WO2018101496A1 - 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체 - Google Patents

이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체 Download PDF

Info

Publication number
WO2018101496A1
WO2018101496A1 PCT/KR2016/013853 KR2016013853W WO2018101496A1 WO 2018101496 A1 WO2018101496 A1 WO 2018101496A1 KR 2016013853 W KR2016013853 W KR 2016013853W WO 2018101496 A1 WO2018101496 A1 WO 2018101496A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
superconductor
mixture
diboron
powder
Prior art date
Application number
PCT/KR2016/013853
Other languages
English (en)
French (fr)
Inventor
정국채
강성훈
오영석
라놋마이팔
장세훈
프라카쉬 신데키란
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020177001070A priority Critical patent/KR102004621B1/ko
Priority to PCT/KR2016/013853 priority patent/WO2018101496A1/ko
Priority to US16/464,501 priority patent/US11659777B2/en
Publication of WO2018101496A1 publication Critical patent/WO2018101496A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0128Manufacture or treatment of composite superconductor filaments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Definitions

  • the present invention relates to a method for producing a superconductor containing magnesium diboron and to a superconductor containing magnesium diboron.
  • Magnesium diboride (MgB 2 ) is 39K superconductivity exceeding the absolute temperature of 30K, the absolute temperature of the BCS theory metallic superconductor, claimed by American physicists John Bardin, Leon Cooper, and John Robert Shrefer. It has been the subject of much attention and research around the world in terms of its critical transition temperature (J. Nagamatsu, N.Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature, 401, pp. 63). -64 (2001))
  • such a magnesium diboron has the advantage that the structure is very simple and chemically stable than the high-temperature oxide superconductor, which has been studied a lot, and that the raw material is abundant on the earth, and the supply thereof is smooth. .
  • magnesium diboron has a superconducting transition temperature of 39K and can be lowered to a temperature that is sufficiently superconducting using an existing electric refrigerator without using liquid helium. It is large and its application range is very wide.
  • the value of the critical current density under the magnetic field of magnesium diborate is low for practical application.
  • low critical current density characteristics under a magnetic field remain a problem to be solved for a long time compared to commercially available low temperature superconductor NbTi and high temperature superconductor YBCO.
  • carbon nano compound carbon nanoparticles such as silicon carbide, carbon, carbon nanotubes, and hydrocarbons may be added to magnesium diboron superconductors to significantly improve critical current characteristics under magnetic fields.
  • carbon replaces a part of boron in magnesium diborate to form lattice defects, and as a result, the magnetic field-critical current characteristics of the superconductor are improved.
  • additives are usually added in the form of powders of several tens of nanometers, self-aggregation easily occurs and it is difficult to add them uniformly. Therefore, uniform reaction with boron powder is difficult and only a part of the additives is added to the crystal lattice of magnesium diboron. Since the substitution does not contribute to the improvement of the superconductivity, there is a problem of low efficiency.
  • the technical problem to be solved by the present invention is to solve the above problems, to provide a method for easily manufacturing a superconductor containing magnesium diboron with improved superconductivity.
  • preparing a first mixture comprising a boron powder and a chlorinated hydrocarbon compound in a liquid phase, preparing a first mixture; A second mixture preparation step of preparing a second mixture including the first mixture and magnesium powder; Forming a molded body by pressing the second mixture to produce a molded body; And a sintering step of sintering the molded body to produce a superconductor including magnesium diboron, which provides a method for producing a superconductor including magnesium diboron.
  • a superconductor comprising magnesium diboron produced by the manufacturing method according to an embodiment of the present invention.
  • the magnesium diboron is provided with a superconductor containing magnesium diboron containing chlorine.
  • the method for manufacturing a superconductor containing magnesium diboron according to an embodiment of the present invention can easily and easily prepare a superconductor containing magnesium diboron having improved superconductivity.
  • the superconductor of the superconductor containing magnesium diboron prepared by pre-determining the order of mixing the boron powder, a liquid chloride hydrocarbon compound and magnesium powder The characteristic can be improved more effectively.
  • FIG. 1 is a flow chart showing a method of manufacturing a chlorine-containing magnesium diboron superconductor according to an embodiment of the present invention.
  • FIG. 2 is a view showing the results of TEM analysis of the first mixture prepared in Examples 1 and 2 of the present invention.
  • Figure 3a is a view showing the results of the EDS analysis of the superconductor specimen prepared in Example 2 of the present invention
  • Figure 3b is a view showing the results of EDS analysis of the superconductor specimen prepared in Comparative Example 2.
  • Figure 4a is a diagram showing the superconducting threshold temperature value of the superconductor specimens prepared in Examples 1 to 2 and Comparative Example 3 of the present invention
  • Figure 4b shows the superconductivity threshold temperature of the superconductor specimens prepared in Comparative Examples 1 to 3 Drawing.
  • FIG. 5A is a view showing superconducting critical current density values of superconductor specimens prepared in Examples 1 to 2 and Comparative Example 3, and FIG. 5B is a superconducting critical current density value of superconductor specimens prepared in Comparative Examples 1 to 3; It is a diagram showing.
  • FIG. 1 is a flow chart showing a method of manufacturing a chlorine-containing magnesium diboron superconductor according to an embodiment of the present invention.
  • preparing a first mixture comprising a boron powder and a chlorinated hydrocarbon compound in a liquid phase preparing a first mixture (S100); Preparing a second mixture including the first mixture and the magnesium powder, preparing a second mixture (S200); Pressing the second mixture to produce a molded article, a molded article manufacturing step (S300); And sintering the molded body to produce a superconductor containing magnesium diboron, the sintering step (S400); provides a method for producing a superconductor comprising magnesium diboron containing.
  • the method for manufacturing a superconductor containing magnesium diboron according to an embodiment of the present invention can easily and easily prepare a superconductor containing magnesium diboron having improved superconductivity.
  • the first mixture is prepared by mixing the boron powder and the chlorinated hydrocarbon compound in the liquid phase.
  • a liquid chlorinated hydrocarbon compound By using a liquid chlorinated hydrocarbon compound, the boron powder and the liquid chlorinated hydrocarbon compound can be mixed more uniformly, and the reaction between boron and the chlorinated hydrocarbon compound contained in the boron powder can be effectively induced.
  • a liquid chlorinated hydrocarbon compound by using a liquid chlorinated hydrocarbon compound as an additive, it is possible to overcome the heterogeneity of magnesium diborate due to the aggregation phenomenon that may occur when using a nano-sized powder as an additive. .
  • the weight ratio of the boron powder and the chlorinated hydrocarbon compound in the liquid phase may be 1: 0.2 to 1:25.
  • the liquid chlorinated hydrocarbon compound included in the first mixture When the weight of the liquid chlorinated hydrocarbon compound included in the first mixture is less than the above range, the liquid chlorinated hydrocarbon compound and the boron powder may not be evenly mixed, and the first mixture may include unreacted boron. Thereby, it may be difficult to effectively improve the superconducting critical current density of the superconductor containing magnesium diboron. In addition, when the weight of the liquid chlorinated hydrocarbon compound included in the first mixture is within the above range, the chlorinated hydrocarbon compound and boron may be uniformly reacted.
  • the weight ratio of the boron powder and the chlorinated hydrocarbon compound in the liquid phase may be 1: 0.2 to 1:25.
  • the first mixture and magnesium powder are mixed.
  • the superconducting properties of the superconductor containing magnesium diboron may be different according to the order of mixing the boron powder, the liquid chlorinated hydrocarbon compound and the magnesium powder.
  • the superconductivity threshold of the superconductor containing magnesium diborate prepared The problem of decreasing the value of the current density may occur.
  • the chlorinated hydrocarbon compound and magnesium have high reactivity, and magnesium dichloride and the like may be formed by the reaction of the chlorinated hydrocarbon compound and magnesium. Accordingly, the amount of magnesium that can react with boron is reduced, and the formed magnesium dichloride may affect the reactivity of the remaining magnesium and boron.
  • the boron powder and the liquid chlorinated hydrocarbon compound may be first mixed to induce uniform doping, thereby improving the doping effect.
  • an amorphous layer including the chlorinated hydrocarbon compound may be formed on the surface of the boron particles.
  • the amorphous layer containing the chlorinated hydrocarbon compound may have a thickness of at least 3 nm and at most 4 nm.
  • the secondary reaction in the process of producing a superconductor containing magnesium diboron can be suppressed by later reacting magnesium powder which is highly reactive with moisture or oxygen in the air.
  • the present invention by pre-determining the order of mixing the boron powder, the liquid chlorinated hydrocarbon compound and magnesium powder, it is possible to more effectively improve the superconducting properties of the superconductor containing magnesium diborate prepared have.
  • the first mixture and the second mixture may be a solid phase.
  • the boron powder and the liquid chlorinated hydrocarbon compound may be mixed to prepare a solid first mixture, and the first mixture and the magnesium powder may be mixed to prepare a solid second mixture.
  • the first mixture and the second mixture of the solid phase may be, for example, in the form of clay or dough.
  • the solid second mixture may be easy to mold into the desired shape.
  • the molar ratio of the first mixture and the magnesium powder may be 2: 1.
  • the molar ratio may be the same as the reaction ratio.
  • boron contained in the first mixture and magnesium contained in the magnesium powder may react at a reaction ratio of 2: 1.
  • unreacted boron When the magnesium is included in the second mixture at less than the molar ratio, unreacted boron may be present in the second mixture. In addition, when the magnesium is included in the second mixture in excess of the molar ratio, unreacted magnesium may be present in the second mixture. Unreacted boron and magnesium will be present as impurities in the superconductor to be manufactured, a problem may occur that reduces the superconductivity of the superconductor.
  • the boron powder according to an embodiment of the present invention may include 99% or more of boron powder particles having a particle size of 20 nm or more and 100 nm or less with respect to the whole boron powder particles.
  • the magnesium powder according to an embodiment of the present invention may include 99% or more of magnesium powder particles having a particle size of 1 ⁇ m or more and 5 ⁇ m or less with respect to all magnesium powder particles.
  • the particle size is small, agglomeration between particles occurs, and the mixture is not uniformly mixed, and the surface oxygen amount may increase due to the surface oxidation of the boron powder.
  • the magnesium powder having a particle size of 1 ⁇ m or less is used, the magnesium powder is not easily handled due to the high reactivity of magnesium, and the particle size is small so that agglomeration of particles occurs, so that the mixture is not uniformly mixed. The problem that surface oxygen amount increases due to surface oxidation of magnesium powder may occur.
  • a boron powder having a particle size of 100 nm or less and a magnesium powder having a particle size of 5 ⁇ m or less it is possible to improve the critical current density characteristics of the superconductor including magnesium diborate prepared.
  • the particle size of the boron powder and the magnesium powder is smaller than the numerical value, the grain size becomes smaller and the grain boundary is increased, thereby improving the value of the critical current density of the superconductor containing magnesium diboron with grain boundary peening effect.
  • the boron powder may include boron powder particles having a particle size of less than 20 nm, 20 nm or more and 100 nm or less and more than 100 nm. However, in order to prevent a problem that may occur when the particle size of the boron powder is less than 20 nm or more than 100 nm, the particle size is 20 nm or more and 100 nm or less with respect to all the boron powder particles included in the boron powder. It may be desirable for the boron powder particles to be at least 99%. As described above, the magnesium powder particles having a particle size of 1 ⁇ m or more and 5 ⁇ m or less with respect to the total magnesium powder particles included in the magnesium powder may be 99% or more.
  • the superconductivity of the superconductor containing magnesium diboron may be greatly affected by the particle size of the boron powder. Therefore, in order to improve the superconductivity of the superconductor, the particle size of the boron powder may be preferably 20 nm or more and 70 nm or less, and more preferably 20 nm or more and 50 nm or less.
  • the boron powder may include powder particles of other elements in addition to the boron powder particles.
  • the boron powder according to an embodiment of the present invention may include 99% or more of boron powder particles with respect to the whole boron powder including boron powder particles and powder particles of other elements. This may mean that the purity of the boron powder is 99% or more.
  • the magnesium powder may include 99% or more of magnesium powder particles with respect to the total magnesium powder, which may mean that the magnesium powder has a purity of 99% or more.
  • the purity of the boron powder and magnesium powder according to an embodiment of the present invention may be 99% or more.
  • the chlorinated hydrocarbon compound in the liquid phase may be one selected from the group consisting of chloroform and carbon tetrachloride, or a combination thereof. Chloroform or carbon tetrachloride may be used as the liquid chlorinated hydrocarbon compound, and chloroform and carbon tetrachloride may be used in combination.
  • liquid chlorinated hydrocarbon compound As a liquid chlorinated hydrocarbon compound according to an embodiment of the present invention, it may be preferable to use one containing no oxygen or a small amount of oxygen, and it is preferable to use a chlorinated hydrocarbon compound present in the liquid phase at room temperature. Can be.
  • a brominated hydrocarbon compound or an iodide hydrocarbon compound may be used in addition to the chlorinated hydrocarbon compound.
  • liquid compounds as brominated hydrocarbon compounds and iodide hydrocarbon compounds.
  • the boron powder according to an embodiment of the present invention includes a hetero element including oxygen and chlorine, and the oxygen content is 0.3 at% or more and 0.7 at% or less with respect to the boron powder, and the chlorine content is in the boron powder. 0.03 at% or more and 0.1 at% or less, and the balance may be boron.
  • the boron powder may include hetero elements including oxygen and chlorine, and the hetero element may include other elements in addition to oxygen and chlorine.
  • the oxygen content included in the boron powder is 0.3 at% or more and 0.64 at% or less with respect to the boron powder, and the chlorine content is 0.04 at with respect to the boron powder.
  • % Or more and 0.07 at% or less, and the boron content may be 99.32 at% or more and 99.63 at% or less with respect to the boron powder.
  • the boron powder contains chlorine.
  • the molded article manufacturing step (S300) may pressurize the second mixture at a pressure of 1000 MPa or less. After mixing the first mixture and the magnesium powder for 30 minutes to 2 hours to prepare a second mixture, it is possible to press the second mixture at a pressure of 1000 MPa or less to make a molded body. In order to uniformly mix the first mixture and the magnesium powder, it may be preferable to mix the first mixture and the magnesium powder for at least 30 minutes.
  • Sintering step (S400) may be performed for 10 minutes to 10 hours at 600 °C 1000 °C or less. Until the second mixture is pressed to sinter the molded body, the second mixture may be sealed in a vacuum state to minimize oxidation of magnesium.
  • magnesium may be dissolved in boron at 600 ° C. or higher to form magnesium diborate.
  • the sintering temperature is more than 1000 °C may cause a problem that the already formed magnesium diborate itself is decomposed, it is preferable that the molded article according to an embodiment of the present invention is sintered at 600 °C or more and 1000 °C or less. Can be.
  • the molded body may be sintered for 10 minutes to 10 hours.
  • the molded body may be sintered for 10 minutes or more to form magnesium diboron.
  • the amount of magnesium oxide is increased, which may affect the effective superconducting cross-sectional area. Sintering may be desirable.
  • the time for sintering the molded body may vary depending on the sintering temperature, and when the sintering temperature is high, the sintering time may be shortened.
  • Sintering step (S400) may be performed in an inert gas atmosphere.
  • Argon gas may be used as the inert gas, and a mixed gas of argon gas and hydrogen gas may be used.
  • the mixed gas in which the argon gas and the hydrogen gas are mixed in a volume ratio of 96: 4 may be used.
  • the chlorine may be included in magnesium diboron of the superconductor manufactured.
  • the chlorine may be included in the grain boundaries or inside the magnesium diboron particles, and may be included in the lattice of magnesium diboron.
  • a superconductor comprising magnesium diboron produced by the manufacturing method according to an embodiment of the present invention.
  • Superconductor containing magnesium diboron according to another embodiment of the present invention is excellent in the superconducting critical current density value, it can be applied to various fields such as medical devices, such as NMR, MRI, superconducting power cable, superconducting magnetic energy storage device.
  • medical devices such as NMR, MRI, superconducting power cable, superconducting magnetic energy storage device.
  • the magnesium diboron is provided with a superconductor containing magnesium diboron containing chlorine.
  • the superconductivity of the superconductor can be improved.
  • the magnesium diboron superconductor containing chlorine may have an improved superconducting critical current density than the magnesium diboron superconductor containing no chlorine. Therefore, the superconductor containing magnesium diboron according to another embodiment of the present invention has an excellent superconducting critical current density value, and thus may be applied to various fields such as medical devices such as NMR and MRI, superconducting power cables, and superconducting magnetic energy storage devices. Can be.
  • Chlorine content of the superconductor containing magnesium diboron may be 0.1 at% or more and 2 at% or less with respect to the magnesium diborate.
  • the chlorine content of the superconductor containing magnesium diboron may be 0.1 at% or more and 0.3 at% or less with respect to the magnesium diborate.
  • it may be desirable that the chlorine content of the superconductor containing magnesium diborate is 0.1 at% or more and 0.3 at% or less with respect to the magnesium diborate.
  • the chlorine may be included in the grain boundary or inside the magnesium diboron particles.
  • chlorine may be present inside the magnesium diboron particles, grain boundaries of the magnesium diboron particles, or inside the magnesium diboron particles and at the grain boundaries.
  • Chlorine may also be present inside the lattice of magnesium diborate.
  • the chlorine is present in the crystal grain boundary or inside of the magnesium diboron particles, or inside the lattice, when the external magnetic field is applied to the superconductor containing magnesium diboron, the magnetic flux-fixed property of magnesium diboron is enhanced to superconductivity threshold of the superconductor Current density can be improved.
  • Boron powder having a particle size of 20 nm or more and 100 nm or less, containing 99% or more of boron powder particles with respect to the total boron powder particles, an oxygen content of 0.64 at%, a chlorine content of 0.04 at%, and a boron content of 99.32 at% was prepared.
  • chloroform was prepared as a liquid chlorinated hydrocarbon compound, and magnesium powder including particle size of 1 ⁇ m or more and 5 ⁇ m or less and 99% or more of magnesium powder particles was prepared for all magnesium powder particles.
  • a superconductor specimen including magnesium diboron was prepared in the same manner as in Example 1, except that 1000 ⁇ l of chloroform was used.
  • Example 2 The same boron powder, chloroform and magnesium powder as in Example 1 were prepared. 64 mg of the prepared boron powder and 74 mg of the magnesium powder were mixed for about 30 minutes to prepare a first mixture, and the prepared first mixture and 100 ⁇ l of chloroform were mixed for about 10 minutes to prepare a second mixture. Thereafter, the second mixture was pressed at a pressure of 1000 MPa to prepare a molded body, and the prepared molded body was sintered at 700 ° C. for about 1 hour to prepare a superconductor specimen including magnesium diboron.
  • a superconductor specimen including magnesium diboron was prepared in the same manner as in Comparative Example 1 except that 1000 ⁇ l of chloroform was used.
  • Example 2 The same boron powder and magnesium powder as in Example 1 were prepared. 64 mg of the prepared boron powder and 74 mg of magnesium powder were mixed for about 30 minutes to prepare a mixture, and the prepared mixture was pressurized at a pressure of 1000 MPa to prepare a molded body. Thereafter, the molded body was sintered at 700 ° C. for about 1 hour to prepare a superconductor specimen including magnesium diboron.
  • FIG. 2 is a view showing the results of TEM analysis of the first mixture prepared in Examples 1 and 2 of the present invention.
  • Figure 3a is a view showing the results of EDS analysis of the superconductor specimen prepared in Example 2 of the present invention
  • Figure 3b is a view showing the results of EDS analysis of the superconductor specimen prepared in Comparative Example 2.
  • the superconductor containing magnesium diboron prepared in Example 2 and Comparative Example 2 of the present invention does not contain carbon.
  • the carbon included in the chloroform may be volatilized together with a certain amount of chlorine.
  • magnesium dichloride or the like may be formed, and may remain in the superconductor including magnesium diborate to be produced.
  • the amount of magnesium that can react with boron may be reduced, thereby reducing the superconductivity of the superconductor, and the formed magnesium dichloride may affect the reaction of magnesium and boron.
  • Example 2 of the present invention boron is a stable material as compared to chlorine having a high reactivity, and as the chloroform and boron are mixed, a first mixture in which an amorphous layer including chloroform is formed on the surface of boron may be prepared. Then, as the second mixture is prepared and sintered, chlorine contained in the amorphous layer may be stably present in or at the grain boundaries of magnesium diborate.
  • Superconducting critical temperature of the superconductor specimens including magnesium diborate prepared in Examples 1 to 2 and Comparative Examples 1 to 3 was measured using a Vibrating Sample magnetometer (VSM) of a PPMS (Physical Property Measurement System) device.
  • VSM Vibrating Sample magnetometer
  • Figure 4a is a diagram showing the superconducting threshold temperature value of the superconductor specimens prepared in Examples 1 to 2 and Comparative Example 3 of the present invention
  • Figure 4b shows the superconductivity threshold temperature of the superconductor specimens prepared in Comparative Examples 1 to 3 Drawing.
  • magnesium diborate When magnesium diborate is prepared using a doping material containing carbon, the superconducting critical temperature of magnesium diboron is lowered as the boron atom of magnesium diboron is replaced with a carbon atom.
  • the superconducting critical temperature value is not significantly reduced, it is prepared by the method according to an embodiment of the present invention It was confirmed that the superconductor containing the magnesium diborate contained did not contain carbon.
  • the critical current density VS By converting the magnetization (magnetization VS. Field) result of the magnetic field measured by the VSM option of the PPMS (Physical Properties Measurement System) using the Bean's model, the critical current density VS. Superconducting critical current density values at temperatures of 5K and 20K of the superconductor specimens including magnesium diborate prepared in Examples 1 to 2 and Comparative Examples 1 to 3 were measured.
  • FIG. 5A is a view showing superconducting critical current density values of superconductor specimens prepared in Examples 1 to 2 and Comparative Example 3, and FIG. 5B is a superconducting critical current density value of superconductor specimens prepared in Comparative Examples 1 to 3; It is a diagram showing.
  • the superconductor comprising magnesium diboron prepared according to an embodiment of the present invention is improved superconducting critical current density value at a temperature of 5K and 20K compared to the superconductor prepared in Comparative Example 3 Confirmed.
  • Figure 5b compared to the superconductor prepared in Comparative Examples 1 to 2 superconductor containing magnesium, it was confirmed that the superconducting critical current density value is reduced at the temperature of 5K and 20K It was.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

본 발명의 일 실시예에 따르면, 붕소 분말 및 액상의 염화 탄화수소 화합물을 포함하는 제1 혼합물을 준비하는, 제1 혼합물 준비단계; 상기 제1 혼합물 및 마그네슘 분말을 포함하는 제2 혼합물을 준비하는, 제2 혼합물 준비단계; 상기 제2 혼합물을 가압하여 성형체를 제조하는 성형체 제조단계; 및 상기 성형체를 소결하여 이붕소 마그네슘을 포함하는 초전도체를 제조하는, 소결단계;를 포함하는 이붕소 마그네슘을 포함하는 초전도체의 제조방법이 제공된다.

Description

이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체
본 발명은 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체에 관한 것이다.
이붕소 마그네슘(Magnesium diboride, MgB2)은 미국의 물리학자인 존 바딘, 레온 쿠퍼, 존 로버트 슈리퍼가 주장하여 1972년 노벨 물리학상을 받은 BCS 이론의 금속성 초전도체의 한계온도인 절대온도 30K를 넘어 39K의 초전도 임계 전이온도를 갖는다는 점에서 전 세계적으로 많은 관심과 연구의 대상이 되고 있다.(J. Nagamatsu, N.Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature, 401, pp.63-64 (2001))
또한, 이러한 이붕소 마그네슘은 현재 많은 연구가 이루어지고 있는 고온 산화물계 초전도체보다 구조가 매우 간단하고 화학적으로도 안정되어 있으며, 그 원료가 지구상에 풍부하게 존재하고 있어 그 공급이 원활하다는 이점을 갖고 있다.
게다가, 이붕소 마그네슘은 초전도 전이온도가 39K라는 점에서 액체헬륨을 사용하지 않고 현존하는 전기 냉동기를 사용하여 충분히 초전도성을 발휘하는 온도까지 낮출 수 있고, 초전도 임계 전류밀도 측정값이 높아서 경제적인 이점이 크며 그 응용 범위가 매우 넓다.
그러나, 이붕소 마그네슘의 자기장하에서의 임계 전류밀도의 값은 실질적인 응용분야에 적용되기에는 낮은 수준이다. 특히, 상용화급인 저온초전도체 NbTi 및 고온초전도체인 YBCO 등에 비하여, 자기장하에서 낮은 임계 전류밀도 특성은 오랫동안 해결해야할 숙제로 남아 있다.
이에 따라 이붕소 마그네슘 초전도체 내부에 나노 크기의 탄화규소, 탄소, 탄소나노튜브, 탄화수소 등 탄소계 화합물 나노분말을 첨가하여 자장하에서의 임계 전류 특성을 월등히 향상시킬 수 있다는 것이 보고되었다. 이 경우 이붕소 마그네슘의 붕소 일부를 탄소가 치환하여 격자 결함을 형성하고, 그 결과 초전도체의 자장하 임계 전류 특성이 향상되는 것으로 알려져 있다.
다만, 이러한 첨가제의 경우 보통 수십㎚ 크기의 분말 상태로 첨가되기 때문에 자체 응집이 쉽게 발생하여 균일하게 첨가되기 어렵고, 따라서 붕소분말과의 균일한 반응이 힘들고 첨가량 중 일부만이 이붕소 마그네슘의 결정격자에 치환되므로 초전도 특성 향상에 기여하지 못하는 등 효율성이 낮은 문제점이 있다.
본 발명이 해결하고자 하는 기술적 과제는 상기 문제를 해결하기 위해 안출된 것으로, 초전도 특성이 향상된 이붕소 마그네슘을 포함하는 초전도체를 용이하게 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 붕소 분말 및 액상의 염화 탄화수소 화합물을 포함하는 제1 혼합물을 준비하는, 제1 혼합물 준비단계; 상기 제1 혼합물 및 마그네슘 분말을 포함하는 제2 혼합물을 준비하는, 제2 혼합물 준비단계; 상기 제2 혼합물을 가압하여 성형체를 제조하는, 성형체 제조단계; 및 상기 성형체를 소결하여 이붕소 마그네슘을 포함하는 초전도체를 제조하는, 소결단계;를 포함하는 이붕소 마그네슘을 포함하는 초전도체의 제조방법이 제공된다.
본 발명의 다른 실시예에 따르면, 본 발명의 일 실시예에 따른 제조방법으로 제조되는 이붕소 마그네슘을 포함하는 초전도체가 제공된다.
본 발명의 또 다른 실시예에 따르면, 이붕소 마그네슘을 포함하는 초전도체로서, 상기 이붕소 마그네슘은 염소를 포함하는 이붕소 마그네슘을 포함하는 초전도체가 제공된다.
본 발명의 일 실시예에 따른 이붕소 마그네슘을 포함하는 초전도체의 제조방법은 초전도 특성이 향상된 이붕소 마그네슘을 포함하는 초전도체를 간단하고 용이하게 제조할 수 있다.
본 발명의 일 실시예에 따른 이붕소 마그네슘을 포함하는 초전도체의 제조방법은 붕소 분말, 액상의 염화 탄화수소 화합물 및 마그네슘 분말을 혼합하는 순서를 미리 정함으로써, 제조되는 이붕소 마그네슘을 포함하는 초전도체의 초전도 특성을 보다 효과적으로 향상시킬 수 있다.
본 발명의 다른 실시예에 따르면, 초전도 임계 전류밀도 값이 향상된 이붕소 마그네슘을 포함하는 초전도체를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 염소 함유 이붕소 마그네슘 초전도체의 제조방법을 나타낸 순서도이다.
도 2는 본 발명의 실시예 1 및 2에서 제조된 제1 혼합물의 TEM 분석 결과를 나타낸 도면이다.
도 3a는 본 발명의 실시예 2에서 제조된 초전도체 시편의 EDS 분석 결과를 나타낸 도면이고, 도 3b 비교예 2에서 제조된 초전도체 시편의 EDS 분석 결과를 나타낸 도면이다.
도 4a는 본 발명의 실시예 1 내지 2 및 비교예 3에서 제조된 초전도체 시편의 초전도 임계 온도 값을 나타낸 도면이고, 도 4b는 비교예 1 내지 3에서 제조된 초전도체 시편의 초전도 임계 온도 값을 나타낸 도면이다.
도 5a는 본 발명의 실시예 1 내지 2 및 비교예 3에서 제조된 초전도체 시편의 초전도 임계 전류밀도 값을 나타낸 도면이고, 도 5b는 비교예 1 내지 3에서 제조된 초전도체 시편의 초전도 임계 전류밀도 값을 나타낸 도면이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 염소 함유 이붕소 마그네슘 초전도체의 제조방법을 나타낸 순서도이다.
본 발명의 일 실시예에 따르면, 붕소 분말 및 액상의 염화 탄화수소 화합물을 포함하는 제1 혼합물을 준비하는, 제1 혼합물 준비단계(S100); 상기 제1 혼합물 및 마그네슘 분말을 포함하는 제2 혼합물을 준비하는, 제2 혼합물 준비단계(S200); 상기 제2 혼합물을 가압하여 성형체를 제조하는, 성형체 제조단계(S300); 및 상기 성형체를 소결하여 이붕소 마그네슘을 포함하는 초전도체를 제조하는, 소결단계(S400);를 포함하는 이붕소 마그네슘을 포함하는 초전도체의 제조방법이 제공된다.
본 발명의 일 실시예에 따른 이붕소 마그네슘을 포함하는 초전도체의 제조방법은 초전도 특성이 향상된 이붕소 마그네슘을 포함하는 초전도체를 간단하고 용이하게 제조할 수 있다.
본 발명의 일 실시예에 따른 제1 혼합물 준비단계(S100)에서는 붕소 분말과 액상의 염화 탄화수소 화합물을 혼합하여 제1 혼합물을 준비한다. 액상의 염화 탄화수소 화합물을 사용함으로써, 상기 붕소 분말과 상기 액상의 염화 탄화수소 화합물을 보다 균일하게 혼합할 수 있으며, 붕소 분말에 포함된 붕소와 염화 탄화수소 화합물의 반응을 효과적으로 유도할 수 있다. 또한, 본 발명의 일 실시예에 따르면, 첨가제로 액상의 염화 탄화수소 화합물을 사용함으로써, 첨가제로 나노 크기의 분말을 사용할 경우에 발생될 수 있는 응집현상으로 인한 이붕소 마그네슘의 불균일성을 극복할 수 있다.
본 발명의 일 실시예에 따른 제1 혼합물은, 상기 붕소 분말 및 상기 액상의 염화 탄화수소 화합물의 중량비가 1:0.2 내지 1:25일 수 있다.
상기 제1 혼합물에 포함되는 상기 액상의 염화 탄화수소 화합물의 중량이 상기 범위 미만인 경우, 액상의 염화 탄화수소 화합물과 붕소 분말이 고르게 혼합되지 못하여, 상기 제1 혼합물에는 미반응 붕소가 포함될 수 있다. 이에 의해, 이붕소 마그네슘을 포함하는 초전도체의 초전도 임계 전류밀도를 효과적으로 향상시키기 어려울 수 있다. 또한, 상기 제1 혼합물에 포함되는 상기 액상의 염화 탄화수소 화합물의 중량이 상기 범위 내인 경우, 염화 탄화수소 화합물과 붕소가 균일하게 반응될 수 있다.
따라서, 이붕소 마그네슘을 포함하는 초전도체의 초전도성을 효과적으로 향상시키고, 초전도체의 제조비용을 감소시키기 위하여, 상기 붕소 분말 및 액상의 염화 탄화수소 화합물의 중량비는 1:0.2 내지 1:25 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 제2 혼합물 준비단계(S200)에서는 상기 제1 혼합물과 마그네슘 분말을 혼합한다. 상기 붕소 분말, 액상의 염화 탄화수소 화합물 및 마그네슘 분말을 혼합하는 순서에 따라, 제조되는 이붕소 마그네슘을 포함하는 초전도체의 초전도 특성이 상이해질 수 있다.
구체적으로, 붕소 분말과 마그네슘 분말을 혼합하여 제1 혼합물을 제조하고, 제1 혼합물과 액상의 염화 탄화수소 화합물을 혼합하여 제2 혼합물을 제조하는 경우, 제조되는 이붕소 마그네슘을 포함하는 초전도체의 초전도 임계 전류밀도의 값이 감소되는 문제가 발생될 수 있다. 염화 탄화수소 화합물 및 마그네슘은 반응성이 높아, 염화 탄화수소 화합물 및 마그네슘이 반응하여 이염화 마그네슘 등이 형성될 수 있다. 이에 따라, 붕소와 반응할 수 있는 마그네슘의 양이 감소하게 되고, 상기 형성된 이염화 마그네슘 등은 잔존하고 있는 마그네슘과 붕소의 반응성에 영향을 미칠 수 있다.
반면, 본 발명의 일 실시예에 따르면, 상기 붕소 분말과 상기 액상의 염화 탄화수소 화합물을 먼저 혼합하여 균일도핑을 유도할 수 있어, 도핑 효과를 향상시킬 수 있다. 상기 붕소 분말과 상기 액상의 염화 탄화수소 화합물을 혼합함에 따라, 염화 탄화수소 화합물을 포함하는 비정질 층이 붕소 입자의 표면에 형성될 수 있다. 염화 탄화수소 화합물을 포함하는 비정질 층은 3 nm 이상 4 nm 이하의 두께를 가질 수 있다.
또한, 대기 중의 수분 또는 산소 등과 반응성이 좋은 마그네슘 분말을 나중에 반응시킴으로써, 이붕소 마그네슘을 포함하는 초전도체를 제조하는 과정에서의 부차적인 반응을 억제할 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 상기 붕소 분말, 액상의 염화 탄화수소 화합물 및 마그네슘 분말을 혼합하는 순서를 미리 정함으로써, 제조되는 이붕소 마그네슘을 포함하는 초전도체의 초전도 특성을 보다 효과적으로 향상시킬 수 있다.
본 발명의 일 실시예에 따른 제1 혼합물과 제2 혼합물은 고상일 수 있다. 상기 붕소 분말과 상기 액상의 염화 탄화수소 화합물을 혼합하여 고상의 제1 혼합물을 제조할 수 있고, 상기 제1 혼합물과 상기 마그네슘 분말을 혼합하여 고상의 제2 혼합물을 제조할 수 있다. 상기 고상의 제1 혼합물 및 제2 혼합물은, 예를 들면, 클레이 형태 또는 반죽 형태일 수 있다. 고상의 제2 혼합물은 원하는 형태로 성형하기에 용이할 수 있다.
본 발명의 일 실시예에 따른 제2 혼합물은, 상기 제1 혼합물 및 상기 마그네슘 분말의 몰비가 2:1일 수 있다. 상기 몰비는 반응비와 동일할 수 있다. 예를 들면, 제1 혼합물 및 상기 마그네슘 분말의 몰비가 2:1인 경우, 상기 제1 혼합물에 포함되는 붕소와 상기 마그네슘 분말에 포함되는 마그네슘은 2:1의 반응비로 반응할 수 있다.
상기 마그네슘이 상기 몰비 미만으로 상기 제2 혼합물에 포함되는 경우, 제2 혼합물에는 미반응 붕소가 존재할 수 있다. 또한, 상기 마그네슘이 상기 몰비를 초과하여 상기 제2 혼합물에 포함되는 경우, 제2 혼합물에는 미반응 마그네슘이 존재할 수 있다. 미반응된 붕소 및 마그네슘은 제조되는 초전도체 내부에서 불순물로 존재하게 되어, 초전도체의 초전도성을 감소시키는 문제가 발생될 수 있다.
본 발명의 일 실시예에 따른 상기 붕소 분말은 입자 크기 20 nm 이상 100 nm 이하의 붕소 분말 입자를 전체 붕소 분말 입자에 대하여 99 % 이상 포함할 수 있다. 또한, 본 발명의 일 실시예에 따른 상기 마그네슘 분말은 입자 크기 1 ㎛ 이상 5 ㎛ 이하의 마그네슘 분말 입자를 전체 마그네슘 분말 입자에 대하여 99 % 이상 포함할 수 있다.
입자 크기가 20 nm 미만인 붕소 분말을 사용하는 경우, 입자 크기가 작아 입자들 간의 뭉침 현상이 발생되어 혼합물이 균일하게 혼합되지 못하고, 붕소 분말의 표면 산화로 인한 표면 산소량이 증가하게 되는 문제가 발생될 수 있다. 또한, 입자 크기가 1 ㎛ 이하인 마그네슘 분말을 사용하는 경우, 마그네슘의 높은 반응성으로 인하여 마그네슘 분말의 취급이 용이하지 않으며, 입자 크기가 작아 입자들 간의 뭉침 현상이 발생되어 혼합물이 균일하게 혼합되지 못하고, 마그네슘 분말의 표면 산화로 인한 표면 산소량이 증가하게 되는 문제가 발생될 수 있다.
본 발명의 일 실시예에 따르면, 입자 크기가 100 nm 이하인 붕소 분말 및 입자 크기가 5 ㎛ 이하인 마그네슘 분말을 사용함으로써, 제조되는 이붕소 마그네슘을 포함하는 초전도체의 임계 전류밀도 특성을 향상시킬 수 있다. 상기 붕소 분말 및 마그네슘 분말의 입자 크기가 상기 수치보다 작은 경우, 결정립 크기가 작아져서 입계가 증가되어, 입계피닝 효과로 이붕소 마그네슘을 포함하는 초전도체의 임계 전류밀도의 값을 향상시킬 수 있다.
상기 붕소 분말에는 입자 크기가 20 nm 미만, 20 nm 이상 100 nm 이하 및 100 nm를 초과하는 붕소 분말 입자가 포함될 수 있다. 다만, 붕소 분말의 입자 크기가 20 nm 미만 또는 100 nm를 초과하는 경우에 발생될 수 있는 문제를 방지하기 위하여, 상기 붕소 분말에 포함되는 전체 붕소 분말 입자에 대하여 입자 크기가 20 nm 이상 100 nm 이하인 붕소 분말 입자는 99 % 이상인 것이 바람직할 수 있다. 상기와 동일하게, 상기 마그네슘 분말에 포함되는 전체 마그네슘 분말 입자에 대하여 입자 크기가 1 ㎛ 이상 5 ㎛ 이하인 마그네슘 분말 입자는 99 % 이상인 것이 바람직할 수 있다.
또한, 이붕소 마그네슘을 포함하는 초전도체의 초전도성은 붕소 분말의 입자 크기에 영향을 많이 받을 수 있다. 따라서, 초전도체의 초전도성을 향상시키기 위하여, 붕소 분말의 입자크기는 20 nm 이상 70 nm 이하가 바람직할 수 있고, 20 nm 이상 50 nm 이하가 보다 바람직할 수 있다.
붕소 분말에는 붕소 분말 입자 이외에 다른 원소의 분말 입자가 포함될 수 있다. 다만, 본 발명의 일 실시예에 따른 붕소 분말은, 붕소 분말 입자 및 다른 원소의 분말 입자를 포함하는 전체 붕소 분말에 대하여 붕소 분말 입자를 99 % 이상 포함할 수 있다. 이는 붕소 분말의 순도가 99 % 이상인 것을 의미할 수 있다. 상기와 동일하게, 마그네슘 분말은 전체 마그네슘 분말에 대하여 마그네슘 분말 입자를 99 % 이상 포함할 수 있으며, 이는 마그네슘 분말의 순도가 99 % 이상인 것을 의미할 수 있다. 상기 수치 범위 내의 분말 입자를 포함하는 붕소 분말 및 마그네슘 분말을 사용함으로써, 제조되는 이붕소 마그네슘의 내부 코어 밀도 및 연결성을 향상시킬 수 있다.
또한, 순도 높은 붕소 분말 및 마그네슘 분말을 사용함으로써, 초전도체 내에서 초전도 물질인 이붕소 마그네슘 이외의 불순물을 감소시킬 수 있어, 초전도체의 초전도 전류가 흐를 수 있는 면적이 감소되는 것을 억제할 수 있다.
따라서, 본 발명의 일 실시예에 따른 붕소 분말 및 마그네슘 분말의 순도는 99 % 이상인 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 액상의 염화 탄화수소 화합물은, 클로로포름 및 사염화탄소로 구성된 군으로부터 선택되는 1종, 또는 이들의 조합일 수 있다. 액상의 염화 탄화수소 화합물로 클로로포름 또는 사염화탄소를 사용할 수 있고, 클로로포름 및 사염화탄소를 조합하여 사용할 수 있다.
본 발명의 일 실시예에 따른 액상의 염화 탄화수소 화합물로 산소를 포함하지 않거나 또는 산소를 미량 포함하고 있는 것을 사용하는 것이 바람직할 수 있고, 상온에서 액상으로 존재하는 염화 탄화수소 화합물을 사용하는 것이 바람직할 수 있다. 또한, 본 발명의 일 실시예에 따르면, 염화 탄화수소 화합물 이외에 브롬화 탄화수소 화합물 또는 요오드화 탄화수소 화합물을 사용할 수 있다. 다만, 브롬화 탄화수소 화합물 및 요오드화 탄화수소 화합물로 액상의 화합물을 사용하는 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 상기 붕소 분말은 산소 및 염소를 포함하는 이종원소를 포함하고, 상기 산소 함량은 상기 붕소 분말에 대하여 0.3 at% 이상 0.7 at% 이하, 상기 염소 함량은 상기 붕소 분말에 대하여 0.03 at% 이상 0.1 at% 이하, 및 잔부는 붕소일 수 있다. 붕소 분말은 산소 및 염소를 포함하는 이종원소를 포함할 수 있으며, 이종원소는 산소 및 염소 이외에 다른 원소를 포함할 수 있다.
본 발명의 일 실시예에 따른 붕소 분말은, 구체적으로, 상기 붕소 분말에 포함되는 상기 산소 함량은 상기 붕소 분말에 대하여 0.3 at% 이상 0.64 at% 이하, 상기 염소 함량은 상기 붕소 분말에 대하여 0.04 at% 이상 0.07 at% 이하, 상기 붕소 함량은 상기 붕소 분말에 대하여 99.32 at% 이상 99.63 at% 이하일 수 있다.
제조되는 이붕소 마그네슘을 포함하는 초전도체의 초전도 특성을 향상시키기 위하여, 상기 붕소 분말은 염소를 포함하는 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 성형체 제조단계(S300)는 1000 MPa 이하의 압력으로 상기 제2 혼합물을 가압할 수 있다. 상기 제1 혼합물과 상기 마그네슘 분말을 30 분 내지 2 시간 혼합하여 제2 혼합물을 제조한 후, 1000 MPa 이하의 압력으로 상기 제2 혼합물을 가압하여 성형체를 만들 수 있다. 상기 제1 혼합물 및 마그네슘 분말을 균일하게 혼합하기 위하여, 30 분 이상 상기 제1 혼합물과 상기 마그네슘 분말을 혼합하는 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 소결단계(S400)는 600 ℃ 이상 1000 ℃ 이하에서 10 분 내지 10 시간 동안 수행될 수 있다. 상기 제2 혼합물을 가압하여 제조한 성형체를 소결하기 전까지, 상기 제2 혼합물을 진공상태로 밀봉하여 마그네슘의 산화를 최소화할 수 있다.
본 발명의 일 실시예에 따르면, 600 ℃ 이상에서 마그네슘이 붕소에 녹아 들어가 이붕소 마그네슘이 형성될 수 있다. 다만, 소결 온도가 1000 ℃를 초과하는 경우에는 이미 형성된 이붕소 마그네슘 자체가 분해되는 문제가 발생될 수 있으므로, 본 발명의 일 실시예에 따른 성형체는 600 ℃ 이상 1000 ℃ 이하에서 소결되는 것이 바람직할 수 있다.
또한, 상기 성형체를 10 분 내지 10 시간 동안 소결할 수 있다. 상기 성형체를 10 분 이상 소결하여 이붕소 마그네슘을 형성할 수 있으나, 10 시간 이상 상기 성형체를 소결하는 경우에는 산화 마그네슘이 형성되는 양이 증가되어 초전도 유효 단면적에 영향을 미칠 수 있으므로, 10 시간 이하로 소결하는 것이 바람직할 수 있다. 다만, 성형체를 소결하는 시간은 소결 온도에 따라 상이할 수 있으며, 소결 온도가 높은 경우 소결 시간을 단축시킬 수 있다.
본 발명의 일 실시예에 따른 소결단계(S400)는 비활성 가스 분위기에서 수행될 수 있다. 비활성 가스 분위기에서 상기 성형체를 소결함으로써, 제조되는 이붕소 마그네슘을 포함하는 초전도체의 산화를 방지할 수 있다. 비활성 가스로 아르곤 가스를 사용할 수 있고, 아르곤 가스와 수소 가스가 혼합된 혼합가스를 사용할 수 있다. 상기 아르곤 가스 및 수소 가스가 96:4의 부피비로 혼합된 혼합가스를 사용할 수 있다.
본 발명의 일 실시예에 따르면, 제조되는 초전도체의 이붕소 마그네슘에는 염소가 포함될 수 있다. 상기 염소는 상기 이붕소 마그네슘 입자의 결정 입계 또는 내부에 포함될 수 있고, 이붕소 마그네슘의 격자(lattice) 내부에 포함될 수 있다.
본 발명의 다른 실시예에 따르면, 본 발명의 일 실시예에 따른 제조방법으로 제조되는 이붕소 마그네슘을 포함하는 초전도체가 제공된다.
본 발명의 다른 실시예에 따른 이붕소 마그네슘을 포함하는 초전도체는 초전도 임계 전류밀도 값이 우수하여, NMR, MRI 등의 의료기기 및 초전도 전력케이블, 초전도 자기에너지 저장장치 등 다양한 분야에 적용될 수 있다.
본 발명의 또 다른 실시예에 따르면, 이붕소 마그네슘을 포함하는 초전도체로서, 상기 이붕소 마그네슘은 염소를 포함하는 이붕소 마그네슘을 포함하는 초전도체가 제공된다.
이붕소 마그네슘을 포함하는 초전도체에 염소가 포함됨으로써, 초전도체의 초전도성을 향상시킬 수 있다. 구체적으로, 염소를 포함하는 이붕소 마그네슘 초전도체는 염소를 포함하지 않는 이붕소 마그네슘 초전도체보다 초전도 임계 전류밀도가 향상될 수 있다. 따라서, 본 발명의 또 다른 실시예에 따른 이붕소 마그네슘을 포함하는 초전도체는 초전도 임계 전류밀도 값이 우수하여, NMR, MRI 등의 의료기기 및 초전도 전력케이블, 초전도 자기에너지 저장장치 등 다양한 분야에 적용될 수 있다.
본 발명의 또 다른 실시예에 따른 이붕소 마그네슘을 포함하는 초전도체의 염소 함량은 상기 이붕소 마그네슘에 대하여 0.1 at% 이상 2 at% 이하일 수 있다. 구체적으로, 이붕소 마그네슘을 포함하는 초전도체의 염소 함량은 상기 이붕소 마그네슘에 대하여 0.1 at% 이상 0.3 at% 이하일 수 있다. 우수한 초전도 임계 온도 및 초전도 임계 전류밀도를 보유하는 초전도체를 제공하기 위하여, 이붕소 마그네슘을 포함하는 초전도체의 염소 함량은 상기 이붕소 마그네슘에 대하여 0.1 at% 이상 0.3 at% 이하인 것이 바람직할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 염소는 상기 이붕소 마그네슘 입자의 결정 입계 또는 내부에 포함될 수 있다. 구체적으로, 염소는 이붕소 마그네슘 입자의 내부, 이붕소 마그네슘 입자의 결정 입계(grain boundary) 또는 이붕소 마그네슘 입자의 내부 및 결정 입계에 존재할 수 있다. 또한, 염소는 이붕소 마그네슘의 격자(lattice) 내부에도 존재할 수 있다. 상기 염소가 상기 이붕소 마그네슘 입자의 결정 입계 또는 내부, 격자 내부에 존재함으로써, 이붕소 마그네슘을 포함하는 초전도체에 외부 자기장이 부여되는 경우에 이붕소 마그네슘의 자속고정 특성을 강화시켜 상기 초전도체의 초전도 임계 전류밀도를 향상시킬 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
입자 크기가 20 nm 이상 100 nm 이하이고, 전체 붕소 분말 입자에 대하여 99 % 이상의 붕소 분말 입자를 포함하며, 산소 함량은 0.64 at%, 염소 함량은 0.04 at%, 붕소 함량은 99.32 at%인 붕소 분말을 준비하였다. 또한, 액상의 염화 탄화수소 화합물로 클로로포름을 준비하였고, 입자 크기가 1 ㎛ 이상 5 ㎛ 이하이고 전체 마그네슘 분말 입자에 대하여 99 % 이상의 마그네슘 분말 입자를 포함하는 마그네슘 분말을 준비하였다.
준비된 붕소 분말 64 mg 및 클로로포름 100 ㎕를 약 10 분 동안 혼합하여 제1 혼합물을 제조하였고, 제조된 제1 혼합물과 마그네슘 분말 74 mg을 약 30 분 동안 혼합하여 제2 혼합물을 제조하였다. 이후, 제2 혼합물을 1000 MPa의 압력에서 가압하여 성형체를 제조하였고, 제조된 성형체를 700 ℃에서 약 1 시간 동안 소결하여, 이붕소 마그네슘을 포함하는 초전도체 시편을 제조하였다.
실시예 2
클로로포름을 1000 ㎕ 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 이붕소 마그네슘을 포함하는 초전도체 시편을 제조하였다.
비교예 1
상기 실시예 1과 동일한 붕소 분말, 클로로포름 및 마그네슘 분말을 준비하였다. 준비된 붕소 분말 64 mg과 마그네슘 분말 74 mg을 약 약 30 분 동안 혼합하여 제1 혼합물을 제조하였고, 제조된 제1 혼합물과 클로로포름 100 ㎕를 약 10 분 동안 혼합하여 제2 혼합물을 제조하였다. 이후, 제2 혼합물을 1000 MPa의 압력에서 가압하여 성형체를 제조하였고, 제조된 성형체를 700 ℃에서 약 1 시간 동안 소결하여, 이붕소 마그네슘을 포함하는 초전도체 시편을 제조하였다.
비교예 2
클로로포름을 1000 ㎕ 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 이붕소 마그네슘을 포함하는 초전도체 시편을 제조하였다.
비교예 3
상기 실시예 1과 동일한 붕소 분말 및 마그네슘 분말을 준비하였다. 준비된 붕소 분말 64 mg과 마그네슘 분말 74 mg을 약 30 분 동안 혼합하여 혼합물을 제조하였고, 제조된 혼합물을 1000 MPa의 압력에서 가압하여 성형체를 제조하였다. 이후, 성형체를 700 ℃에서 약 1 시간 동안 소결하여, 이붕소 마그네슘을 포함하는 초전도체 시편을 제조하였다.
TEM 분석
도 2는 본 발명의 실시예 1 및 2에서 제조된 제1 혼합물의 TEM 분석 결과를 나타낸 도면이다.
도 2를 참고하면, transmission electron microscope(TEM)을 이용하여 실시예 1 내지 2에서 제조된 제1 혼합물을 분석해 본 결과, 클로로포름을 포함하는 비정질 층이 붕소 입자의 표면에 형성되는 것을 확인하였다.
EDS 분석
실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 이붕소 마그네슘을 포함하는 초전도체 시편을 구성하는 원소를 확인하기 위해 에너지분산형 X선분광기(EDS; Energy Dispersive X-ray Spectroscopy)로 발산된 에너지를 측정하였다.
도 3a는 본 발명의 실시예 2에서 제조된 초전도체 시편의 EDS 분석 결과를 나타낸 도면이고, 도 3b는 비교예 2에서 제조된 초전도체 시편의 EDS 분석 결과를 나타낸 도면이다.
도 3a 및 도 3b에서 보듯이, 본 발명의 실시예 2 및 비교예 2에서 제조된 이붕소 마그네슘을 포함하는 초전도체에는 탄소가 포함되지 않는 것을 확인하였다. 제2 혼합물을 소결하는 단계에서 클로로포름에 포함된 탄소는 일정 양의 염소와 함께 휘발될 수 있다.
또한, 본 발명의 실시예 2에서 제조된 초전도체 시편에 포함되는 원자의 함유량과 비교예 2에서 제조된 초전도체 시편에 포함되는 원자의 함유량에 차이가 있는 것을 확인하였다. 즉, 붕소 분말, 액상의 염화 탄화수소 화합물 및 마그네슘 분말을 혼합하는 순서에 따라, 제조되는 이붕소 마그네슘을 포함하는 초전도체에 함유되는 원자의 조성비에 차이가 발생되는 것을 확인하였다.
비교예 2의 경우, 반응성이 높은 염소와 반응성이 높은 마그네슘이 먼저 반응함에 따라 이염화 마그네슘 등이 형성될 수 있고, 제조되는 이붕소 마그네슘을 포함하는 초전도체에 잔존할 수 있다. 이에 의해, 비교예 2에서 제조된 제1 혼합물에는 붕소와 반응할 수 있는 마그네슘의 양이 줄어 제조되는 초전도체의 초전도성이 감소될 수 있으며, 상기 형성된 이염화 마그네슘 등은 마그네슘과 붕소의 반응에 영향을 미칠 수 있다.
반면, 본 발명의 실시예 2의 경우, 반응성이 높은 염소에 비하여 붕소는 안정한 물질로서, 클로로포름과 붕소를 혼합함에 따라 붕소 표면에 클로로포름을 포함하는 비정질층이 형성된 제1 혼합물을 제조할 수 있다. 이후, 제2 혼합물을 제조하고 소결함에 따라, 비정질층에 포함된 염소는 이붕소 마그네슘의 결정 입계 또는 내부에 안정적으로 존재할 수 있다.
초전도 임계 온도 측정
PPMS(Physical Property Measurement System) 장치의 VSM(Vibrating Sample magnetometer) 를 이용하여, 실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 이붕소 마그네슘을 포함하는 초전도체 시편의 초전도 임계 온도를 측정하였다.
도 4a는 본 발명의 실시예 1 내지 2 및 비교예 3에서 제조된 초전도체 시편의 초전도 임계 온도 값을 나타낸 도면이고, 도 4b는 비교예 1 내지 3에서 제조된 초전도체 시편의 초전도 임계 온도 값을 나타낸 도면이다.
실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 이붕소 마그네슘을 포함하는 초전도체 시편의 초전도 임계 온도를 하기 표 1에 나타내었다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
TC(K) 37.5 37.5 37.3 37.6 37.5
도 4a, 도 4b 및 표1에서 보듯이, 실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 이붕소 마그네슘을 포함하는 초전도체 시편들의 초전도 임계 온도 값은 크게 차이가 나지 않는 것을 확인하였다.
탄소를 포함하는 도핑물질을 사용하여 이붕소 마그네슘을 제조하는 경우, 이붕소 마그네슘의 붕소 원자가 탄소 원자로 치환됨에 따라, 이붕소 마그네슘의 초전도 임계 온도 값이 낮아지게 된다. 반면, 본 발명의 실시예 1 및 2에서 제조된 초전도체 시편과 비교예 1에서 제조된 초전도체 시편을 비교해보면, 초전도 임계 온도 값이 크게 감소되지 않는 바, 본 발명의 일 실시예에 따른 방법으로 제조된 이붕소 마그네슘을 포함하는 초전도체는 탄소를 포함하고 있지 않는 것을 확인하였다.
초전도 임계 전류밀도 측정
PPMS(Physical Properties Measurement System)의 VSM option 으로 측정된 자기장에 대한 자화 (Magnetization VS. Field) 결과 값을 Bean′s model을 이용하여 자기장에 대한 임계전류밀도 (critical current density VS. Field) 변환하여, 실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 이붕소 마그네슘을 포함하는 초전도체 시편의 5K 및 20K의 온도에서의 초전도 임계 전류밀도 값을 측정하였다.
도 5a는 본 발명의 실시예 1 내지 2 및 비교예 3에서 제조된 초전도체 시편의 초전도 임계 전류밀도 값을 나타낸 도면이고, 도 5b는 비교예 1 내지 3에서 제조된 초전도체 시편의 초전도 임계 전류밀도 값을 나타낸 도면이다.
도 5a에서 보듯이, 본 발명의 일 실시예에 따라 제조된 제조된 이붕소 마그네슘을 포함하는 초전도체는 비교예 3에서 제조된 초전도체에 비하여, 5K 및 20K의 온도에서 초전도 임계 전류밀도 값이 향상된 것을 확인하였다. 반면, 도 5b를 참고하면, 비교예 1 내지 2에서 제조된 이붕소 마그네슘을 포함하는 초전도체는 비교예 3에서 제조된 초전도체에 비하여, 5K 및 20K의 온도에서 초전도 임계 전류밀도 값이 감소된 것을 확인하였다.

Claims (12)

  1. 붕소 분말 및 액상의 염화 탄화수소 화합물을 포함하는 제1 혼합물을 준비하는, 제1 혼합물 준비단계;
    상기 제1 혼합물 및 마그네슘 분말을 포함하는 제2 혼합물을 준비하는, 제2 혼합물 준비단계;
    상기 제2 혼합물을 가압하여 성형체를 제조하는, 성형체 제조단계; 및
    상기 성형체를 소결하여 이붕소 마그네슘을 포함하는 초전도체를 제조하는, 소결단계;를 포함하는 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  2. 제1 항에 있어서,
    상기 제1 혼합물은,
    상기 붕소 분말 및 액상의 염화 탄화수소 화합물의 중량비가 1:0.2 내지 1:25인 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  3. 제1 항에 있어서,
    상기 제2 혼합물은,
    상기 제1 혼합물 및 상기 마그네슘 분말의 몰비가 2:1인 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  4. 제1 항에 있어서,
    상기 붕소 분말은 입자 크기 20 nm 이상 100 nm 이하의 붕소 분말 입자를 전체 붕소 분말 입자에 대하여 99 % 이상 포함하는 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  5. 제1 항에 있어서,
    상기 마그네슘 분말은 입자 크기 1 ㎛ 이상 5 ㎛ 이하의 마그네슘 분말 입자를 전체 마그네슘 분말 입자에 대하여 99 % 이상 포함하는 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  6. 제1 항에 있어서,
    상기 붕소 분말은 산소 및 염소를 포함하는 이종원소를 포함하고,
    상기 산소 함량은 상기 붕소 분말에 대하여 0.3 at% 이상 0.7 at% 이하;
    상기 염소 함량은 상기 붕소 분말에 대하여 0.03 at% 이상 0.1 at% 이하; 및
    잔부는 붕소인 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  7. 제1 항에 있어서,
    상기 액상의 염화 탄화수소 화합물은,
    클로로포름 및 사염화탄소로 구성된 군으로부터 선택되는 1종, 또는 이들의 조합인 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  8. 제1 항에 있어서,
    상기 소결단계는 600 ℃ 이상 1000 ℃ 이하에서 10 분 내지 10 시간 동안 수행되는 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  9. 제1 항에 있어서,
    상기 소결단계는 비활성 가스 분위기에서 수행되는 것인 이붕소 마그네슘을 포함하는 초전도체의 제조방법.
  10. 이붕소 마그네슘을 포함하는 초전도체로서,
    상기 이붕소 마그네슘은 염소를 포함하는 이붕소 마그네슘을 포함하는 초전도체.
  11. 제10 항에 있어서,
    상기 염소 함량은 상기 이붕소 마그네슘에 대하여 0.1 at% 이상 2 at% 이하인 이붕소 마그네슘을 포함하는 초전도체.
  12. 제10 항에 있어서,
    상기 염소는 상기 이붕소 마그네슘 입자의 결정 입계 또는 내부에 포함되는 이붕소 마그네슘을 포함하는 초전도체.
PCT/KR2016/013853 2016-11-29 2016-11-29 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체 WO2018101496A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177001070A KR102004621B1 (ko) 2016-11-29 2016-11-29 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체
PCT/KR2016/013853 WO2018101496A1 (ko) 2016-11-29 2016-11-29 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체
US16/464,501 US11659777B2 (en) 2016-11-29 2016-11-29 Method for manufacturing superconductor comprising magnesium diboride, and super-conductor comprising magnesium diboride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/013853 WO2018101496A1 (ko) 2016-11-29 2016-11-29 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체

Publications (1)

Publication Number Publication Date
WO2018101496A1 true WO2018101496A1 (ko) 2018-06-07

Family

ID=62242567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013853 WO2018101496A1 (ko) 2016-11-29 2016-11-29 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체

Country Status (3)

Country Link
US (1) US11659777B2 (ko)
KR (1) KR102004621B1 (ko)
WO (1) WO2018101496A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156259A1 (ko) * 2018-02-06 2019-08-15 한국기계연구원 이붕소마그네슘을 포함하는 초전도체 및 이의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209838B1 (ko) * 2019-06-28 2021-01-29 한국재료연구원 탄소 도핑 이붕소마그네슘 초전도체의 제조 방법
CN115340386B (zh) * 2022-08-19 2023-01-17 陕西国际商贸学院 一种高Tc纳米粒子掺杂二硼化镁的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093861A1 (en) * 2004-10-29 2006-05-04 The Penn State Research Foundation Method for producing doped, alloyed, and mixed-phase magnesium boride films
CN1945759A (zh) * 2006-11-03 2007-04-11 中国科学院电工研究所 铁/铜复合包套二硼化镁超导长线的制备方法
KR100970369B1 (ko) * 2008-02-28 2010-07-15 한국원자력연구원 글리세린이 첨가된 MgB₂초전도체 제조방법
US20120178631A1 (en) * 2002-11-26 2012-07-12 Specialty Materials, Inc. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wires

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE313521T1 (de) * 2001-03-12 2006-01-15 Leibniz Inst Fuer Festkoerper Pulver auf magnesiumdiborid-basis für die herstellung von supraleitern, verfahren zu dessen herstellung und anwendung
CN1945789A (zh) 2006-10-18 2007-04-11 李建明 长余辉荧光灯
JP5352268B2 (ja) 2009-02-16 2013-11-27 株式会社Adeka 酸化物超電導厚膜用組成物、及びこれを使用した厚膜テープ状酸化物超電導体の製造方法
JP5292518B2 (ja) 2010-12-27 2013-09-18 株式会社日立製作所 MgB2超電導線材の製造方法およびMgB2超電導線材
JP5520260B2 (ja) 2011-07-05 2014-06-11 株式会社日立製作所 超電導線材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178631A1 (en) * 2002-11-26 2012-07-12 Specialty Materials, Inc. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wires
US20060093861A1 (en) * 2004-10-29 2006-05-04 The Penn State Research Foundation Method for producing doped, alloyed, and mixed-phase magnesium boride films
CN1945759A (zh) * 2006-11-03 2007-04-11 中国科学院电工研究所 铁/铜复合包套二硼化镁超导长线的制备方法
KR100970369B1 (ko) * 2008-02-28 2010-07-15 한국원자력연구원 글리세린이 첨가된 MgB₂초전도체 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU , JUN. ET AL.: "Low-temperature Synthesis of Superconducting Nanocrystalline MgB2", JOURNAL OF NANOMATERIALS, vol. 2010, no. 191058, 2010, pages 1 - 5, XP055489489 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156259A1 (ko) * 2018-02-06 2019-08-15 한국기계연구원 이붕소마그네슘을 포함하는 초전도체 및 이의 제조방법
US11903332B2 (en) 2018-02-06 2024-02-13 Korea Institute Of Machinery & Materials Superconductor comprising magnesium diboride and manufacturing method therefor

Also Published As

Publication number Publication date
KR102004621B1 (ko) 2019-07-26
KR20180075430A (ko) 2018-07-04
US11659777B2 (en) 2023-05-23
US20210104657A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2018101496A1 (ko) 이붕소 마그네슘을 포함하는 초전도체의 제조방법 및 이붕소 마그네슘을 포함하는 초전도체
US7749939B2 (en) MgB2 superconductor, its wire, and a manufacturing method thereof
EP2470473A2 (en) System and method for manufacturing silicon carbide pulverulent body
WO2019156259A1 (ko) 이붕소마그네슘을 포함하는 초전도체 및 이의 제조방법
Li et al. Enhanced electrical resistivity in SiC–BN composites with highly-active BN nanoparticles synthesized via chemical route
Sahoo et al. Effects of CNTs blending on the superconducting parameters of YBCO superconductor
Wang et al. Phase transition and conductivity improvement of tetragonal fast lithium ionic electrolyte Li7La3Zr2O12
WO2015093475A1 (ja) MgB2超伝導体の製造方法およびMgB2超伝導体
CN101168442B (zh) 一种高性能MgB2超导材料及其制备方法
Zhang et al. Ferromagnetism and insulating behavior with a logarithmic temperature dependence of resistivity in Pb10− x Cu x (PO4) 6O
WO2012015262A2 (en) Silicon carbide and method for manufacturing the same
Liu et al. High pressure synthesis of a new superconductor Sr2CuO2+ δCl2− y induced by “apical oxygen doping”
Xu et al. Properties of multifilamentary MgB2 wires fabricated by internal magnesium diffusion using amorphous and crystalline boron powders
Kimishima et al. La-doping effects on pinning properties of MgB2
Fujii et al. Effect of additions of Ca compounds to the filling powder on the reduction of MgO and the critical current density properties of ex situ processed MgB2 tapes
CN105097173B (zh) 一种铁磁半导体材料(Sr,Na)(Zn,Mn)2As2及其制备方法
Singh et al. Electromagnetic properties of copper doped lead apatite Pb9Cu (PO4) 6O
Lin et al. Charge compensation effect in Pr 1− y Sr y Fe 1− x Co x AsO codoped with Sr and Co
Chen et al. High-Performance $\hbox {GdBa} _ {2}\hbox {Cu} _ {3}\hbox {O} _ {7-{x}} $ Superconducting Film Prepared Using an Advanced Low-Fluorine Solution
WO2024106628A1 (ko) 경-연자성 복합 자성 입자 및 이의 제조방법, 이를 포함하는 영구자석
Gao et al. 124 K Superconductivity in Cu-Ba-Ca-Cu-O
WO2023027536A1 (ko) 상온, 상압 초전도 세라믹화합물 및 그 제조방법
Man et al. Signature of T $ _\textrm {c} $ above 111 K in Li-doped (Bi, Pb)-2223 superconductors: synergistic nature of hole concentration, coherence length and Josephson interlayer coupling
KR101250204B1 (ko) 마그네슘 다이보라이드 초전도체 및 이의 제조 방법
WO2018062872A1 (ko) 은-다이아몬드 복합 재료의 제조를 위한 방전플라즈마소결 방법 및 이에 의해 제조된 은-다이아몬드 복합 재료

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177001070

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922906

Country of ref document: EP

Kind code of ref document: A1