WO2018101682A1 - 이중 용접 구조를 가진 전지셀 - Google Patents

이중 용접 구조를 가진 전지셀 Download PDF

Info

Publication number
WO2018101682A1
WO2018101682A1 PCT/KR2017/013545 KR2017013545W WO2018101682A1 WO 2018101682 A1 WO2018101682 A1 WO 2018101682A1 KR 2017013545 W KR2017013545 W KR 2017013545W WO 2018101682 A1 WO2018101682 A1 WO 2018101682A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery cell
lead
cell according
electrode group
Prior art date
Application number
PCT/KR2017/013545
Other languages
English (en)
French (fr)
Inventor
박종필
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780008733.1A priority Critical patent/CN108604660B/zh
Priority to PL19216257T priority patent/PL3641018T3/pl
Priority to EP19216257.6A priority patent/EP3641018B1/en
Priority to US16/067,844 priority patent/US11276905B2/en
Priority to EP17875721.7A priority patent/EP3396738B1/en
Publication of WO2018101682A1 publication Critical patent/WO2018101682A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0472Vertically superposed cells with vertically disposed plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell having a double welding structure.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • secondary batteries are classified into cylindrical batteries and rectangular batteries in which the electrode assembly is embedded in a cylindrical or rectangular metal can, and pouch-type batteries in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. .
  • the electrode assembly embedded in the battery case is a power generator capable of charging and discharging composed of a laminated structure of a cathode, a separator, and a cathode, and has a jelly-roll type wound around a separator between a long sheet type anode and an anode coated with an active material, and a predetermined type.
  • a plurality of positive and negative electrodes of size are classified into a stack type in which a plurality of positive and negative electrodes are sequentially stacked in a state where a separator is interposed.
  • FIG. 1 is a schematic side view of a general structure of a conventional representative stacked electrode assembly.
  • the stacked electrode assembly 1 may include a negative electrode active material 32 on both sides of the positive electrode 20 and the negative electrode current collector 31 having the positive electrode active material 22 coated on both sides of the positive electrode current collector 21. ) Is applied to the negative electrode 30 is laminated in a state in which the separator is interposed sequentially.
  • One end of the positive electrode current collector 21 and the negative electrode current collector 31 is not coated with an active material so as to be electrically connected to the positive electrode lead 60 and the negative electrode lead (not shown) constituting the electrode terminals of the battery, respectively.
  • a plurality of positive electrode tabs 41 and negative electrode tabs 51 protrude.
  • FIGS. 2A and 2B illustrate only the coupling structure of the positive electrode tabs and the positive lead for convenience of description, the same applies to the coupling portion of the negative electrode tabs and the negative electrode lead.
  • the positive electrode tabs 40 are closely attached in the direction of the arrow and are connected to the positive electrode lead 60.
  • the anode lead 60 is generally joined by welding, and is positioned on the upper surface of the uppermost positive electrode tab 41 as shown in FIG. 2A or on the lower surface of the lowermost positive electrode tab 42 as shown in FIG. 2B. Can be combined.
  • the electrode tabs at the outermost part should be formed long enough to be coupled to the electrode leads.
  • the area of the electrode non-coating portion used as the electrode tab increases, the area where the electrode active material is applied on the electrode current collector decreases, thereby causing a problem that the capacity expression portion of the battery is reduced.
  • a short length of the electrode tab is formed, and the electrode tabs are bent to form an electrode tab junction and are coupled to each other, so that stress is concentrated on the electrode tab located at the outermost side of the electrode lead.
  • the bonding force of the electrode tab junction is weakened, and the risk of disconnection increases, causing a problem that safety is impaired.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have conducted in-depth studies and various experiments, and as will be described later, the electrode tab junctions formed on one side of each electrode group inside the battery case are electrically connected to the electrode leads via the conductive connection members. In this case, it is confirmed that the electrode tab junction can maintain a stable bonding state with the electrode lead without disconnection, and that the energy density of the battery can be increased by increasing the electrode active material coating area in the process of minimizing the length of the electrode tab. Came to complete.
  • An electrode including a cathode, a cathode, and a separator interposed between the anode and the cathode includes two or more electrode groups in a stacked structure;
  • Each of the electrode groups includes an electrode tab junction at one side, and is electrically connected to an electrode lead drawn out of the battery case via a conductive connecting member;
  • first weld joint formed between the one end of the conductive connecting member and the electrode tab joint, and a second weld joint formed between the other end of the conductive connecting member and the electrode lead.
  • first welding joint and the second welding joint may be formed in parallel with respect to the electrode lead, and the conductive connecting member is bent toward the electrode body or vice versa between the first welding joint and the second welding joint. It may be a structure including a bent portion.
  • the conductive connecting member may be formed of a metal strip, and the bent portion may be, for example, bent to have an arc shape on a vertical cross section.
  • electrodes including a cathode, a cathode, and a separator interposed between the anode and the cathode include two or more electrode groups in a stacked structure;
  • Each of the electrode groups includes an electrode tab junction at one side, and an end portion of the electrode tab junction includes a first welding junction directly coupled to an electrode lead drawn out of the battery case;
  • the conductive connection member may have a structure including a second weld joint coupled to the electrode tab junction and the electrode lead, respectively.
  • the first weld joint may be a structure in which a part of the electrode tab joint is bent to the electrode lead, and the size of the second weld joint may be relatively larger than that of the first weld joint.
  • the electrode groups included in the battery cells having two structures consist of a first electrode group and a second electrode group;
  • the first electrode group and the second electrode group may be formed in a symmetrical arrangement with respect to the electrode lead.
  • each electrode group is symmetrical with respect to the horizontal axis passing through the center of the electrode group, the bending angles of the electrode support portion from the end of the active material coating portion to the electrode tab junction in the electrodes forming the electrode group It may be a structure.
  • the outermost electrodes of the electrode group may have a bending angle of the electrode support portion in a range of 20 degrees to 50 degrees, but is not limited thereto.
  • the bending angles of the electrode support portion may be symmetrical with respect to the horizontal axis passing through the center of the electrode group, and a portion of the electrode tab junction may be bent and coupled to the electrode lead.
  • the upper and lower surfaces of the electrode lead may have a structure in which an insulating film is attached to secure electrical insulation with the battery case.
  • the battery cell may be sealed within the battery case made of a laminate sheet with the electrolyte solution, the electrode group may be made of a stacked electrode group, stack / folding electrode group structure.
  • the present invention includes a device including the battery cell as a power source.
  • the battery cell according to the present invention is a structure in which the electrode tab junctions formed on one side of each electrode group are electrically connected to the electrode lead via the conductive connection member, and thus form a short length of the electrode tab.
  • the energy density can be increased by increasing the coating area of the electrode active material, and the stress on the electrode tab is relieved by preventing excessive bending of the electrode uncoated portion for forming the electrode tab junction. It is possible to maintain the safety of the battery.
  • FIG. 2A and 2B are enlarged partial views of a portion of the electrode assembly of FIG. 1 in which the positive electrode tabs are coupled in a dense form and connected to the positive electrode lead;
  • 3A is a schematic diagram of a positive electrode manufactured by applying a positive electrode active material to a positive electrode current collector included in an electrode group according to one embodiment of the present invention
  • 3B is a schematic diagram of a positive electrode manufactured by applying a positive electrode active material to a positive electrode current collector included in a battery cell according to the prior art;
  • FIG. 4 is a schematic view of an internal view of a battery cell according to an embodiment of the present invention.
  • FIG. 5 is a partially enlarged view illustrating an enlarged state in which the electrode tab junction part and the conductive connection member of FIG. 4 are connected;
  • FIG. 6 is a partially enlarged view illustrating an enlarged view of the first electrode group of FIG. 4; FIG.
  • FIG. 7 is a schematic view of an internal view of a battery cell according to an embodiment of the present invention.
  • FIG. 3A illustrates a positive electrode manufactured by applying a positive electrode active material to a positive electrode current collector included in an electrode group according to an exemplary embodiment of the present invention
  • FIG. 3B illustrates a positive electrode collector included in a battery cell according to the prior art.
  • a cathode manufactured by applying a cathode active material to the whole is shown.
  • the top portion adjacent to one end of the positive electrode current collector 101 in the longitudinal direction is formed to form a border A-A 'with the top portion so that the plain portion 102 is formed.
  • the positive electrode 100 is manufactured by applying the positive electrode active material 103 to the portion, and removing the remaining portions except for the specific portion from the plain portion 102 by notching to form the positive electrode tab 104.
  • the positive electrode 100 according to the present invention is common in that it is manufactured through the same process as the positive electrode 10 according to the prior art, but the length L 1 at which the positive electrode tab 104 protrudes upward is conventional. Shorter than the length L 2 of the positive electrode tab 14 of the technique, the application area 103 of the positive electrode active material is formed relatively wider than the application area 13 of the positive electrode active material of the prior art.
  • the length of the positive electrode tab does not need to be formed as long as conventionally, the positive electrode according to the present invention.
  • the length of the silver positive electrode tab is shorter than in the related art, and at the same time, the area on which the positive electrode active material is applied is relatively widened.
  • 3A and 3B illustrate only the positive electrode manufactured by applying the positive electrode active material to the positive electrode current collector for convenience of description, the same structure is applied to the negative electrode manufactured by applying the negative electrode active material to the negative electrode current collector, and thus, the present invention
  • a battery cell manufactured by stacking electrodes according to has a relatively high energy density compared to battery cells of the same size.
  • This relative difference in energy density is located between the difference 15 of the application area of the positive electrode active material shown in FIGS. 3A and 3B, for example, between the boundary A-A 'and the boundary B-B'. Proportional to area 15
  • FIG. 4 is a schematic view showing the internal structure of a battery cell according to an embodiment of the present invention from the side, and FIG. 5 is an enlarged view of a portion in which the electrode tab junction part and the conductive connection member of FIG. 4 are enlarged. Is shown.
  • FIG. 4 illustrates a tap-lead coupling site of the battery cell 200.
  • a cathode / separation membrane / cathode structure is formed in the battery case 201 of the battery cell 200 according to the present invention.
  • Electrodes (not shown) of the first electrode group 210 and the second electrode group 220 having a structure stacked in a direction perpendicular to the ground, and protrude in one direction from each electrode group (210, 220)
  • the electrode tab junctions 211 and 221 coupled to each other in a dense state, and the conductive connection members 230 and 240 interposed between the electrode tab junctions 211 and 221 and the electrode lead 250.
  • the electrode lead 250 having the other end drawn out of the battery case 201 with the end connected to the conductive connection members 230 and 240 is included.
  • Electrode tab junction 211 and the second electrode group 220 are connected to each other in a state in which electrode tabs 210a protruding in one direction from the first electrode group 210 are concentrated.
  • Electrode tab junction portion 221 is formed in which the electrode tabs 220a protruding in one direction from each other are connected in a dense state.
  • the conductive connection members 230 and 240 positioned between the electrode tab junctions 211 and 221 and the electrode lead 250 may include a first welding joint portion at which one end thereof is welded to the electrode tab junctions 211 and 221. 231, 241 and second welding joints 232, 242, the other end of which is welded to the electrode lead 250.
  • the first weld joints 231 and 241 are formed in parallel with the length direction of the electrode tab junctions 211 and 221, and the second weld joints 232 and 242 are arranged in the longitudinal direction of the electrode lead 250.
  • the portions 230a and 240a of the conductive connection members 230 and 240 formed between the first welding joints 231 and 241 and the second welding joints 232 and 242 are formed in parallel to each other.
  • the tabs 210a and 220a may be bent toward the electrode bodies 210 and 220 where the tabs 210a and 220a are positioned, for example, in the shape of an arc on a vertical cross section.
  • the battery cell 200 according to the present invention is not limited to the structure in which the bent direction is toward the electrode bodies 210 and 220, and also includes the structure bent to the opposite sides of the electrode bodies 210 and 220. .
  • the first electrode group 210 and the second electrode group 220 are formed in a symmetrical structure with the longitudinal direction of the electrode lead 250 as the central axis C-C '.
  • FIG. 6 is a partially enlarged view illustrating an enlarged view of the first electrode group of FIG. 4.
  • the plurality of electrodes included in the first electrode group 210 may include electrode non-coating parts 210a extending from the active material coating part 212 and the electrode tab junction part 211, and the electrode non-coating parts 210a may be provided.
  • a symmetrical structure is formed with respect to the horizontal axis X-X 'passing through the center of the first electrode group 210.
  • the horizontal axis (X-X ') center to an outermost electrode solid part horizontal axis (X-X, located in the outermost electrode uncoated portion and a lower side, located on the upper side the "angle formed on) are respectively ⁇ 1 and ⁇ 2, the ⁇ 1 And ⁇ 2 have the same angle to each other.
  • the electrode uncoated parts 210a have a symmetrical structure with respect to the horizontal axis X-X ′ passing through the center of the first electrode group 210.
  • Bar electrodes are formed between the outermost electrode uncoated portion located at the upper side and the horizontal axis (X-X '), and the electrodes disposed between the outermost electrode uncoated portion located at the lower side and the horizontal axis (X-X').
  • the uncoated parts are formed at the same angle with respect to the horizontal axis (X-X ').
  • the angle of the electrode support portion that is bent to form the electrode tab is constant and prevents excessive stress from acting on the electrode tab portion, as it is not a structure that is sharply bent so as to reach the electrode lead as in the prior art. It is also possible to prevent the electrode uncoated parts from being formed in a symmetrical structure so that stress acts unbalanced.
  • FIG. 7 is a perspective view of a battery cell according to another embodiment of the present invention
  • FIG. 8 partially enlarges the connection state of the electrode tab junction part and the conductive member included in the battery cell of FIG. 7. One enlarged view is shown.
  • a first electrode group 310 and a second electrode group 320 and respective electrode groups Conductive connection members interposed between the electrode tab junctions 311 and 321, the electrode tab junctions 311 and 321, and the electrode lead 350, which are coupled to each other in a state where electrode tabs protruding in one direction from 310 and 320 are densely coupled.
  • 330 and 340 and one end 350a are connected to the conductive connection members 330 and 340, and an electrode lead 350 having the other end drawn out of the battery case 301 is included. Only one portion of such a battery cell 300 is shown.
  • the electrode tab junction part 311 and the second electrode group 320 are connected to each other in a state in which electrode tabs 310a protruding in one direction from the first electrode group 310 are dense.
  • the electrode tab junction part 321, which is connected to the electrode tabs 320a protruding in one direction from the cluster, is formed at one side of the battery cell 300.
  • connection members 330 and 340 may include electrode tab joints 311 and 321 and second welding joints 332 and 342 respectively coupled to the electrode leads 350.
  • One end of the electrode tab junctions 311 and 321 located at a portion adjacent to the electrode lead 350 is joined to the electrode lead 350 by welding while a part is bent to connect the first weld joints 331 and 341. Form.
  • the second weld joints 332 and 342 may be less than the first weld joints 331 and 341. It is relatively large and is bent in correspondence with the outer surface shape of the electrode tab junctions 311 and 321 and the electrode lead 350.
  • the first electrode group 310 and the second electrode group 320 are formed in a symmetrical structure with the longitudinal direction of the electrode lead 350 as the central axis C-C '.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

양극, 음극 및 양극 및 음극 사이에 개재되어 있는 분리막을 포함하는 전극들이 적층된 구조의 둘 이상의 전극군들을 포함하고 있으며; 상기 전극군들 각각은 일측에 전극탭 접합부를 포함하고 있고, 도전성 접속부재를 경유하여, 전지케이스의 외부로 인출된 전극리드에 전기적으로 연결되어 있으며; 상기 도전성 접속부재의 일측 단부와 전극탭 접합부 사이에 형성된 제 1 용접 접합부와, 도전성 접속부재의 타측 단부와 전극리드 사이에 형성된 제 2 용접 접합부를 포함하고 있는 것을 특징으로 하는 전지셀에 관한 것이다.

Description

이중 용접 구조를 가진 전지셀
본 발명은 이중 용접 구조를 가진 전지셀에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정 에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
전지케이스에 내장되는 전극조립체는 양극/분리막/음극의 적층 구조로 이루어진 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다.
도 1에는 종래의 대표적인 스택형 전극조립체의 일반적인 구조가 측면도로서 모식적으로 도시되어 있다.
도 1을 참조하면, 스택형 전극조립체(1)는 양극 집전체(21)의 양면에 양극 활물질(22)이 도포되어 있는 양극(20)과 음극 집전체(31)의 양면에 음극 활물질(32)이 도포되어 있는 음극(30)이 분리막을 개재시킨 상태에서 순차적으로 적층되어 있는 구조로 이루어져 있다.
양극 집전체(21) 및 음극 집전체(31)의 일측 단부에는, 전지의 전극단자를 구성하는 양극 리드(60) 및 음극 리드(도시하지 않음)에 각각 전기적으로 연결되기 위하여 활물질이 도포되어 있지 않은 다수의 양극탭(41)들 및 음극탭(51)들이 돌출되어 있다.
이 때, 양극탭(41)들과 음극탭(51)들은 밀집된 형태로 결합되어 양극리드(60)와 음극리드에 각각 연결된다. 이러한 구조는 양극탭들(41)과 양극리드(60)의 결합부가 부분 확대도로서 모식적으로 도시되어 있는 도 2a 및 2b에서 더욱 용이하게 확인할 수 있다. 도 2a 및 도 2b에서는 설명의 편의를 위하여 양극탭들과 양극리드의 결합구조만을 도시하였지만, 이러한 구조는 음극탭들과 음극리드의 결합부에서도 적용된다.
이들 도면을 참조하면, 양극탭들(40)은 화살표 방향으로 밀착되어 양극리드(60)에 연결된다. 양극리드(60)는 일반적으로 용접에 의해 결합되는데, 도 2a에서와 같이, 최상단 양극탭(41)의 상면에 위치하거나, 또는 도 2b에서와 같이, 최하단 양극탭(42)의 하면에 위치한 상태로 결합될 수 있다.
그러나, 이러한 구조 하에서, 전지의 에너지 밀도를 높이고자 전극의 적층 회수를 늘려 전극군의 두께를 두껍게 형성하는 경우, 최외곽에 인접한 부위에 전극탭들은 전극리드에 결합될 수 있도록 길게 형성되어야 하는 바, 전극탭으로 사용되는 전극 무지부의 면적이 늘어남과 동시에 전극 집전체 상에 전극 활물질이 도포되는 면적이 감소하게 되어 전지의 용량 발현 부위가 줄어드는 문제점이 발생한다.
이러한 문제를 해결하고자 전극탭의 길이를 짧게 형성하고, 이러한 전극탭들을 절곡하여 전극탭 접합부로 밀집시켜 결합시키는 과정에서, 전극리드를 기준으로 최외곽에 위치한 전극탭에는 응력이 집중적으로 작용하게 되어 전극탭 접합부의 결합력을 약화시키고, 단선의 위험이 커져 안전성이 저해되는 문제가 발생하게 된다.
따라서, 전극탭의 길이를 최소화하여 전지의 에너지 밀도를 향상시킴과 동시에 전극탭과 전극리드 간의 안정적인 연결상태를 유지할 수 있는 전지셀에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 전지케이스 내부에서 각 전극군들의 일측에 형성된 전극탭 접합부들은 도전성 접속 부재를 경유하여 전극리드와 전기적으로 연결되는 경우, 전극탭 접합부는 단선되지 않고 전극리드와 안정적인 결합 상태를 유지할 수 있으며, 전극탭의 길이를 최소화시키는 과정에서 전극 활물질 도포 면적을 늘림으로써 전지의 에너지 밀도를 높일 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위해, 본 발명에 따른 전지셀은,
양극, 음극 및 양극 및 음극 사이에 개재되어 있는 분리막을 포함하는 전극들이 적층된 구조의 둘 이상의 전극군들을 포함하고 있으며;
상기 전극군들 각각은 일측에 전극탭 접합부를 포함하고 있고, 도전성 접속부재를 경유하여, 전지케이스의 외부로 인출된 전극리드에 전기적으로 연결되어 있으며;
상기 도전성 접속부재의 일측 단부와 전극탭 접합부 사이에 형성된 제 1 용접 접합부와, 도전성 접속부재의 타측 단부와 전극리드 사이에 형성된 제 2 용접 접합부를 포함하고는 구조로 이루어져 있다.
이 때, 상기 제 1 용접 접합부와 제 2 용접 접합부는 전극리드에 대해 각각 평행하게 형성될 수 있고, 상기 도전성 접속부재는 제 1 용접 접합부와 제 2 용접 접합부 사이에서 전극 본체 쪽으로 또는 그 반대쪽으로 절곡된 절곡부를 포함하는 구조일 수 있다.
상기 도전성 접속부재는 금속 스트립으로 이루어져 있고, 상기 절곡부는, 예를 들어, 수직 단면 상에서 원호 형상을 가지도록 절곡되어 있는 구조일 수 있다.
하나의 구체적인 예에서, 양극, 음극 및 양극 및 음극 사이에 개재되어 있는 분리막을 포함하는 전극들이 적층된 구조의 둘 이상의 전극군들을 포함하고 있으며;
상기 전극군들 각각은 일측에 전극탭 접합부를 포함하고 있고, 상기 전극탭 접합부의 단부가 전지케이스의 외부로 인출된 전극리드에 직접 결합된 제 1 용접 접합부를 포함하고 있으며;
상기 제 1 용접 접합부의 대향 위치에서, 도전성 접속부재가 전극탭 접합부와 전극리드에 각각 결합된 제 2 용접 접합부를 포함하고 있는 구조일 수 있다.
예를 들어, 상기 제 1 용접 접합부는 전극탭 접합부의 일부가 절곡된 상태에서 전극리드에 결합되어 있는 구조일 수 있고, 제 2 용접 접합부의 크기는 제 1 용접 접합부보다 상대적으로 크게 형성될 수 있다.
경우에 따라서는, 상기 도전성 접속부재는 전극탭 접합부와 전극리드의 외면 형상에 대응하여 절곡된 상태로 제 2 용접 접합부를 형성하고 있는 구조일 수 있다.
상기와 같이, 두 가지 구조로 이루어진 전지셀들에 포함되어 있는 전극군들은 제 1 전극군과 제 2 전극군으로 이루어져 있고; 상기 제 1 전극군과 제 2 전극군은 전극리드를 중심으로 대칭 배열되어 있는 구조로 이루어질 수 있다.
이 때, 각각의 전극군은 전극군을 형성하는 전극들에서, 활물질 코팅부의 단부로부터 전극탭 접합부에 이루는 전극 무지부의 절곡 각도들이, 전극군의 중심을 통과하는 수평축을 기준으로, 대칭을 이루고 있는 구조일 수 있다.
예를 들어, 상기 전극군에서 최외곽 전극들은 전극 무지부의 절곡 각도가 20도 내지 50도의 범위일 수 있으나, 이에 한정되는 것은 아니다.
경우에 따라서는, 상기 전극 무지부의 절곡 각도들이 전극군의 중심을 통과하는 수평축을 기준으로 대칭을 유지한 상태로, 전극탭 접합부의 일부가 절곡되어 전극리드에 결합되어 있는 구조일 수 있다.
상기 전극리드의 상하면에는 전지케이스와의 전기적 절연성을 확보하기 위한 절연필름이 부착되어 있는 구조일 수 있다.
상기 전지셀은 라미네이트 시트로 이루어진 전지케이스의 내부에 전극군들이 전해액과 함께 밀봉되어 있을 수 있고, 상기 전극군은 스택형 전극군, 스택/폴딩형 전극군 구조로 이루어질 수 있다.
또한, 본 발명은 상기 전지셀을 전원으로 포함하고 있는 디바이스를 포함하고 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지셀은, 각 전극군들의 일측에 형성된 전극탭 접합부들이 도전성 접속부재를 경유하여 전극리드와 전기적으로 연결되는 구조인 바, 전극탭의 길이를 짧게 형성하여 전극활물질의 도포 면적을 늘려 에너지 밀도를 높일 수 있으며, 또한, 전극탭 접합부의 형성을 위한 전극 무지부의 과도한 절곡을 방지하여 전극탭에 작용하는 응력을 완화시킴으로써, 탭-리드 결합 부위의 안정적인 결합 상태를 유지하고, 전지의 안전성을 확보할 수 있다.
도 1은 종래의 스택형 전극조립체의 일반적인 구조를 측면에서 바라본 모식도이다;
도 2a 및 2b는 도 1의 전극조립체에서 양극탭들이 밀집된 형태로 결합되어 양극리드에 연결되어 있는 부위의 부분 확대도이다;
도 3a는 본 발명의 하나의 실시예에 따른 전극군에 포함되어 있는 양극 집전체에 양극 활물질을 도포하여 제조되는 양극의 모식도이다;
도 3b는 종래 기술에 따른 전지셀에 포함되어 있는 양극 집전체에 양극 활물질을 도포하여 제조되는 양극의 모식도이다;
도 4는 본 발명의 하나의 실시예에 따른 전지셀을 측면에서 바라본 내부 모습의 모식도이다;
도 5는 도 4의 전극탭 접합부와 도전성 접속부재가 연결되어 있는 모습을 확대한 부분 확대도이다;
도 6은 도 4의 제 1 전극군의 모습을 확대한 부분 확대도이다;
도 7은 본 발명의 하나의 실시예에 따른 전지셀을 측면에서 바라본 내부 모습의 모식도이다; 및
도 8은 도 7의 전극탭 접합부와 도전성 접속부재가 연결되어 있는 모습을 확대한 부분 확대도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 3a에는 본 발명의 하나의 실시예에 따른 전극군에 포함되어 있는 양극 집전체에 양극 활물질을 도포하여 제조되는 양극이 도시되어 있으며, 도 3b에는 종래 기술에 따른 전지셀에 포함되어 있는 양극 집전체에 양극 활물질을 도포하여 제조되는 양극이 도시되어 있다.
이 때, 도 3a를 참조하면, 길이 방향에서 양극 집전체(101)의 일측 단부에 인접한 상단 부위에는 무지부(102)가 형성되도록, 상단 부위와 경계(A-A')를 이루는 형태로 나머지 부위에 양극 활물질(103)을 도포하고, 무지부(102)에서 특정 부위만을 제외한 나머지 부위들을 노칭(notching)에 의해 제거하여 양극탭(104)을 형성함으로써, 양극(100)이 제조된다.
마찬가지로, 도 3b를 참조하면, 길이 방향에서 양극 집전체(11)의 일측 단부에 인접한 상단 부위에 무지부(12)가 형성되도록, 상단 부위와 경계(B-B')를 이루는 형태로 나머지 부위에 양극 활물질(13)을 도포하고, 무지부(12)에서 특정 부위만을 제외한 나머지 부위들을 노칭에 의해 제거하여 양극탭(14)을 형성함으로써, 양극(10)이 제조된다.
본 발명에 따른 양극(100)은, 종래 기술에 따른 양극(10)과 동일한 공정을 통해 제조되는 점에서는 공통되나, 양극탭(104)이 상측을 향해 돌출되어 있는 길이(L1)는, 종래 기술의 양극탭(14)의 길이(L2)보다 짧고, 양극 활물질의 도포 면적(103)은 종래 기술의 양극 활물질의 도포 면적(13)보다 상대적으로 넓게 형성되어 있다.
즉, 본 발명에 따른 양극(100)은 하기에서 설명하는 바와 같이, 도전성 접속부재를 통해 전극리드와 연결되므로 양극탭의 길이가 종래와 같이 길게 형성되어야 할 필요가 없는 바, 본 발명에 따른 양극은 양극 탭의 길이가 종래에 비해 짧게 형성되며, 이와 동시에 양극 활물질이 도포되는 면적은 상대적으로 넓어진다.
도 3a 및 도 3b에서는 설명의 편의를 위하여 양극 집전체에 양극 활물질을 도포하여 제조되는 양극만을 도시하였지만, 이러한 구조는 음극 집전체에 음극 활물질을 도포하여 제조되는 음극에서도 동일하게 적용되므로, 본 발명에 따른 전극들을 적층하여 제조된 전지셀은 동일한 크기의 전지셀에 비하여 상대적으로 높은 에너지 밀도를 가진다.
이러한 에너지 밀도의 상대적인 차이는, 도 3a 및 도 3b에 도시되어 있는 양극 활물질의 도포 면적의 차이(15), 예를 들어, 경계(A-A')와 경계(B-B') 사이에 위치한 면적(15)에 비례한다
도 4에는 본 발명의 하나의 실시예에 따른 전지셀의 내부 구조를 측면에서 바라본 모식도가 도시되어 있으며, 도 5에는 도 4의 전극탭 접합부와 도전성 접속부재가 연결된 모습을 확대한 부분 확대도가 도시되어 있다.
도 4는 전지셀(200)의 탭-리드 결합 부위를 중심으로 도시된 것으로, 도 4를 참조하면, 본 발명에 따른 전지셀(200)의 전지케이스(201) 내부에는 양극/분리막/음극 구조의 전극들(도시하지 않음)이 지면에 수직한 방향으로 적층된 구조로 이루어지는 제 1 전극군(210) 및 제 2 전극군(220), 각 전극군들(210, 220)로부터 일측 방향으로 돌출된 전극탭들이 밀집된 상태로 상호 결합되어 있는 전극탭 접합부(211, 221), 전극탭 접합부(211, 221)와 전극리드(250) 사이에 개재되어 있는 도전성 접속부재(230, 240), 및 일측 단부가 도전성 접속부재(230, 240)에 연결된 상태로 타측 단부가 전지케이스(201) 외부로 인출되어 있는 전극리드(250)가 포함되어 있다.
도 4와 도 5를 함께 참조하면, 제 1 전극군(210)으로부터 일측 방향으로 돌출된 전극탭들(210a)이 밀집된 상태로 연결되어 있는 전극탭 접합부(211), 제 2 전극군(220)으로부터 일측 방향으로 돌출된 전극탭들(220a)이 밀집된 상태로 연결되어 있는 전극탭 접합부(221)가 형성되어 있다.
이러한 전극탭 접합부(211, 221)와 전극리드(250) 사이에 위치하고 있는 도전성 접속부재(230, 240)는, 일측 단부가 전극탭 접합부(211, 221)와 용접 연결되어 있는 제 1 용접 접합부(231, 241)와, 타측 단부가 전극리드(250)에 용접 연결되어 있는 제 2 용접 접합부(232, 242)를 포함하고 있다.
제 1 용접 접합부(231, 241)는 전극탭 접합부(211, 221)의 길이 방향에 평행하게 배열된 상태로 형성되고, 제 2 용접 접합부(232, 242)는 전극리드(250)의 길이 방향에 평행하게 배열된 상태로 형성되며, 제 1 용접 접합부(231, 241)와 제 2 용접 접합부(232, 242) 사이에 위치하고 있는 도전성 접속부재(230, 240)의 일 부위(230a, 240a)는 전극탭들(210a, 220a)이 위치하고 있는 전극 본체(210, 220)쪽으로 절곡된 형상, 예를 들어, 수직 단면상 원호의 형상으로 이루어져 있다. 다만, 본 발명에 따른 전지셀(200)은 절곡된 방향이 전극 본체(210, 220) 쪽을 향하고 있는 구조만으로 제한되는 것은 아니며, 전극 본체(210, 220)의 반대쪽으로 절곡된 구조도 포함한다.
제 1 전극군(210)과 제 2 전극군(220)은 전극리드(250)의 길이 방향을 중심축(C-C')으로 하여 대칭되는 구조로 형성되어 있다.
도 6에는 도 4의 제 1 전극군의 모습을 확대한 부분 확대도가 도시되어 있다.
제 1 전극군(210)에 포함되어 있는 복수의 전극들은, 활물질 코팅부(212)와 전극탭 접합부(211)에 이르는 전극 무지부들(210a)을 포함하고 있으며, 이러한 전극 무지부들(210a)은 제 1 전극군(210)의 중심을 통과하는 수평축(X-X')을 기준으로 대칭 구조를 이루고 있다.
수평축(X-X')을 중심으로 상측에 위치한 최외곽 전극 무지부와 하측에 위치한 최외곽 전극 무지부가 수평축(X-X')에 대해 이루는 각도는 각각 θ1과 θ2이며, 상기 θ1과 θ2는 서로 동일한 각도를 가진다.
도 6에서는 최외곽에 위치한 전극 무지부들이 이루는 각도들만을 설명하였으나, 전극 무지부들(210a)은 제 1 전극군(210)의 중심을 통과하는 수평축(X-X')을 기준으로 대칭 구조를 이루고 있는 바, 상측에 위치한 최외곽 전극 무지부와 수평축(X-X') 사이에 위치하고 있는 전극 무지부들과, 하측에 위치한 최외곽 전극 무지부와 수평축(X-X') 사이에 위치하고 있는 전극 무지부들은 수평축(X-X')에 대해 동일한 각도를 이루고 있음은 물론이다.
이러한 구조 하에서, 전극탭을 형성하기 위해 절곡되는 전극 무지부의 각도는 일정하며, 종래와 같이 전극리드에 이르러야 할 정도로 급격하게 절곡되는 구조가 아닌 바, 전극탭 부위에 과도한 응력이 작용하는 것을 방지할 수 있고, 전극 무지부들이 대칭 구조로 형성되어 응력이 불균형하게 작용하는 것 또한 방지할 수 있다.
도 7에는 본 발명의 또 하나의 실시예에 따른 전지셀을 측면에서 바라본 투시도가 도시되어 있으며, 도 8에는 도 7의 전지셀에 포함되어 있는 전극탭 접합부와 도전성 부재의 연결 모습을 부분적으로 확대한 확대도가 도시되어 있다.
도 7을 참조하면, 본 발명의 또 하나의 실시예에 따른 전지셀(300)의 전지케이스(301) 내부에는 제 1 전극군(310) 및 제 2 전극군(320), 각 전극군들(310, 320)로부터 일측 방향으로 돌출된 전극탭들이 밀집된 상태로 결합되어 있는 전극탭 접합부(311, 321), 전극탭 접합부(311, 321)와 전극리드(350) 사이에 개재되어 있는 도전성 접속부재(330, 340), 및 일측 단부(350a)가 도전성 접속부재(330, 340)에 연결되어 있고, 타측 단부가 전지케이스(301)의 외부로 인출되어 있는 전극리드(350)가 포함되어 있으며, 이러한 전지셀(300)의 일 부위만이 도시되어 있다.
도 6 및 도 7을 함께 참조하면, 제 1 전극군(310)으로부터 일측 방향으로 돌출된 전극탭들(310a)이 밀집된 상태로 연결되어 있는 전극탭 접합부(311), 제 2 전극군(320)으로부터 일측 방향으로 돌출된 전극탭들(320a)이 밀집된 상태로 연결되어 있는 전극탭 접합부(321)가 전지셀(300)의 일측 부위에 형성되어 있다.
이러한 전극탭 접합부(311, 321)의 일측 단부는 전극리드의 일측 단부에 직접 결합되면서 형성된 제 1 용접 접합부(331, 341)와, 제 1 용접 접합부(331, 341)의 대향 측에 위치하는 도전성 접속부재(330, 340)가 전극탭 접합부(311, 321)와 전극리드(350)에 각각 결합된 제 2 용접 접합부(332, 342)를 포함한다.
전극리드(350)에 인접한 부위에 위치한 전극탭 접합부(311, 321)의 일측 단부는, 일부가 절곡된 상태에서 전극리드(350)에 용접에 의해 결합되어 제 1 용접 접합부(331, 341)를 형성한다.
도전성 접속부재(330, 340)는 전극리드(350) 및 전극탭 접합부(311, 321)에 각각 결합되어야 하므로, 제 2 용접 접합부(332, 342)는 제 1 용접 접합부(331, 341)에 비하여 상대적으로 크게 형성되어 있으며, 전극탭 접합부(311, 321)와 전극리드(350)의 외면 형상에 대응하여 절곡되어 있다.
제 1 전극군(310)과 제 2 전극군(320)은 전극리드(350)의 길이 방향을 중심축(C-C')으로 하여 대칭되는 구조로 형성되어 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.

Claims (16)

  1. 양극, 음극 및 양극 및 음극 사이에 개재되어 있는 분리막을 포함하는 전극들이 적층된 구조의 둘 이상의 전극군들을 포함하고 있으며;
    상기 전극군들 각각은 일측에 전극탭 접합부를 포함하고 있고, 도전성 접속부재를 경유하여, 전지케이스의 외부로 인출된 전극리드에 전기적으로 연결되어 있으며;
    상기 도전성 접속부재의 일측 단부와 전극탭 접합부 사이에 형성된 제 1 용접 접합부와, 도전성 접속부재의 타측 단부와 전극리드 사이에 형성된 제 2 용접 접합부를 포함하고 있는 것을 특징으로 하는 전지셀.
  2. 제 1 항에 있어서, 상기 제 1 용접 접합부와 제 2 용접 접합부는 전극리드에 대해 각각 평행한 것을 특징으로 하는 전지셀.
  3. 제 1 항에 있어서, 상기 도전성 접속부재는 제 1 용접 접합부와 제 2 용접 접합부 사이에서 전극 본체 쪽으로 또는 그 반대쪽으로 절곡된 절곡부를 포함하고 있는 것을 특징으로 하는 전지셀.
  4. 제 3 항에 있어서, 상기 도전성 접속부재는 금속 스트립으로 이루어져 있고, 상기 절곡부는 수직 단면 상에서 원호 형상을 가지도록 절곡되어 있는 것을 특징으로 하는 전지셀.
  5. 양극, 음극 및 양극 및 음극 사이에 개재되어 있는 분리막을 포함하는 전극들이 적층된 구조의 둘 이상의 전극군들을 포함하고 있으며;
    상기 전극군들 각각은 일측에 전극탭 접합부를 포함하고 있고, 상기 전극탭 접합부의 단부가 전지케이스의 외부로 인출된 전극리드에 직접 결합된 제 1 용접 접합부를 포함하고 있으며;
    상기 제 1 용접 접합부의 대향 위치에서, 도전성 접속부재가 전극탭 접합부와 전극리드에 각각 결합된 제 2 용접 접합부를 포함하고 있는 것을 특징으로 하는 전지셀.
  6. 제 5 항에 있어서, 상기 전극탭 접합부의 일부가 절곡된 상태에서 전극리드에 결합되어 제 1 용접 접합부를 형성하고 있는 것을 특징으로 하는 전지셀.
  7. 제 5 항에 있어서, 상기 제 2 용접 접합부의 크기는 제 1 용접 접합부보다 상대적으로 큰 것을 특징으로 하는 전지셀.
  8. 제 5 항에 있어서, 상기 도전성 접속부재는 전극탭 접합부와 전극리드의 외면 형상에 대응하여 절곡된 상태로 제 2 용접 접합부를 형성하고 있는 것을 특징으로 하는 전지셀.
  9. 제 1 항 또는 제 5 항에 있어서,
    상기 전극군들은 제 1 전극군과 제 2 전극군으로 이루어져 있고;
    상기 제 1 전극군과 제 2 전극군은 전극리드를 중심으로 대칭 배열되어 있는 것을 특징으로 하는 전지셀.
  10. 제 9 항에 있어서, 각각의 전극군은 전극군을 형성하는 전극들에서, 활물질 코팅부의 단부로부터 전극탭 접합부에 이르는 전극 무지부의 절곡 각도들이, 전극군의 중심을 통과하는 수평축을 기준으로, 대칭을 이루고 있는 것을 특징으로 하는 전지셀.
  11. 제 10 항에 있어서, 상기 전극군에서 최외곽 전극들은 전극 무지부의 절곡 각도가 20도 내지 50도의 범위인 것을 특징으로 하는 전지셀.
  12. 제 10 항에 있어서, 상기 전극 무지부의 절곡 각도들이 전극군의 중심을 통과하는 수평축을 기준으로 대칭을 유지한 상태로, 전극탭 접합부의 일부가 절곡되어 전극리드에 결합된 것을 특징으로 하는 전지셀.
  13. 제 1 항 또는 제 5항에 있어서, 상기 전극리드의 상하면에는 전지케이스와의 전기적 절연성을 확보하기 위한 절연필름이 부착되어 있는 것을 특징으로 하는 전지셀.
  14. 제 1 항 또는 제 5 항에 있어서, 상기 전지셀은 라미네이트 시트로 이루어진 전지케이스의 내부에 전극군들이 전해액과 함께 밀봉되어 있는 것을 특징으로 하는 전지셀.
  15. 제 1 항 또는 제 5 항에 있어서, 상기 전극군은 스택형 전극군, 스택/폴딩형 전극군인 것을 특징으로 하는 전지셀.
  16. 제 1 항 또는 제 5 항에 있어서, 상기 전지셀을 전원으로 포함하고 있는 디바이스.
PCT/KR2017/013545 2016-11-30 2017-11-24 이중 용접 구조를 가진 전지셀 WO2018101682A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780008733.1A CN108604660B (zh) 2016-11-30 2017-11-24 具有双焊接结构的电池单元
PL19216257T PL3641018T3 (pl) 2016-11-30 2017-11-24 Ogniwo akumulatorowe mające podwójne struktury zgrzewane
EP19216257.6A EP3641018B1 (en) 2016-11-30 2017-11-24 Battery cell having dual welding structures
US16/067,844 US11276905B2 (en) 2016-11-30 2017-11-24 Battery cell having dual welding structures
EP17875721.7A EP3396738B1 (en) 2016-11-30 2017-11-24 Battery cell having double welding structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160161121A KR102032773B1 (ko) 2016-11-30 2016-11-30 이중 용접 구조를 가진 전지셀
KR10-2016-0161121 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101682A1 true WO2018101682A1 (ko) 2018-06-07

Family

ID=62241668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013545 WO2018101682A1 (ko) 2016-11-30 2017-11-24 이중 용접 구조를 가진 전지셀

Country Status (6)

Country Link
US (1) US11276905B2 (ko)
EP (2) EP3396738B1 (ko)
KR (1) KR102032773B1 (ko)
CN (1) CN108604660B (ko)
PL (1) PL3641018T3 (ko)
WO (1) WO2018101682A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087983A (ko) 2019-01-14 2020-07-22 주식회사 엘지화학 전극 조립체 및 이를 포함하는 이차전지
JP7356861B2 (ja) * 2019-10-15 2023-10-05 本田技研工業株式会社 リチウムイオン二次電池用電極、およびリチウムイオン二次電池
KR20210103340A (ko) 2020-02-13 2021-08-23 삼성에스디아이 주식회사 집전 구조가 개선된 이차전지
JP7469091B2 (ja) * 2020-03-23 2024-04-16 本田技研工業株式会社 リチウムイオン二次電池
JP7469093B2 (ja) * 2020-03-25 2024-04-16 本田技研工業株式会社 リチウムイオン二次電池
FR3110772B1 (fr) 2020-05-20 2022-12-02 Accumulateurs Fixes Ensemble électrochimique, procédé et installation de fabrication correspondants
CN113871807A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池以及电池包
CN112117497A (zh) * 2020-10-09 2020-12-22 昆山聚创新能源科技有限公司 电芯及电芯成型方法
CN114792869A (zh) * 2022-03-21 2022-07-26 远景动力技术(江苏)有限公司 极耳、电池和电池模组
CN115224453B (zh) * 2022-09-21 2022-12-27 江苏时代新能源科技有限公司 电池单体、电池、用电装置以及焊接设备
KR20240047080A (ko) * 2022-10-04 2024-04-12 주식회사 엘지에너지솔루션 열 전파 방지 전지 셀
KR20240097207A (ko) * 2022-12-20 2024-06-27 주식회사 엘지에너지솔루션 이차 전지 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129718A1 (en) * 2009-12-01 2011-06-02 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery including the same
JP2012209261A (ja) * 2012-06-18 2012-10-25 Toshiba Corp 電池
KR20130042954A (ko) * 2011-10-19 2013-04-29 주식회사 엘지화학 안전성이 향상된 이차전지 및 그 제조 방법
KR20160049827A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 적층형 전지의 집전구조 및 전극조립체 모듈
KR20160094009A (ko) * 2015-01-30 2016-08-09 주식회사 엘지화학 파우치형 이차전지

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113268U (ja) * 1982-01-26 1983-08-02 古河電池株式会社 極板耳群端子集結装置
JPH0896841A (ja) * 1994-09-22 1996-04-12 Mitsubishi Chem Corp リチウムイオン二次電池
JP4494731B2 (ja) 2003-06-13 2010-06-30 三菱重工業株式会社 二次電池、二次電池の製造方法
KR100516768B1 (ko) 2003-08-16 2005-09-22 삼성에스디아이 주식회사 전극탭 병렬결합구조를 갖는 이차전지 및 그 전극탭 결합 방법
KR100599795B1 (ko) * 2004-06-29 2006-07-12 삼성에스디아이 주식회사 이차 전지
JP4986441B2 (ja) * 2005-11-24 2012-07-25 三洋電機株式会社 角形電池
US20070134551A1 (en) * 2005-12-14 2007-06-14 Avestor Limited Partnership Electrochemical battery and method for making same
KR100888284B1 (ko) * 2006-07-24 2009-03-10 주식회사 엘지화학 탭-리드 결합부의 전극간 저항차를 최소화한 전극조립체 및이를 포함하고 있는 전기화학 셀
US8734986B2 (en) * 2007-07-11 2014-05-27 Nissan Motor Co., Ltd. Laminate type battery
JP5252871B2 (ja) * 2007-09-28 2013-07-31 三洋電機株式会社 積層式電池
KR101135478B1 (ko) * 2010-02-04 2012-04-13 삼성에스디아이 주식회사 이차 전지
KR101345349B1 (ko) * 2010-08-25 2013-12-27 주식회사 엘지화학 신규한 구조의 전극조립체
KR101222309B1 (ko) * 2010-12-29 2013-01-15 로베르트 보쉬 게엠베하 이차전지
JP5927967B2 (ja) * 2012-02-14 2016-06-01 株式会社豊田自動織機 蓄電装置、車両、蓄電装置の製造方法
JP5719859B2 (ja) * 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 蓄電装置
KR101528003B1 (ko) 2012-08-28 2015-06-10 주식회사 엘지화학 전극 탭 상호 접속부재 및 이를 이용한 전기화학소자
JP5943146B2 (ja) 2013-04-04 2016-06-29 日立化成株式会社 二次電池の集電構造及び二次電池の集電構造形成方法
KR20160015751A (ko) 2014-07-31 2016-02-15 에스케이이노베이션 주식회사 배터리 셀 치수 고정을 위한 배터리모듈 구조, 그리고 이를 이용한 배터리 셀의 병렬 연결 구조
JP6522418B2 (ja) * 2015-05-15 2019-05-29 三洋電機株式会社 角形二次電池及びそれを用いた組電池、並びにその製造方法
CN205542998U (zh) * 2015-12-21 2016-08-31 江西迪比科股份有限公司 一种高功率湿法纤维素无纺布隔膜纸结构铝壳锂离子二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129718A1 (en) * 2009-12-01 2011-06-02 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery including the same
KR20130042954A (ko) * 2011-10-19 2013-04-29 주식회사 엘지화학 안전성이 향상된 이차전지 및 그 제조 방법
JP2012209261A (ja) * 2012-06-18 2012-10-25 Toshiba Corp 電池
KR20160049827A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 적층형 전지의 집전구조 및 전극조립체 모듈
KR20160094009A (ko) * 2015-01-30 2016-08-09 주식회사 엘지화학 파우치형 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396738A4 *

Also Published As

Publication number Publication date
PL3641018T3 (pl) 2021-08-30
CN108604660B (zh) 2021-05-11
EP3396738A4 (en) 2019-06-05
EP3641018A1 (en) 2020-04-22
EP3396738B1 (en) 2023-04-19
US20190013506A1 (en) 2019-01-10
EP3396738A1 (en) 2018-10-31
KR102032773B1 (ko) 2019-10-16
KR20180061681A (ko) 2018-06-08
US11276905B2 (en) 2022-03-15
EP3641018B1 (en) 2020-12-30
CN108604660A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2018101682A1 (ko) 이중 용접 구조를 가진 전지셀
WO2012086855A1 (ko) 다방향성 리드-탭 구조를 가진 리튬 이차전지
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2013187661A1 (ko) 단일 전극단자 결합부를 가진 전지 조합체
KR101093696B1 (ko) 이차 전지
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2013024984A2 (ko) 제조공정성이 향상된 젤리-롤 및 이를 포함하는 전지셀
WO2018135764A1 (ko) 전극조립체의 외면에 대면하여 위치하는 전극리드를 포함하는 전지셀
WO2015115731A1 (ko) 전극조립체 및 그를 포함하는 전지셀
WO2018174370A1 (ko) 전극 조립체 및 그 제조방법
KR20130138678A (ko) 이차 전지
WO2018066820A1 (ko) 전극 조립체 및 이의 제조 방법
WO2018216859A1 (ko) 복합 구조의 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
WO2017104956A1 (ko) 전극판에 만입부가 형성되어 있는 전극조립체 및 이를 포함하는 이차전지
JP2012516009A (ja) 電気化学的エネルギー貯蔵セル
WO2020256281A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2014126358A1 (ko) 엇갈린 배열 구조의 전극조립체를 포함하는 전지셀
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2018139766A1 (ko) 리튬 이온 이차전지
WO2015102442A1 (ko) 플렉서블 전지셀
WO2018080080A1 (ko) 이차 전지
WO2018164389A1 (ko) 이차 전지
KR20140110793A (ko) 이차 전지
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017875721

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017875721

Country of ref document: EP

Effective date: 20180725

NENP Non-entry into the national phase

Ref country code: DE