-butanol/acetone aqueous solution was added every 2 h for the first 24 h during the ball milling process.
  • the ball milling time was 24-72 h, and 25 g of t-butanol/acetone aqueous solution was added every 24 hours. After the ball milling time exceeds 72 h, 20 g of t-butanol/acetone aqueous solution is added every 24 h to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm and a nanosheet thickness of less than 10 nm; most of the h-BN sheets have a thickness of 4 nm, and a part of the h-BN has a thickness as low as about 1 nm.
  • the specific surface area was determined to be 380 m 2 /g.
  • the specific preparation process steps weigh 100 g of white graphene (h-BN), 250 g of methanol, 250 g of acetone and 150 g of deionized water, measure 3 g of palm aldehyde, put it into a ball mill jar, and stir to completely dissolve it.
  • h-BN white graphene
  • methanol 250 g
  • acetone 250 g
  • deionized water 150 g
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and ball milled at 300 rpm for 400 h.
  • 10 g of methanol/acetone aqueous solution was added every 2 h for the first 24 h during the ball milling process.
  • the ball milling time was 24-72 h, and 8 g of methanol/acetone aqueous solution was added every 24 hours. After the ball milling time exceeds 72 h, 8 g of methanol/acetic acid aqueous solution is added every 24 hours to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm, and the nanosheet thicknesses are all less than 10 nm; most of the h-BN sheets have a thickness of 5 nm, and a part of the h-BN thickness can be as low as about 1 nm.
  • the specific surface area was detected to be 550 m 2 /g.
  • the specific preparation process steps of the present embodiment weigh 100g of white graphene (h-BN), 200g of methanol, 200 isopropyl alcohol and 300g of deionized water, weigh 0.3g of polyoxyethylene octyl phenol ether, and put it into the ball mill tank. Stir and dissolve completely.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and ball milled at 600 rpm for 300 h. 10 g of methanol/isopropanol aqueous solution was added every 2 h for the first 24 h during the ball milling process. The ball milling time was 24-72 h, and 20 g of a methanol/isopropanol aqueous solution was added every 24 hours. After the ball milling time exceeds 72 h, 8 g of methanol/isopropanol aqueous solution is added every 24 hours to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm and a nanosheet thickness of less than 10 nm; most of the h-BN sheets have a thickness of 2 nm, and a part of the h-BN has a thickness as low as about 1 nm.
  • the specific surface area was found to be 120 m 2 /g.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and milled at 500 rpm for 240 h.
  • the dispersion medium was not replenished during the ball milling process. It was found that the dispersion medium escaped in the system after 48 hours of ball milling, and the system dried up.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm, and the thickness of the nanosheets is that the thickness of most of the h-BN sheets is 40 nm.
  • the specific surface area was determined to be 10 m 2 /g.
  • the ball mill jar was sealed and fixed on a planetary ball mill, and the ball mill was started and milled at 500 rpm for 240 h. 25 g of aqueous acetone solution was added every 2 h for the first 24 h during the ball milling process.
  • the ball milling time was 24-72 h, and 25 g of aqueous acetone solution was added every 24 hours. After the ball milling time exceeds 72 h, 10 g of aqueous acetone solution is added every 24 times to ensure that the ball milling system has a suitable viscosity.
  • the white graphene is washed with alcohol, and then dried at 60 ° C in a muffle furnace to obtain a ball-milled white graphene product.
  • the white graphene nanosheets obtained in this example have a particle diameter of more than 250 nm and a nanosheet thickness of about 40 nm.
  • the specific surface area was determined to be 28 m 2 /g.

Abstract

本方法涉及纳米材料领域,具体公开了一种球磨剥离白石墨烯的方法,具体为:将白石墨烯粉末与表面活性剂的质量体积比为1:1-500:1;白石墨烯与球磨介质加入质量比为2:1-1:10的原料混合溶解后,采用球磨速度为200-800rpm下进行密封球磨;每球磨一段时间后,继续添加上述球磨介质,球磨介质的添加量为白石墨烯质量百分比的5%-40%,总球磨时间为120-480h;研磨完成后,所得粉体采用酒精洗涤,然后烘干干燥,得到白石墨烯分散体。本方法能有效剥离白石墨烯颗粒,所制备得的白石墨烯具有颗粒均匀、层数少、面积大、纯度高的特点,能良好的分散在酒精等溶剂中保存数十天不产生团聚沉降作用。

Description

一种球磨剥离白石墨烯的方法 技术领域
本发明涉及纳米材料领域,具体涉及一种球磨剥离白石墨烯的方法。
背景技术
白石墨烯(h-BN)本质是单层或少层的h-BN。
石墨烯的发现引发了科学界对二维材料的研究热潮,白石墨烯片作为一种新型的二维材料,由于其具有优异的性能受到广泛的研究。二维h-BN中,B原子和N原子以sp2杂化,B与N按1:1形成共价结合,得到类石墨烯六方蜂巢结构的二维平面,但其在第三维方向上层与层之间通过范德华力结合,构成范德华层状材料。
基于h-BN独特的二维结构,二维h-BN材料具备许多优良的性能。二维h-BN密度低、比强度高,能应用于改性多功能复合材料;摩擦系数低,是一种常用的润滑剂;耐高温,在1000℃以上空气中仍具备化学稳定性,能应用于抗氧化涂层等领域;导热系数大,可用作导热复合材料的填充剂;层状h-BN禁带宽度为5.0-6.0ev,具有优良的绝缘性能,单层H-BN隧道的性质其势垒高度3.07eV,击穿电压7.95MV/cm,与SO2的性质相近,且h-BN层表面光滑、悬挂键相对少、载流子陷阱少,h-BN是石墨烯晶体管的理想载体平台;同时由于其禁带宽度大,也可用作紫外激光探测器件。且h-BN是一种良好的气敏材料,对CO2,CH4、O2,H2,NO2等具备极高的灵敏度。
尽管h-BN二维材料具备上述诸多良好性能,但目前来说大规模制备性能优良的h-BN尚有待研究。传统微机械剥离所制备的白石墨烯(h-BN)产量过低,仅适合实验室生产;化学液相剥离等常用到有毒有害的有机溶剂,且氧化及离子嵌入等对其物理结构及电子结构有一定影响,所制备的h-BN电学性能不佳。化学气相沉积常用来制备高性能的单层或者少层h-BN,但其成本高昂且产量受 到限制。目前白石墨烯尚不能以低成本的方法大量生产纯度高、性能优良的白石墨烯,这极大地限制了其应用,提高白石墨烯产能是目前白石墨烯研究的重点之一。此外,类似于许多其他纳米材料,白石墨烯存在巨大的比表面积,在范德华力的作用下,白石墨烯片会产生不可逆的团聚,因此其分散性能严重影响其性能和应用,提高h-BN分散性同样是目前研究的重点。
发明内容
有鉴于此,有必要针对上述的问题,提供一种球磨剥离白石墨烯的方法,本方法能有效剥离白石墨烯颗粒,剥离得到的白石墨烯具有颗粒均匀、层数少、面积大、纯度高的特点,能良好的分散在酒精等溶剂中保存数十天不产生团聚沉降作用。且该方法操作过程简单,成本低,生产效率高,适宜大规模工业生产。
为实现上述目的,本发明采取以下的技术方案:
本发明的球磨剥离白石墨烯的方法,具体步骤为:
步骤1)将白石墨烯(h-BN)粉末、表面活性剂、球磨介质混合溶解后,采用球磨速度为200-800rpm下进行密封球磨;
所述白石墨烯(h-BN)粉末与表面活性剂的质量比为1:1-500:1,优选10:1-100:1;所述白石墨烯(h-BN)与球磨介质加入质量比为2:1-1:10,优选1:1-1:5;
步骤2)每球磨一段时间后,继续添加步骤1中的球磨介质,球磨介质的添加量为白石墨烯质量百分比的5%-40%,总球磨时间为120-480h;
步骤3)研磨完成后,所得粉体采用酒精洗涤,然后烘干干燥,得到球磨白石墨烯分散体。
本发明在球磨过程中,磨球为陶瓷或者金属磨球,球料比为3:1,球磨介质的表面能接近白石墨烯的表面能时(25-40mJ/m2),机械剥离具有最佳的效率和质量,同时,添加适量的球磨介质能缓冲球磨时锆球的冲击力以及调整球磨体系的粘度范围。
由于h-BN剥离过程球磨体系粘度变化大,磨一段时间后必须补充球磨介质 以控制球磨体系的粘度在合理范围内。
表面活性剂能有效地吸附在二维h-BN表面形成空间位阻和电荷位阻,所制备得的白石墨烯能长时间地分散在酒精、丙酮等水溶液中,不产生团聚沉降等现象。
进一步的,步骤2球磨过程中,前24h每2h添加一次球磨介质;球磨时间超过24h后每24h添加一次球磨介质。
进一步的,所述球磨介质为低分子量醇和/或酮水溶液。
作为优选的,所述低分子量醇和/或酮水溶液中,低分子量醇和/或酮与水的质量比为1:10-2:1,更优选1:5-2:1。
作为优选的,所述低分子量醇为:甲醇、乙醇、异丙醇、叔丁醇、乙二醇中的至少一种;所述低分子量酮为丙酮。
进一步的,所述表面活性剂为具长链路易斯酸或长链路易斯碱的表面活性剂中的至少一种。
作为优选的,所述表面活性剂为具长链路易斯酸的C原子数大于14的高级脂肪酸、脂肪酮、脂环酮、芳香酮等及其相应衍生物中的至少一种;或具长链路易斯碱的烯烃、芳香化合物、胺、醚等中的至少一种。
作为进一步优选的,所述长链路易斯酸的表面活性剂为:棕榈酸、软脂酸、硬脂酸、油酸、亚油酸、软脂酸、十八酮、3-甲基环十三酮、环十四烷酮,3-十六酮、棕榈醛、椰子醛、二十烷醛等中的至少一种;
所述长链路易斯碱的表面活性剂为:棕榈胺、十七胺、十八胺、油胺、考来烯胺、端胺基聚乙二醇、聚苯乙炔、聚噻吩、聚苯乙烯磺酸钠、十二烷基苯、4-十二烷基苯胺、聚氧乙烯辛烷基苯酚醚、缩水甘油12-14烷基醚、六聚乙二醇单十六醚等中的至少一种。
h-BN中B、N原子分别带微弱正电、负点,存在π键,本发明具长链路易斯酸、长链路易斯碱的表面活性剂,能在h-BN上充分吸附以形成空间位阻和电荷位阻,能促进研磨、防止分离的h-BN纳米片团聚。
本发明的有益效果为:
本发明剥离得的白石墨烯片粒径大、厚度薄、比表面积大:厚度均小于10nm,薄皮的厚度可低至1个纳米,粒径尺寸分布在数百纳米至数微米,比表面积高达100-1500m2/g。
本发明制备过程中无强酸/碱原料、有毒害有机添加剂等,绿色环保,生产效率高、产量大,且设备简单、成本低廉,具有良好的应用前景。
附图说明
图1为实施例1所制备得的白石墨烯的SEM照片;
图2为实施例1所制备得的白石墨烯的AFM照片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案作进一步清楚、完整地描述。需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例具体制备工艺步骤:称量100g白石墨烯(h-BN)、100g乙醇和100g去离子水,量取4g聚噻吩,放入球磨罐中,搅拌使之完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以500rpm球磨240h。球磨前24h,每2h添加25g乙醇水溶液(乙醇:水质量比为1:1);球磨时间达24-72h,每24h添加25g乙醇水溶液。球磨时间超过72h后每24h添加10g乙醇水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
图1为本实施例所得产品的SEM照片,从中可以看出通过球磨剥离,所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm;图2为原子力显微镜检测照片,h-BN片的厚度为6nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为180m2/g。
实施例2
本实施例具体制备工艺步骤:称量100g白石墨烯(h-BN)、100g乙醇和100g去离子水于球磨罐中,用玻璃棒搅拌均匀。量取10g油胺,放入球磨罐中,搅拌使其完全溶解。
密封球磨罐,将其固定在球磨机上,启动球磨机,以450rpm球磨240h。球磨过程中前24h,每2h添加25g乙醇水溶液。球磨时间达24-72h,每24h添加25g乙醇水溶液。球磨时间超过72h后,每24h添加10g乙醇水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm;大部分h-BN片的厚度为4nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为320m2/g。
实施例3
本实施例具体制备工艺步骤:称量100g白石墨烯(h-BN)、100g丙酮和100g去离子水于球磨罐中,用玻璃棒搅拌均匀。量取2g软脂酸,放入球磨罐中,同样搅拌使其完全溶解。
密封球磨罐,将其固定在行星球磨机上,启动球磨机,以450rpm球磨240h。球磨过程中前24h,每2h添加25g丙酮水溶液。球磨时间达24-72h,每24h添加25g丙酮水溶液。球磨时间超过72h后每24h添加10g丙酮水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨 白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm;大部分h-BN片的厚度为4nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为280m2/g。
实施例4
本实施例具体制备工艺步骤:称量100g白石墨烯(h-BN)、50g丙酮和150g去离子水,量取4g十八胺,放入球磨罐中,搅拌使其完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以500rpm球磨240h。球磨过程中前24h每2h添加25g丙酮水溶液。球磨时间达24-72h,每24h添加25g丙酮水溶液。球磨时间超过72h后每24添加10g丙酮水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm,大部分h-BN片的厚度为3nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为380m2/g。
实施例5
本实施案例具体制备工艺步骤:称量100g白石墨烯(h-BN)、100g丙酮和100g去离子水,量取4g 3-甲基环十三酮,放入球磨罐中,搅拌使之完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以500rpm球磨240h。球磨过程中前24h每2h添加25g丙酮水溶液。球磨时间达24-72h,每24h添加25g丙酮水溶液。球磨时间超过72h后每24h添加10g丙酮水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于 10nm;大部分h-BN片的厚度为4nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为250m2/g。
实施例6
本实施案例具体制备工艺步骤:称量100g白石墨烯(h-BN)、25g叔丁醇、25g丙酮和50g去离子水,量取1g 3-甲基环十三酮,放入球磨罐中,搅拌使之完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以700rpm球磨150h。球磨过程中前24h每2h添加40g叔丁醇/丙酮水溶液。球磨时间达24-72h,每24h添加25g叔丁醇/丙酮水溶液。球磨时间超过72h后每24h添加20g叔丁醇/丙酮水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm;大部分h-BN片的厚度为4nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为380m2/g。
实施例7
本实施案例具体制备工艺步骤:称量100g白石墨烯(h-BN)、250g甲醇、250g丙酮和150g去离子水,量取3g棕榈醛,放入球磨罐中,搅拌使之完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以300rpm球磨400h。球磨过程中前24h每2h添加10g甲醇/丙酮水溶液。球磨时间达24-72h,每24h添加8g甲醇/丙酮水溶液。球磨时间超过72h后每24h添加8g甲醇/丙酮水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm;大部分h-BN片的厚度为5nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为550m2/g。
实施例8
本实施案例具体制备工艺步骤:称量100g白石墨烯(h-BN)、200g甲醇、200异丙醇和300g去离子水,量取0.3g聚氧乙烯辛烷基苯酚醚,放入球磨罐中,搅拌使之完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以600rpm球磨300h。球磨过程中前24h每2h添加10g甲醇/异丙醇水溶液。球磨时间达24-72h,每24h添加20g甲醇/异丙醇水溶液。球磨时间超过72h后每24h添加8g甲醇/异丙醇水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度均低于10nm;大部分h-BN片的厚度为2nm,部分h-BN厚度可低至1nm左右。通过检测比表面积为120m2/g。
对比例1
本对比例具体制备工艺步骤:称量100g白石墨烯(h-BN)、50g丙酮和150g去离子水,量取4g十八胺,放入球磨罐中,搅拌使其完全溶解。
球磨罐密封后固定在行星球磨机上,启动球磨机,以500rpm球磨240h。球磨过程中不补充分散介质,发现球磨48h后体系中分散介质全部逸出,体系干涸。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。
本实施例所得所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度大部分h-BN片的厚度为40nm。通过检测比表面积为10m2/g。
对比例2
本对比例具体制备工艺步骤:称量100g白石墨烯(h-BN)、50g丙酮和150g去离子水,不加表面活性剂。
球磨罐密封后固定在行星球磨机上,启动球磨机,以500rpm球磨240h。球磨过程中前24h每2h添加25g丙酮水溶液。球磨时间达24-72h,每24h添加25g丙酮水溶液。球磨时间超过72h后每24添加10g丙酮水溶液,以保证球磨体系具备适合的粘度。
球磨完毕将白石墨烯经过酒精洗涤后,在马弗炉中60℃烘干处理得到球磨白石墨烯产品。本实施例所得到的白石墨烯纳米片粒径大于250nm,纳米片厚度40nm左右。通过检测比表面积为28m2/g。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种球磨剥离白石墨烯的方法,其特征在于,具体步骤为:
    步骤1)将白石墨烯粉末、表面活性剂、球磨介质混合溶解后,采用球磨速度为200-800rpm下进行密封球磨;
    所述白石墨烯粉末与表面活性剂的质量体积比为1:1-500:1;所述白石墨烯与球磨介质加入质量比为2:1-1:10;
    步骤2)每球磨一段时间后,继续添加步骤1中的球磨介质,球磨介质的添加量为白石墨烯质量百分比的5%-40%,总球磨时间为120-480h;
    步骤3)研磨完成后,所得粉体采用酒精洗涤,然后烘干干燥,得到球磨白石墨烯分散体。
  2. 根据权利要求1所述的球磨剥离白石墨烯的方法,其特征在于,所述白石墨烯(h-BN)粉末与表面活性剂的质量比为10:1-100:1;所述白石墨烯(h-BN)与球磨介质加入质量比为1:1-1:5。
  3. 根据权利要求1或2所述的球磨剥离白石墨烯的方法,其特征在于,步骤2球磨过程中,前24h每2h添加一次球磨介质;球磨时间超过24h后每24h添加一次球磨介质。
  4. 根据权利要求1或2所述的球磨剥离白石墨烯的方法,其特征在于,所述球磨介质为低分子量醇和/或酮水溶液。
  5. 根据权利要求4所述的球磨剥离白石墨烯的方法,其特征在于,所述低分子量醇和/或酮水溶液,为低分子量醇和/或酮与水的质量比为1:10-2:1。
  6. 根据权利要求4所述的球磨剥离白石墨烯的方法,其特征在于,所述低分子量醇为:甲醇、乙醇、异丙醇、叔丁醇、乙二醇中的至少一种;所述低分子量酮为丙酮。
  7. 根据权利要求1或2所述的球磨剥离白石墨烯的方法,其特征在于,所述表面活性剂为具长链路易斯酸或长链路易斯碱的表面活性剂中的至少一种。
  8. 根据权利要求7所述的球磨剥离白石墨烯的方法,其特征在于,所述表面活性剂为具长链路易斯酸的C原子数大于14的高级脂肪酸、脂肪酮、脂环酮、芳香酮及其相应衍生物中的至少一种;或具长链路易斯碱的烯烃、芳香化合物、胺、醚中的至少一种。
  9. 根据权利要求8所述的球磨剥离白石墨烯的方法,其特征在于,所述长链路易斯酸的表面活性剂为:棕榈酸、软脂酸、硬脂酸、油酸、亚油酸、软脂酸、十八酮、3-甲基环十三酮、环十四烷酮,3-十六酮、棕榈醛、椰子醛、二十烷醛中的至少一种;
    所述长链路易斯碱的表面活性剂为:棕榈胺、十七胺、十八胺、油胺、考来烯胺、端胺基聚乙二醇、聚苯乙炔、聚噻吩、聚苯乙烯磺酸钠、十二烷基苯、4-十二烷基苯胺、聚氧乙烯辛烷基苯酚醚、缩水甘油12-14烷基醚、六聚乙二醇单十六醚中的至少一种。
PCT/CN2017/098056 2016-12-12 2017-08-18 一种球磨剥离白石墨烯的方法 WO2018107795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611140745.3 2016-12-12
CN201611140745.3A CN106744875A (zh) 2016-12-12 2016-12-12 一种球磨剥离白石墨烯的方法

Publications (1)

Publication Number Publication Date
WO2018107795A1 true WO2018107795A1 (zh) 2018-06-21

Family

ID=58880237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098056 WO2018107795A1 (zh) 2016-12-12 2017-08-18 一种球磨剥离白石墨烯的方法

Country Status (2)

Country Link
CN (3) CN106744875A (zh)
WO (1) WO2018107795A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115591A (zh) * 2020-01-03 2020-05-08 青岛科技大学 一种超高浓度氮化硼纳米膏及其制备方法
CN111568806A (zh) * 2020-04-14 2020-08-25 仲恺农业工程学院 一种负载精油的生物多糖和蛋白质改性氮化硼及其制备方法和应用
CN112456455A (zh) * 2020-12-15 2021-03-09 中国科学院兰州化学物理研究所 一种球磨法制备氮化硼纳米颗粒的方法
CN112919431A (zh) * 2021-02-07 2021-06-08 辽东学院 一种高产率、高结晶度的六方氮化硼纳米片及其制备方法
CN114410276A (zh) * 2021-12-13 2022-04-29 长安大学 一种球磨过程控制剂的制备方法
US20220157477A1 (en) * 2020-11-13 2022-05-19 HB11 Energy Holdings Pty Limited Materials for nuclear fusion
CN116920024A (zh) * 2023-01-31 2023-10-24 百草边大生物科技(青岛)有限公司 一种含无患子提取物的大生物功能剂

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106744875A (zh) * 2016-12-12 2017-05-31 广东纳路纳米科技有限公司 一种球磨剥离白石墨烯的方法
CN108163894B (zh) * 2017-12-21 2020-02-21 浙江山峪科技股份有限公司 一种过渡金属硫化物的超高浓度剥离方法
CN108455541A (zh) * 2018-03-22 2018-08-28 刘丹 功能化二维纳米材料的制备方法及功能化纳米薄膜
JP7407711B2 (ja) * 2018-07-30 2024-01-04 株式会社Adeka 複合材料の製造方法
CN108946817B (zh) * 2018-08-10 2021-03-16 陕西科技大学 一种通过液氮冷冻剥离δ-MnO2获得纳米片的方法
CN109749374A (zh) * 2019-01-08 2019-05-14 常州兴烯石墨烯科技有限公司 一种原位聚合改性白石墨烯涤纶复合切片及其制备方法
CN109941992A (zh) * 2019-04-09 2019-06-28 广东墨睿科技有限公司 一种涂料用的机械法剥离石墨烯及其制备方法
CN111203255B (zh) * 2020-01-16 2021-05-28 西安交通大学 一种N掺杂CdPS3二维纳米片光催化剂的制备方法
CN111933918B (zh) * 2020-06-28 2022-03-04 武汉理工大学 一种二维金属铋的制备方法及其在钠/钾离子二次电池中的应用
CN115287625A (zh) * 2022-07-08 2022-11-04 武汉大学 基于范德华外延制备二维非层状窄带隙半导体材料的方法
WO2024026785A1 (zh) * 2022-08-04 2024-02-08 苏州大学 一种二维纳米片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817516A (zh) * 2010-05-21 2010-09-01 哈尔滨工业大学 高效率低成本机械剥离制备石墨烯或氧化石墨烯的方法
US8303922B2 (en) * 2009-08-24 2012-11-06 The United States Of America As Represeted By The Administrator Of The National Aeronautics And Space Administration Method for exfoliation of hexagonal boron nitride
CN103407990A (zh) * 2013-07-08 2013-11-27 清华大学深圳研究生院 一种石墨烯材料及其制备方法
CN103466608A (zh) * 2013-09-11 2013-12-25 中南大学 一种石墨烯的球磨制备法
CN105883754A (zh) * 2014-12-09 2016-08-24 戴加龙 石墨烯的高效生产方法
CN106744875A (zh) * 2016-12-12 2017-05-31 广东纳路纳米科技有限公司 一种球磨剥离白石墨烯的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570003B (zh) * 2012-07-25 2016-03-16 中国科学院大连化学物理研究所 一种宏量制备石墨烯和二维氮化硼晶体材料的方法
GB201304770D0 (en) * 2013-03-15 2013-05-01 Provost Fellows Foundation Scholars And The Other Members Of Board Of A scalable process for producing exfoliated defect-free, non-oxidised 2-dimens ional materials in large quantities
CN104671235A (zh) * 2013-11-28 2015-06-03 中国科学院理化技术研究所 一种石墨烯纳米片的分散液及其制备方法
CN105271185B (zh) * 2014-06-25 2018-01-19 中国科学院苏州纳米技术与纳米仿生研究所 二维片层结构稳定的分散液、凝胶、其制备方法及应用
CN104495826B (zh) * 2014-12-25 2017-01-18 北京航空航天大学 单层石墨烯分散液及其制备方法
CN104959050A (zh) * 2015-04-29 2015-10-07 北京天恒盛通科技发展有限公司 高分散高稳定高浓度高产率的石墨烯分散液及其制备方法
CN105800594B (zh) * 2016-02-19 2019-07-23 四川大学 一种基于固相力化学反应器的石墨烯材料及其制备方法
CN105752977B (zh) * 2016-04-29 2017-12-12 江苏超电新能源科技发展有限公司 一种高导电性石墨烯粉体的制备技术方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303922B2 (en) * 2009-08-24 2012-11-06 The United States Of America As Represeted By The Administrator Of The National Aeronautics And Space Administration Method for exfoliation of hexagonal boron nitride
CN101817516A (zh) * 2010-05-21 2010-09-01 哈尔滨工业大学 高效率低成本机械剥离制备石墨烯或氧化石墨烯的方法
CN103407990A (zh) * 2013-07-08 2013-11-27 清华大学深圳研究生院 一种石墨烯材料及其制备方法
CN103466608A (zh) * 2013-09-11 2013-12-25 中南大学 一种石墨烯的球磨制备法
CN105883754A (zh) * 2014-12-09 2016-08-24 戴加龙 石墨烯的高效生产方法
CN106744875A (zh) * 2016-12-12 2017-05-31 广东纳路纳米科技有限公司 一种球磨剥离白石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU ET AL: "Preparation and Tribological Properties of Graphene by Dry and Wet Ball Milling", JOURNAL OF MATERIALS SCIENCE AND ENGINEERING, vol. 32, no. 5, 31 October 2014 (2014-10-31), pages 678 - 681, 740, ISSN: 1673-2812 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115591A (zh) * 2020-01-03 2020-05-08 青岛科技大学 一种超高浓度氮化硼纳米膏及其制备方法
CN111568806A (zh) * 2020-04-14 2020-08-25 仲恺农业工程学院 一种负载精油的生物多糖和蛋白质改性氮化硼及其制备方法和应用
CN111568806B (zh) * 2020-04-14 2023-03-10 仲恺农业工程学院 一种负载精油的生物多糖和蛋白质改性氮化硼及其制备方法和应用
US20220157477A1 (en) * 2020-11-13 2022-05-19 HB11 Energy Holdings Pty Limited Materials for nuclear fusion
CN112456455A (zh) * 2020-12-15 2021-03-09 中国科学院兰州化学物理研究所 一种球磨法制备氮化硼纳米颗粒的方法
CN112919431A (zh) * 2021-02-07 2021-06-08 辽东学院 一种高产率、高结晶度的六方氮化硼纳米片及其制备方法
CN112919431B (zh) * 2021-02-07 2023-07-18 辽东学院 一种高产率、高结晶度的六方氮化硼纳米片及其制备方法
CN114410276A (zh) * 2021-12-13 2022-04-29 长安大学 一种球磨过程控制剂的制备方法
CN116920024A (zh) * 2023-01-31 2023-10-24 百草边大生物科技(青岛)有限公司 一种含无患子提取物的大生物功能剂

Also Published As

Publication number Publication date
CN107352516A (zh) 2017-11-17
CN107381643A (zh) 2017-11-24
CN106744875A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018107795A1 (zh) 一种球磨剥离白石墨烯的方法
Li et al. Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites
JP6192732B2 (ja) 伝導性インク及び伝導性ポリマーコーティング
Dao et al. A Pickering emulsion route to a stearic acid/graphene core–shell composite phase change material
Yin et al. Buffer layer of PEDOT: PSS/graphene composite for polymer solar cells
Li et al. Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly (vinylidene fluoride)/graphene composites
Wang et al. Fabrication of boron nitride nanosheets by exfoliation
US8858776B2 (en) Preparation of graphene sheets
WO2018107794A1 (zh) 一种高速分散剥离白石墨烯的方法
Ibrahem et al. High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation
Tung et al. Poly (ionic liquid)-stabilized graphene sheets and their hybrid with poly (3, 4-ethylenedioxythiophene)
Jiang et al. Enhanced piezoelectricity of a PVDF-based nanocomposite utilizing high-yield dispersions of exfoliated few-layer MoS2
Deetuam et al. Synthesis of well dispersed graphene in conjugated poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate via click chemistry
Gao et al. Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting
Hao et al. Surface-modified ultrathin inse nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics
WO2020239142A2 (zh) 一种自稳定分散石墨烯纳米材料及制备方法
Pawar et al. Efficient supercapacitor based on polymorphic structure of 1T′-Mo6Te6 nanoplates and few-atomic-layered 2H-MoTe2: A layer by layer study on nickel foam
Abu-Abdeen et al. Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites
Wang et al. Efficient fabrication of MoS 2 nanocomposites by water-assisted exfoliation for nonvolatile memories
Wang et al. Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices
Li et al. Direct synthesis of graphene/carbon nanotube hybrid films from multiwalled carbon nanotubes on copper
Hmar et al. Flexible, transparent, high dielectric and photoconductive thin films using ZnO nanosheets-multi-walled carbon nanotube-polymer nanocomposites
TWI570055B (zh) 製備低維度材料之方法、製得的低維度材料及含彼之太陽能電池裝置
Paul et al. Organic photovoltaic cells using MWCNTs
Anagnostopoulos et al. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879739

Country of ref document: EP

Kind code of ref document: A1