WO2018105349A1 - SiC膜の成膜方法 - Google Patents

SiC膜の成膜方法 Download PDF

Info

Publication number
WO2018105349A1
WO2018105349A1 PCT/JP2017/041237 JP2017041237W WO2018105349A1 WO 2018105349 A1 WO2018105349 A1 WO 2018105349A1 JP 2017041237 W JP2017041237 W JP 2017041237W WO 2018105349 A1 WO2018105349 A1 WO 2018105349A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
sic
substrate
gas
precursor
Prior art date
Application number
PCT/JP2017/041237
Other languages
English (en)
French (fr)
Inventor
加藤 大輝
秀司 東雲
勇作 柏木
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020197018956A priority Critical patent/KR102233755B1/ko
Priority to US16/467,746 priority patent/US11041239B2/en
Publication of WO2018105349A1 publication Critical patent/WO2018105349A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a film forming method for forming a SiC film on an object to be processed.
  • Patent Document 1 discloses that a trench is embedded with a silicon oxide film or a silicon nitride film when separating elements.
  • Patent Document 2 discloses embedding a polysiloxane composition film in a hole in order to invert the hole pattern.
  • SiC silicon carbide
  • a source gas such as a carbon-containing gas and a silicon-containing gas is supplied into a reaction chamber while heating a substrate to be deposited, and the carbon-containing gas and the silicon-containing gas are thermally decomposed. By reacting on the substrate, a SiC film is formed on the substrate.
  • CVD Chemical Vapor Deposition
  • the silicon-containing precursor is supplied into the reaction chamber, the reaction chamber is purged, the carbon-containing precursor is supplied into the reaction chamber, and the reaction is performed.
  • the reaction is performed.
  • atomic layers are deposited one by one, and an SiC film is formed on the substrate.
  • a deposition process at a low temperature for example, 400 ° C. or less is required to protect the device.
  • film formation is performed at a high temperature of 700 ° C. to 1000 ° C. or higher, which may damage the device on the substrate.
  • the present invention has been made in view of such a point, and an object thereof is to appropriately form a SiC film on an object to be processed.
  • the present inventor has intensively studied. As a result, the surface of the object to be processed is activated by activated gas plasma, and then a raw material gas containing a precursor having a specific structure is supplied at a low temperature. Even so, it was found that a SiC film was formed.
  • the present invention has been made on the basis of such knowledge, and one aspect of the present invention is a film forming method for forming a SiC film on an object to be processed by an ALD method.
  • the gas plasma wherein the activation step of activating the surface of the object, the surface is activated on the target object, a raw material gas containing a precursor of the general formula RSiX 1 3 or RSiHClX 2 And a film forming step of forming a SiC film.
  • R is an organic group having an unsaturated bond
  • X 1 is selected from H, F, Cl, Br, and I
  • X 2 is selected from Cl, Br, and I. It is.
  • Another embodiment of the present invention is a film forming method for forming a SiC film on a target object by thermal CVD, the precursor having a three-membered ring formed of C atoms and Si atoms on the target object. Forming a SiC film by supplying a source gas containing a body.
  • the SiC film can be appropriately formed on the object to be processed.
  • FIG. 1 is a longitudinal sectional view schematically showing a film forming apparatus according to a first embodiment of the present invention. It is a figure which shows an example of the board
  • FIG. 1 is a longitudinal sectional view schematically showing a film forming apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a substrate to be deposited by the deposition apparatus of FIG.
  • the film forming apparatus 1 in FIG. 1 forms a SiC film on a substrate W as an object to be processed by an ALD method, more specifically, a plasma enhanced ALD (PEALD).
  • PEALD plasma enhanced ALD
  • a lower layer film F2 such as a tungsten film or a silicon oxide film (SiO 2 film) is formed on the semiconductor substrate F1, and further on that in FIG. 2B.
  • this is a substrate on which a single-layer film F3 of SiC is formed.
  • the film forming apparatus 1 forms a film on the SiC single layer film F3, thereby forming a SiC film F4 having a predetermined thickness on the lower layer film F2, as shown in FIG. 2C. is there.
  • the film forming apparatus 1 includes a substantially cylindrical processing container 10 having a bottom and an upper opening, and a mounting table 11 on which the substrate W is provided, which is provided in the processing container 10.
  • the processing container 10 is electrically connected to the ground line 12 and grounded. Further, the inner wall of the processing vessel 10 is covered with a liner (not shown) having a sprayed coating made of a plasma-resistant material on the surface, for example.
  • the mounting table 11 is made of ceramics such as aluminum nitride (AlN), for example, and a coating (not shown) made of a conductive material is formed on the surface thereof.
  • the lower surface of the mounting table 11 is supported by a support member 13 formed of a conductive material, and the mounting table 11 and the support member 13 are electrically connected.
  • the lower end of the support member 13 is supported by the bottom surface of the processing container 10 and is electrically connected to the processing container 10. Therefore, the mounting table 11 is grounded via the processing container 10 and functions as a lower electrode that makes a pair with an upper electrode 30 described later.
  • the configuration of the lower electrode is not limited to the contents of the present embodiment, and for example, a conductive member such as a metal mesh may be embedded in the mounting table 11.
  • the mounting table 11 has a built-in electric heater 20 and can heat the substrate W mounted on the mounting table 11 to a predetermined temperature. Further, the mounting table 11 is connected between a clamp ring (not shown) that presses the outer peripheral portion of the substrate W and fixes the substrate W on the mounting table 11, and a transport mechanism (not shown) provided outside the processing container 10. Lift pins (not shown) for delivering the substrate W are provided.
  • An upper electrode 30 formed in a substantially disc shape is provided in parallel to the mounting table 11 above the mounting table 11, which is a lower electrode, facing the mounting table 11. In other words, the upper electrode 30 is disposed so as to face the substrate W placed on the mounting table 11.
  • the upper electrode 30 is made of a conductive metal such as nickel (Ni).
  • the upper electrode 30 has a plurality of gas supply holes 30a penetrating the upper electrode 30 in the thickness direction.
  • a protruding portion 30 b that protrudes upward is formed on the entire outer periphery of the upper electrode 30. That is, the upper electrode 30 has a substantially cylindrical shape with a bottom and an open top.
  • the upper electrode 30 is smaller than the inner diameter of the processing container 10 and faces the mounting table 11 in the upper electrode 30 so that the outer surface of the protrusion 30b is separated from the inner surface of the processing container 10 by a predetermined distance. However, it has a larger diameter than the substrate W so as to cover the entire surface of the substrate W on the mounting table 11 in a plan view.
  • a substantially disc-shaped lid 31 is connected to the upper end surface of the protruding portion 30 b, and a gas diffusion chamber 32 is formed by a space surrounded by the lid 31 and the upper electrode 30.
  • the lid 31 is also formed of a conductive metal such as nickel. Note that the lid 31 and the upper electrode 30 may be integrally formed.
  • a locking portion 31 a that protrudes outward from the lid 31 is formed on the outer peripheral portion of the upper surface of the lid 31.
  • the lower surface of the locking portion 31 a is held by an annular support member 33 supported by the upper end portion of the processing container 10.
  • the support member 33 is made of an insulating material such as quartz. Therefore, the upper electrode 30 and the processing container 10 are electrically insulated.
  • An electric heater 34 is provided on the upper surface of the lid 31. The electric heater 34 can heat the lid 31 and the upper electrode 30 connected to the lid 31 to a predetermined temperature.
  • a gas supply pipe 50 is connected to the gas diffusion chamber 32 through the lid 31.
  • a processing gas supply source 51 is connected to the gas supply pipe 50 as shown in FIG.
  • the processing gas supplied from the processing gas supply source 51 is supplied to the gas diffusion chamber 32 through the gas supply pipe 50.
  • the processing gas supplied to the gas diffusion chamber 32 is introduced into the processing container 10 through the gas supply hole 30a.
  • the upper electrode 30 functions as a shower plate for introducing the processing gas into the processing container 10.
  • the processing gas supply source 51 in the present embodiment activates the surface of the substrate W and the source gas supply unit 52 that supplies a gas having vinyltrichlorosilane as a precursor as the source gas for forming the SiC film.
  • an activation gas supply unit 53 that supplies H 2 (hydrogen) gas as an activation gas and a rare gas supply unit 54 that supplies a rare gas for plasma generation are provided.
  • the rare gas supplied from the rare gas supply unit 54 for example, Ar (argon) gas is used.
  • the processing gas supply source 51 has a purge gas supply unit 55 for supplying N 2 (nitrogen) gas for purging.
  • the processing gas supply source 51 includes a valve 56 and a flow rate adjusting mechanism 57 provided between each gas supply unit 52, 53, 54, 55 and the gas diffusion chamber 32.
  • the flow rate of each gas supplied to the gas diffusion chamber 32 is controlled by the flow rate adjusting mechanism 57.
  • a high frequency power source 60 for supplying high frequency power to the upper electrode 30 via the lid 31 and generating plasma is electrically connected to the lid 31 via a matching unit 61.
  • the high frequency power source is configured to output high frequency power having a frequency of, for example, 100 kHz to 100 MHz.
  • the matching unit 61 matches the internal impedance of the high-frequency power source 60 and the load impedance, and when the plasma is generated in the processing container 10, the internal impedance and the load impedance of the high-frequency power source 60 seem to coincide with each other. Acts as follows.
  • An exhaust mechanism 70 that exhausts the inside of the processing container 10 is connected to the bottom surface of the processing container 10 via an exhaust pipe 71.
  • the exhaust pipe 71 is provided with a control valve 72 that adjusts the amount of exhaust by the exhaust mechanism 70. Therefore, by driving the exhaust mechanism 70, the atmosphere in the processing container 10 can be exhausted through the exhaust pipe 71, and the inside of the processing container 10 can be decompressed to a predetermined degree of vacuum.
  • a control unit 100 is provided.
  • the control unit 100 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit controls the devices such as the electric heaters 20 and 34, the flow rate adjusting mechanism 57, the high frequency power supply 60, the matching unit 61, the exhaust mechanism 70, and the control valve 72 to operate the film forming apparatus 1.
  • a program is also stored.
  • the above program is recorded on a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 100 from the storage medium.
  • a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 100 from the storage medium.
  • the film forming apparatus 1 according to the present embodiment is configured as described above. Next, a film forming process of the SiC film on the substrate W in the film forming apparatus 1 according to the present embodiment will be described.
  • 3 and 4 are a flowchart and a timing chart for explaining the film forming process in the film forming apparatus 1.
  • step S 2 the inside of the processing container 10 is evacuated and kept airtight by the exhaust mechanism 70, and at the same time, supply of gas and heating of the substrate W are started (step S2).
  • H 2 gas, Ar gas, and N 2 gas are respectively supplied from the processing gas supply source 51 into the processing container 10 at predetermined flow rates.
  • each flow rate adjusting mechanism 57 is controlled so that the flow rate of H 2 gas is approximately 1 to 10000 sccm, the flow rate of Ar gas is approximately 1 to 1000 sccm, and the flow rate of N 2 gas is approximately 1 to 1000 sccm.
  • the opening degree of the adjustment valve 72 is controlled so that the pressure in the processing container 10 becomes, for example, 13 to 1330 Pa.
  • the upper electrode 30 and the substrate W on the mounting table 11 are heated and maintained at, for example, 400 ° C. by the electric heaters 20 and 34 and the like.
  • step S3 the surface of the substrate W is activated. Specifically, high frequency power is applied to the upper electrode 30 by the high frequency power supply 60. As a result, the H 2 gas supplied into the processing container 10 is turned into plasma between the upper electrode 30 and the mounting table 11 functioning as the lower electrode, and plasma is generated by radicals of H and Ar. Then, the surface of the substrate W is activated by H radical plasma, that is, activated plasma.
  • step S4 the application of the high frequency power supply 60 to the upper electrode 30 is stopped, and the supply of H 2 gas and Ar gas is stopped while maintaining the supply of N 2 gas as shown in FIG. Then, the inside of the processing container 10 is purged with N 2 gas (step S4).
  • a new SiC single layer film is formed (step S5). Specifically, as shown in FIG. 4, after purging, a raw material gas containing vinyltrichlorosilane as a precursor is supplied into the processing vessel 10 while maintaining the supply of N 2 gas. At this time, each flow rate adjusting mechanism 57 is controlled so that the flow rate of the source gas is approximately 1 to 100 sccm and the flow rate of the N 2 gas is approximately 1 to 10000 sccm. Further, the opening degree of the adjustment valve 72 is controlled so that the pressure in the processing container 10 becomes, for example, 13 to 1330 Pa. After the formation of the new single-layer film of SiC, as shown in FIG. 4, the supply of the source gas is stopped while the supply of the N 2 gas is maintained, and the inside of the processing vessel 10 is purged with the N 2 gas (step S6). .
  • a SiC film having a predetermined thickness can be formed on the lower layer film of the substrate W.
  • the substrate W is unloaded from the processing container 10. Then, a new substrate W is carried into the processing container 10 and the film forming process on the series of substrates W is repeatedly performed.
  • the SiC film when the SiC film is formed at a low temperature using the ALD method, (1) the surface of the substrate W is activated by the plasma of H radicals, and (2) vinyl trioxide is used as a source gas. A chlorosilane gas is supplied to the substrate W whose surface has been activated, and an SiC film is formed on the surface. This method is based on knowledge obtained by simulation analysis performed by the present inventors.
  • the present inventors In forming an SiC film at a low temperature using the ALD method, the present inventors firstly used a SiC-based molecule containing a linear unsaturated bond, an SiC-based molecule containing a multi-membered ring structure, A simulation was conducted to investigate whether film formation is possible without activating the surface of the low-temperature substrate W using any of the normal linear SiC-based molecules that do not contain saturated bonds or multi-membered ring structures. did.
  • FIG. 5 is an explanatory diagram of a simulation performed by the present inventors.
  • the present inventors calculated the energy required for bonding the surface of the SiC substrate and the above-mentioned precursor by simulation.
  • a structure (CSi) in which Si (silicon) atoms bonded to C (carbon) atoms on the surface of the SiC substrate are terminated with H as shown in FIG. -H structure).
  • FIG. 6 is a diagram for explaining the energy required for bonding the precursor to the surface when the surface of the SiC substrate is not activated.
  • the precursor When the body is bonded / adsorbed to the SiC substrate surface, it is necessary to go through a transition state. 3.35 eV is required as the activation energy from the original system to the transition state, that is, the energy for bonding the precursor to the SiC substrate surface.
  • this energy is much higher than 0.75 eV, which is a threshold for obtaining a surface reaction at a substrate temperature of 400 ° C., that is, a threshold for forming a SiC film by the ALD method at a substrate temperature of 400 ° C.
  • 0.75 eV is a threshold for obtaining a surface reaction at a substrate temperature of 400 ° C.
  • FIG. 7 is a diagram showing energy required to activate the SiC surface.
  • H radical plasma specifically, in order to form a dangling bond of Si on the SiC substrate surface, it is necessary to go through a transition state.
  • the activation energy to reach this transition state that is, the energy required to activate the SiC substrate surface by H radical plasma is 0.03 eV. This energy is much lower than the threshold for obtaining a surface reaction at a substrate temperature of 400 ° C., which is 0.75 eV. Therefore, the SiC substrate surface at 400 ° C. can be activated using H radical plasma.
  • SiC-based molecules containing a linear unsaturated bond SiC-based molecules containing a multi-membered ring structure, ordinary straight chain containing neither an unsaturated bond nor a multi-membered ring structure It was investigated whether a SiC film could be formed on the activated surface of the SiC substrate using any of the SiC-based molecules.
  • FIG. 8 is a diagram for explaining the energy required to bind the normal SiC-based molecule as a precursor to the activated SiC substrate surface.
  • dimethylsilane which is the normal linear SiC-based molecule
  • the precursor is bound / adsorbed on the activated SiC substrate surface
  • 1.13 eV is required as the activation energy from the original system to the transition state, that is, the energy for bonding the precursor to the SiC substrate surface.
  • this energy is higher than 0.75 eV which is a threshold value for forming a SiC film by the ALD method at a substrate temperature of 400 ° C. Therefore, it is considered difficult to form a SiC film using dimethylsilane.
  • dimethylsilane is activated by surface reaction with the SiC substrate, and dimethylsilane radicals obtained by activation may be bonded to the activated SiC surface, so this point was examined next. .
  • FIG. 9 is a diagram for explaining the energy required to activate dimethylsilane by surface reaction with a SiC substrate and obtain dimethylsilane radicals.
  • the activation energy to reach this transition state that is, the energy required to obtain the dimethylsilane radical by the surface reaction with the SiC substrate is 0.32 eV. This energy is lower than 0.75 eV which is a threshold for obtaining a surface reaction at a substrate temperature of 400 ° C. Accordingly, dimethylsilane can be activated by surface reaction with a SiC substrate at 400 ° C. to obtain dimethylsilane radicals.
  • FIG. 10 is a diagram for explaining the energy required to bind the dimethylsilane radical to the activated SiC substrate surface. According to the simulation results, as shown in the figure, if there is a substrate temperature of 400 ° C., dimethylsilane radicals can be bonded to the activated SiC substrate surface.
  • the substrate temperature is 400 ° C.
  • the dimethylsilane radical obtained by activating and activating dimethylsilane by the surface reaction with the SiC substrate is activated.
  • the film can be formed by bonding to the surface of the SiC substrate.
  • this method consumes two active sites, it cannot be said to be an efficient film forming method.
  • FIG. 11 is a diagram for explaining the energy required to bind an SiC-based molecule containing a multi-membered ring structure as a precursor to the activated SiC substrate surface.
  • C 3 H 6 SiCl 2 which is a SiC-based molecule having a four-membered ring structure containing Si atoms and C atoms, is used as a precursor, and the precursor is bound / adsorbed to the activated SiC substrate surface, Need to go through the state.
  • the activation energy from the original system to the transition state that is, the energy for bonding the precursor to the SiC substrate surface is required to be 1.05 eV.
  • this energy is higher than 0.75 eV which is a threshold value for forming a SiC film by the ALD method at a substrate temperature of 400 ° C. Therefore, it is considered difficult to deposit a SiC film by using C 3 H 6 SiCl 2.
  • FIG. 12 is a diagram for explaining the energy required to bind a SiC-based molecule having a linear unsaturated bond as a precursor to the activated SiC substrate surface.
  • the transition surface is not passed, and the activated SiC substrate surface is subjected to vinyltrichlorosilane (C 2 H 3 SiCl 3 ) as a precursor.
  • vinyltrichlorosilane C 2 H 3 SiCl 3
  • a SiC film can be formed on the activated surface of the SiC substrate at a low temperature of 400 ° C.
  • the inventors have limited the film formation of the second layer after forming a single SiC film on the activated surface of the SiC substrate using vinyltrichlorosilane as a precursor, that is, It was investigated whether self-limiting was maintained when vinyltrichlorosilane was used as a precursor.
  • FIG. 13 is a diagram for explaining energy required for bonding vinyltrichlorosilane to the surface of an SiC film formed using vinyltrichlorosilane.
  • the surface of the SiC film formed using vinyltrichlorosilane has a structure in which Si atoms bonded to C atoms are terminated with Cl (chlorine) atoms as shown in the figure. (CSi—Cl structure).
  • the present inventors examined whether the surface of the SiC film formed on the activated surface of the SiC substrate using vinyltrichlorosilane as a precursor can be activated.
  • FIG. 14 is a diagram showing energy necessary for activating the surface of the SiC film formed using vinyltrichlorosilane.
  • H radical plasma specifically, to break the bond between the Si atom and the Cl atom terminating the surface of the Si atom, the transition Need to go through the state.
  • the activation energy to reach this transition state that is, the energy necessary to activate the CSi—Cl structure surface by H radical plasma is 0.59 eV. This energy is lower than 0.75 eV which is a threshold for obtaining a surface reaction at a substrate temperature of 400 ° C.
  • the surface of the CSi—Cl structure can be activated using H radical plasma at a substrate temperature of 400 ° C. Therefore, by activating the substrate surface with H radical plasma and forming a film using vinyltrichlorosilane as a precursor, the SiC film can be multilayered to have a desired film thickness as necessary.
  • the surface of the substrate W is activated by H radical plasma, and (2) a gas of vinyltrichlorosilane is supplied to the substrate W whose surface is activated as a source gas. ing. Thereby, an SiC film can be formed on the surface of the substrate W even at a low substrate temperature.
  • the surface of the substrate W may be activated not by H radical plasma but by Ar, He (helium), N 2 plasma.
  • the precursor may be vinyl silane instead of vinyl trichlorosilane. Also, the precursor is not limited thereto and may be any one represented by the general formula RSiX 1 3 or RSiHClX 2.
  • R is an organic group having a linear unsaturated bond
  • X 1 is selected from H, F, Cl, Br and I
  • X 2 is selected from Cl, Br and I. .
  • the film forming method of the present embodiment can also be applied to film formation of other carbonized films such as a GeC film and a GeSiC film.
  • the ALD precursor of the GeC film or GeSiC film is made of a chain organic compound having an unsaturated bond, which is different from that of the SiC film.
  • the ALD precursor of GeC film those represented by the general formula RGeX 1 3 or RGeHClX 2 is used.
  • R is an organic group having a linear unsaturated bond
  • X 1 is selected from H, F, Cl, Br and I
  • X 2 is selected from Cl, Br and I.
  • As the ALD precursor of the GeSiC film for example, those represented by general formulas RSiX 1 2 GeX 2 3 and RGeX 1 2 SiX 2 3 are used.
  • R is an organic group having a linear unsaturated bond
  • X 1 and X 2 are selected from H, F, Cl, Br and I.
  • FIG. 15 is a longitudinal sectional view schematically showing a film forming apparatus according to the second embodiment of the present invention.
  • the film forming apparatus 2 shown in the figure forms a SiC film on a substrate W by a thermal CVD method.
  • the mounting table 11 of the film forming apparatus 2 is substantially the same as the mounting table 11 of FIG. 1, but does not need to form a lower electrode because it does not generate plasma, and therefore may not be grounded.
  • the processing container 10 of the film forming apparatus 2 is substantially the same as the processing container 10 of FIG. 1, but does not generate plasma, so the member indicated by reference numeral 30 does not function as an upper electrode but functions only as a shower plate. Further, since it is not necessary to insulate the lid 31 and the grounding portion, the support member 33 may not be formed of an insulating material. Further, if it is not necessary to heat the source gas, the electric heater 34 may not be provided. Unlike the thing of FIG. 1, the high frequency power supply 60 grade
  • the processing gas supply source 51 of the film forming apparatus 2 uses a gas having a precursor of C 2 H 4 SiH 2 having a three-membered ring formed of C atoms and Si atoms as a raw material gas for forming a SiC film.
  • a source gas supply unit 52 to supply and a purge gas supply unit 55 to supply N 2 gas for purging are provided.
  • the processing gas supply source 51 includes a valve 56 and a flow rate adjusting mechanism 57 provided between the gas supply units 52 and 55 and the gas diffusion chamber 32. The flow rate of each gas supplied to the gas diffusion chamber 32 is controlled by the flow rate adjusting mechanism 57.
  • the substrate W is loaded into the processing container 10, placed on the mounting table 11, and held.
  • the inside of the processing container 10 is evacuated and kept airtight by the exhaust mechanism 70.
  • C 2 H 4 SiH 2 gas and N 2 gas are respectively supplied from the processing gas supply source 51 into the processing container 10 at a predetermined flow rate.
  • each flow rate adjusting mechanism 57 is controlled so that the flow rate of the C 2 H 4 SiH 2 gas is approximately 1 to 100 sccm and the flow rate of the N 2 gas is approximately 1 to 10000 sccm.
  • the opening degree of the adjustment valve 72 is controlled so that the pressure in the processing container 10 becomes, for example, 13 to 1330 Pa.
  • the substrate W on the mounting table 11 is heated and maintained at, for example, 400 ° C. by the electric heater 20 or the like.
  • high frequency power is applied to the upper electrode 30 by the high frequency power supply 60.
  • a SiC film is formed on the surface of the substrate W.
  • a gas of C 2 H 4 SiH 2 having a three-membered ring is supplied as the source gas to the substrate W, and the SiC film is formed on the substrate W heated to 400 ° C. by the thermal CVD method.
  • This method is based on knowledge obtained by simulation analysis performed by the present inventors.
  • FIG. 16 is a diagram showing the structure of a SiC-based molecule including a multi-membered ring structure that has been studied for use as a precursor in the present embodiment.
  • SiC-based molecules having linear unsaturated bonds vinyltrichlorosilane, CH 2 ⁇ CH—CH ⁇ CH—SiCl 3 or ethynyltrichlorosilane are used as precursors, and these molecules are deposited on the substrate by CVD. In order to achieve this, it is necessary to break the unsaturated bond. This cleavage requires 2.47 eV and 2.12 eV for vinyltrichlorosilane, CH 2 ⁇ CH—CH ⁇ CH—SiCl 3 , and ethynyltrichlorosilane, respectively.
  • a SiC-based molecule having a multi-membered ring formed of C atoms and Si atoms and having the structure of FIGS. 16A to 16C is used as a precursor, and these molecules are formed on a substrate by a CVD method.
  • CVD method In order to deposit molecules, it is necessary to break bonds between C atoms or bonds between Si atoms and C atoms of each molecule.
  • 16C, 1.46 eV and 1 are used to break the bond between C atoms or the bond between Si atoms and C atoms, respectively.
  • An energy of .49 eV is required.
  • the threshold value for forming the SiC film by the CVD method at the substrate temperature of 400 ° C. is 1.74 eV.
  • a gas of C 2 H 4 SiH 2 having a three-membered ring formed of C atoms and Si atoms is supplied to the substrate W, and SiC is formed on the substrate W heated to 400 ° C.
  • a film is formed by a thermal CVD method.
  • the precursor is not limited to C 2 H 4 SiH 2, as long as represented by the general formula C 2 H 4 SiX 2 or CH 2 Si 2 X 4.
  • X is selected from H, F, Cl, Br and I.
  • the film forming method of the present embodiment can also be applied to film formation of other carbonized films such as a GeC film and a GeSiC film.
  • a CVD precursor of the GeC film or GeSiC film is made of an organic compound having a three-membered ring different from that of the SiC film.
  • the CVD precursor of the GeSiC film includes an organic compound having a three-membered ring formed by C atoms and Ge atoms, for example, one represented by the general formula C 2 H 4 SiX 2 or CH 2 Si 2 X 4 Is used. Wherein X is selected from H, F, Cl, Br and I.
  • the CVD precursor of the GeSiC film is an organic compound having a three-membered ring formed by C atoms and Si atoms or Ge atoms, and represented by the general formula C 2 H 4 SiX 1 2 GeX 2 2 Is used. Wherein X 1 and X 2 are each selected from H, F, Cl, Br and I.
  • the above embodiment is not limited to the case where a flat film of SiC film is formed by forming a film on a single layer film of SiC formed on a flat lower layer film, but also a lower layer film having trenches and holes.
  • the present invention can be applied to a case where a SiC film is embedded on a single-layer film of SiC.
  • the flat SiC film can be used for various applications such as an etching stop material and an antireflection film.
  • the present invention can be applied to a substrate processing apparatus that performs a film forming process on a substrate surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

被処理体にSiC膜をALD法により形成する成膜方法は、活性化ガスをプラズマ化した活性化ガスプラズマにより、被処理体の表面を活性化させる活性化工程と、当該活性化工程によって表面が活性化された被処理体に、一般式RSiX またはRSiHClXで表される前駆体を含む原料ガスを供給しSiC膜を形成する膜形成工程と、を含み、Rは不飽和結合を有する有機基であり、XはH、F、Cl、Br及びIから選択されものであり、XはCl、Br及びIから選択されるものである。

Description

SiC膜の成膜方法
(関連出願の相互参照)
 本願は、2016年12月9日に日本国に出願された特願2016-239716号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、被処理体にSiC膜を形成する成膜方法に関する。
 半導体デバイスの製造工程においては、半導体基板の表面に形成されたトレンチやホールなどの開口部に、種々の目的で膜が埋め込まれる。一例を挙げると、例えば特許文献1には、素子間を分離するにあたり、トレンチにシリコン酸化膜やシリコン窒化膜を埋め込むことが開示されている。また、例えば特許文献2には、ホールパターンの反転を行うため、ホールにポリシロキサン組成物膜を埋め込むことが開示されている。
 一方、近年の半導体デバイスの微細化に伴い、上述した開口部への埋め込み膜として、シリコンカーバイト(SiC)膜が所望されている。
 SiC膜の成膜方法としては、従来、種々の方法が用いられている。例えばCVD(Chemical Vapor Deposition)法では、成膜対象の基板を加熱しつつ、反応室内にカーボン含有ガス及びシリコン含有ガスなどの原料ガスを供給し、当該カーボン含有ガス及びシリコン含有ガスを熱分解させ基板上で反応させることで、SiC膜を基板上に形成する。
 また、例えばALD(Atomic Layer Deposition)法では、成膜対象の基板を加熱しつつ、反応室内へのシリコン含有前駆体の供給、反応室内のパージ、反応室内へのカーボン含有前駆体の供給、反応室内のパージというサイクルを繰り返すことで、原子層を一層ずつ堆積し、SiC膜を基板上に形成する。
日本国特開2000-306992号公報 国際公開WO2016/031563号公報
 ところで、成膜対象の基板にデバイスが形成されている場合、そのデバイスを保護するため、低温、例えば400℃以下での成膜処理が求められている。しかしながら、上述した従来のCVD法やALD法では、700℃~1000℃若しくはそれ以上の高温で成膜処理が行われるため、基板上のデバイスを損傷させるおそれがある。
 このように、SiC膜を適切に形成する方法はいまだ確立されていないのが現状である。
 本発明は、かかる点に鑑みてなされたものであり、被処理体にSiC膜を適切に形成することを目的とする。
 前記の目的を達成するため、本発明者が鋭意検討した結果、活性化ガスプラズマにより被処理体の表面を活性化し、その後、特定の構造を有する前駆体を含む原料ガスを供給することにより低温であってもSiC膜が形成されることが分かった。
 本発明は、かかる知見に基づいてなされたものであり、本発明の一態様は、被処理体にSiC膜をALD法により形成する成膜方法であって、活性化ガスをプラズマ化した活性化ガスプラズマにより、前記被処理体の表面を活性化させる活性化工程と、表面が活性化された前記被処理体に、一般式RSiX またはRSiHClXで表される前駆体を含む原料ガスを供給しSiC膜を形成する膜形成工程と、を含む。ここで前記式中、Rは不飽和結合を有する有機基であり、XはH、F、Cl、Br及びIから選択されものであり、XはCl、Br及びIから選択されるものである。
 別な観点による本発明の一態様は、被処理体にSiC膜を熱CVDにより形成する成膜方法であって、前記被処理体にC原子とSi原子により形成された3員環を有する前駆体を含む原料ガスを供給しSiC膜を形成する膜形成工程、を含む。
 本発明によれば、被処理体にSiC膜を適切に形成することができる。
本発明の第1の実施形態にかかる成膜装置を概略的に示した縦断面図である。 図1の成膜装置が成膜対象とする基板の一例を示す図である。 図1の成膜装置での成膜処理を説明するフローチャートである。 図1の成膜装置での成膜処理を説明するタイミングチャートである。 本発明者らが行ったシミュレーションの説明図である。 SiC基板の表面を活性化させない場合に、前駆体を該表面に結合させるのに必要なエネルギーを示す図である。 SiC表面を活性化させるのに必要なエネルギーを示す図である。 前駆体としての通常の直鎖状の分子を、活性化されたSiC基板表面に結合させるのに必要なエネルギーを示す図である。 SiC基板との表面反応によりジメチルシランを活性化しジメチルシランラジカルを得るのに必要なエネルギーを示す図である。 メチルシランラジカルを、活性化されたSiC基板表面に結合させるのに必要なエネルギーを示す図である。 前駆体としての多員環構造を含むSiC系分子を、活性化されたSiC基板表面に結合させるのに必要なエネルギーを示す図である。 前駆体としての直鎖状の不飽和結合を有するSiC系分子を、活性化されたSiC基板表面に結合させるのに必要なエネルギーを説明する図である。 ビニルトリクロロシランを用いて成膜されたSiC膜の表面にビニルトリクロロシランを結合させるのに必要なエネルギーを説明する図である。 ビニルトリクロロシランを用いて成膜されたSiC膜の表面を活性化させるのに必要なエネルギーを示す図である。 本発明の第2の実施形態にかかる成膜装置を概略的に示した縦断面図である。 本発明の第2の実施形態で前駆体として用いることを検討した、多員環構造を含むSiC系分子の構造を示す図である。
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(第1の実施形態)
 図1は、本発明の第1の実施形態にかかる成膜装置を概略的に示した縦断面図である。図2は、図1の成膜装置が成膜対象とする基板の一例を示す図である。
 図1の成膜装置1は、被処理体としての基板WにSiC膜をALD法、より具体的には、プラズマエンハンスドALD(PEALD)によりSiC膜を基板Wに形成する。基板Wは、図2(A)に示すように、半導体基板F1の上にタングステン膜やシリコン酸化膜(SiO膜)等の下層膜F2が形成され、さらにその上に図2(B)に示すように、SiCの単層膜F3が形成された基板である。成膜装置1は、上記SiCの単層膜F3上に成膜を行い、これにより図2(C)に示すように、所定の厚さのSiC膜F4を下層膜F2上に形成するものである。
 この成膜装置1は、有底で上方が開口した略円筒状の処理容器10と、処理容器10内に設けられた、基板Wを載置する載置台11と、を有している。処理容器10は、接地線12により電気的に接続されて接地されている。また、処理容器10の内壁は、例えば表面に耐プラズマ性の材料からなる溶射被膜が形成されたライナ(図示せず)により覆われている。
 載置台11は、例えば窒化アルミ(AlN)等のセラミックスにより形成されており、その表面には導電性材料による被膜(図示せず)が形成されている。載置台11の下面は、導電性材料により形成された支持部材13により支持され、載置台11と支持部材13とは電気的に接続されている。支持部材13の下端は、処理容器10の底面により支持され、処理容器10と電気的に接続されている。そのため、載置台11は処理容器10を介して接地されており、後述する上部電極30と対をなす下部電極として機能する。なお、下部電極の構成としては、本実施の形態の内容に限定されるものではなく、例えば載置台11内に金属メッシュなどの導電性部材を埋め込んで構成してもよい。
 載置台11には、電気ヒータ20が内蔵されており、載置台11に載置される基板Wを所定の温度に加熱することができる。また、載置台11には、基板Wの外周部を押圧して載置台11上に固定するクランプリング(図示せず)や、処理容器10の外部に設けられた図示しない搬送機構との間で基板Wを受け渡すための昇降ピン(図示せず)が設けられている。
 下部電極である載置台11の上方であって処理容器10の内側面には、略円盤状に形成された上部電極30が当該載置台11に対向して平行に設けられている。換言すれば、上部電極30は、載置台11上に載置された基板Wに対向して配置されている。上部電極30は、例えばニッケル(Ni)などの導電性の金属により形成されている。
 上部電極30には、当該上部電極30を厚み方向に貫通する複数のガス供給孔30aが形成されている。また、上部電極30の外周縁部全周には、上方に突出する突出部30bが形成されている。即ち、上部電極30は、有底で上部が開口した略円筒形状を有している。上部電極30は、この突出部30bの外側面が処理容器10の内側面と所定の距離だけ離間するように、処理容器10の内径よりも小さく、且つ上部電極30における載置台11と対向する面が、例えば平面視において載置台11上の基板Wの全面を覆うように、基板Wよりも大きな径を有している。突出部30bの上端面には、略円盤状の蓋体31が接続され、当該蓋体31と上部電極30とで囲まれた空間によりガス拡散室32が形成されている。蓋体31も、上部電極30と同様に、ニッケルなどの導電性の金属により形成されている。なお、蓋体31と上部電極30とは、一体に構成されていてもよい。
 蓋体31上面の外周部には、当該蓋体31の外方に向けて突出する係止部31aが形成されている。係止部31aの下面は、処理容器10の上端部に支持された、円環状の支持部材33により保持されている。支持部材33は、例えば石英などの絶縁材料により形成されている。そのため、上部電極30と処理容器10とは電気的に絶縁されている。また、蓋体31の上面には、電気ヒータ34が設けられている。この電気ヒータ34により、蓋体31及び当該蓋体31に接続された上部電極30を所定の温度に加熱することができる。
 ガス拡散室32には、蓋体31を貫通してガス供給管50が接続されている。ガス供給管50には、図1に示すように処理ガス供給源51が接続されている。処理ガス供給源51から供給された処理ガスは、ガス供給管50を介してガス拡散室32に供給される。ガス拡散室32に供給された処理ガスは、ガス供給孔30aを通じて処理容器10内に導入される。この場合、上部電極30は、処理容器10内に処理ガスを導入するシャワープレートとして機能する。
 本実施の形態における処理ガス供給源51は、SiC膜の成膜用の原料ガスとして、ビニルトリクロロシランを前駆体とするガスを供給する原料ガス供給部52と、基板Wの表面を活性化させるための活性化ガスとして例えばH(水素)ガスを供給する活性化ガス供給部53と、プラズマ生成用の希ガスを供給する希ガス供給部54を有している。希ガス供給部54から供給される希ガスとしては、例えばAr(アルゴン)ガスが用いられる。また、処理ガス供給源51は、パージ用のN(窒素)ガスを供給するパージガス供給部55を有している。さらに、処理ガス供給源51は、各ガス供給部52、53、54、55とガス拡散室32との間にそれぞれ設けられたバルブ56と、流量調整機構57を有している。ガス拡散室32に供給される各ガスの流量は、流量調整機構57によって制御される。
 蓋体31には、当該蓋体31を介して上部電極30に高周波電力を供給してプラズマを生成するための高周波電源60が整合器61を介して電気的に接続されている。高周波電源は、例えば100kHz~100MHzの周波数の高周波電力が出力可能であるように構成されている。整合器61は、高周波電源60の内部インピーダンスと負荷インピーダンスをマッチングさせるものであり、処理容器10内にプラズマが生成されているときに、高周波電源60の内部インピーダンスと負荷インピーダンスとが見かけ上一致するように作用する。
 処理容器10の底面には、処理容器10内を排気する排気機構70が排気管71を介して接続されている。排気管71には、排気機構70による排気量を調節する調節弁72が設けられている。したがって、排気機構70を駆動することにより、排気管71を介して処理容器10内の雰囲気を排気し、処理容器10内を所定の真空度まで減圧することができる。
 以上の成膜装置1には、制御部100が設けられている。制御部100は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、電気ヒータ20、34や流量調整機構57、高周波電源60、整合器61、排気機構70及び調節弁72などの各機器を制御して、成膜装置1を動作させるためのプログラムも格納されている。
 なお、上記のプログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部100にインストールされたものであってもよい。
 本実施の形態にかかる成膜装置1は以上のように構成されている。次に、本実施の形態にかかる成膜装置1における、基板W上へのSiC膜の成膜処理について説明する。図3及び図4は、成膜装置1での成膜処理を説明するフローチャート及びタイミングチャートである。
 成膜処理にあたっては、先ず、図3に示すように、処理容器10内に基板Wが搬入され、載置台11上に載置されて保持される(ステップS1)。
 基板Wが載置台11に保持されると、排気機構70により処理容器10内が排気され気密に保持され、それと共に、ガスの供給及び基板Wの加熱が開始される(ステップS2)。
 具体的には、処理ガス供給源51から、Hガス、Arガス、Nガスがそれぞれ所定の流量で処理容器10内に供給される。この際、Hガスの流量は概ね1~10000sccm、Arガスの流量は概ね1~1000sccm、Nガスの流量は概ね1~1000sccmとなるように各流量調整機構57が制御される。また、処理容器10内の圧力が、例えば13~1330Paとなるように、調節弁72の開度が制御される。
 また、各電気ヒータ20、34等により、上部電極30、載置台11上の基板Wが、例えば400℃に加熱及び維持される。
 次いで、基板Wの表面を活性化する(ステップS3)。具体的には、高周波電源60により上部電極30に高周波電力を印加する。これにより、処理容器10内に供給されたHガスは、上部電極30と下部電極として機能する載置台11との間でプラズマ化され、H、Arのラジカルによるプラズマが生成される。そして、Hラジカルのプラズマすなわち活性化プラズマにより、基板Wの表面が活性化される。
 この活性化の完了後は、高周波電源60による上部電極30への印加を停止すると共に、図4に示すように、Nガスの供給を維持したまま、Hガス、Arガスの供給を停止し、Nガスにより処理容器10内をパージする(ステップS4)。
 パージ後、新しいSiCの単層膜が形成される(ステップS5)。具体的には、パージ後、図4に示すように、Nガスの供給を維持したまま、ビニルトリクロロシランを前駆体として含む原料ガスを処理容器10内へ供給する。この際、原料ガスの流量は概ね1~100sccm、Nガスの流量は概ね1~10000sccmとなるように各流量調整機構57が制御される。また、処理容器10内の圧力が、例えば13~1330Paとなるように、調節弁72の開度が制御される。
 新しいSiCの単層膜の形成後、図4に示すように、Nガスの供給を維持したまま、原料ガスの供給を停止し、Nガスにより処理容器10内をパージする(ステップS6)。
 上記ステップS3~S6の操作を繰り返すことにより所定膜厚のSiC膜を基板Wの下層膜上に形成することができる。
 基板Wへの成膜処理が終了すると、処理容器10から基板Wが搬出される。そして、処理容器10内に新たな基板Wが搬入され、この一連の基板Wへの成膜処理が繰り返し行われる。
 以上のように、本実施形態では、ALD法を用いて低温でSiC膜を成膜する際に、(1)Hラジカルのプラズマにより基板Wの表面を活性化し、(2)原料ガスとしてビニルトリクロロシランのガスを、表面が活性化された基板Wに供給し、上記表面にSiC膜を形成する。この手法は、本発明者らが行ったシミュレーション解析による知見に基づくものである。
 本発明者らは、ALD法を用い低温でSiC膜を成膜するにあたり、まず、前駆体として、直鎖状の不飽和結合を含むSiC系分子、多員環構造を含むSiC系分子、不飽和結合も多員環構造も含まない通常の直鎖状のSiC系分子のいずれかを用いて、低温の基板Wの表面を活性化させない状態で成膜が可能であるか、シミュレーションを行い検討した。
 図5は、本発明者らが行ったシミュレーションの説明図である。
 本発明者らは、SiC膜の成膜が可能であるか検討するため、SiC基板の表面と上述の前駆体が結合するのに必要なエネルギーをシミュレーションにより計算した。このシミュレーションを含む以下のSiC基板の表面反応に係るシミュレーションでは、SiC基板の表面を図5に示すようにC(炭素)原子に結合されたSi(シリコン)原子がHで終端された構造(CSi-H構造)で代表させた。
 図6は、SiC基板の表面を活性化させない場合に、前駆体を該表面に結合させるのに必要なエネルギーを説明する図である。
 SiC基板を表面処理しない場合すなわち活性化させない場合において、図示するように、前駆体として上記通常の直鎖状のSiC系分子であるジメチルシラン((CHSiH)を用い、該前駆体をSiC基板表面に結合/吸着させるとき、遷移状態を経る必要がある。この原系から該遷移状態に至る活性化エネルギーすなわちこの前駆体をSiC基板表面に結合させるためのエネルギーとして3.35eVが必要である。しかし、このエネルギーは、400℃の基板温度で表面反応を得るための閾値、すなわち400℃の基板温度でALD法によりSiC膜を成膜するための閾値である0.75eVより非常に高い。
 前駆体として、直鎖状の不飽和結合を含むSiC系分子または多員環構造を含むSiC系分子を用いる場合も同様である。
 したがって、上述の前駆体を用いてSiC膜を成膜するにはSiC基板表面を活性化させる必要があると考えられる。
 次に、本発明者らは、活性化ガスプラズマとしてHラジカルのプラズマを用いてSiC基板表面を活性化できるか検討した。
 図7は、SiC表面を活性化させるのに必要なエネルギーを示す図である。
 図示するように、Hラジカルのプラズマを用いてSiC基板表面を活性化させるには、具体的には、SiC基板表面にSiのダングリングボンドを形成するには、遷移状態を経る必要がある。この遷移状態に至る活性化エネルギーすなわちHラジカルプラズマによりSiC基板表面を活性化させるのに必要なエネルギーは0.03eVである。このエネルギーは、400℃の基板温度で表面反応を得るための閾値である0.75eVより極めて低い。
 したがって、Hラジカルのプラズマを用いて400℃のSiC基板表面を活性化させることができる。
 次いで、本発明者らは、前駆体として、直鎖状の不飽和結合を含むSiC系分子、多員環構造を含むSiC系分子、不飽和結合も多員環構造も含まない通常の直鎖状のSiC系分子のいずれかを用いて、SiC基板の活性化された表面にSiC膜を成膜が可能であるか検討した。
 図8は、前駆体としての上記通常のSiC系分子を、活性化されたSiC基板表面に結合させるのに必要なエネルギーを説明する図である。
 前駆体として上記通常の直鎖状のSiC系分子であるジメチルシランを用い、活性化されたSiC基板表面に上記前駆体を結合/吸着させるとき、遷移状態を経る必要がある。この原系から該遷移状態に至る活性化エネルギーすなわちこの前駆体をSiC基板表面に結合させるためのエネルギーとして1.13eVが必要である。しかし、このエネルギーは、400℃の基板温度でALD法によりSiC膜を成膜するための閾値である0.75eVより高い。
 したがって、ジメチルシランを用いてSiC膜を成膜するのは難しいものと考えられる。
 ただし、SiC基板との表面反応によりジメチルシランを活性化し、活性化して得られるジメチルシランラジカルを、活性化されたSiC表面に結合させ成膜できる可能性があるため、この点を次に検討した。
 図9は、SiC基板との表面反応によりジメチルシランを活性化しジメチルシランラジカルを得るのに必要なエネルギーを説明する図である。
 上述のようにジメチルラジカルを得るには図の遷移状態を経る必要がある。この遷移状態に至る活性化エネルギーすなわちSiC基板との表面反応によりジメチルシランラジカルを得るのに必要なエネルギーは0.32eVである。このエネルギーは、400℃の基板温度で表面反応を得るための閾値である0.75eVより低い。
 したがって、400℃のSiC基板との表面反応によりジメチルシランを活性化しジメチルシランラジカルを得ることができる。
 図10は、ジメチルシランラジカルを、活性化されたSiC基板表面に結合させるのに必要なエネルギーを説明する図である。
 シミュレーション結果によれば、図示するように、400℃の基板温度があれば、活性化されたSiC基板表面にジメチルシランラジカルを結合させることができる。
 したがって、図9及び図10を用いて説明したように、400℃の基板温度であれば、SiC基板との表面反応によりジメチルシランを活性化し、活性化して得られるジメチルシランラジカルを、活性化されたSiC基板表面に結合させ成膜することができる。
 しかし、この方法は、活性サイトを2つ消費するため、効率的な成膜方法とは言えない。
 図11は、前駆体としての多員環構造を含むSiC系分子を、活性化されたSiC基板表面に結合させるのに必要なエネルギーを説明する図である。
 前駆体として、Si原子とC原子を含む4員環構造を有するSiC系分子であるCSiClを用い、活性化されたSiC基板表面に上記前駆体を結合/吸着させるとき、遷移状態を経る必要がある。この原系から該遷移状態に至る活性化エネルギーすなわちこの前駆体をSiC基板表面に結合させるためのエネルギーとして1.05eVが必要である。しかし、このエネルギーは、400℃の基板温度でALD法によりSiC膜を成膜するための閾値である0.75eVより高い。
 したがって、CSiClを用いてSiC膜を成膜するのは難しいものと考えられる。
 また、CSiClを活性化し、活性化して得られるラジカルを、活性化されたSiC基板表面に結合させ成膜することができると考えられるが、ジメチルシランラジカルを用いる場合と同様、この方法は、活性サイトを2つ消費するため、効率的な成膜方法とは言えない。
 3員環以上の多員環構造を有するSiC系分子であれば、上述の点は、4員環構造を有するSiC系分子と同様である。
 図12は、前駆体としての直鎖状の不飽和結合を有するSiC系分子を、活性化されたSiC基板表面に結合させるのに必要なエネルギーを説明する図である。
 シミュレーション結果によれば、図示するように、400℃の基板温度があれば、遷移状態を経ずに、活性化されたSiC基板表面に前駆体としてのビニルトリクロロシラン(CSiCl)を結合させることができる。
 したがって、ビニルトリクロロシランを用いれば、400℃という低温のSiC基板の活性化された表面上にSiC膜を成膜することができる。
 また、図示するように、ビニルトリクロロシランが活性化されたSiC基板表面に結合すると、結合した表面に炭素の活性サイト(ラジカルサイト)が形成される。
 そうすると、低い障壁エネルギー0.33eVで表面再構成が起こり、上記ラジカルサイトがSiC基板表面のSi原子のダングリングボンドに置き換えられる。言い換えると、ビニルトリクロロシランが結合したSi原子と隣接する、水素終端されたSi原子であって、ビニルトリクロロシランが結合しておらず活性化されていない原子があれば、このSi原子はビニルトリクロロシランの結合により形成されたラジカルサイトにより活性化される。このラジカルサイトにより活性化されたSi原子にビニルトリクロロシランが結合していくので、ビニルトリクロロシランの結合が連鎖的に起こる。この連鎖反応は、ラジカル同士が出合い再結合することで停止する。これにより、SiC基板表面全体にビニルトリクロロシランの単層膜が形成される。
 つまり、ビニルトリクロロシランを前駆体として用いることで、活性化されたSiC基板表面と前駆体とが連鎖反応で結合するため、SiC膜を速く成膜することができる。
 なお、上記表面再構成は短時間で起こるため、吸着されたビニルトリクロロシランに、更にビニルトリクロロシランが吸着する可能性、すなわち多層吸着が起きる可能性は極めて低い。
 次に、本発明者らは、前駆体としてビニルトリクロロシランを用いSiC基板の活性化された表面にSiC膜を1層成膜した後に、2層目の成膜が制限されるか、つまり、前駆体としてビニルトリクロロシランを用いた場合に自己制御性(self-limiting)が保たれるか検討した。
 図13は、ビニルトリクロロシランを用いて成膜されたSiC膜の表面にビニルトリクロロシランを結合させるのに必要なエネルギーを説明する図である。
 該必要なエネルギーを計算するシミュレーションでは、ビニルトリクロロシランを用いて成膜されたSiC膜の表面を、図示するように、C原子に結合されたSi原子がCl(塩素)原子で終端された構造(CSi-Cl構造)で代表させた。
 ビニルトリクロロシランを用いて成膜されたSiC膜の表面(以下、CSi-Cl構造表面)に前駆体としてのビニルトリクロロシランを結合/吸着させるとき、遷移状態を経る必要がある。原系から該遷移状態に至る活性化エネルギーすなわちこの前駆体をCSi-Cl構造表面に結合させるためのエネルギーとして2.75eVが必要である。しかし、このエネルギーは、400℃の基板温度で表面反応を得るための閾値である0.75eVより極めて高い。
 したがって、前駆体としてビニルトリクロロシランを用いた場合、自己制御性を保つことができる。
 また、本発明者らは、前駆体としてビニルトリクロロシランを用いSiC基板の活性化された表面に成膜されたSiC膜の表面を活性化可能であるか検討した。
 図14は、ビニルトリクロロシランを用いて成膜されたSiC膜の表面を活性化させるのに必要なエネルギーを示す図である。
 図示するように、Hラジカルのプラズマを用いてCSi-Cl構造表面を活性化させるには、具体的には、Si原子とSi原子を表面終端するCl原子との結合を切断するには、遷移状態を経る必要がある。この遷移状態に至る活性化エネルギーすなわちHラジカルプラズマによりCSi-Cl構造表面を活性化させるのに必要なエネルギーは0.59eVである。このエネルギーは、400℃の基板温度で表面反応を得るための閾値である0.75eVより低い。
 したがって、400℃の基板温度においてHラジカルのプラズマを用いてCSi-Cl構造表面を活性化させることができる。よって、基板表面をHラジカルプラズマで活性化させ前駆体としてビニルトリクロロシランを用いて成膜することによって、必要に応じてSiC膜を多層化し所望の膜厚にすることができる。
 以上の知見から、本実施形態では、(1)Hラジカルのプラズマにより基板Wの表面を活性化し、(2)原料ガスとしてビニルトリクロロシランのガスを、表面が活性化された基板Wに供給している。これにより、低い基板温度であっても、基板Wの表面にSiC膜を形成することができる。
 なお、基板Wの表面の活性化は、Hラジカルのプラズマではなく、Ar、He(ヘリウム)、Nのプラズマによって行ってもよい。
 また、前駆体は、ビニルトリクロロシランに代えてビニルシランであってもよい。また、前駆体は、これらに限られず、一般式RSiX またはRSiHClXで表されるものであればよい。式中、Rは直鎖状の不飽和結合を有する有機基、XはH、F、Cl、Br及びIから選択されるもの、XはCl、Br及びIから選択されるものである。
 以上の説明は、SiC膜についてのものであるが、本実施形態の成膜方法は、GeC膜やGeSiC膜といった他の炭化膜の成膜にも適用することができる。
 なお、GeC膜やGeSiC膜のALD前駆体には、SiC膜のものとは異なる、不飽結合を有する鎖状の有機化合物から成るものが用いられる。
 例えば、GeC膜のALD前駆体には、一般式RGeX またはRGeHClXで表されるものが用いられる。式中、Rは直鎖状の不飽和結合を有する有機基、XはH、F、Cl、Br及びIから選択されるもの、XはCl、Br及びIから選択されるものである。
 GeSiC膜のALD前駆体には、例えば、一般式RSiX GeX 、RGeX SiX で表されるものが用いられる。式中、Rは直鎖状の不飽和結合を有する有機基、X及びXはH、F、Cl、Br及びIから選択されるものである。
(第2の実施形態)
 図15は、本発明の第2の実施形態にかかる成膜装置を概略的に示した縦断面図である。
 図の成膜装置2は、基板WにSiC膜を熱CVD法により形成する。
 成膜装置2の載置台11は、図1の載置台11と略同一であるが、プラズマを発生させないので下部電極を構成する必要がないため、接地されていなくてもよい。
 成膜装置2の処理容器10は、図1の処理容器10と略同一であるが、プラズマを発生させないので、符号30で示される部材は上部電極としては機能せずシャワープレートとしてのみ機能する。また、蓋体31と接地部とを絶縁する必要がないため支持部材33は絶縁材料で形成しなくてもよい。さらに、原料ガスを加熱する必要がなければ電気ヒータ34は設けなくてもよい。蓋体31には、図1のものとは異なり、高周波電源60等は接続されていない。
 成膜装置2の処理ガス供給源51は、SiC膜の成膜用の原料ガスとして、C原子とSi原子により形成された3員環を有するCSiHを前駆体とするガスを供給する原料ガス供給部52と、パージ用のNガスを供給するパージガス供給部55を有している。さらに、処理ガス供給源51は、各ガス供給部52、55とガス拡散室32との間にそれぞれ設けられたバルブ56と、流量調整機構57を有している。ガス拡散室32に供給される各ガスの流量は、流量調整機構57によって制御される。
 成膜装置2での成膜処理にあたっては、先ず、処理容器10内に基板Wが搬入され、載置台11上に載置されて保持される。
 基板Wが載置台11に保持されると、排気機構70により処理容器10内が排気され気密に保持される。それと共に処理ガス供給源51から、CSiHガス、Nガスがそれぞれ所定の流量で処理容器10内に供給される。この際、CSiHガスの流量は概ね1~100sccm、Nガスの流量は概ね1~10000sccmとなるように各流量調整機構57が制御される。また、処理容器10内の圧力が、例えば13~1330Paとなるように、調節弁72の開度が制御される。
 それと共に、電気ヒータ20等により、載置台11上の基板Wを、例えば400℃に加熱及び維持する。次いで高周波電源60により上部電極30に高周波電力を印加する。これにより、基板Wの表面上にSiC膜が形成される。
 基板Wへの成膜処理が終了すると、処理容器10から基板Wが搬出される。そして、処理容器10内に新たな基板Wが搬入され、この一連の基板Wへの成膜処理が繰り返し行われる。
 以上のように、本実施形態では、原料ガスとして3員環を有するCSiHのガスを基板Wに供給し、400℃に加熱された基板W上にSiC膜を熱CVD法により形成する。この手法は、本発明者らが行ったシミュレーション解析による知見に基づくものである。
 本実施形態で用いる前駆体として、直鎖状の不飽和結合を含むSiC系分子、多員環構造を含むSiC系分子、不飽和結合も多員環構造も含まない通常の直鎖状のSiC系分子を検討した。図16は、本実施形態で前駆体として用いることを検討した、多員環構造を含むSiC系分子の構造を示す図である。
 直鎖状の不飽和結合も多員環構造も含まない通常の直鎖状のSiC系分子であるジエチルシラン、ジメチルシランを前駆体として用い、CVD法により基板上にこれらの分子を堆積させるには、Si原子に結合している2つのH原子を水素分子(H)として脱離させる必要がある。この脱離には、ジエチルシラン、ジメチルシランそれぞれにおいて、2.78eV、2.81eVが必要である。しかし、こられのエネルギーは、400℃の基板温度でCVD法によりSiC膜を成膜するための閾値である1.74eVより高い。
 したがって、ジエチルシランまたはジメチルシランを前駆体として用いてCVD法によりSiC膜を成膜することは難しい。
 直鎖状の不飽和結合を有するSiC系分子であるビニルトリクロロシラン、CH=CH-CH=CH-SiClまたはエチニルトリクロロシランを前駆体として用い、CVD法により基板上にこれらの分子を堆積させるには、不飽和結合を切断させる必要がある。この切断には、ビニルトリクロロシラン、CH=CH-CH=CH-SiCl、エチニルトリクロロシランそれぞれにおいて、2.47eV、2.12eVが必要である。しかし、これらのエネルギーは、400℃の基板温度でCVD法によりSiC膜を成膜するための閾値である1.74eVより高い。
 したがって、ビニルトリクロロシラン、CH=CH-CH=CH-SiClまたはエチニルトリクロロシランを前駆体として用いてCVD法によりSiC膜を成膜することは難しい。
 また、C原子とSi原子により形成された多員環を有するSiC系分子であって図16(A)~(C)の構造を有する分子を前駆体として用い、CVD法により基板上にこれらの分子を堆積させるには、各分子のC原子間の結合またはSi原子とC原子との間の結合を切断する必要がある。
 図16(A)の6員環構造の分子(C10SiCl)において、C原子間の結合またはSi原子とC原子との間の結合を切断するには、3.40~3.49eVのエネルギーが必要である。
 図16(B)の4員環構造の分子(CSiCl)において、C原子間の結合またはSi原子とC原子との間の結合を切断するには、それぞれ2.41eVと2.56eVのエネルギーが必要である。
 図16(C)の3員環構造の分子(CSiCl)において、C原子間の結合またはSi原子とC原子との間の結合を切断するには、それぞれ1.46eVと1.49eVのエネルギーが必要である。
 また、400℃の基板温度でCVD法によりSiC膜を成膜するための閾値が1.74eVである。
 したがって、図16(A)及び図16(B)の構造を有する分子を前駆体として用い、CVD法によりSiC膜を製膜することは難しいが、図16(C)の3員環構造を有する分子(CSiCl)を前駆体として用いることによって、400℃という低温であってもSiC基板上にSiC膜を熱CVD法により成膜することができる。
 以上の知見から、本実施形態では、C原子とSi原子により形成された3員環を有するCSiHのガスを基板Wに供給し、400℃に加熱された基板W上にSiC膜を熱CVD法により形成する。
 なお、前駆体は、CSiHに限られず、一般式CSiXまたはCHSiで表されるものであればよい。式中、XはH、F、Cl、Br及びIから選択されるものである。
 以上の説明は、SiC膜についてのものであるが、本実施形態の成膜方法は、GeC膜やGeSiC膜といった他の炭化膜の成膜にも適用することができる。
 なお、GeC膜やGeSiC膜のCVD前駆体には、SiC膜のものとは異なる、3員環を有する有機化合物から成るものが用いられる。
 例えば、GeSiC膜のCVD前駆体には、C原子とGe原子により形成された3員環を有する有機化合物、例えば、一般式CSiXまたはCHSiで表されるものが用いられる。式中、XはH、F、Cl、Br及びIから選択されるものである。
 GeSiC膜のCVD前駆体には、C原子とSi原子またはGe原子とにより形成された3員環を有する有機化合物であって、一般式CSiX GeX で表されるものが用いられる。式中、X及びXはそれぞれH、F、Cl、Br及びIから選択されるものである。
 なお、以上の実施の形態は、平坦な下層膜上に形成されたSiCの単層膜の上に成膜を行いSiC膜の平坦膜を形成する場合だけでなく、トレンチやホールを有する下層膜に対し形成されたSiCの単層膜上にSiC膜を埋め込む場合等にも適用することができる。なお、平坦膜のSiC膜は、例えばエッチングのストップ材や反射防止膜など、種々の用途に用いることができる。
 本発明は、基板表面に成膜処理を行う基板処理装置に適用できる。
1,2…成膜装置
10…処理容器
11…載置台
20…電気ヒータ
30…上部電極
30a…ガス供給孔
50…ガス供給管
51…処理ガス供給源
52…原料ガス供給部
53…活性化ガス供給部
60…高周波電源
 

Claims (6)

  1. 被処理体にSiC膜をALD法により形成する成膜方法であって、
    活性化ガスをプラズマ化した活性化ガスプラズマにより、前記被処理体の表面を活性化させる活性化工程と、
    表面が活性化された前記被処理体に、一般式RSiX またはRSiHClXで表される前駆体を含む原料ガスを供給しSiC膜を形成する膜形成工程と、を含む。
     前記式中、Rは不飽和結合を有する有機基であり、
    はH、F、Cl、Br及びIから選択されものであり、
    はCl、Br及びIから選択されるものである。
  2. 請求項1に記載の成膜方法において、
    前記前駆体は、ビニルトリクロロシランまたはビニルシランである。
  3. 請求項1に記載の成膜方法において、
    前記活性化ガスは、水素ガスを含む。
  4. 請求項2に記載の成膜方法において、
    前記活性化ガスは、水素ガスを含む。
  5. 被処理体にSiC膜を熱CVDにより形成する成膜方法であって、
    前記被処理体に、C原子とSi原子により形成された3員環を有する前駆体を含む原料ガスを供給しSiC膜を形成する膜形成工程、を含む。
  6. 請求項5に記載の成膜方法において、
    前記前駆体は、一般式CSiXまたはCHSiで表されるものである。
    前記式中、XはH、F、Cl、Br及びIから選択されるものである。
PCT/JP2017/041237 2016-12-09 2017-11-16 SiC膜の成膜方法 WO2018105349A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197018956A KR102233755B1 (ko) 2016-12-09 2017-11-16 SiC막의 성막 방법
US16/467,746 US11041239B2 (en) 2016-12-09 2017-11-16 Film forming method for SiC film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239716A JP6824717B2 (ja) 2016-12-09 2016-12-09 SiC膜の成膜方法
JP2016-239716 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105349A1 true WO2018105349A1 (ja) 2018-06-14

Family

ID=62492014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041237 WO2018105349A1 (ja) 2016-12-09 2017-11-16 SiC膜の成膜方法

Country Status (4)

Country Link
US (1) US11041239B2 (ja)
JP (1) JP6824717B2 (ja)
KR (1) KR102233755B1 (ja)
WO (1) WO2018105349A1 (ja)

Cited By (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048400A (zh) * 2018-10-11 2020-04-21 Asm Ip控股有限公司 通过循环cvd形成保形碳化硅膜的方法
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12051567B2 (en) 2021-10-04 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
KR20230021993A (ko) * 2021-08-06 2023-02-14 주성엔지니어링(주) SiC 기판의 제조 방법
US20240128075A1 (en) * 2022-10-14 2024-04-18 Applied Materials, Inc. Particle Reduction in Physical Vapor Deposition of Amorphous Silicon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234314A (ja) * 1988-03-14 1989-09-19 Fujitsu Ltd 高炭素含有アモルファスシリコン膜の形成方法
JPH0267720A (ja) * 1988-09-02 1990-03-07 Mitsui Toatsu Chem Inc 炭素含有シリコン微結晶薄膜の形成法
JPH0282615A (ja) * 1988-09-20 1990-03-23 Nippon Telegr & Teleph Corp <Ntt> 半導体膜形成方法
JPH03101123A (ja) * 1989-09-13 1991-04-25 Agency Of Ind Science & Technol 非晶質系半導体膜の製造法
JPH05267190A (ja) * 1992-03-23 1993-10-15 Sharp Corp 半導体薄膜の製造方法
JP2016174141A (ja) * 2015-03-16 2016-09-29 東京エレクトロン株式会社 Cu配線の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450221B2 (ja) 1999-04-21 2003-09-22 Necエレクトロニクス株式会社 半導体装置の製造方法
US20090130414A1 (en) * 2007-11-08 2009-05-21 Air Products And Chemicals, Inc. Preparation of A Metal-containing Film Via ALD or CVD Processes
EP2264219A4 (en) * 2008-03-26 2012-09-05 Jsr Corp MATERIAL FOR GAS PHASE DEPOSITION BY CHEMICAL PROCESS, INSULATING FILM CONTAINING SILICON AND METHOD FOR PRODUCING THE SAME
US8993460B2 (en) * 2013-01-10 2015-03-31 Novellus Systems, Inc. Apparatuses and methods for depositing SiC/SiCN films via cross-metathesis reactions with organometallic co-reactants
KR102426414B1 (ko) 2014-08-25 2022-07-28 닛산 가가쿠 가부시키가이샤 Soc 패턴 상에서의 패턴반전을 위한 피복용 조성물
SG11201807211XA (en) * 2016-02-26 2018-09-27 Versum Materials Us Llc Compositions and methods using same for deposition of silicon-containing film
US11453943B2 (en) * 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234314A (ja) * 1988-03-14 1989-09-19 Fujitsu Ltd 高炭素含有アモルファスシリコン膜の形成方法
JPH0267720A (ja) * 1988-09-02 1990-03-07 Mitsui Toatsu Chem Inc 炭素含有シリコン微結晶薄膜の形成法
JPH0282615A (ja) * 1988-09-20 1990-03-23 Nippon Telegr & Teleph Corp <Ntt> 半導体膜形成方法
JPH03101123A (ja) * 1989-09-13 1991-04-25 Agency Of Ind Science & Technol 非晶質系半導体膜の製造法
JPH05267190A (ja) * 1992-03-23 1993-10-15 Sharp Corp 半導体薄膜の製造方法
JP2016174141A (ja) * 2015-03-16 2016-09-29 東京エレクトロン株式会社 Cu配線の製造方法

Cited By (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
CN111048400A (zh) * 2018-10-11 2020-04-21 Asm Ip控股有限公司 通过循环cvd形成保形碳化硅膜的方法
US10847365B2 (en) * 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US12040229B2 (en) 2019-08-22 2024-07-16 Asm Ip Holding B.V. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US12051567B2 (en) 2021-10-04 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit

Also Published As

Publication number Publication date
US11041239B2 (en) 2021-06-22
KR102233755B1 (ko) 2021-03-29
KR20190087605A (ko) 2019-07-24
JP6824717B2 (ja) 2021-02-03
JP2018098304A (ja) 2018-06-21
US20200063262A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018105349A1 (ja) SiC膜の成膜方法
TWI804706B (zh) 氧化矽之拓撲選擇性膜形成之方法
US9640387B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP4893729B2 (ja) 成膜方法、成膜装置及び記憶媒体
KR101661104B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
WO2018089534A1 (en) Method for high modulus ald sio2 spacer
JP2020516060A (ja) 高アスペクト比トレンチをアモルファスシリコン膜で間隙充填するための2段階プロセス
US9613908B2 (en) Ultra-thin dielectric diffusion barrier and etch stop layer for advanced interconnect applications
US10774421B2 (en) Semiconductor device manufacturing method, substrate processing apparatus and recording medium
CN110265298B (zh) 半导体器件的制造方法、衬底处理装置
JP2016066688A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20150368803A1 (en) Uv curing process to improve mechanical strength and throughput on low-k dielectric films
JP7253943B2 (ja) 六方晶窒化ホウ素膜を形成する方法および装置
JP2020113743A (ja) 窒化膜の成膜方法、および窒化膜の成膜装置
JP6431962B2 (ja) 単層膜が媒介する高精度の膜堆積
JP2007273535A (ja) プラズマ原子層成長方法及び装置
WO2021193164A1 (ja) 炭化ケイ素含有膜を形成する方法及び装置
US20230187188A1 (en) Substrate processing apparatus, substrate holder, and method of manufacturing semiconductor device
WO2022044817A1 (ja) 成膜方法および成膜装置
TW201606116A (zh) 具低蝕刻率之氧化薄膜之沉積方法及半導體裝置
TW202412066A (zh) 低溫氧化矽間隙填充
JP2024516142A (ja) 炭素含有材料の触媒熱堆積
TW202219312A (zh) 基板處理裝置、半導體裝置的製造方法及程式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018956

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17879229

Country of ref document: EP

Kind code of ref document: A1