WO2018101387A1 - Porous chemical heat storage complex and method for producing same, and chemical heat storage device - Google Patents

Porous chemical heat storage complex and method for producing same, and chemical heat storage device Download PDF

Info

Publication number
WO2018101387A1
WO2018101387A1 PCT/JP2017/042975 JP2017042975W WO2018101387A1 WO 2018101387 A1 WO2018101387 A1 WO 2018101387A1 JP 2017042975 W JP2017042975 W JP 2017042975W WO 2018101387 A1 WO2018101387 A1 WO 2018101387A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
chemical heat
porous
storage material
composite
Prior art date
Application number
PCT/JP2017/042975
Other languages
French (fr)
Japanese (ja)
Inventor
李 承澤
阪井 敦
泰美 高橋
都世 矢野
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2018101387A1 publication Critical patent/WO2018101387A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a porous chemical heat storage composite in which a chemical heat storage material is supported on a porous carrier, a manufacturing method thereof, and a chemical heat storage device.
  • Chemical heat storage uses a reversible thermochemical reaction in which a heat release chemical reaction by water absorption and an endothermic chemical reaction by dehydration occur reversibly in a reaction system between a chemical heat storage material such as a metal oxide or metal salt and water vapor. Recyclable technology for storing and releasing heat.
  • Chemical heat storage materials are used in chemical heat storage systems such as chemical heat pumps that can effectively use various types of thermal energy.
  • chemical heat storage systems such as chemical heat pumps that can effectively use various types of thermal energy.
  • research and development related to chemical heat storage have been actively promoted with the aim of effectively utilizing waste heat.
  • Patent Document 1 when using quicklime in which pores are formed in the chemical heat storage material itself, when the hydration reaction and dehydration reaction by water absorption are repeated, the chemical heat storage material has a volume expansion. There was a problem that the pulverization was repeated and the reactivity as a heat storage system was lowered.
  • Patent Document 2 has a problem that the heat of the chemical heat storage material cannot be efficiently taken out or supplied due to an increase in heat conduction resistance due to encapsulation and a complicated heat transfer path.
  • the clay mineral sepiolite described in Patent Document 3 causes a decrease in reactivity as a heat storage system due to partial cementation and solidification when the hydration reaction and dehydration reaction due to water absorption of the chemical heat storage material are repeated. It becomes.
  • the porous structure formed by heating and crosslinking reaction of the phenol resin described in Patent Document 4 cannot control the pore distribution of micropores, mesopores and macropores, and is mainly formed with large pore diameters. Since the chemical heat storage material particles become larger and the surface area of the chemical heat storage material particles is small, the heat storage and heat release reactivity in the hydration reaction and dehydration reaction of the chemical heat storage material is lowered.
  • One problem to be solved by the present invention is to provide a porous chemical heat storage composite having good heat storage and heat dissipation reactivity without deterioration of heat storage and heat dissipation characteristics even after repeated use, and a method for producing them.
  • Another problem to be solved by the present invention is to provide a chemical heat storage device that can efficiently extract the heat of a chemical heat storage material even if heat storage and heat dissipation are repeated.
  • the present invention provides the following porous chemical heat storage composite, its manufacturing method, and chemical heat storage device.
  • a chemical heat storage material is supported in macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring, and the polymer carrier has mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material.
  • Porous chemical heat storage composite (2) The porous chemistry according to (1), wherein the porous polymer of a crosslinkable monomer containing an aromatic ring is a homopolymer or copolymer of an aromatic organic compound containing two or more ethylenically unsaturated double bonds. Thermal storage complex.
  • the carrier is a method for producing a porous chemical heat storage composite having mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material.
  • the porous chemical heat storage composite obtained in the present invention is capable of efficiently performing an adsorption reaction and a desorption reaction on a chemical heat storage material of a reaction medium (e.g., water vapor, ammonia, etc.), and a chemical heat storage even if the adsorption and desorption are repeated. It can prevent the material from collapsing and agglomerating, and has a particularly remarkable technical effect that there is no decrease in reactivity in the process of heat dissipation and heat storage.
  • a reaction medium e.g., water vapor, ammonia, etc.
  • the chemical heat storage material Even if it is used repeatedly, the chemical heat storage material always operates stably, and there is a particularly remarkable technical effect that it is possible to provide a chemical heat storage system that can maintain high heat dissipation / heat storage amount and high heat dissipation / heat storage efficiency. .
  • the porous chemical heat storage composite of the present invention comprises a carrier and a chemical heat storage material as essential elements.
  • the carrier needs to be porous, but includes (1) a polymer of a crosslinkable monomer containing an aromatic ring, or (2) carbon (carbon).
  • carbon means carbon itself.
  • An organic compound such as a polymer containing not only carbon but also a different element such as hydrogen as in the above (1) is not included in the definition of carbon of the present invention.
  • the porous chemical heat storage composite has macropores, micropores and / or mesopores, the macropores carry a chemical heat storage material, the micropores and / or mesopores communicate with the macropores, and the reaction medium Functions as a supply path for supplying the chemical heat storage material with macropores.
  • reaction medium examples include water / water vapor, ammonia, methanol, ethanol, isopropanol, and the like, from the viewpoint of ease of handling and price, preferably water / water vapor, ammonia, and from the viewpoint of no odor. More preferably, water / steam is mentioned.
  • the macropores, mesopores, and micropores which are the pores of the porous chemical heat storage composite, are all stable loading places of chemical heat storage materials and / or reaction fields that can perform repeated storage and heat dissipation reactions and / or Alternatively, it may be a water vapor flow path associated with the reaction. Any of the macropores, mesopores, and micropores may have any function. However, a chemical heat storage material is supported and the function of the water vapor channel in the reaction field is changed to macropores.
  • micropores and / or mesopores have a function as a water vapor flow path, respectively, and the macropores and the micropores and / or the mesopores are formed so as to randomly penetrate each other.
  • the through hole is preferable because the reaction medium can be smoothly supplied to all reaction fields.
  • the support of the chemical heat storage material is easy for macropores having a relatively large pore size, and the macropores on which no chemical heat storage material is supported can function as a flow path for the reaction medium, but the pore size of the pores is 2 Micropores below nanometers and mesopores ranging from 2 nanometers to 50 nanometers can function exclusively as a flow path for the reaction medium associated with storage and heat dissipation reactions, improving storage and heat dissipation reaction efficiency. It is preferable because it can be performed.
  • the chemical heat storage material may be entirely supported on the macropores, but may be partially supported on the mesopores and / or the micropores as long as the chemical heat storage material is mainly supported on the macropores.
  • the mesopores and / or micropores related to the support of the chemical heat storage material may not function as a reaction medium flow path.
  • the mesopores and / or micropores that do not carry the heat storage material and further macropores can maintain the function as a reaction medium flow path that accompanies the heat storage / heat dissipation reaction as a whole.
  • the porosity of the carrier (porous polymer or carbon) excluding the chemical heat storage material can always increase the amount of heat storage, and the chemical heat storage material during repeated heat exchange. It is preferably 50 to 90% because the state change is small and the stability is excellent.
  • the porosity is defined as follows.
  • the porosity of the carrier is 50% or more, the amount of chemical heat storage material supported will not decrease, and the storage / heat dissipation reaction efficiency will not decrease. This is preferable because it does not decrease.
  • the chemical heat storage material is preferably supported mainly in macropores.
  • the chemical heat storage material include calcium compounds, magnesium compounds, activated carbon, silica gel, zeolite, and the like.
  • calcium compounds include calcium halides such as CaCl 2 , CaO, Ca ( OH) 2 and the like
  • examples of the magnesium compound include magnesium halides such as MgCl 2 , MgO, and Mg (OH) 2 .
  • calcium compounds or magnesium compounds have a larger amount of heat storage, repeatedly cause a quantitative reaction, the state change of the chemical heat storage material is small, and it is not decomposed or altered even at high temperature firing. It is preferable because of its low price.
  • Examples of the chemical heat storage material used in one preferred embodiment of the present invention include calcium chloride dihydrate (CaCl 2 .2H 2 O). When calcium chloride dihydrate is further hydrated, it becomes calcium chloride tetrahydrate, which dissipates heat. Then, calcium chloride tetrahydrate is dehydrated to become calcium chloride dihydrate, and accumulates heat by absorbing heat. That is, calcium chloride, which is a chemical heat storage material, can reversibly repeat heat storage and heat release by a reaction as shown in Formula (1).
  • the loading ratio of the chemical heat storage material is preferably 50 to 85% by mass because the heat storage and heat dissipation efficiency can be increased and the amount of heat storage can be further increased.
  • the loading rate of the chemical heat storage material can be defined as follows.
  • the loading amount of the chemical heat storage material is proportional to the heat storage amount or the heat radiation amount as shown in the above formulas (2) and (3), when the loading amount is 50% by mass or more, the porous chemical heat storage material
  • the heat storage and heat dissipation efficiency of the composite can be further increased, which is economical.
  • the supported amount is 85% by mass or less, the ratio of the porous body decreases, the pore diameter (especially macropores) increases, or the chemical heat storage material collapses or aggregates due to repeated heat storage reaction and heat release reaction. This is preferable because it is less likely to occur and the storage / heat radiation reaction efficiency is not lowered.
  • the carrier in the porous chemical heat storage composite of the present invention needs to be porous as described above, but either (1) a polymer of a crosslinkable monomer containing an aromatic ring or (2) carbon. It is.
  • the porous chemical heat storage composite in which the carrier is carbon has a porous structure having mesopores and / or micropores in which the chemical heat storage material is supported on the macropores of the carbon support and the reaction medium can be supplied to the chemical heat storage material on the support. If it is a sex chemical heat storage composite, the manufacturing method will not be restrict
  • the carrier may be fired and a chemical heat storage material may be put into the pores, or if it is a chemical heat storage material that is not decomposed or altered at the firing temperature, it can be fired after being put in the carrier.
  • a porous chemical heat storage complex having mesopores and / or micropores capable of supporting a chemical heat storage material in macropores of a carbon support and supplying a reaction medium to the chemical heat storage material on the support is a cross-link containing an aromatic ring.
  • a chemical heat storage material that does not decompose or change in the calcination is supported, and the polymer carrier is a mesopore and / or a micropore capable of supplying a reaction medium to the chemical heat storage material. It can be easily obtained by firing a porous chemical heat storage composite having sinter. By doing so, it can be converted into a carbon support while retaining the pore profile of the polymer porous body.
  • a chemical heat storage material is supported in macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring, and the polymer carrier can supply mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material.
  • a porous chemical heat storage composite having a mesopore and / or a micropore having a mesopore and / or a micropore capable of supplying a reaction medium to the chemical heat storage material. It is preferable that the composite is properly used even in the same chemical heat storage device from the viewpoint of required use conditions and heat resistance.
  • the porous chemical heat storage composite carrier is not sufficiently heat-resistant when it is a polymer, it is preferably used mainly for heat storage and heat dissipation using low-temperature exhaust heat of 200 ° C. or less.
  • the polymer porous body exceeds 200 ° C, oxidation reaction, decomposition reaction of organic matter, etc. occur, so the poor connection with the heat transfer surface and heat transfer with the volume and dimensional change due to expansion and contraction of the porous chemical heat storage composite It is considered that various problems such as inhibition may occur.
  • the porous carbon body has high heat resistance because it does not have organic substances that are subject to oxidation and decomposition even when exposed to temperatures exceeding 200 ° C, and mainly uses high-temperature exhaust heat above 200 ° C. It can be used for heat storage and heat dissipation.
  • a chemical heat storage material is supported on macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring according to the present invention, and the polymer carrier is a mesopore and / or micro that can supply a reaction medium to the chemical heat storage material.
  • the crosslinkable monomer that can be used in the production of a porous chemical heat storage composite having pores is not particularly limited, but is a polymer that can be polymerized in the presence or absence of a polymerization initiator, and is easy to control. Is preferable because it has a vinyl group.
  • Such crosslinkable monomers include aromatic organic compounds containing two or more ethylenically unsaturated double bonds, butadiene, divinylcyclohexane, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolethanetri
  • polyfunctional monomers such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and aromatic organic compounds containing two or more ethylenically unsaturated double bonds are preferred.
  • Aromatic organic compounds containing two or more ethylenically unsaturated double bonds include 1,3-divinylbenzene, 1,4-divinylbenzene, 1,3-dipropenylbenzene, 1,4-dipropenylbenzene, dibutyl Examples include tenenylbenzene, dipentenylbenzene, dihexenylbenzene, divinylnaphthalene, and the like. 1,3-divinylbenzene, 1,4-divinylbenzene, 1,3-dipropenylbenzene, and 1,4-dipropenylbenzene are carbonized. It is preferable because the yield is high. These crosslinkable monomers can be used alone or in admixture of two or more.
  • the porous polymer of the present invention may be a homopolymer or copolymer of one or two or more crosslinkable monomers, and may be one or two or more crosslinkable monomers and one or two or more types. It may be a copolymer of a monofunctional monomer.
  • the crosslinkable monomer is 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol% of the monomer constituting the porous polymer.
  • the mol% particularly preferably 95 to 100 mol%.
  • Monofunctional monomers include styrene monomers such as styrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene, ⁇ -methylstyrene, ethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, etc.
  • the carrier of the porous chemical heat storage composite of the present invention when the carrier of the porous chemical heat storage composite of the present invention is a polymer porous body, it may be described as “porous chemical heat storage polymer composite” or “polymer composite”. Further, when the carrier is a carbon porous body, it may be described as “porous chemical heat storage carbon composite” or “carbon composite”.
  • the porous chemical heat storage polymer composite (1) of the present invention is polymerized by, for example, mixing a chemical heat storage material and a solvent that induces phase separation during polymerization, and subsequently mixing a crosslinkable monomer and a polymerization initiator.
  • a porous chemical heat storage polymer composite carrying a chemical heat storage material can be produced through a phase separation polymerization process by preparing a composition and subjecting it to heat polymerization.
  • the polymerization reaction may be carried out by irradiation with ultraviolet rays, electron beams or the like.
  • a uniform composition is obtained together with a polymerizable composition comprising a crosslinkable monomer and a chemical heat storage material, and is incompatible with a polymer obtained by polymerization reaction. If there is no limit.
  • a phase separation-inducing solvent is involved in the phase separation process accompanying polymerization, and affects the microstructure of the resulting porous chemical heat storage composite, particularly its specific surface area, pore diameter, pore volume, porosity, etc. obtain.
  • the phase separation inducing solvent may be a single solvent or a mixed solvent.
  • a mixed solvent the component alone may not be compatible with the polymerizable composition.
  • solvents include alkyl esters of fatty acids such as ethyl acetate, methyl decanoate, methyl laurate, isobutyl adipate, ketones such as acetone, 2-butanone, isobutyl methyl ketone, diisobutyl ketone, and diethyl ether.
  • N N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, and other non-protons
  • Polar solvents aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and octane, and halogenated hydrocarbons such as dichloromethane and chloroform
  • N alcohols such as methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, and the like
  • solvents such as water
  • Aprotic polar solvents such as N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfox
  • a polymerization initiator may be added to the polymerizable composition in order to adjust the polymerization rate, the polymerization degree, and the polymer porous structure.
  • the polymerization initiator is not particularly limited as long as the polymerization composition can be polymerized, and radical polymerization initiators, anionic polymerization initiators, cationic polymerization initiators, and the like can be used.
  • radical polymerization initiators such as asobis
  • ultraviolet polymerization initiators such as maleimide compounds, disulfide initiators such as tetraethylthiilam disulfide, nitroxide initiators such as 2,2,6,6, -tetramethylpiperidine-1-oxyl, 4,4′- Living radical polymerization initiators such as di-t-butyl-2,2′-bipyridine copper complex-methyl trichloroacetate complex and benzyldiethyldithiocarbamate can also be used.
  • disulfide initiators such as tetraethylthiilam disulfide
  • nitroxide initiators such as 2,2,6,6, -tetramethylpiperidine-1-oxyl
  • 4,4′- Living radical polymerization initiators such as di-t-butyl-2,2′-bipyridine copper complex-methyl trichloroacetate complex and benzyldiethyldithiocarbamate
  • the polymerization reaction may be a known and conventional method such as a thermal polymerization method and an active energy ray polymerization method performed by irradiation with ultraviolet rays or electron beams.
  • a porous polymer carrying a chemical heat storage material can be obtained by carrying out a polymerization reaction at 40 to 100 ° C., preferably 60 to 80 ° C. for 10 minutes to 72 hours, preferably 6 to 12 hours together with the above-described thermal polymerization initiator. Can be manufactured.
  • the porous polymer can be produced using various mercury lamps and metal halide lamps.
  • the solvent is a highly volatile solvent, it should be dried at normal pressure or reduced pressure. Can be performed.
  • the solvent is a low volatility solvent, the polymer after the polymerization reaction is brought into contact with a high volatility solvent to exchange the solvent, and then dried by normal pressure or reduced pressure.
  • it is also effective to perform washing and extraction using a solvent in which the unpolymerized product dissolves for the purpose of removing components remaining unpolymerized in the polymerized product.
  • the extraction operation can be performed using a Soxhlet extractor.
  • the porous chemical heat storage composite of the present invention includes a polymer composite or a carbon composite.
  • a method for producing a carbon composite from the polymer composite for example, one of the polymer composites can be used.
  • a suitable manufacturing method includes a manufacturing method including an infusibilization step using an electric furnace and a subsequent baking step.
  • the infusibilization step is performed at a low temperature of 200 to 300 ° C. in an air stream to prevent fusion of the surface of the porous polymer composite in the subsequent firing step (850 ° C. or higher).
  • the air flow speed at this time is not particularly limited, but is preferably 0.1 to 1.0 mL / min.
  • the heat treatment in the infusibilization process is not particularly limited, but it is desirable to execute for 1 to 10 hours.
  • the porous body sample is placed inside the furnace core tube, and the nitrogen air flow rate is not particularly limited, but it is preferably 1.0 to 5.0 mL / min.
  • the polymer carrier part is mixed in part of the carbon carrier, especially when it is used for heat storage and heat dissipation using high-temperature exhaust heat exceeding 200 ° C.
  • the polymer carrier part do not use it for high-temperature exhaust heat, or include the polymer carrier part in part and completely use it as a carbon carrier. It is preferable to use it for high temperature exhaust heat.
  • the heating temperature and heating time in the firing step are not particularly limited, but are preferably 850 to 1000 ° C., and the heating time is preferably 30 minutes to 2 hours.
  • the furnace core tube is not particularly limited, but it is desirable to use a cylindrical quartz tube.
  • the electric furnace is not particularly limited, in order to precisely control the firing conditions, both a thermocouple for measuring the temperature on the apparatus side and a thermocouple for measuring the temperature inside the furnace core tube are used. It is desirable to install and connect a thermocouple for measuring the temperature inside the furnace core tube to the control terminal of the electric furnace.
  • FIG. 2 is a view showing an observation photograph obtained by performing SEM-EDS measurement of the porous chemical heat storage polymer composite (1).
  • the shape of the porous polymer A that appears white as observed by the SEM in FIG. 2 is a structure in which spherical polymers made by random phase separation polymerization of divinylbenzene are continuously connected to grow into a sponge-like porous body. Many macro pores B having a pore diameter of several micrometers that appear black are formed. Further, as shown in the SEM image photograph of 50,000 times to 150,000 times of the SEM surface observation of FIG. 1, the spherical polymer that is the wall of the macropore B having a pore diameter of several micrometers is several nanometers.
  • micropores with metric pores and mesopores with tens of nanometer pores It has many micropores with metric pores and mesopores with tens of nanometer pores. Further, it is considered that the micropores of the micrometer size pores, the micropores of several nanometer pores, and the mesopores of several tens of nanometer pores are opened to each other.
  • the chemical heat storage material used in this embodiment for example, calcium chloride dihydrate (CaCl 2 ⁇ 2H 2 O) is used.
  • a chemical heat storage material such as calcium chloride dihydrate is supported in a macropore B having a pore diameter of several micrometers, so that the chemical heat storage material collapses or aggregates even when the heat storage reaction and the heat release reaction are repeated.
  • a chemical heat storage material such as calcium chloride dihydrate
  • a macropore B having a pore diameter of several micrometers
  • the chemical heat storage material collapses or aggregates even when the heat storage reaction and the heat release reaction are repeated.
  • the porous chemical heat storage composite of the present invention can be used stably for repeated storage and heat dissipation reactions.
  • the pore diameter of the macropores is not particularly limited, but is 50 nm to 200 ⁇ m, preferably 100 nm to 200 ⁇ m, more preferably 200 nm to 100 ⁇ m. Within the above range, if the pore diameter is too small, loading of the chemical heat storage material will be disadvantageous, or it will be carried in a small amount, and the reaction efficiency of storage and heat dissipation will not decrease, and it will be supported. This is preferable because the chemical heat storage material becomes large, the surface area thereof becomes low, and the efficiency of heat storage and heat dissipation reaction does not decrease.
  • the chemical heat storage device of the present invention can be easily obtained by using the porous chemical heat storage composite of the present invention instead of the conventional porous chemical heat storage composite.
  • the reaction medium storage section and the chemical heat storage reaction section are connected by a pipe through which the vapor of the reaction medium can flow, and the pipe is provided with a valve capable of shutting off the supply of steam.
  • the chemical heat storage reaction part is provided with a chemical heat storage material.
  • a chemical heat storage material for example, hydrated CaCl 2
  • a chemical heat storage material that has adsorbed / absorbed the reaction medium absorbs heat energy such as excess heat from the outside, desorbs the reaction medium (endothermic reaction), and generates a gaseous state
  • the reaction medium passes through the piping and enters the container of the reaction medium storage unit, where it condensates.
  • the gaseous reaction medium in the reaction medium storage part passes through the pipe and enters the chemical heat storage reaction part container, where the chemical heat storage material (for example, non-hydrated CaCl 2 ) absorbs / adsorbs the reaction medium. Can cause an exothermic reaction.
  • the chemical heat storage material for example, non-hydrated CaCl 2
  • heat can be utilized as renewable energy with higher efficiency than in the past.
  • the equipment and measurement methods used are as follows. 1. Electric furnace: Asahi Rika Co., Ltd. (temperature controller AGC-1P type), quartz tube type, 0 to 1200 ° C, AC 100V, Max 15A (1500W) 2. Fluid type specific surface area automatic measurement (nitrogen gas adsorption / desorption measurement method) device: manufactured by Bell Japan Belsorp-mini II 3. Pore distribution measuring device: Shimadzu Corporation, Autopore 9520 type (mercury intrusion method) 4). TG / DTA measuring device: Hitachi High-Tech Science, EXSTER TG / DTA63005. SEM surface observation device: JSM-7500TFE manufactured by JEOL Ltd., acceleration voltage 0.5kV, 1kV (GB mode) 6.
  • Example 1 Synthesis of Porous Chemical Heat Storage Polymer Complex (1) 39.1 g of CaCl 2 ⁇ 2H 2 O and 40.0 g of ethanol were placed in a polymerization reaction flask and dissolved by ultrasound, and then dimethylformamide (DMF) Was added and further dissolved by ultrasonic waves. Subsequently, 26.0 g (0.2 mol) of divinylbenzene (DVB) and 0.80 g (4.9 mmol) of azobisisobutyronitrile (AIBN) as a polymerization catalyst were added to the dissolved solution and dissolved, and then at room temperature for 10 minutes. Replaced with nitrogen.
  • DMF dimethylformamide
  • AIBN azobisisobutyronitrile
  • the polymerization reaction was started in an argon (Ar) stream in a reaction bath at 70 ° C. After about 15 minutes, solidification of the reaction liquid started and the polymerization reaction proceeded smoothly. After 6 hours, the reaction was completed and the reaction bath was lowered, and then air cooling was performed.
  • Ar argon
  • the above polymerization mixture was put in a desiccator type vacuum dryer equipped with a cooling trap, and dried at 70 ° C. for 15 hours under vacuum.
  • the polymer powder separated by filtration is placed in a desiccator-type vacuum dryer equipped with a cooling trap and dried under vacuum at 60 ° C for 6 hours, resulting in a chemical heat storage equivalent to a loading rate of 60% by mass on a white porous body. 52.7 g of a porous chemical heat storage polymer composite (1) carrying the material was obtained.
  • porous polymer (2) was obtained by removing a portion of the obtained porous chemical heat storage polymer composite (1) from the calcium chloride hydrate supported by washing with water.
  • the porous chemical heat storage polymer composite (1) produced in the present invention has an average pore diameter of 3.31 nm and a maximum pore distribution of 1.22 nm. It is thought that there are many micropores and mesopores of nanometers to several tens of nanometers.
  • porous chemical heat storage polymer composite (1) was distributed with macropores having a pore diameter of several micrometers to several tens of micrometers, and had a porosity of 83%. It is thought that there is.
  • the shape of the porous polymer was continuously connected to the spherical polymer by random phase separation polymerization of divinylbenzene. It is considered that the structure has grown into a porous body. From the SEM image at 3,500 times, the pore diameter of the porous body is a macropore of a micrometer size, and the spherical polymer that is the wall of the micrometer pore has a micropore of several nanometers and several tens of micropores. It was found that there are many nanometer mesopores (15,000 times SEM image).
  • micropores of a micrometer size, the micropores of several nanometers, and the mesopores of several tens of nanometers are opened to each other.
  • calcium pore of a chemical heat storage material was carried in the macropores having a pore diameter of several micrometers or more, and it was confirmed by SEM-EDS measurement.
  • a heat extraction test was performed using the porous chemical heat storage polymer composite (1) of the present invention, and the heat storage density and heat release rate of the polymer composite (1) were measured.
  • the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb.
  • the amount of the sample was 10 mg, and as a pretreatment, the sample was heated from room temperature to 120 ° C. at 120 ° C. per minute and kept at 60 ° C. for 60 minutes, and then lowered to 80 ° C. as a pretreatment. Subsequently, using 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), water was taken out from the water at 80 ° C. for 60 minutes. Thereafter, the steam was desorbed again at 120 ° C. and the hot water was taken out at 80 ° C. by water vapor adsorption.
  • the heat storage density per 1 kg of the porous chemical heat storage polymer composite (1) of the present invention is 265 kJ
  • the adsorption rate is 18.6 g water / min
  • the heat can be taken out quickly in about 4 minutes. It was.
  • Example 2 Synthesis of porous chemical heat storage carbon composite (3)
  • an infusibilization step was performed as a pretreatment for firing. After installing the quartz tube in the electric firing furnace, 4.5201 g of the white polymer composite (1) was placed in the quartz tube. Heating was started while flowing compressed air at 0.1 L / min. The temperature was raised from room temperature to 250 ° C at 5 ° C per minute, and then kept at 250 ° C for 2 hours. After stopping the heating operation for 2 hours, it was naturally cooled to room temperature to obtain 3.9210 g of a yellow infusible material.
  • the carbon composite (3) of the present invention shows a distribution from a macropore having a pore diameter of several micrometers to a macropore having several tens of micrometers, and has voids with a porosity of 59%. it is conceivable that.
  • the porous chemical heat storage polymer composite (1) the presence of micropores and mesopores was confirmed in the porous chemical heat storage carbon composite (3) from the flow type specific surface area automatic measurement.
  • the peak in the FT-IR spectrum of the polymer complex (1) and the infusible material is estimated to carbonyl group derived from the vicinity of the peak and 1660 cm -1 to get groups to CH stretching vibration in the vicinity of 2920 cm -1 it is observed, baked the FT-IR spectrum of the carbon composite (3) after gone peak around 2920 cm -1 and 1660cm around -1, carbonization reaction by calcination step is considered to have proceeded satisfactorily.
  • Raman measurements, in the spectrum of the carbon composite after firing (3) is observed D band near G band and 1360 cm -1 in 1580 cm -1, the carbonization reaction by the FT-IR measurement results as well as the baking step It seems that it progressed well.
  • the porous chemical heat storage carbon composite (3) of the present invention was a porous body having many micrometer-sized macropores.
  • calcium element or chlorine element is well distributed as a whole.
  • the porous chemical heat storage carbon composite (3) of the present invention it is considered that the calcium chloride of the chemical heat storage material is well filled in the pores (macropores) of the porous body.
  • a heat extraction test was performed using the porous chemical heat storage carbon composite (3) of the present invention, and the heat storage density and heat release rate of the carbon composite (3) were measured.
  • the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb.
  • a sample amount of 10 mg was used as a pretreatment under a dry nitrogen stream, heated from room temperature to 120 ° C. at a temperature of 5 ° C. per minute, held for 60 minutes, and then cooled to 80 ° C. Subsequently, using 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), water was taken out from the water at 80 ° C. for 60 minutes. Thereafter, the steam was desorbed again at 120 ° C. and the hot water was taken out at 80 ° C. by water vapor adsorption.
  • the porous chemical heat storage carbon composite (3) of the present invention has a high heat storage density of 784 kJ per 1 kg of the dry sample, the adsorption rate is 18.6 mg water / minute, and the heat is about 13 minutes. It was the speed which can be taken out.
  • Comparative Example 1 Preparation of a porous polymer (4) and preparation of a composite (5) carrying a chemical heat storage material
  • a porous polymer (4) and preparation of a composite (5) carrying a chemical heat storage material To a 100 ml eggplant flask, 1.3 g of polystyrene and 16 ml of dimethylformamide were added and ultrasonically treated at room temperature. Dissolved. After confirming complete dissolution, 0.4 g of AIBN and 13.0 g of divinylbenzene were added and dissolved by stirring. Subsequently, the above mixed solution was bubbled with nitrogen for 30 minutes at room temperature, and then the polymerization reaction was started at a reaction temperature of 70 ° C. under an argon stream.
  • the calcium chloride heat storage material solution to be supported on the obtained porous polymer (4) was prepared by adding 30 g of calcium chloride hexahydrate, 20 g of ethanol and surfactant DMH-40 (manufactured by Nippon Emulsifier Co., Ltd.) 0. 05 g was mixed and stirred. 2 g of the porous polymer (4) produced above was added to the prepared calcium chloride heat storage material solution and immersed for about 1 hour with occasional stirring.
  • the composite (5) supporting calcium chloride as a chemical heat storage material was produced by drying in a 110 ° C. constant temperature bath for 2 hours.
  • the loading rate was as low as 18.4% by mass.
  • the pore distribution of the porous polymer (4) was measured by mercury porosimetry. As a result, the porous polymer (4) had a pore diameter of 67% and was distributed with macropores centered on several micrometers.
  • the spherical polymer is similar to the SEM surface observation result of the porous chemical heat storage polymer composite (1) described in Example 1 above. It was a structure that was continuously connected to grow into a porous body. The pore diameter of the porous body was observed to be micrometer-sized macropores, several nanometers micropores, and several tens of nanometers mesopores.
  • a heat extraction test was conducted to try to measure the heat storage density and the heat release rate of the polymer composite (5).
  • the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb.
  • a sample amount of 10 mg was used as a pretreatment under a dry nitrogen stream, heated from room temperature to 120 ° C. at a temperature of 10 ° C. per minute, held for 60 minutes, and then cooled to 80 ° C. Subsequently, using a 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), a hot water extraction test for water vapor adsorption was performed at 80 ° C.
  • the composite (5) carrying the chemical heat storage material could not measure weight increase due to reaction with water vapor or DTA heat generation. This is presumably because the porous polymer (4) is not well supported by calcium chloride and does not become a chemical heat storage complex that can be taken out of heat.
  • Comparative Example 2 After synthesis of porous carbon (6), preparation of composite (7) carrying a chemical heat storage material After a quartz tube was installed in an electric firing furnace in order to carry out an infusibilization step as a pretreatment for firing, 5.250 g of white porous polymer (4) was put in a quartz tube. Heating was started while flowing compressed air at 0.1 L / min. The temperature was raised from room temperature to 250 ° C at 5 ° C per minute, and then kept at 250 ° C for 2 hours. After stopping the heating operation for 2 hours, it was naturally cooled to room temperature to obtain 5.366 g of a yellow infusible material.
  • the calcium chloride heat storage material solution to be supported on the obtained porous carbon (6) was prepared by 30 g of calcium chloride hexahydrate, 20 g of ethanol and 0.05 g of a surfactant DMH-40 (manufactured by Nippon Emulsifier Co., Ltd.). Were mixed and stirred. 2 g of the porous carbon (6) prepared above was added to the prepared calcium chloride heat storage material solution and immersed for about 1 hour with occasional stirring.
  • thermophysical properties were performed using the obtained porous carbon (6) and the composite (7) supporting the chemical heat storage material.
  • the pore distribution of the porous carbon (6) was measured by mercury porosimetry. As a result, the pore diameter of the porous carbon (6) was distributed with macro pores of several tens of micrometers, which are several micrometers, and the porosity was 66%.
  • the composite (7) supporting the chemical heat storage material is a porous body having many micrometer-sized macropores on the surface. A large amount of calcium element or chlorine element is distributed from the element mapping image around the pores. In the composite (7) carrying the chemical heat storage material, it is considered that the calcium chloride of the chemical heat storage material is well supported in the pores of the porous body.
  • a heat extraction test was performed using the composite (7) supporting a chemical heat storage material, and an attempt was made to measure the heat storage density and the heat release rate of the carbon composite (7).
  • the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb.
  • a sample amount of 10 mg was used as a pretreatment under a dry nitrogen stream, heated from room temperature to 120 ° C. at a temperature of 10 ° C. per minute, held for 60 minutes, and then cooled to 80 ° C. Subsequently, using a 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), a hot water extraction test for water vapor adsorption was performed at 80 ° C.
  • the heat storage density per dry sample of 1 kg of the composite (7) carrying the chemical heat storage material was 347 kJ, and the adsorption rate was a rate at which the heat could be taken out in about 10 minutes.
  • the porous chemical heat storage composite having the chemical heat storage material carried on the porous body of the present invention is a good heat storage material having a high heat storage amount, heat storage reaction efficiency and shape stability, and hydration / dehydration reaction. Even if it is used repeatedly, there is no deterioration in the performance of storage and heat dissipation, it always operates stably and can be used repeatedly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided are: a porous chemical heat storage complex which cannot be deteriorated in heat storage properties and heat release properties even when used repeatedly, and which has good heat storage reactivity and heat release reactivity; a method for producing the complex; and a chemical heat storage device which makes it possible to extract heat of a chemical heat storage material with high efficiency even when the storage of heat and the release of heat are repeated. A porous chemical heat storage complex comprising a chemical heat storage material supported in macro-pores in a porous polymer support made from a crosslinkable monomer having an aromatic ring, wherein the polymer support has meso-pores and/or micro-pores through which a reaction medium can be supplied to the chemical heat storage material; and a porous chemical heat storage complex comprising a chemical heat storage material supported in macro-pores in a carbon support, wherein the support has meso-pores and/or micro-pores through which a reaction medium can be supplied to the chemical heat storage material.

Description

多孔性化学蓄熱複合体及びその製造方法並びに化学蓄熱装置Porous chemical heat storage composite, method for producing the same, and chemical heat storage device
 本発明は、多孔体担体に化学蓄熱材が担持されている多孔性化学蓄熱複合体及びその製造方法並びに化学蓄熱装置に関する。 The present invention relates to a porous chemical heat storage composite in which a chemical heat storage material is supported on a porous carrier, a manufacturing method thereof, and a chemical heat storage device.
 エネルギーを高効率的に利用するために、排熱を利用した熱エネルギーの貯蔵・蓄熱技術の確立は社会的に要請されている。従来の蓄熱方法としては、蓄熱媒体を用いた顕熱又は潜熱を利用する方法がある。しかし、これらの欠点は蓄熱量が低い、保温のために断熱材が必要で長期の蓄熱保存には適していないことである。一方、化学蓄熱は蓄熱量が大きく、保温の必要もなく、長期間安定的に蓄熱が可能である。 In order to use energy efficiently, the establishment of thermal energy storage and heat storage technology using exhaust heat is socially required. As a conventional heat storage method, there is a method using sensible heat or latent heat using a heat storage medium. However, these disadvantages are that the amount of heat storage is low, a heat insulating material is necessary for heat insulation, and it is not suitable for long-term heat storage. On the other hand, chemical heat storage has a large amount of heat storage, does not require heat retention, and can store heat stably for a long period of time.
 化学蓄熱は、金属酸化物又は、金属塩などの化学蓄熱材と水蒸気などとの反応系で、吸水による放熱化学反応と脱水による吸熱化学反応が可逆的に起こる、可逆熱化学反応を利用して熱の貯蔵・放出を行う再生利用可能な技術である。 Chemical heat storage uses a reversible thermochemical reaction in which a heat release chemical reaction by water absorption and an endothermic chemical reaction by dehydration occur reversibly in a reaction system between a chemical heat storage material such as a metal oxide or metal salt and water vapor. Recyclable technology for storing and releasing heat.
 化学蓄熱材は、各種熱エネルギーの有効利用が図られるケミカルヒートポンプなどの化学蓄熱システムに用いられる。特に、排熱の有効利用を目指して、最近、化学蓄熱に関する研究開発が盛んに進められている。 Chemical heat storage materials are used in chemical heat storage systems such as chemical heat pumps that can effectively use various types of thermal energy. In recent years, research and development related to chemical heat storage have been actively promoted with the aim of effectively utilizing waste heat.
 しかし、粉体の化学蓄熱材を用いる従来方法においては、これらの蓄熱材を用いた水和・脱水反応を繰り返す時、小粒子蓄熱材の凝集や凝固の進行による反応性低下と、膨張・収縮による体積変化に伴い伝熱面との充填不良と伝熱阻害などの進行で繰返し利用が困難になるという諸問題があった。化学蓄熱システムにおいて最も重要なことは化学蓄熱材が常に安定的に動作し、繰返し使えることである。 However, in conventional methods using powdered chemical heat storage materials, when the hydration / dehydration reaction using these heat storage materials is repeated, the reactivity decreases due to the aggregation and solidification of the small particle heat storage materials, and the expansion / contraction There are various problems that it becomes difficult to use repeatedly due to the progress of filling failure with the heat transfer surface and heat transfer inhibition with the volume change due to. The most important thing in chemical heat storage systems is that chemical heat storage materials always operate stably and can be used repeatedly.
 このような問題を解決するための様々な技術が提案されている。例えば、生石灰の表面から内部にわたって0.1~0.5マイクロメートル範囲の多数の気孔を持つ多孔質状の生石灰からなる化学蓄熱材の作製技術が開示されている(例えば、特許文献1参照)。 Various techniques for solving such problems have been proposed. For example, a technique for producing a chemical heat storage material composed of porous quicklime having a large number of pores in the range of 0.1 to 0.5 micrometers from the surface to the inside of quicklime is disclosed (for example, see Patent Document 1). .
 また、10~60%の内部空間に粉体の化学蓄熱材を担持した蓄熱カプセルを反応器に充填する技術が開示されている(例えば、特許文献2参照)。 Also disclosed is a technique of filling a reactor with a heat storage capsule carrying a powder chemical heat storage material in an internal space of 10 to 60% (see, for example, Patent Document 2).
 また、粉体の化学蓄熱材と粘土鉱物のセピオライトとを混合、成型、焼成して得られる多孔質構造の化学蓄熱材成型体の作製技術が開示されている(例えば、特許文献3参照)。 Also, a technique for producing a porous chemical heat storage material molded body obtained by mixing, molding, and firing a powder chemical heat storage material and clay mineral sepiolite is disclosed (for example, see Patent Document 3).
 また、フェノール樹脂と化学蓄熱材粒子を混合、成型した後、混合材料の加熱、架橋反応を行い形成される化学蓄熱材粒子が担持された多孔質構造の化学蓄熱材成形体の作製技術が開示されている(例えば、特許文献4参照)。 Also disclosed is a technology for producing a molded chemical heat storage material having a porous structure in which chemical heat storage material particles formed by mixing and molding phenolic resin and chemical heat storage material particles and then heating the mixed material and crosslinking reaction are supported. (For example, see Patent Document 4).
特開平1-225686号公報JP-A-1-225686 特開昭62-213690号公報JP-A-62-213690 特開2009-132844号公報JP 2009-132844 A 特開2011-162746号公報JP 2011-162746 A
 しかしながら、特許文献1に記載のように、化学蓄熱材自体に気孔が形成された生石灰を用いた場合は、吸水による水和反応と脱水反応が繰り返される際に、化学蓄熱材は、体積膨張と収縮を繰り返して微粉化し、蓄熱システムとしての反応性が低下する問題があった。 However, as described in Patent Document 1, when using quicklime in which pores are formed in the chemical heat storage material itself, when the hydration reaction and dehydration reaction by water absorption are repeated, the chemical heat storage material has a volume expansion. There was a problem that the pulverization was repeated and the reactivity as a heat storage system was lowered.
 また、特許文献2記載の構成では、カプセル化による熱伝導抵抗の増加及び伝熱経路の複雑化により、化学蓄熱材の熱を効率良く取り出したり、供給することができない問題があった。 Further, the configuration described in Patent Document 2 has a problem that the heat of the chemical heat storage material cannot be efficiently taken out or supplied due to an increase in heat conduction resistance due to encapsulation and a complicated heat transfer path.
 また、特許文献3記載の粘土鉱物のセピオライトは、化学蓄熱材の吸水による水和反応と脱水反応が繰り返される際に、一部セメント化して固化するために蓄熱システムとしての反応性が低下する原因となる。 In addition, the clay mineral sepiolite described in Patent Document 3 causes a decrease in reactivity as a heat storage system due to partial cementation and solidification when the hydration reaction and dehydration reaction due to water absorption of the chemical heat storage material are repeated. It becomes.
 また、特許文献4記載のフェノール樹脂の加熱、架橋反応で形成される多孔質構造には、ミクロ孔、メソ孔及びマクロ孔の細孔分布の制御ができず、大きい孔径の形成が主で、化学蓄熱材粒子も大きくなってその化学蓄熱材粒子の表面積が少ないことから、化学蓄熱材の水和反応と脱水反応での蓄熱、放熱の反応性が低くなる。 In addition, the porous structure formed by heating and crosslinking reaction of the phenol resin described in Patent Document 4 cannot control the pore distribution of micropores, mesopores and macropores, and is mainly formed with large pore diameters. Since the chemical heat storage material particles become larger and the surface area of the chemical heat storage material particles is small, the heat storage and heat release reactivity in the hydration reaction and dehydration reaction of the chemical heat storage material is lowered.
 本発明が解決しようとする1つの課題は、繰返し使用でも蓄熱及び放熱特性が低下せず、蓄熱及び放熱反応性の良い多孔性化学蓄熱複合体及びそれらの製造方法を提供することである。 One problem to be solved by the present invention is to provide a porous chemical heat storage composite having good heat storage and heat dissipation reactivity without deterioration of heat storage and heat dissipation characteristics even after repeated use, and a method for producing them.
 また、本発明が解決しようとする他の課題は、蓄熱と放熱を繰り返しても化学蓄熱材の熱を効率良く取り出すことができる化学蓄熱装置を提供することである。 Another problem to be solved by the present invention is to provide a chemical heat storage device that can efficiently extract the heat of a chemical heat storage material even if heat storage and heat dissipation are repeated.
 本発明は、以下の多孔性化学蓄熱複合体及びその製造方法並びに化学蓄熱装置を提供するものである。
(1)
 芳香環を含有する架橋性モノマーの多孔性重合体担体のマクロ孔に化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体。 
(2)
 芳香環を含有する架橋性モノマーの多孔性重合体が、エチレン性不飽和二重結合を2以上含有する芳香族有機化合物の単独重合体もしくは共重合体である、(1)記載の多孔性化学蓄熱複合体。
(3)
 化学蓄熱材が塩化カルシウム又はその水和物である(1)又は(2)記載の多孔性化学蓄熱複合体。 
(4)
 カーボン担体のマクロ孔に化学蓄熱材を担持し、前記担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体。 
(5)
 化学蓄熱材が塩化カルシウム又はその水和物である(4)記載の多孔性化学蓄熱複合体。 
(6) 
 前記担体の気孔率が50~90%である、(1)~(5)のいずれか1項に記載の多孔性化学蓄熱複合体。
(7) 
 化学蓄熱材の担持率が50~85質量%である、(1)~(6)のいずれか1項に記載の多孔性化学蓄熱複合体。
(8) 
 溶媒、溶媒に溶解する化学蓄熱材、芳香環を含有する架橋性モノマーを含む反応混合物を相分離重合する工程を含む、多孔性重合体担体のマクロ孔に化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体の製造方法。
(9) 
 (1)又は(4)記載の多孔性化学蓄熱複合体を含む、熱交換により、蓄熱及び放熱を繰り返し行う化学蓄熱装置。 
The present invention provides the following porous chemical heat storage composite, its manufacturing method, and chemical heat storage device.
(1)
A chemical heat storage material is supported in macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring, and the polymer carrier has mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material. Porous chemical heat storage composite.
(2)
The porous chemistry according to (1), wherein the porous polymer of a crosslinkable monomer containing an aromatic ring is a homopolymer or copolymer of an aromatic organic compound containing two or more ethylenically unsaturated double bonds. Thermal storage complex.
(3)
The porous chemical heat storage composite according to (1) or (2), wherein the chemical heat storage material is calcium chloride or a hydrate thereof.
(4)
A porous chemical heat storage composite having a mesopore and / or a micropore capable of supplying a chemical reaction medium to the chemical heat storage material by supporting a chemical heat storage material in macropores of a carbon support.
(5)
The porous chemical heat storage composite according to (4), wherein the chemical heat storage material is calcium chloride or a hydrate thereof.
(6)
6. The porous chemical heat storage composite according to any one of (1) to (5), wherein the carrier has a porosity of 50 to 90%.
(7)
The porous chemical heat storage composite according to any one of (1) to (6), wherein the loading ratio of the chemical heat storage material is 50 to 85% by mass.
(8)
A polymer, a chemical heat storage material that dissolves in the solvent, and a step of phase separation polymerization of a reaction mixture containing a crosslinkable monomer containing an aromatic ring. The carrier is a method for producing a porous chemical heat storage composite having mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material.
(9)
A chemical heat storage device that repeatedly stores heat and releases heat by heat exchange, including the porous chemical heat storage composite according to (1) or (4).
 本発明で得られる多孔性化学蓄熱複合体は、反応媒体(例えば水蒸気、アンモニア等)の化学蓄熱材への吸着反応と脱着反応が効率的に行われて、吸着・脱着が繰り返されでも化学蓄熱材の崩壊や凝集を防ぐことができて、放熱・蓄熱過程での反応性低下がないという格別顕著な技術的効果を奏する。繰り返し使用しても化学蓄熱材は常に安定的に動作し、高い放熱・蓄熱量及び高い放熱・蓄熱効率の維持が可能である、という化学蓄熱システムを提供できるという格別顕著な技術的効果を奏する。 The porous chemical heat storage composite obtained in the present invention is capable of efficiently performing an adsorption reaction and a desorption reaction on a chemical heat storage material of a reaction medium (e.g., water vapor, ammonia, etc.), and a chemical heat storage even if the adsorption and desorption are repeated. It can prevent the material from collapsing and agglomerating, and has a particularly remarkable technical effect that there is no decrease in reactivity in the process of heat dissipation and heat storage. Even if it is used repeatedly, the chemical heat storage material always operates stably, and there is a particularly remarkable technical effect that it is possible to provide a chemical heat storage system that can maintain high heat dissipation / heat storage amount and high heat dissipation / heat storage efficiency. .
多孔性化学蓄熱重合体複合体(1)のSEM表面観察写真を示す図である。上から、150,000倍 SEM像、100,000倍 SEM像、50,000倍 SEM像及び3,500倍 SEM像を示す。It is a figure which shows the SEM surface observation photograph of a porous chemical thermal storage polymer composite (1). From the top, a 150,000 times SEM image, a 100,000 times SEM image, a 50,000 times SEM image, and a 3,500 times SEM image are shown. 多孔性化学蓄熱重合体複合体(1)のSEM-EDS測定写真を示す図である。It is a figure which shows the SEM-EDS measurement photograph of a porous chemical heat storage polymer composite (1).
 本発明の多孔性化学蓄熱複合体は、担体と化学蓄熱材とを必須要素として構成される。この担体としては、いずれも多孔性である必要はあるが、(1)芳香環を含有する架橋性モノマーの重合体、または(2)カーボン(炭素)の二つが包含される。本発明においてカーボンとは、炭素自体を意味する。上記(1)の様な、炭素だけでなく水素などの異種元素を含む、重合体の様な有機化合物は、本発明のカーボンの定義には含まれない。 The porous chemical heat storage composite of the present invention comprises a carrier and a chemical heat storage material as essential elements. The carrier needs to be porous, but includes (1) a polymer of a crosslinkable monomer containing an aromatic ring, or (2) carbon (carbon). In the present invention, carbon means carbon itself. An organic compound such as a polymer containing not only carbon but also a different element such as hydrogen as in the above (1) is not included in the definition of carbon of the present invention.
 多孔性化学蓄熱複合体は、マクロ孔と、ミクロ孔及び/又はメソ孔を有し、マクロ孔には化学蓄熱材が担持され、ミクロ孔及び/又はメソ孔はマクロ孔と連通し、反応媒体をマクロ孔の化学蓄熱材に供給する供給路として機能する。 The porous chemical heat storage composite has macropores, micropores and / or mesopores, the macropores carry a chemical heat storage material, the micropores and / or mesopores communicate with the macropores, and the reaction medium Functions as a supply path for supplying the chemical heat storage material with macropores.
 反応媒体としては、例えば、水/水蒸気、アンモニア、メタノール、エタノール、イソプロパノールなどが挙げられ、取り扱いの容易さや価格の観点から、好ましくは水/水蒸気、アンモニアが挙げられ、臭気が無い等の観点から、より好ましくは水/水蒸気が挙げられる。 Examples of the reaction medium include water / water vapor, ammonia, methanol, ethanol, isopropanol, and the like, from the viewpoint of ease of handling and price, preferably water / water vapor, ammonia, and from the viewpoint of no odor. More preferably, water / steam is mentioned.
 多孔性化学蓄熱複合体の細孔であるマクロ孔、メソ孔及びミクロ孔は、いずれも、化学蓄熱材の安定的な担持場所、及び/又は、繰り返しの蓄・放熱反応が行える反応場及び/又は、前記の反応に伴う水蒸気の流路となり得る。マクロ孔、メソ孔及びミクロ孔のどの細孔に、どの様な機能を持たせるようにしても良いが、化学蓄熱材を担持し、反応場で、水蒸気の流路としての機能をマクロ孔に、水蒸気の流路としての機能をミクロ孔及び/又はメソ孔にそれぞれ持たせるようにして、マクロ孔とミクロ孔及び/又はメソ孔はお互いにランダムに貫通する様に担体を形成することが、貫通孔が全ての反応場へ円滑に反応媒体を供給できるために好ましい。 The macropores, mesopores, and micropores, which are the pores of the porous chemical heat storage composite, are all stable loading places of chemical heat storage materials and / or reaction fields that can perform repeated storage and heat dissipation reactions and / or Alternatively, it may be a water vapor flow path associated with the reaction. Any of the macropores, mesopores, and micropores may have any function. However, a chemical heat storage material is supported and the function of the water vapor channel in the reaction field is changed to macropores. In addition, the micropores and / or mesopores have a function as a water vapor flow path, respectively, and the macropores and the micropores and / or the mesopores are formed so as to randomly penetrate each other. The through hole is preferable because the reaction medium can be smoothly supplied to all reaction fields.
 化学蓄熱材の担体への担持は比較的孔径が大きいマクロ孔が容易であり、化学蓄熱材が担持されていないマクロ孔は、反応媒体の流路として機能し得るが、細孔の孔径が2ナノメートル以下のミクロ孔と、2ナノメートルから50ナノメートル程度までのメソ孔は、専ら蓄・放熱反応に伴う反応媒体の流路として機能させることが可能であり、蓄・放熱反応効率を向上することができることから好ましい。 The support of the chemical heat storage material is easy for macropores having a relatively large pore size, and the macropores on which no chemical heat storage material is supported can function as a flow path for the reaction medium, but the pore size of the pores is 2 Micropores below nanometers and mesopores ranging from 2 nanometers to 50 nanometers can function exclusively as a flow path for the reaction medium associated with storage and heat dissipation reactions, improving storage and heat dissipation reaction efficiency. It is preferable because it can be performed.
 化学蓄熱材は、全てがマクロ孔に担持されてもよいが、主としてマクロ孔に担持されていれば、一部がメソ孔及び/又はミクロ孔に担持されていてもよい。化学蓄熱材の一部がメソ孔及び/又はミクロ孔に担持されている場合、化学蓄熱材の担持に関わるメソ孔及び/又はミクロ孔は反応媒体の流路として機能しない場合があるが、化学蓄熱材を担持していないメソ孔及び/又はミクロ孔と更にマクロ孔により、全体として蓄・放熱反応に伴う反応媒体の流路として機能は維持できる。 The chemical heat storage material may be entirely supported on the macropores, but may be partially supported on the mesopores and / or the micropores as long as the chemical heat storage material is mainly supported on the macropores. When a part of the chemical heat storage material is supported in mesopores and / or micropores, the mesopores and / or micropores related to the support of the chemical heat storage material may not function as a reaction medium flow path. The mesopores and / or micropores that do not carry the heat storage material and further macropores can maintain the function as a reaction medium flow path that accompanies the heat storage / heat dissipation reaction as a whole.
 本発明の多孔性化学蓄熱複合体において、化学蓄熱材を除く担体(多孔性の重合体又はカーボン)の気孔率は、蓄熱量を常により高くでき、かつ繰り返しの熱交換時における化学蓄熱材の状態変化が小さく安定性に優れることから、50~90%であることが好ましい。ここで、気孔率は次のように定義される。 In the porous chemical heat storage composite of the present invention, the porosity of the carrier (porous polymer or carbon) excluding the chemical heat storage material can always increase the amount of heat storage, and the chemical heat storage material during repeated heat exchange. It is preferably 50 to 90% because the state change is small and the stability is excellent. Here, the porosity is defined as follows.
Figure JPOXMLDOC01-appb-M000001
(但し、上記式中、dはかさ密度、pは真密度、d=乾燥重量/体積、である。)
Figure JPOXMLDOC01-appb-M000001
(In the above formula, d is bulk density, p is true density, and d = dry weight / volume.)
 担体の気孔率が50%以上であると、化学蓄熱材の担持量が少なくなることで蓄・放熱反応効率の低下することも無くしかも化学蓄熱材が崩壊や凝集を生じ、蓄・放熱反応効率の低下することもないので好ましい。 If the porosity of the carrier is 50% or more, the amount of chemical heat storage material supported will not decrease, and the storage / heat dissipation reaction efficiency will not decrease. This is preferable because it does not decrease.
 本発明の多孔性化学蓄熱複合体においては、好適には、化学蓄熱材は主にマクロ孔に担持されている。その化学蓄熱材としては、例えば、カルシウムの化合物、マグネシウムの化合物、活性炭、シリカゲル、ゼオライトなどが挙げられ、具体的には、カルシウムの化合物としては、CaClなどのハロゲン化カルシウム、CaO、Ca(OH)等が挙げられ、マグネシウムの化合物としては、MgClなどのハロゲン化マグネシウム、MgO、Mg(OH)等が挙げられる。中でも、カルシウムの化合物又は、マグネシウムの化合物が、より大きな蓄熱量を有し、繰り返し定量的な反応を生起し、化学蓄熱材の状態変化も小さく、高温での焼成においても分解や変質せずに、低価格であるので好ましい。 In the porous chemical heat storage composite of the present invention, the chemical heat storage material is preferably supported mainly in macropores. Examples of the chemical heat storage material include calcium compounds, magnesium compounds, activated carbon, silica gel, zeolite, and the like. Specifically, calcium compounds include calcium halides such as CaCl 2 , CaO, Ca ( OH) 2 and the like, and examples of the magnesium compound include magnesium halides such as MgCl 2 , MgO, and Mg (OH) 2 . Among them, calcium compounds or magnesium compounds have a larger amount of heat storage, repeatedly cause a quantitative reaction, the state change of the chemical heat storage material is small, and it is not decomposed or altered even at high temperature firing. It is preferable because of its low price.
 本発明の好ましい1つの実施形態に用いる化学蓄熱材としては、塩化カルシウム2水和物(CaCl・2HO)が挙げられる。塩化カルシウム2水和物はさらに水和することで塩化カルシウム4水和物になり、その水和に伴って放熱する。そして、塩化カルシウム4水和物は脱水することで塩化カルシウム2水和物になり、その脱水に伴って吸熱による蓄熱をする。すなわち、化学蓄熱材の塩化カルシウムは式(1)に示すような反応で蓄熱・放熱を可逆的に繰り返しできる。 Examples of the chemical heat storage material used in one preferred embodiment of the present invention include calcium chloride dihydrate (CaCl 2 .2H 2 O). When calcium chloride dihydrate is further hydrated, it becomes calcium chloride tetrahydrate, which dissipates heat. Then, calcium chloride tetrahydrate is dehydrated to become calcium chloride dihydrate, and accumulates heat by absorbing heat. That is, calcium chloride, which is a chemical heat storage material, can reversibly repeat heat storage and heat release by a reaction as shown in Formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)に蓄熱量Q又は、放熱量Qを併せて示すと、式(2)及び(3)に示す反応となる。 When the heat storage amount Q or the heat release amount Q is also shown in the formula (1), the reactions shown in the formulas (2) and (3) are obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本発明の多孔性化学蓄熱複合体において、化学蓄熱材の担持率は50~85質量%であることが、蓄熱及び放熱の効率を高め蓄熱量をより高くできることから好ましい。化学蓄熱材の担持率は、以下のように定義することができる。 In the porous chemical heat storage composite of the present invention, the loading ratio of the chemical heat storage material is preferably 50 to 85% by mass because the heat storage and heat dissipation efficiency can be increased and the amount of heat storage can be further increased. The loading rate of the chemical heat storage material can be defined as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 化学蓄熱材の担持量は、上記式(2)及び式(3)に示したように蓄熱量又は、放熱量と比例することから、担持量が50質量%以上であると、多孔性化学蓄熱複合体の蓄熱及び放熱効率をより高めることができ経済的である。担持量が85質量%以下であると、多孔体の割合が少なくなり、細孔(特にマクロ孔)の孔径が大きくなったり、繰り返し蓄熱反応及び放熱反応に伴って化学蓄熱材が崩壊や凝集を生じることも少なくなり、蓄・放熱反応効率が低下することも無くなり好ましい。 Since the loading amount of the chemical heat storage material is proportional to the heat storage amount or the heat radiation amount as shown in the above formulas (2) and (3), when the loading amount is 50% by mass or more, the porous chemical heat storage material The heat storage and heat dissipation efficiency of the composite can be further increased, which is economical. When the supported amount is 85% by mass or less, the ratio of the porous body decreases, the pore diameter (especially macropores) increases, or the chemical heat storage material collapses or aggregates due to repeated heat storage reaction and heat release reaction. This is preferable because it is less likely to occur and the storage / heat radiation reaction efficiency is not lowered.
 本発明の多孔性化学蓄熱複合体における担体は、上記した様に、多孔性である必要はあるが、(1)芳香環を含有する架橋性モノマーの重合体、または(2)カーボンのいずれかである。担体がカーボンである多孔性化学蓄熱複合体は、カーボン担体のマクロ孔に化学蓄熱材を担持し、その担体に前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体であれば、その製造方法は特に制限されるものではない。しかしながら、上記(1)の重合体担体は、焼成することで容易に炭化させることが可能であるため、上記重合体担体を焼成してカーボン担体とすることが、作業上は簡便であり好ましい。 The carrier in the porous chemical heat storage composite of the present invention needs to be porous as described above, but either (1) a polymer of a crosslinkable monomer containing an aromatic ring or (2) carbon. It is. The porous chemical heat storage composite in which the carrier is carbon has a porous structure having mesopores and / or micropores in which the chemical heat storage material is supported on the macropores of the carbon support and the reaction medium can be supplied to the chemical heat storage material on the support. If it is a sex chemical heat storage composite, the manufacturing method will not be restrict | limited in particular. However, since the polymer carrier (1) can be easily carbonized by firing, firing the polymer carrier to obtain a carbon carrier is convenient and preferable.
 担体を焼成してその細孔に、化学蓄熱材を入れても良いし、焼成温度で分解や変質をしない化学蓄熱材ならば、担体にそれを入れてから焼成することも出来る。 The carrier may be fired and a chemical heat storage material may be put into the pores, or if it is a chemical heat storage material that is not decomposed or altered at the firing temperature, it can be fired after being put in the carrier.
 カーボン担体のマクロ孔に化学蓄熱材を担持し、その担体に前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体は、芳香環を含有する架橋性モノマーの多孔性重合体担体のマクロ孔に、上記焼成において分解や変質しない化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体を焼成することで、簡便に得ることが出来る。こうすることで、重合体多孔体の細孔プロファイルを残したままの、カーボン担体に変換が出来る。 A porous chemical heat storage complex having mesopores and / or micropores capable of supporting a chemical heat storage material in macropores of a carbon support and supplying a reaction medium to the chemical heat storage material on the support is a cross-link containing an aromatic ring. In the macropores of the porous polymer carrier of the porous monomer, a chemical heat storage material that does not decompose or change in the calcination is supported, and the polymer carrier is a mesopore and / or a micropore capable of supplying a reaction medium to the chemical heat storage material. It can be easily obtained by firing a porous chemical heat storage composite having sinter. By doing so, it can be converted into a carbon support while retaining the pore profile of the polymer porous body.
 ちなみに、芳香環を含有する架橋性モノマーの多孔性重合体担体のマクロ孔に化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体と、カーボン担体のマクロ孔に化学蓄熱材を担持し、前記担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体とは、求められる使用条件や耐熱性の観点から、同じ化学蓄熱装置においても、使い分けることが好ましい。 Incidentally, a chemical heat storage material is supported in macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring, and the polymer carrier can supply mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material. A porous chemical heat storage composite having a mesopore and / or a micropore having a mesopore and / or a micropore capable of supplying a reaction medium to the chemical heat storage material. It is preferable that the composite is properly used even in the same chemical heat storage device from the viewpoint of required use conditions and heat resistance.
 多孔性化学蓄熱複合体の担体が重合体では耐熱性が充分でないことから、主に200℃以下の低温排熱を利用した蓄熱・放熱に利用することが好ましい。重合体多孔体は200℃を越えると酸化反応、有機物の分解反応などが生じるため、その多孔性化学蓄熱複合体の膨張・収縮による体積及び寸法変化に伴い伝熱面との接続不良と伝熱阻害などの諸問題が出てくる可能性があると考えられる。一方、カーボン多孔体は、200℃を超える温度に晒されても酸化反応や分解反応の対象となる有機物自体が存在しないから、耐熱性が高く、主に200℃以上の高温排熱を利用した蓄熱・放熱に利用することが出来る。 Since the porous chemical heat storage composite carrier is not sufficiently heat-resistant when it is a polymer, it is preferably used mainly for heat storage and heat dissipation using low-temperature exhaust heat of 200 ° C. or less. When the polymer porous body exceeds 200 ° C, oxidation reaction, decomposition reaction of organic matter, etc. occur, so the poor connection with the heat transfer surface and heat transfer with the volume and dimensional change due to expansion and contraction of the porous chemical heat storage composite It is considered that various problems such as inhibition may occur. On the other hand, the porous carbon body has high heat resistance because it does not have organic substances that are subject to oxidation and decomposition even when exposed to temperatures exceeding 200 ° C, and mainly uses high-temperature exhaust heat above 200 ° C. It can be used for heat storage and heat dissipation.
 本発明の芳香環を含有する架橋性モノマーの多孔性重合体担体のマクロ孔に化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体を製造で用いることが出来る架橋性モノマーとしては、特に制限はないが重合開始剤の存在下又は非存在下で重合するものであり、重合制御が容易で入手が容易なことから、ビニル基を有するものが好ましい。このような架橋性モノマーとしては、エチレン性不飽和二重結合を2以上含有する芳香族有機化合物、ブタジエン、ジビニルシクロヘキサン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能性モノマーが挙げられ、エチレン性不飽和二重結合を2以上含有する芳香族有機化合物が好ましい。エチレン性不飽和二重結合を2以上含有する芳香族有機化合物としては、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、1,3-ジプロペニルベンゼン、1,4-ジプロペニルベンゼン、ジブテニルベンゼン、ジペンテニルベンゼン、ジヘキセニルベンゼン、ジビニルナフタレン等が挙げられ、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、1,3-ジプロペニルベンゼン及び1,4-ジプロペニルベンゼンが炭化の歩留まりが高いことから、好ましい。これらの架橋性モノマーは単独で、又は2種類以上を混合して用いることもできる。 A chemical heat storage material is supported on macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring according to the present invention, and the polymer carrier is a mesopore and / or micro that can supply a reaction medium to the chemical heat storage material. The crosslinkable monomer that can be used in the production of a porous chemical heat storage composite having pores is not particularly limited, but is a polymer that can be polymerized in the presence or absence of a polymerization initiator, and is easy to control. Is preferable because it has a vinyl group. Such crosslinkable monomers include aromatic organic compounds containing two or more ethylenically unsaturated double bonds, butadiene, divinylcyclohexane, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolethanetri Examples include polyfunctional monomers such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and aromatic organic compounds containing two or more ethylenically unsaturated double bonds are preferred. Aromatic organic compounds containing two or more ethylenically unsaturated double bonds include 1,3-divinylbenzene, 1,4-divinylbenzene, 1,3-dipropenylbenzene, 1,4-dipropenylbenzene, dibutyl Examples include tenenylbenzene, dipentenylbenzene, dihexenylbenzene, divinylnaphthalene, and the like. 1,3-divinylbenzene, 1,4-divinylbenzene, 1,3-dipropenylbenzene, and 1,4-dipropenylbenzene are carbonized. It is preferable because the yield is high. These crosslinkable monomers can be used alone or in admixture of two or more.
 本発明の多孔性重合体は、1種又は2種以上の架橋性モノマーのホモポリマーもしくは共重合体であってもよく、1種又は2種以上の架橋性モノマーと1種又は2種以上の単官能性モノマーの共重合体であってもよい。しかしながら、上記した理由から、架橋性モノマーは、多孔性重合体を構成するモノマーの50~100モル%、好ましくは70~100モル%、より好ましくは80~100モル%、さらに好ましくは90~100モル%、特に好ましくは95~100モル%である。 The porous polymer of the present invention may be a homopolymer or copolymer of one or two or more crosslinkable monomers, and may be one or two or more crosslinkable monomers and one or two or more types. It may be a copolymer of a monofunctional monomer. However, for the reasons described above, the crosslinkable monomer is 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol% of the monomer constituting the porous polymer. The mol%, particularly preferably 95 to 100 mol%.
 単官能性モノマーとしては、スチレン、p-メチルスチレン、p-クロロスチレン、クロロメチルスチレン、α-メチルスチレン等のスチレン系モノマー、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸のグリコールエステル類;メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類;酢酸ビニル、酪酸ビニル等のビニルエステル類、N-メチルアクリルアミド、N-エチルアクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のN-アルキル置換(メタ)アクリルアミド類;アクリロニトリル、メタクリロニトリル等のニトリル類;アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-エチルヘキシル、アクリル酸テトラヒドロフルフリル、ジエチルアミノエチルアクリレート、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル、ジエチルアミノエチルメタクリレート等の(メタ)アクリル系モノマーが挙げられる。 Monofunctional monomers include styrene monomers such as styrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene, α-methylstyrene, ethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, etc. Glycol esters of (meth) acrylic acid; alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl esters such as vinyl acetate and vinyl butyrate, N-methylacrylamide, N-ethylacrylamide, N-methylmethacrylamide, N- N-alkyl substituted (meth) acrylamides such as ethyl methacrylamide; nitriles such as acrylonitrile and methacrylonitrile; acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate Isobutyl acrylate, tert-butyl acrylate, dodecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacryl Examples thereof include (meth) acrylic monomers such as n-butyl acid, isobutyl methacrylate, tert-butyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, and diethylaminoethyl methacrylate.
 本明細書において、本発明の多孔性化学蓄熱複合体の担体が重合体多孔体の場合、「多孔性化学蓄熱重合体複合体」又は「重合体複合体」と記載することがある。また、担体がカーボン多孔体の場合、「多孔性化学蓄熱カーボン複合体」又は「カーボン複合体」と記載することがある。 In the present specification, when the carrier of the porous chemical heat storage composite of the present invention is a polymer porous body, it may be described as “porous chemical heat storage polymer composite” or “polymer composite”. Further, when the carrier is a carbon porous body, it may be described as “porous chemical heat storage carbon composite” or “carbon composite”.
 本発明の多孔性化学蓄熱重合体複合体(1)は、例えば化学蓄熱材と重合時に相分離を誘発する溶剤とを混合した後、それに引き続き架橋性モノマーと重合開始剤を混合して重合性組成物を調製し、これを加熱重合することにより相分離重合過程を経て、化学蓄熱材が担持されている多孔性化学蓄熱重合体複合体を製造することができる。重合開始剤に代えて紫外線、電子線などの照射により重合反応を行ってもよい。 The porous chemical heat storage polymer composite (1) of the present invention is polymerized by, for example, mixing a chemical heat storage material and a solvent that induces phase separation during polymerization, and subsequently mixing a crosslinkable monomer and a polymerization initiator. A porous chemical heat storage polymer composite carrying a chemical heat storage material can be produced through a phase separation polymerization process by preparing a composition and subjecting it to heat polymerization. Instead of the polymerization initiator, the polymerization reaction may be carried out by irradiation with ultraviolet rays, electron beams or the like.
 本発明で用いることが出来る重合時に相分離を誘発する溶剤としては、架橋性モノマーと化学蓄熱材からなる重合性組成物とともに均一な組成物が得られ、重合反応した重合体と相溶しないものであれば制限はない。このような相分離誘発溶剤は、重合にともなう相分離過程に関与し、得られる多孔性化学蓄熱複合体の微細構造、特にその比表面積、細孔径、細孔体積、気孔率などに影響を与え得る。 As a solvent that induces phase separation during polymerization that can be used in the present invention, a uniform composition is obtained together with a polymerizable composition comprising a crosslinkable monomer and a chemical heat storage material, and is incompatible with a polymer obtained by polymerization reaction. If there is no limit. Such a phase separation-inducing solvent is involved in the phase separation process accompanying polymerization, and affects the microstructure of the resulting porous chemical heat storage composite, particularly its specific surface area, pore diameter, pore volume, porosity, etc. obtain.
 相分離誘発溶剤としては、単一溶剤であっても混合溶剤であっても良く、混合溶剤の場合には、その構成成分単独では重合性組成物と相溶しないものであってもよい。このような溶剤としては、例えば、酢酸エチル、デカン酸メチル、ラウリル酸メチル、アジピン酸イソブチルなどの脂肪酸のアルキルエステル類、アセトン、2-ブタノン、イソブチルメチルケトン、ジイソブチルケトンなどのケトン類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルなどのエーテル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドンなどの非プロトン性極性溶剤、トルエン、キシレンなどの芳香族炭化水素類、ヘキサン、オクタンなどの脂肪族炭化水素類、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノールなどのアルコール類、及び、水などの溶剤が挙げられるこのような溶剤の中でも、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドンなどの非プロトン性極性溶剤や、メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノールなどの高極性のアルコール類が、前記の化学蓄熱材と相溶しやすく、また、架橋性モノマーを含む重合性組成物と相溶しやすいため、好ましく用いられる。 The phase separation inducing solvent may be a single solvent or a mixed solvent. In the case of a mixed solvent, the component alone may not be compatible with the polymerizable composition. Examples of such solvents include alkyl esters of fatty acids such as ethyl acetate, methyl decanoate, methyl laurate, isobutyl adipate, ketones such as acetone, 2-butanone, isobutyl methyl ketone, diisobutyl ketone, and diethyl ether. , Tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and other ethers, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, and other non-protons Polar solvents, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and octane, and halogenated hydrocarbons such as dichloromethane and chloroform Among these solvents, N, alcohols such as methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, and the like, and solvents such as water, Aprotic polar solvents such as N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, etc. These highly polar alcohols are preferably used because they are easily compatible with the chemical heat storage material and are easily compatible with the polymerizable composition containing a crosslinkable monomer.
 重合性組成物には、重合速度や重合度、さらには高分子の多孔構造などを調整するために重合開始剤を添加しても良い。 A polymerization initiator may be added to the polymerizable composition in order to adjust the polymerization rate, the polymerization degree, and the polymer porous structure.
 重合開始剤としては、重合組成物を重合させることが可能なものであれば、特に制限はなく、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤などが使用できる。例えば、2,2‘-アソビスブチロニトリル、2,2‘-アソビスシクロヘキサンカルボニトリル、1,1‘-アソビス(シクロヘキサン-1-カルボニトリル)、2,2‘-アソビスシ(2-メチルブチロニトリル)、2,2‘-アソビス(2,4-ジメチルバレロニトリル)、2,2‘-アソビス(4-メトキシ-2,4-ジメチルバレロニトリル)、4,4-アゾビス(4-シアノ吉草酸)、2,2‘-アソビスイソ酪酸ジメチル、2,2‘-アソビス(2-メチルプロピオンアミドキシム)、2,2‘-アソビス(2-(2-イミダゾリン-2-イル)プロパン)、2,2‘-アソビス(2,4,4-トリメチルペンタン)などのアゾ系開始剤、過酸化ベンゾイル、過酸化ジ-t-ブチル、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどの過酸化物系開始剤が挙げられる。また、活性エネルギー線の作用により機能する重合開始剤として、p-t-ブチルトリクロロアセトフェノン、2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-
メチル-1-フェニルプロパン-1-オンなどのアセトフェノン類、ベンゾフェノン、4,4‘-ビスジメチルアミノベンゾフェノン、2-クロロチオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントンなどのケトン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾインエーテル類、ベンジルジメチルケタール、ヒドロキシシクロヘキシルフェニルケトンなどのベンジルケタール類、N-アジドドスルフォニルフェニルマレイミドなどのアジド類が挙げられる。また、マレイミド系化合物などの紫外線重合開始剤、テトラエチルチイラムジスルフィドなどのジスルフィド系開始剤、2,2,6,6、-テトラメチルピペリジン-1-オキシルなどのニトロキシド開始剤、4,4’-ジ-t-ブチル-2,2‘-ビピリジン銅錯体-トリクロロ酢酸メチル複合体、ベンジルジエチルジチオカルバメートなどのリビングラジカル重合開始剤を用いることもできる。
The polymerization initiator is not particularly limited as long as the polymerization composition can be polymerized, and radical polymerization initiators, anionic polymerization initiators, cationic polymerization initiators, and the like can be used. For example, 2,2′-isobisbutyronitrile, 2,2′-isobiscyclohexanecarbonitrile, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyro Nitrile), 2,2′-Asobis (2,4-dimethylvaleronitrile), 2,2′-Asobis (4-methoxy-2,4-dimethylvaleronitrile), 4,4-azobis (4-cyanovaleric acid) ), Dimethyl 2,2′-isobisisobutyrate, 2,2′-azobis (2-methylpropionamidoxime), 2,2′-azobis (2- (2-imidazolin-2-yl) propane), 2,2 ′ -Azo initiators such as asobis (2,4,4-trimethylpentane), benzoyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxy And peroxide-based initiators such as As polymerization initiators that function by the action of active energy rays, pt-butyltrichloroacetophenone, 2,2′-diethoxyacetophenone, 2-hydroxy-2-
Acetophenones such as methyl-1-phenylpropan-1-one, ketones such as benzophenone, 4,4′-bisdimethylaminobenzophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone Benzoin ethers such as benzoin, benzoin methyl ether, benzoin isopropyl ether and benzoin isobutyl ether, benzyl ketals such as benzyldimethyl ketal and hydroxycyclohexyl phenyl ketone, and azides such as N-azidosulfonylphenylmaleimide. In addition, ultraviolet polymerization initiators such as maleimide compounds, disulfide initiators such as tetraethylthiilam disulfide, nitroxide initiators such as 2,2,6,6, -tetramethylpiperidine-1-oxyl, 4,4′- Living radical polymerization initiators such as di-t-butyl-2,2′-bipyridine copper complex-methyl trichloroacetate complex and benzyldiethyldithiocarbamate can also be used.
 重合反応は熱重合法、及び、紫外線や電子線などの照射により行う活性エネルギー線重合法など公知慣用の方法でよい。例えば、前記した熱重合開始剤とともに40~100℃、好ましくは60~80℃で10分~72時間、好ましくは6~12時間重合反応させることにより、化学蓄熱材を担持した多孔性重合体を製造することができる。また、各種水銀ランプやメタルハライドランプを用いても上記多孔性重合体を製造することができる。 The polymerization reaction may be a known and conventional method such as a thermal polymerization method and an active energy ray polymerization method performed by irradiation with ultraviolet rays or electron beams. For example, a porous polymer carrying a chemical heat storage material can be obtained by carrying out a polymerization reaction at 40 to 100 ° C., preferably 60 to 80 ° C. for 10 minutes to 72 hours, preferably 6 to 12 hours together with the above-described thermal polymerization initiator. Can be manufactured. Also, the porous polymer can be produced using various mercury lamps and metal halide lamps.
 架橋性モノマーと化学蓄熱材を含む重合性組成物を重合させた後、溶剤を除去する方法に特に制限はないが、溶剤が揮発性の高い溶剤の場合は、常圧又は減圧により乾燥させることにより行うことができる。溶剤が揮発性の低い溶剤の場合は、重合反応後の重合物を揮発性の高い溶剤に接触させて溶剤交換を行った後、常圧又は減圧により乾燥させることにより行うことができる。また、溶剤を除去する際に、重合物のうちに未重合で残存した成分を除去する目的で、その未重合物が溶解する溶剤を用いて、洗浄、抽出を行うことも有効である。例えば、抽出操作には、ソックスレー抽出器を用いて行うこともできる。 There is no particular limitation on the method of removing the solvent after polymerizing the polymerizable composition containing the crosslinkable monomer and the chemical heat storage material, but if the solvent is a highly volatile solvent, it should be dried at normal pressure or reduced pressure. Can be performed. When the solvent is a low volatility solvent, the polymer after the polymerization reaction is brought into contact with a high volatility solvent to exchange the solvent, and then dried by normal pressure or reduced pressure. In addition, when removing the solvent, it is also effective to perform washing and extraction using a solvent in which the unpolymerized product dissolves for the purpose of removing components remaining unpolymerized in the polymerized product. For example, the extraction operation can be performed using a Soxhlet extractor.
 本発明の多孔性化学蓄熱複合体は、重合体複合体又はカーボン複合体を包含するが、重合体複合体からの、カーボン複合体を製造する方法としては、例えば、当該重合体複合体の一段階での焼成でも良いが、それ以外には、好適な製造方法として、電気炉を用いた不融化工程と続きの焼成工程からなる製造方法が挙げられる。 The porous chemical heat storage composite of the present invention includes a polymer composite or a carbon composite. As a method for producing a carbon composite from the polymer composite, for example, one of the polymer composites can be used. Other than that, a suitable manufacturing method includes a manufacturing method including an infusibilization step using an electric furnace and a subsequent baking step.
 不融化工程は空気気流中において200~300℃の低温で加熱し、後続の焼成工程(850℃以上)における多孔性重合体複合体表面の融着を防止するために行う。このときの空気流速度は特に制限されるものではないが、0.1~1.0mL/分が望ましい。 また、不融化工程の加熱処理は特に制限されるものではないが、1~10時間実行することが望ましい。不融化工程後の焼成工程で、多孔体試料は炉芯管内部に入れて窒素気流速度は特に制限されるものではないが、1.0~5.0mL/分で行うのが望ましい。 The infusibilization step is performed at a low temperature of 200 to 300 ° C. in an air stream to prevent fusion of the surface of the porous polymer composite in the subsequent firing step (850 ° C. or higher). The air flow speed at this time is not particularly limited, but is preferably 0.1 to 1.0 mL / min. In addition, the heat treatment in the infusibilization process is not particularly limited, but it is desirable to execute for 1 to 10 hours. In the firing step after the infusibilization step, the porous body sample is placed inside the furnace core tube, and the nitrogen air flow rate is not particularly limited, but it is preferably 1.0 to 5.0 mL / min.
 焼成が充分に行われていないと、カーボン担体の一部に重合体担体部分が混在している状態となり、特に200℃を超える高温排熱を利用した蓄熱・放熱に利用した場合の繰り返し熱交換時における信頼性が低下するので、この様な複合体を化学蓄熱に用いる場合には、高温排熱には使用しないか、一部に重合体担体部分を含めて全体を完全にカーボン担体としてから高温排熱に使用することが好ましい。 If firing is not performed sufficiently, the polymer carrier part is mixed in part of the carbon carrier, especially when it is used for heat storage and heat dissipation using high-temperature exhaust heat exceeding 200 ° C. When using such a composite for chemical heat storage, do not use it for high-temperature exhaust heat, or include the polymer carrier part in part and completely use it as a carbon carrier. It is preferable to use it for high temperature exhaust heat.
 焼成工程における加熱温度や加熱時間は、いずれも特に制限されるものではないが、850~1000℃が望ましく、加熱時間は30分~2時間が望ましい。この時、炉芯管は特に制限されるものではないが、円筒型の石英管を用いることが望ましい。電気炉は特に制限されるものではないが、焼成条件を精密に制御するために、装置側の温度を測定するための熱電対と炉芯管内部の温度を測定するための熱電対の両方を設置し、前記炉芯管内部の温度を測定するための熱電対を電気炉の制御端子に接続する仕組みが望ましい。 The heating temperature and heating time in the firing step are not particularly limited, but are preferably 850 to 1000 ° C., and the heating time is preferably 30 minutes to 2 hours. At this time, the furnace core tube is not particularly limited, but it is desirable to use a cylindrical quartz tube. Although the electric furnace is not particularly limited, in order to precisely control the firing conditions, both a thermocouple for measuring the temperature on the apparatus side and a thermocouple for measuring the temperature inside the furnace core tube are used. It is desirable to install and connect a thermocouple for measuring the temperature inside the furnace core tube to the control terminal of the electric furnace.
 以下に、本発明の好ましい実施形態に関してより詳細に説明する。 Hereinafter, a preferred embodiment of the present invention will be described in more detail.
 図2は、多孔性化学蓄熱重合体複合体(1)のSEM-EDS測定を行った観察写真を示す図である。図2のSEMで観察されたように白く見える多孔性重合体Aの形状はジビニルベンゼンのランダム相分離重合で出来た球状の重合体が連続的に繋がってスポンジ状の多孔体に成長した構造体であり、黒く見える数マイクロメートル孔径を持つ細孔のマクロ孔Bが多く形成されている。さらに、図1のSEM表面観察の50,000倍から150,000倍のSEM像写真で示すように、その数マイクロメートル孔径のマクロ孔Bの壁になっている球状の重合体は、数ナノメートル細孔のミクロ孔と数十ナノメートル細孔のメソ孔を多く持っている。また、それらのマイクロメートルサイズ細孔のマクロ孔と数ナノメートル細孔のミクロ孔と数十ナノメートル細孔のメソ孔は互いに開通していると考えられる。 FIG. 2 is a view showing an observation photograph obtained by performing SEM-EDS measurement of the porous chemical heat storage polymer composite (1). The shape of the porous polymer A that appears white as observed by the SEM in FIG. 2 is a structure in which spherical polymers made by random phase separation polymerization of divinylbenzene are continuously connected to grow into a sponge-like porous body. Many macro pores B having a pore diameter of several micrometers that appear black are formed. Further, as shown in the SEM image photograph of 50,000 times to 150,000 times of the SEM surface observation of FIG. 1, the spherical polymer that is the wall of the macropore B having a pore diameter of several micrometers is several nanometers. It has many micropores with metric pores and mesopores with tens of nanometer pores. Further, it is considered that the micropores of the micrometer size pores, the micropores of several nanometer pores, and the mesopores of several tens of nanometer pores are opened to each other.
 そして、化学蓄熱材として用いた塩化カルシウムのカルシウム元素又は塩素元素のマッピング像で示すように、数マイクロメートルの孔径からなるマクロ孔Bの中にカルシウム元素又は塩素元素が多く観測されて、本発明の多孔性化学蓄熱重合体複合体(1)において、化学蓄熱材の塩化カルシウムは多孔体のマクロ細孔中に良好に担持されていると考えられる。 As shown in the mapping image of calcium element or chlorine element of calcium chloride used as the chemical heat storage material, a large amount of calcium element or chlorine element is observed in the macropore B having a pore diameter of several micrometers, and the present invention. In the porous chemical heat storage polymer composite (1), calcium chloride as the chemical heat storage material is considered to be favorably supported in the macropores of the porous body.
 この実施形態に用いる化学蓄熱材としては、例えば塩化カルシウム2水和物(CaCl・2HO)が用いられる。 As the chemical heat storage material used in this embodiment, for example, calcium chloride dihydrate (CaCl 2 · 2H 2 O) is used.
 例えば塩化カルシウム2水和物のような化学蓄熱材は数マイクロメートルの孔径からなるマクロ孔Bの中に担持されていることで、蓄熱反応及び放熱反応を繰り返しても化学蓄熱材の崩壊や凝集を効果的に防ぐことが出来、また、化学蓄熱材を用いた水和・脱水反応を繰り返す時、小粒子蓄熱材の膨張・収縮による体積変化に伴い伝熱面との充填不良と伝熱阻害などを防ぐことが出来、本発明の多孔性化学蓄熱複合体は繰り返し蓄・放熱反応に安定的に使用することができる。 For example, a chemical heat storage material such as calcium chloride dihydrate is supported in a macropore B having a pore diameter of several micrometers, so that the chemical heat storage material collapses or aggregates even when the heat storage reaction and the heat release reaction are repeated. In addition, when repeating hydration and dehydration reactions using chemical heat storage materials, poor filling with heat transfer surfaces and heat transfer inhibition due to volume changes due to expansion and contraction of small particle heat storage materials The porous chemical heat storage composite of the present invention can be used stably for repeated storage and heat dissipation reactions.
 そして、上記細孔のマクロ孔の孔径は特に制限されないが、50nm~200μm、好ましくは100nm~200μm、より好ましくは200nm~100μmである。上記した範囲であれば、細孔の孔径が小さすぎると、化学蓄熱材の担持が不利になる又は、少量の担持になって蓄・放熱の反応効率が低下することも無く、しかも、担持された化学蓄熱材が大きくなり、その表面積が低くなり、蓄・放熱反応効率が低下することも無いので好ましい。 The pore diameter of the macropores is not particularly limited, but is 50 nm to 200 μm, preferably 100 nm to 200 μm, more preferably 200 nm to 100 μm. Within the above range, if the pore diameter is too small, loading of the chemical heat storage material will be disadvantageous, or it will be carried in a small amount, and the reaction efficiency of storage and heat dissipation will not decrease, and it will be supported. This is preferable because the chemical heat storage material becomes large, the surface area thereof becomes low, and the efficiency of heat storage and heat dissipation reaction does not decrease.
 本発明の化学蓄熱装置は、従来の多孔性化学蓄熱複合体に代えて、上記本発明の多孔性化学蓄熱複合体を用いることで、容易に得ることが出来る。 The chemical heat storage device of the present invention can be easily obtained by using the porous chemical heat storage composite of the present invention instead of the conventional porous chemical heat storage composite.
 反応媒体貯蔵部と化学蓄熱反応部を有し、これらは反応媒体の蒸気が流動可能な配管により接続され、前記配管には蒸気の供給を遮断することが可能なバルブが備えられる。化学蓄熱反応部には、化学蓄熱材が備えられている。蓄熱モードでは、反応媒体を吸着/吸収した化学蓄熱材(例えば水和したCaCl)が外部からの余剰熱等の熱エネルギーを吸収して反応媒体を脱着(吸熱反応)し、発生したガス状の反応媒体が配管を通り反応媒体貯蔵部の容器に入り、そこで凝縮液化する。一方、熱出力モードでは、反応媒体貯蔵部内のガス状の反応媒体が配管を通り化学蓄熱反応部の容器に入り、そこで化学蓄熱材(例えば非水和CaCl)が反応媒体を吸収/吸着して発熱反応を起こさせることが出来る。上記した通り、熱交換が繰り返し行われることにより、従来に比べて高い効率で、熱を再生可能エネルギーとして活用することが出来る。 The reaction medium storage section and the chemical heat storage reaction section are connected by a pipe through which the vapor of the reaction medium can flow, and the pipe is provided with a valve capable of shutting off the supply of steam. The chemical heat storage reaction part is provided with a chemical heat storage material. In the heat storage mode, a chemical heat storage material (for example, hydrated CaCl 2 ) that has adsorbed / absorbed the reaction medium absorbs heat energy such as excess heat from the outside, desorbs the reaction medium (endothermic reaction), and generates a gaseous state The reaction medium passes through the piping and enters the container of the reaction medium storage unit, where it condensates. On the other hand, in the heat output mode, the gaseous reaction medium in the reaction medium storage part passes through the pipe and enters the chemical heat storage reaction part container, where the chemical heat storage material (for example, non-hydrated CaCl 2 ) absorbs / adsorbs the reaction medium. Can cause an exothermic reaction. As described above, by repeatedly performing heat exchange, heat can be utilized as renewable energy with higher efficiency than in the past.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 以下の実施例中、用いた機器類及び測定方法については下記のとおりである。
1.電気炉:アサヒ理化社製(温度コントローラー AGC-1P型)、石英チューブ型、  0~1200℃、AC 100V、Max 15A(1500W)
2.流動式比表面積自動測定(窒素ガス吸脱着測定法)装置:日本ベル社製、
Belsorp-mini II
3.細孔分布測定装置:島津製作所社製、オートポア9520形(水銀圧入法)
4.TG/DTA測定装置:日立ハイテクサイエンス社製、EXSTER TG/DTA63005.SEM表面観測装置:日本電子社製、JSM-7500TFE、加速電圧 0.5kV、1kV(GBモード)6.顕微ラマン分光装置:堀場製作所製、LabRAM HR-800
7.FT-IR:日本分光製、FT/IR 6300
8.水蒸気作動型示差熱天秤TG/DTA装置:株式会社リガク製、TG-DTA/HUM-1
In the following examples, the equipment and measurement methods used are as follows.
1. Electric furnace: Asahi Rika Co., Ltd. (temperature controller AGC-1P type), quartz tube type, 0 to 1200 ° C, AC 100V, Max 15A (1500W)
2. Fluid type specific surface area automatic measurement (nitrogen gas adsorption / desorption measurement method) device: manufactured by Bell Japan
Belsorp-mini II
3. Pore distribution measuring device: Shimadzu Corporation, Autopore 9520 type (mercury intrusion method)
4). TG / DTA measuring device: Hitachi High-Tech Science, EXSTER TG / DTA63005. SEM surface observation device: JSM-7500TFE manufactured by JEOL Ltd., acceleration voltage 0.5kV, 1kV (GB mode) 6. Microscopic Raman spectrometer: manufactured by HORIBA, LabRAM HR-800
7). FT-IR: JASCO, FT / IR 6300
8). Steam operated differential thermobalance TG / DTA equipment: TG-DTA / HUM-1 manufactured by Rigaku Corporation
実施例1:多孔性化学蓄熱重合体複合体(1)の合成
 重合反応フラスコにCaCl2・2H2Oを39.1gとエタノール40.0gを入れて超音波より溶解させた後、ジメチルホルムアミド(DMF)を10.0g加えて、更に超音波より溶解させた。引き続き、溶解した溶液にジビニルベンゼン(DVB)を26.0g(0.2mol)と重合触媒のアゾビスイソブチロニトリル(AIBN)0.80g(4.9mmol)を加えて溶解させた後、室温下で10分間窒素置換した。窒素置換した混合溶液を用いてアルゴン(Ar)気流下、70℃の反応浴槽に入れて重合反応開始した。約15分後から反応液の固形化が開始して重合反応は順調に進行した。6時間後、反応を終了して反応浴槽を下げてから空冷却を行った。
Example 1 Synthesis of Porous Chemical Heat Storage Polymer Complex (1) 39.1 g of CaCl 2 · 2H 2 O and 40.0 g of ethanol were placed in a polymerization reaction flask and dissolved by ultrasound, and then dimethylformamide (DMF) Was added and further dissolved by ultrasonic waves. Subsequently, 26.0 g (0.2 mol) of divinylbenzene (DVB) and 0.80 g (4.9 mmol) of azobisisobutyronitrile (AIBN) as a polymerization catalyst were added to the dissolved solution and dissolved, and then at room temperature for 10 minutes. Replaced with nitrogen. Using the mixed solution substituted with nitrogen, the polymerization reaction was started in an argon (Ar) stream in a reaction bath at 70 ° C. After about 15 minutes, solidification of the reaction liquid started and the polymerization reaction proceeded smoothly. After 6 hours, the reaction was completed and the reaction bath was lowered, and then air cooling was performed.
 次に、脱溶剤のため、冷却トラップ付きのデシケータ式の真空乾燥器に上記の重合混合物を入れて、真空下、70℃で15時間の乾燥を行った。 Next, in order to remove the solvent, the above polymerization mixture was put in a desiccator type vacuum dryer equipped with a cooling trap, and dried at 70 ° C. for 15 hours under vacuum.
 引き続き、脱溶剤した重合物を反応容器から取り出して酢酸エチルより固形粉状の重合物の洗浄を行った。洗浄した固形粉状の重合物は桐山ロートでろ過分離した。 Subsequently, the solvent-removed polymer was removed from the reaction vessel, and the solid powder polymer was washed from ethyl acetate. The washed solid powdery polymer was separated by filtration with a Kiriyama funnel.
 ろ過分離した重合物の固形粉状は冷却トラップ付きのデシケータ式の真空乾燥器に入れて真空下、60℃で6時間の乾燥を行い、白色の多孔体に担持率60質量%相当の化学蓄熱材が担持されている多孔性化学蓄熱重合体複合体(1)を52.7g得た。 The polymer powder separated by filtration is placed in a desiccator-type vacuum dryer equipped with a cooling trap and dried under vacuum at 60 ° C for 6 hours, resulting in a chemical heat storage equivalent to a loading rate of 60% by mass on a white porous body. 52.7 g of a porous chemical heat storage polymer composite (1) carrying the material was obtained.
 また、得られた多孔性化学蓄熱重合体複合体(1)の一部を用いて水洗浄より担持されている塩化カルシウム水和物を除去した多孔性重合体(2)を得た。 Moreover, a porous polymer (2) was obtained by removing a portion of the obtained porous chemical heat storage polymer composite (1) from the calcium chloride hydrate supported by washing with water.
 そして、得られた多孔性化学蓄熱重合体複合体(1)及び多孔性重合体(2)を用いて、各種分析及び熱物性の評価を行った。 Then, using the obtained porous chemical heat storage polymer composite (1) and porous polymer (2), various analyzes and evaluation of thermophysical properties were performed.
 ここで、化学蓄熱材の担持率は、以下のように定義した。
蓄熱材の担持率(質量%)=[担持した化学蓄熱材量(g)/蓄熱複合体量(g)]×100
Here, the loading rate of the chemical heat storage material was defined as follows.
Load ratio of heat storage material (mass%) = [Amount of chemical heat storage material supported (g) / Amount of heat storage composite (g)] × 100
 空気及び窒素雰囲気下で、本発明の多孔性化学蓄熱重合体複合体(1)のTG/DTA測定結果、両方とも220℃付近まで塩化カルシウム水和物の脱水に伴う減量が観測された後、空気雰囲気では350℃付近から、窒素雰囲気では400℃付近から有機物の多孔性重合体の分解に伴う減量が観測された。 After the TG / DTA measurement result of the porous chemical heat storage polymer composite (1) of the present invention under air and nitrogen atmosphere, both were observed to lose weight accompanying dehydration of calcium chloride hydrate to around 220 ° C. The weight loss accompanying the decomposition of the organic porous polymer was observed from around 350 ° C. in the air atmosphere and from around 400 ° C. in the nitrogen atmosphere.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1で示したように本発明で作製された多孔性化学蓄熱重合体複合体(1)は、平均細孔径が3.31nmと最大細孔分布が1.22nmの結果から、細孔径が数ナノメートルから数十ナノメートルのミクロ孔及びメソ孔が多く存在すると考えられる。 As shown in Table 1, the porous chemical heat storage polymer composite (1) produced in the present invention has an average pore diameter of 3.31 nm and a maximum pore distribution of 1.22 nm. It is thought that there are many micropores and mesopores of nanometers to several tens of nanometers.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の多孔性化学蓄熱重合体複合体(1)を用いて、水洗浄より担持されている塩化カルシウム水和物を除去した多孔性重合体(2)の水銀圧入法による細孔分布を測定した結果、多孔性化学蓄熱重合体複合体(1)は細孔径が数マイクロメートルから数十マイクロメートルのマクロ孔で分布されており、気孔率83%であったことから多くの空隙を持っていると考えられる。 Measurement of pore distribution by mercury porosimetry of porous polymer (2) from which calcium chloride hydrate supported by water washing was removed using the porous chemical heat storage polymer composite (1) of the present invention. As a result, the porous chemical heat storage polymer composite (1) was distributed with macropores having a pore diameter of several micrometers to several tens of micrometers, and had a porosity of 83%. It is thought that there is.
 ここで、気孔率は次の式で定義される。
気孔率(%)=1-d/p、dはかさ密度、pは真密度、d=乾燥重量/体積
Here, the porosity is defined by the following equation.
Porosity (%) = 1-d / p, d is bulk density, p is true density, d = dry weight / volume
 SEM測定より本発明の多孔性化学蓄熱重合体複合体(1)の表面観察を行ったところ、多孔性重合体の形状はジビニルベンゼンのランダム相分離重合で球状の重合体が連続的に繋がって多孔体に成長した構造体であると考えられる。3,500倍のSEM像から、多孔体の細孔径はマイクロメートルサイズのマクロ孔であり、そのマイクロメートル細孔の壁になっている球状の重合体は、数ナノメートルのミクロ孔と数十ナノメートルのメソ孔を多く持っている(15,000倍のSEM像)ことが分かった。また、それらのマイクロメートルサイズのマクロ孔と数ナノメートルのミクロ孔と数十ナノメートルのメソ孔は互いに開通しているものと考えられる。そして、その数マイクロメートル以上の孔径を持つマクロ孔中には化学蓄熱材の塩化カルシウムが担持されていると考えられて、SEM-EDS測定より確認を行った。 When the surface of the porous chemical heat storage polymer composite (1) of the present invention was observed by SEM measurement, the shape of the porous polymer was continuously connected to the spherical polymer by random phase separation polymerization of divinylbenzene. It is considered that the structure has grown into a porous body. From the SEM image at 3,500 times, the pore diameter of the porous body is a macropore of a micrometer size, and the spherical polymer that is the wall of the micrometer pore has a micropore of several nanometers and several tens of micropores. It was found that there are many nanometer mesopores (15,000 times SEM image). Further, it is considered that the micropores of a micrometer size, the micropores of several nanometers, and the mesopores of several tens of nanometers are opened to each other. And it was thought that the calcium pore of a chemical heat storage material was carried in the macropores having a pore diameter of several micrometers or more, and it was confirmed by SEM-EDS measurement.
 多孔性化学蓄熱重合体複合体(1)を用いてSEM-EDS測定を行った結果、重合体複合体(1)のSEM形状と炭素元素のマッピング像とは一致して、炭素元素のないマクロ孔の箇所とカルシウム元素又は塩素元素のマッピング像は一致していた。本発明の多孔性化学蓄熱重合体複合体(1)において、化学蓄熱材の塩化カルシウムは多孔体の細孔中に良好に担持されていると考えられる。 As a result of SEM-EDS measurement using the porous chemical heat storage polymer composite (1), the SEM shape of the polymer composite (1) and the mapping image of the carbon element agree with each other, and there is no carbon element. The mapping image of the hole location and the calcium element or chlorine element was in agreement. In the porous chemical heat storage polymer composite (1) of the present invention, it is considered that calcium chloride as the chemical heat storage material is favorably supported in the pores of the porous body.
 水洗浄より担持されている化学蓄熱材の塩化カルシウム水和物を除去した多孔性重合体(2)の元素マッピング測定を行ったところ、炭素原子はSEM形状と一致したが、カルシウム元素及び塩素元素は検出されなかった。 When element mapping measurement was performed on the porous polymer (2) from which the calcium chloride hydrate of the chemical heat storage material supported by water washing was removed, the carbon atoms were consistent with the SEM shape. Was not detected.
 本発明の多孔性化学蓄熱重合体複合体(1)を用いて温熱取り出し試験を行い重合体複合体(1)の蓄熱密度及び放熱速度を測定した。測定条件で、装置のエネルギー校正はIn、Sn、Pbの融解熱を用いて実施した。試料量は10mgを用いて、前処理として窒素気流下、室温から毎分10℃昇温で120℃まで加温して60分保持した後、80℃まで降温した。引き続き、35℃飽和水蒸気(水蒸気分圧5.6kPa/窒素バランス)を用いて80℃で60分間水蒸気吸着の温熱取り出しを行った。その後、再び120℃で水蒸気脱着と80℃で水蒸気吸着の温熱取り出しを行った。 A heat extraction test was performed using the porous chemical heat storage polymer composite (1) of the present invention, and the heat storage density and heat release rate of the polymer composite (1) were measured. Under the measurement conditions, the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb. The amount of the sample was 10 mg, and as a pretreatment, the sample was heated from room temperature to 120 ° C. at 120 ° C. per minute and kept at 60 ° C. for 60 minutes, and then lowered to 80 ° C. as a pretreatment. Subsequently, using 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), water was taken out from the water at 80 ° C. for 60 minutes. Thereafter, the steam was desorbed again at 120 ° C. and the hot water was taken out at 80 ° C. by water vapor adsorption.
 結果、本発明の多孔性化学蓄熱重合体複合体(1)1kg当たりの蓄熱密度は265kJであり、吸着速度は18.6g水/分であり、約4分程度で温熱取り出し出来る早い速度であった。
実施例2:多孔性化学蓄熱カーボン複合体(3)の合成
 先ず、焼成前処理として不融化工程を実施した。電気焼成炉に石英管を設置した後、白色の重合体複合体(1)4.5201gを石英管に入れた。圧縮空気を0.1L/min流しながら加熱を開始した。室温から毎分5℃で250℃まで昇温した後、250℃で2時間保持した。2時間の加熱運転停止後、室温まで自然冷却して黄色の不融化体3.9210gが得られた。
As a result, the heat storage density per 1 kg of the porous chemical heat storage polymer composite (1) of the present invention is 265 kJ, the adsorption rate is 18.6 g water / min, and the heat can be taken out quickly in about 4 minutes. It was.
Example 2: Synthesis of porous chemical heat storage carbon composite (3) First, an infusibilization step was performed as a pretreatment for firing. After installing the quartz tube in the electric firing furnace, 4.5201 g of the white polymer composite (1) was placed in the quartz tube. Heating was started while flowing compressed air at 0.1 L / min. The temperature was raised from room temperature to 250 ° C at 5 ° C per minute, and then kept at 250 ° C for 2 hours. After stopping the heating operation for 2 hours, it was naturally cooled to room temperature to obtain 3.9210 g of a yellow infusible material.
 引き続き、前記で作製した不融化体3.5560gを石英管に入れて、窒素を毎分1.0L流しながら本焼成工程を行った。室温から毎分5℃で900℃まで昇温した後、900℃で1時間保持した。1時間の加熱運転停止後、室温まで自然冷却して黒色の多孔性化学蓄熱カーボン複合体(3)が2.1620g得られた。得られた多孔性化学蓄熱炭素複合体(3)の塩化カルシウム担持率は79質量%程度と考えられる。 Subsequently, 3.5560 g of the infusible material produced above was put in a quartz tube, and the main firing step was performed while flowing 1.0 L of nitrogen per minute. The temperature was raised from room temperature to 900 ° C. at 5 ° C. per minute, and then held at 900 ° C. for 1 hour. After stopping the heating operation for 1 hour, it was naturally cooled to room temperature, and 2.1620 g of a black porous chemical thermal storage carbon composite (3) was obtained. The obtained porous chemical heat storage carbon composite (3) is considered to have a calcium chloride loading of about 79% by mass.
 そして、得られた多孔性化学蓄熱カーボン複合体(3)を用いて、各種分析及び熱物性の評価を行った。 Then, using the obtained porous chemical heat storage carbon composite (3), various analyzes and evaluation of thermophysical properties were performed.
 空気雰囲気下で、本発明の多孔性化学蓄熱カーボン複合体(3)のTG/DTA測定結果、150℃付近まで塩化カルシウム水和物の脱水に伴う減量が観測されて、焼成後のカーボン複合体(3)に化学蓄熱材の塩化カルシウムが良好に担持されていると考えられる。 TG / DTA measurement result of the porous chemical heat storage carbon composite (3) of the present invention under air atmosphere, a weight loss accompanying dehydration of calcium chloride hydrate was observed up to about 150 ° C., and the carbon composite after firing In (3), it is considered that the calcium chloride as the chemical heat storage material is supported well.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 多孔性化学蓄熱カーボン複合体(3)の水銀圧入法による細孔分布を測定した。結果、本発明のカーボン複合体(3)は、細孔径が数マイクロメートルのマクロ孔を中心に数十マイクロメートルのマクロ孔までの分布を示していて、気孔率59%の空隙を持っていると考えられる。そして、前記の多孔性化学蓄熱重合体複合体(1)と同様に流動式比表面積自動測定より多孔性化学蓄熱カーボン複合体(3)においても、ミクロ孔及びメソ孔の存在は確認された。 The pore distribution by the mercury intrusion method of the porous chemical heat storage carbon composite (3) was measured. As a result, the carbon composite (3) of the present invention shows a distribution from a macropore having a pore diameter of several micrometers to a macropore having several tens of micrometers, and has voids with a porosity of 59%. it is conceivable that. As in the case of the porous chemical heat storage polymer composite (1), the presence of micropores and mesopores was confirmed in the porous chemical heat storage carbon composite (3) from the flow type specific surface area automatic measurement.
 重合体複合体(1)及び不融化体のFT-IRスペクトルでは2920cm-1付近にCH伸縮振動に基つくピークと1660cm-1付近にカルボニル基由来と推定されるピークが観測されるが、焼成後のカーボン複合体(3)のFT-IRスペクトルでは2920cm-1付近及び1660cm-1付近のピークはなくなって、焼成工程による炭化反応が良好に進行したと考えられる。ラマン測定結果、焼成後のカーボン複合体(3)のスペクトルでは1580cm-1のGバンドと1360cm-1付近のDバンドが観測されて、上記FT-IR測定結果と同様に焼成工程による炭化反応は良好に進行したと考えられる。 The peak in the FT-IR spectrum of the polymer complex (1) and the infusible material is estimated to carbonyl group derived from the vicinity of the peak and 1660 cm -1 to get groups to CH stretching vibration in the vicinity of 2920 cm -1 it is observed, baked the FT-IR spectrum of the carbon composite (3) after gone peak around 2920 cm -1 and 1660cm around -1, carbonization reaction by calcination step is considered to have proceeded satisfactorily. Raman measurements, in the spectrum of the carbon composite after firing (3) is observed D band near G band and 1360 cm -1 in 1580 cm -1, the carbonization reaction by the FT-IR measurement results as well as the baking step It seems that it progressed well.
 本発明の多孔性化学蓄熱カーボン複合体(3)のSEM測定による表面観察では、マイクロメートルサイズのマクロ孔の細孔径を多く持っている多孔体であることが分かった。また、カーボン複合体(3)を用いたSEM-EDS測定結果、カーボン複合体(3)のSEM像で黒く見えるマクロ孔の箇所を含めたマッピング像からカルシウム元素又は塩素元素は全体的に良く分布されている。本発明の多孔性化学蓄熱カーボン複合体(3)において、化学蓄熱材の塩化カルシウムは多孔体の細孔(マクロ孔)中に良好に充填されていると考えられる。 In the surface observation by SEM measurement of the porous chemical heat storage carbon composite (3) of the present invention, it was found that the porous chemical heat storage carbon composite (3) was a porous body having many micrometer-sized macropores. In addition, as a result of SEM-EDS measurement using the carbon composite (3) and a mapping image including black pores in the SEM image of the carbon composite (3), calcium element or chlorine element is well distributed as a whole. Has been. In the porous chemical heat storage carbon composite (3) of the present invention, it is considered that the calcium chloride of the chemical heat storage material is well filled in the pores (macropores) of the porous body.
 本発明の多孔性化学蓄熱カーボン複合体(3)を用いて温熱取り出し試験を行いカーボン複合体(3)の蓄熱密度及び放熱速度を測定した。測定条件で、装置のエネルギー校正はIn、Sn、Pbの融解熱を用いて実施した。試料量は10mgを用いて、前処理としてドライ窒素気流下、室温から毎分5℃昇温で120℃まで加温して60分保持した後、80℃まで降温した。引き続き、35℃飽和水蒸気(水蒸気分圧5.6kPa/窒素バランス)を用いて80℃で60分間水蒸気吸着の温熱取り出しを行った。その後、再び120℃で水蒸気脱着と80℃で水蒸気吸着の温熱取り出しを行った。 A heat extraction test was performed using the porous chemical heat storage carbon composite (3) of the present invention, and the heat storage density and heat release rate of the carbon composite (3) were measured. Under the measurement conditions, the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb. A sample amount of 10 mg was used as a pretreatment under a dry nitrogen stream, heated from room temperature to 120 ° C. at a temperature of 5 ° C. per minute, held for 60 minutes, and then cooled to 80 ° C. Subsequently, using 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), water was taken out from the water at 80 ° C. for 60 minutes. Thereafter, the steam was desorbed again at 120 ° C. and the hot water was taken out at 80 ° C. by water vapor adsorption.
 結果、本発明の多孔性化学蓄熱カーボン複合体(3)1kgのドライ試料当たりの蓄熱密度は784kJで高い蓄熱密度を示し、吸着速度は18.6mg水/分であり、約13分程度で温熱取り出し出来る速度であった。 As a result, the porous chemical heat storage carbon composite (3) of the present invention has a high heat storage density of 784 kJ per 1 kg of the dry sample, the adsorption rate is 18.6 mg water / minute, and the heat is about 13 minutes. It was the speed which can be taken out.
 担持率45%の多孔性化学蓄熱カーボン複合体を用いて吸脱着繰返し試験を行い、本発明の多孔性化学蓄熱カーボン複合体の水蒸気吸脱着繰返し安定性を測定した。測定条件で、試料量は10mgを用いて、前処理の乾燥条件としてドライ窒素気流下、室温から毎分10℃昇温で120℃まで加温して60分保持した後、80℃まで降温して冷却を行った。測定条件としては、35℃飽和水蒸気(水蒸気分圧5.6kPa/窒素バランス)を用いて80℃で60分間水蒸気吸着試験を行った後、ドライ窒素雰囲気下、120℃で水蒸気脱着試験を行った。昇温と降温は毎分10℃にて実施し、水蒸気吸着試験と脱着試験を10回繰り返した。 An adsorption / desorption repeated test was conducted using a porous chemical heat storage carbon composite having a loading rate of 45%, and the water vapor adsorption / desorption repeated stability of the porous chemical heat storage carbon composite of the present invention was measured. Under the measurement conditions, the amount of the sample was 10 mg, and as a pretreatment drying condition, the temperature was raised from room temperature to 120 ° C. at a temperature of 10 ° C. per minute and kept at 60 ° C. for 60 minutes and then lowered to 80 ° C. And cooled. As measurement conditions, after performing a water vapor adsorption test at 80 ° C. for 60 minutes using 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), a water vapor desorption test was performed at 120 ° C. in a dry nitrogen atmosphere. . The temperature was raised and lowered at 10 ° C. per minute, and the water vapor adsorption test and desorption test were repeated 10 times.
 本発明の多孔性化学蓄熱カーボン複合体の水蒸気吸脱着繰返し試験結果、80℃における初期の吸着水量の増大する傾向は水蒸気吸脱着により担持した塩化カルシウム塩のコンディショニングが出来たものと考えられ、それ以後の吸着水量はほぼ一定値を示し、また、120℃における脱着水量は全範囲でほぼ一定値を示して、水蒸気吸脱着繰返しでの安定性は良好であると考えられる。 As a result of the repeated test of water vapor adsorption / desorption of the porous chemical heat storage carbon composite of the present invention, it is considered that the initial increase in the amount of adsorbed water at 80 ° C. was able to condition the calcium chloride salt supported by the water vapor adsorption / desorption. Thereafter, the amount of adsorbed water shows a substantially constant value, and the amount of desorbed water at 120 ° C. shows a substantially constant value over the entire range, and it is considered that the stability during repeated adsorption and desorption of water vapor is good.
 比較例1:多孔性重合体(4)の合成後、化学蓄熱材を担持した複合体(5)の作製100mlのナスフラスコにポリスチレン1.3gとジメチルフォルムアミド16mlを加えて、室温で超音波より溶解させた。完全溶解確認後、AIBNを0.4gとジビニルベンゼンを13.0g加えて攪拌させて溶解した。引き続き、室温下で上記の混合溶液に窒素で30分間バブリングを行った後、アルゴン気流下の反応温度70℃で重合反応を開始した。約10分後から重合反応の進行より反応液が濁り、徐々に全体が白く固体化した。7時間後、反応を終了して室温で自然冷却した。上記重合反応の重合した白色固形物を反応容器から粉砕して取り出し、ソックスレー用ろ過缶に上記粉砕の重合物を入れる抽出溶剤としてTHFを用いて還流しながら6時間ソックスレー抽出により洗浄を行った。抽出終了後、室温まで自然冷却してソックスレー洗浄した白色の重合物を冷却トラップ付きのデシケータ式の真空乾燥器に入れ、真空下、50℃で15時間乾燥して白色固体の多孔性重合体(4)を9.33g得た。 Comparative Example 1: Preparation of a porous polymer (4) and preparation of a composite (5) carrying a chemical heat storage material To a 100 ml eggplant flask, 1.3 g of polystyrene and 16 ml of dimethylformamide were added and ultrasonically treated at room temperature. Dissolved. After confirming complete dissolution, 0.4 g of AIBN and 13.0 g of divinylbenzene were added and dissolved by stirring. Subsequently, the above mixed solution was bubbled with nitrogen for 30 minutes at room temperature, and then the polymerization reaction was started at a reaction temperature of 70 ° C. under an argon stream. About 10 minutes later, the reaction solution became cloudy as the polymerization reaction progressed, and the whole gradually became white and solidified. After 7 hours, the reaction was completed and the mixture was naturally cooled at room temperature. The polymerized white solid material obtained by the polymerization reaction was pulverized and removed from the reaction vessel, and washed by Soxhlet extraction for 6 hours while refluxing with THF as an extraction solvent for putting the pulverized polymer into a Soxhlet filter can. After completion of extraction, the white polymer that has been naturally cooled to room temperature and washed with Soxhlet is placed in a desiccator-type vacuum dryer equipped with a cooling trap, and dried under vacuum at 50 ° C. for 15 hours to form a white solid porous polymer ( 4.33 g of 4) was obtained.
 続いての化学蓄熱材を担持した複合体(5)作製時の担持方法としては、多孔性重合体(4)の細孔に塩化カルシウム蓄熱材を溶液状態にして入れることで担持した。得られた多孔性重合体(4)に担持するための塩化カルシウム蓄熱材溶液の調製は、塩化カルシウム6水和物30gとエタノール20g及び界面活性剤DMH-40(日本乳化剤株式会社製)0.05gを混合攪拌して行った。調製した塩化カルシウム蓄熱材溶液に上記で作製した多孔性重合体(4)2gを投入して時々攪拌しつつ1時間程度浸漬した。次に60℃恒温槽で一晩乾燥した後、110℃でさらに1時間乾燥した。引き続き、純水で洗浄、ろ過した後、110℃恒温槽で2時間乾燥して化学蓄熱材の塩化カルシウムを担持した複合体(5)を作製した。その担持率は18.4質量%と低い担持率を示した。 Subsequently, as a supporting method at the time of producing the composite (5) supporting the chemical heat storage material, the calcium chloride heat storage material was put in a solution state in the pores of the porous polymer (4). The calcium chloride heat storage material solution to be supported on the obtained porous polymer (4) was prepared by adding 30 g of calcium chloride hexahydrate, 20 g of ethanol and surfactant DMH-40 (manufactured by Nippon Emulsifier Co., Ltd.) 0. 05 g was mixed and stirred. 2 g of the porous polymer (4) produced above was added to the prepared calcium chloride heat storage material solution and immersed for about 1 hour with occasional stirring. Next, after drying overnight in a 60 degreeC thermostat, it dried at 110 degreeC for further 1 hour. Subsequently, after washing and filtering with pure water, the composite (5) supporting calcium chloride as a chemical heat storage material was produced by drying in a 110 ° C. constant temperature bath for 2 hours. The loading rate was as low as 18.4% by mass.
 また、多孔性重合体(4)を真空引きした後、塩化カルシウム蓄熱材溶液を担持する方法を用いても化学蓄熱材塩化カルシウムの担持率は改善されなかった。
そして、得られた多孔性重合体(4)及び化学蓄熱材を担持した複合体(5)を用いて、各種分析及び熱物性の評価を行った。
Further, even when the method of supporting the calcium chloride heat storage material solution was used after evacuating the porous polymer (4), the supporting rate of the chemical heat storage material calcium chloride was not improved.
And various analysis and evaluation of a thermophysical property were performed using the composite (5) which carry | supported the obtained porous polymer (4) and a chemical heat storage material.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 多孔性重合体(4)の水銀圧入法による細孔分布を測定した。結果、多孔性重合体(4)は細孔径が数マイクロメートルを中心とするマクロ孔で分布されて、気孔率67%であった。 The pore distribution of the porous polymer (4) was measured by mercury porosimetry. As a result, the porous polymer (4) had a pore diameter of 67% and was distributed with macropores centered on several micrometers.
 そして、SEM測定による多孔性重合体(4)の表面観察では、前記の実施例1で説明した多孔性化学蓄熱重合体複合体(1)のSEM表面観察結果と同様に、球状の重合体が連続的に繋がって多孔体に成長した構造体であり、多孔体の細孔径はマイクロメートルサイズのマクロ孔と数ナノメートルのミクロ孔及び数十ナノメートルのメソ孔が観測された。 And in the surface observation of the porous polymer (4) by SEM measurement, the spherical polymer is similar to the SEM surface observation result of the porous chemical heat storage polymer composite (1) described in Example 1 above. It was a structure that was continuously connected to grow into a porous body. The pore diameter of the porous body was observed to be micrometer-sized macropores, several nanometers micropores, and several tens of nanometers mesopores.
 化学蓄熱材を担持した複合体(5)のSEM測定による表面観察を行った結果、マイクロメートルサイズのマクロ孔の多くがその細孔の入り口付近で、化学蓄熱材の塩化カルシウムで塞がれている様子が観測された。それは多孔性重合体(4)の表面と担持する塩化カルシウム蓄熱材溶液との極性の差、又は濡れ性などの問題からであり、塩化カルシウムが良好に担持されなかったと考えられる。そして、SEM-EDS測定による元素マッピング結果、カルシウム元素又は塩素元素は表面の広い範囲において僅かに分布されていることが観測されて、SEM測定結果と同様に化学蓄熱材の塩化カルシウムは多孔体の細孔に担持されていないことを支持する。 As a result of the surface observation by SEM measurement of the composite (5) supporting the chemical heat storage material, many of the micrometer-sized macropores are blocked by the calcium chloride of the chemical heat storage material near the entrance of the pores. It was observed. This is because of problems such as the difference in polarity between the surface of the porous polymer (4) and the calcium chloride heat storage material solution to be supported, or wettability, and it is considered that calcium chloride was not supported well. As a result of element mapping by SEM-EDS measurement, it was observed that calcium element or chlorine element was slightly distributed over a wide range of the surface. Like the SEM measurement result, calcium chloride of the chemical heat storage material was porous. It supports that it is not carry | supported by the pore.
 化学蓄熱材を担持した複合体(5)を用いて温熱取り出し試験を行い重合体複合体(5)の蓄熱密度及び放熱速度の測定を試みた。測定条件で、装置のエネルギー校正はIn、Sn、Pbの融解熱を用いて実施した。試料量は10mgを用いて、前処理としてドライ窒素気流下、室温から毎分10℃昇温で120℃まで加温して60分保持した後、80℃まで降温した。引き続き、35℃飽和水蒸気(水蒸気分圧5.6kPa/窒素バランス)を用いて80℃で水蒸気吸着の温熱取り出し試験を行った。 Using the composite (5) carrying a chemical heat storage material, a heat extraction test was conducted to try to measure the heat storage density and the heat release rate of the polymer composite (5). Under the measurement conditions, the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb. A sample amount of 10 mg was used as a pretreatment under a dry nitrogen stream, heated from room temperature to 120 ° C. at a temperature of 10 ° C. per minute, held for 60 minutes, and then cooled to 80 ° C. Subsequently, using a 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), a hot water extraction test for water vapor adsorption was performed at 80 ° C.
 結果、化学蓄熱材を担持した複合体(5)は水蒸気との反応による重量増加又は、DTA発熱などの計測が出来なかった。それは多孔性重合体(4)に塩化カルシウムの担持が良好にされず、温熱取り出しが出来る化学蓄熱複合体になってないからと考えられる。 As a result, the composite (5) carrying the chemical heat storage material could not measure weight increase due to reaction with water vapor or DTA heat generation. This is presumably because the porous polymer (4) is not well supported by calcium chloride and does not become a chemical heat storage complex that can be taken out of heat.
 比較例2:多孔性カーボン(6)の合成後、化学蓄熱材を担持した複合体(7)の作製
 焼成前処理として不融化工程を実施するために電気焼成炉に石英管を設置した後、白色の多孔性重合体(4)5.250gを石英管に入れた。圧縮空気を0.1 L/min流しながら加熱を開始した。室温から毎分5℃で250℃まで昇温した後、250℃で2時間保持した。2時間の加熱運転停止後、室温まで自然冷却して黄色の不融化体5.366gが得られた。
Comparative Example 2: After synthesis of porous carbon (6), preparation of composite (7) carrying a chemical heat storage material After a quartz tube was installed in an electric firing furnace in order to carry out an infusibilization step as a pretreatment for firing, 5.250 g of white porous polymer (4) was put in a quartz tube. Heating was started while flowing compressed air at 0.1 L / min. The temperature was raised from room temperature to 250 ° C at 5 ° C per minute, and then kept at 250 ° C for 2 hours. After stopping the heating operation for 2 hours, it was naturally cooled to room temperature to obtain 5.366 g of a yellow infusible material.
 引き続き、前記で作製した不融化体5.366gを石英管に入れて、窒素を毎分1.0L流しながら本焼成工程を行った。室温から毎分5℃で900℃まで昇温した後、900℃で1時間保持した。1時間の加熱運転停止後、室温まで自然冷却して黒色の多孔性カーボン(6)が1.680g得られた。 Subsequently, 5.366 g of the infusible material prepared above was put in a quartz tube, and the main firing step was performed while flowing 1.0 L of nitrogen per minute. The temperature was raised from room temperature to 900 ° C. at 5 ° C. per minute, and then held at 900 ° C. for 1 hour. After stopping the heating operation for 1 hour, it was naturally cooled to room temperature, and 1.680 g of black porous carbon (6) was obtained.
 次に、化学蓄熱材を担持した複合体(7)作製時の担持方法としては、多孔性カーボン(6)の細孔に塩化カルシウム蓄熱材を溶液状態にして入れることで担持した。得られた多孔性カーボン(6)に担持するための塩化カルシウム蓄熱材溶液の調製は、塩化カルシウム6水和物30gとエタノール20g及び界面活性剤DMH-40(日本乳化剤株式会社製)0.05gを混合攪拌して行った。調製した塩化カルシウム蓄熱材溶液に上記で作製した多孔性カーボン(6)2gを投入して時々攪拌しつつ1時間程度浸漬した。次に60℃恒温槽で一晩乾燥した後、110℃でさらに1時間乾燥した。引き続き、純水で洗浄、ろ過した後、110℃恒温槽で2時間乾燥して化学蓄熱材の塩化カルシウムを担持した複合体(7)を作製した。その担持率は44.9質量%を示した。 Next, as a supporting method at the time of producing the composite (7) supporting the chemical heat storage material, it was supported by putting the calcium chloride heat storage material in a solution state into the pores of the porous carbon (6). The calcium chloride heat storage material solution to be supported on the obtained porous carbon (6) was prepared by 30 g of calcium chloride hexahydrate, 20 g of ethanol and 0.05 g of a surfactant DMH-40 (manufactured by Nippon Emulsifier Co., Ltd.). Were mixed and stirred. 2 g of the porous carbon (6) prepared above was added to the prepared calcium chloride heat storage material solution and immersed for about 1 hour with occasional stirring. Next, after drying overnight in a 60 degreeC thermostat, it dried at 110 degreeC for further 1 hour. Subsequently, after washing with pure water and filtering, a composite (7) carrying calcium chloride as a chemical heat storage material was produced by drying in a 110 ° C. constant temperature bath for 2 hours. The loading rate was 44.9% by mass.
 また、多孔性カーボン(6)を真空引きした後、塩化カルシウム蓄熱材溶液を担持する方法を用いても化学蓄熱材塩化カルシウムの担持率は改善されなかった。 Further, even when the method of supporting the calcium chloride heat storage material solution after evacuating the porous carbon (6) was used, the supporting rate of the chemical heat storage material calcium chloride was not improved.
 そして、得られた多孔性カーボン(6)及び化学蓄熱材を担持した複合体(7)を用いて、各種分析及び熱物性の評価を行った。 Then, various analyzes and evaluation of thermophysical properties were performed using the obtained porous carbon (6) and the composite (7) supporting the chemical heat storage material.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 多孔性カーボン(6)の水銀圧入法による細孔分布を測定した。結果、多孔性カーボン(6)の細孔径は数マイクロメートルとさらに大きい数十マイクロメートルのマクロ孔で分布されて、その気孔率66%であった。 The pore distribution of the porous carbon (6) was measured by mercury porosimetry. As a result, the pore diameter of the porous carbon (6) was distributed with macro pores of several tens of micrometers, which are several micrometers, and the porosity was 66%.
 化学蓄熱材を担持した複合体(7)のSEM測定による表面観察及びSEM-EDS測定結果によれば、表面にマイクロメートルサイズのマクロ孔の細孔径を多く持っている多孔体であり、マクロ孔の細孔を中心に元素マッピング像からカルシウム元素又は塩素元素が多く分布されている。化学蓄熱材を担持した複合体(7)において、化学蓄熱材の塩化カルシウムは多孔体の細孔中に良好に担持されていると考えられる。 According to the surface observation by SEM measurement and the SEM-EDS measurement result of the composite (7) supporting the chemical heat storage material, it is a porous body having many micrometer-sized macropores on the surface. A large amount of calcium element or chlorine element is distributed from the element mapping image around the pores. In the composite (7) carrying the chemical heat storage material, it is considered that the calcium chloride of the chemical heat storage material is well supported in the pores of the porous body.
 化学蓄熱材を担持した複合体(7)を用いて温熱取り出し試験を行いカーボン複合体(7)の蓄熱密度及び放熱速度の測定を試みた。測定条件で、装置のエネルギー校正はIn、Sn、Pbの融解熱を用いて実施した。試料量は10mgを用いて、前処理としてドライ窒素気流下、室温から毎分10℃昇温で120℃まで加温して60分保持した後、80℃まで降温した。引き続き、35℃飽和水蒸気(水蒸気分圧5.6kPa/窒素バランス)を用いて80℃で水蒸気吸着の温熱取り出し試験を行った。 A heat extraction test was performed using the composite (7) supporting a chemical heat storage material, and an attempt was made to measure the heat storage density and the heat release rate of the carbon composite (7). Under the measurement conditions, the energy calibration of the apparatus was performed using the heat of fusion of In, Sn, and Pb. A sample amount of 10 mg was used as a pretreatment under a dry nitrogen stream, heated from room temperature to 120 ° C. at a temperature of 10 ° C. per minute, held for 60 minutes, and then cooled to 80 ° C. Subsequently, using a 35 ° C. saturated water vapor (water vapor partial pressure 5.6 kPa / nitrogen balance), a hot water extraction test for water vapor adsorption was performed at 80 ° C.
 結果、化学蓄熱材を担持した複合体(7)1kgのドライ試料当たりの蓄熱密度は347kJを示し、吸着速度としては約10分程度で温熱取り出し出来る速度であった。 As a result, the heat storage density per dry sample of 1 kg of the composite (7) carrying the chemical heat storage material was 347 kJ, and the adsorption rate was a rate at which the heat could be taken out in about 10 minutes.
 以上説明したように、本発明の多孔体に化学蓄熱材を担持した多孔性化学蓄熱複合体は、高い蓄熱量及び蓄熱反応効率と形状安定性を有する良好な蓄熱材で、水和・脱水反応を繰り返し使用しても蓄・放熱の性能低下がなく、常に安定的に動作し、繰返し使うことが出来る。 As described above, the porous chemical heat storage composite having the chemical heat storage material carried on the porous body of the present invention is a good heat storage material having a high heat storage amount, heat storage reaction efficiency and shape stability, and hydration / dehydration reaction. Even if it is used repeatedly, there is no deterioration in the performance of storage and heat dissipation, it always operates stably and can be used repeatedly.

Claims (9)

  1.  芳香環を含有する架橋性モノマーの多孔性重合体担体のマクロ孔に化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体。  A chemical heat storage material is supported in macropores of a porous polymer carrier of a crosslinkable monomer containing an aromatic ring, and the polymer carrier has mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material. Porous chemical heat storage composite.
  2.  芳香環を含有する架橋性モノマーの多孔性重合体が、エチレン性不飽和二重結合を2以上含有する芳香族有機化合物の単独重合体もしくは共重合体である、請求項1記載の多孔性化学蓄熱複合体。 The porous chemistry according to claim 1, wherein the porous polymer of a crosslinkable monomer containing an aromatic ring is a homopolymer or copolymer of an aromatic organic compound containing two or more ethylenically unsaturated double bonds. Thermal storage complex.
  3.  化学蓄熱材が塩化カルシウム又はその水和物である請求項1又は2記載の多孔性化学蓄熱複合体。  The porous chemical heat storage composite according to claim 1 or 2, wherein the chemical heat storage material is calcium chloride or a hydrate thereof.
  4.  カーボン担体のマクロ孔に化学蓄熱材を担持し、前記担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体。  A porous chemical heat storage composite having a mesopore and / or a micropore in which a chemical heat storage material is supported in macropores of a carbon support, and the support can supply a reaction medium to the chemical heat storage material.
  5.  化学蓄熱材が塩化カルシウム又はその水和物である請求項4記載の多孔性化学蓄熱複合体。  The porous chemical heat storage composite according to claim 4, wherein the chemical heat storage material is calcium chloride or a hydrate thereof.
  6.  前記担体の気孔率が50~90%である、請求項1~5のいずれか1項に記載の多孔性化学蓄熱複合体。 The porous chemical heat storage composite according to any one of claims 1 to 5, wherein the porosity of the carrier is 50 to 90%.
  7.  化学蓄熱材の担持率が50~85質量%である、請求項1~6のいずれか1項に記載の多孔性化学蓄熱複合体。 The porous chemical heat storage composite according to any one of claims 1 to 6, wherein a loading ratio of the chemical heat storage material is 50 to 85 mass%.
  8.  溶媒、溶媒に溶解する化学蓄熱材、芳香環を含有する架橋性モノマーを含む反応混合物を相分離重合する工程を含む、多孔性重合体担体のマクロ孔に化学蓄熱材を担持し、前記重合体担体は前記化学蓄熱材に反応媒体を供給可能なメソ孔及び/又はミクロ孔を有する多孔性化学蓄熱複合体の製造方法。 A polymer, a chemical heat storage material that dissolves in the solvent, and a step of phase separation polymerization of a reaction mixture containing a crosslinkable monomer containing an aromatic ring. The carrier is a method for producing a porous chemical heat storage composite having mesopores and / or micropores capable of supplying a reaction medium to the chemical heat storage material.
  9.  請求項1又は4記載の多孔性化学蓄熱複合体を含む、熱交換により、蓄熱及び放熱を繰り返し行う化学蓄熱装置。 A chemical heat storage device that repeatedly stores and releases heat by heat exchange, including the porous chemical heat storage composite according to claim 1 or 4.
PCT/JP2017/042975 2016-12-02 2017-11-30 Porous chemical heat storage complex and method for producing same, and chemical heat storage device WO2018101387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235345 2016-12-02
JP2016235345A JP2018090706A (en) 2016-12-02 2016-12-02 Porous chemical heat storage composite, method for manufacturing the same, and chemical heat storage device

Publications (1)

Publication Number Publication Date
WO2018101387A1 true WO2018101387A1 (en) 2018-06-07

Family

ID=62242586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042975 WO2018101387A1 (en) 2016-12-02 2017-11-30 Porous chemical heat storage complex and method for producing same, and chemical heat storage device

Country Status (2)

Country Link
JP (1) JP2018090706A (en)
WO (1) WO2018101387A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332316B2 (en) * 2019-03-28 2023-08-23 タテホ化学工業株式会社 Method for producing granules for chemical heat storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222500A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Porous molding, porous filled molding, method for producing porous molding and method for producing porous filled molding
JP2009256518A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material, chemical heat storage material molded article, and production methods thereof
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical thermal storage medium and chemical heat pump
JP2016155895A (en) * 2015-02-23 2016-09-01 太平洋セメント株式会社 Chemical heat storage material compact, manufacturing method thereof, and assembly of the compacts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222500A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Porous molding, porous filled molding, method for producing porous molding and method for producing porous filled molding
JP2009256518A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material, chemical heat storage material molded article, and production methods thereof
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical thermal storage medium and chemical heat pump
JP2016155895A (en) * 2015-02-23 2016-09-01 太平洋セメント株式会社 Chemical heat storage material compact, manufacturing method thereof, and assembly of the compacts

Also Published As

Publication number Publication date
JP2018090706A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Maleki et al. Development of graphitic domains in carbon foams for high efficient electro/photo-to-thermal energy conversion phase change composites
Shao et al. Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture
Sahiner et al. Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride
Xue et al. Phosphoryl functionalized mesoporous silica for uranium adsorption
Tang et al. 1-Octadecanol@ hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage
Lu et al. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis
Yin et al. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell
Wang et al. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2
Atinafu et al. Introduction of eicosane into biochar derived from softwood and wheat straw: Influence of porous structure and surface chemistry
El-Bahy et al. Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu (II), Mn (II) and Ni (II) by batch and column study
CN103466596B (en) Hollow nanosphere material as well as preparation method and application thereof
CN108609602B (en) Nitrogen-doped microporous carbon material based on energetic polyion liquid and preparation method thereof
CN106115660B (en) A kind of nanometer carbon plate based on the assembling of molecule from bottom to top, preparation method and application
Kallenberger et al. Alginate‐Derived Salt/Polymer Composites for Thermochemical Heat Storage
Yang et al. Preparation of palygorskite paraffin nanocomposite suitable for thermal energy storage
Wang et al. A one-step in-situ assembly strategy to construct PEG@ MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage
Shang et al. Constructing novel hyper-crosslinked conjugated polymers through molecular expansion for enhanced gas adsorption performance
Chen et al. Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO 2 capture
TWI592475B (en) Adsorption material and method of manufacturing the same and adsorption heat pump
Ma et al. Nitrogen-doped microporous carbon materials with uniform pore diameters: Design and applications in CO2 and H2 adsorption
Wang et al. Fabrication of hierarchical N-doped carbon nanotubes for CO2 adsorption
WO2017098314A1 (en) Method of obtaining mobile magnetic composite adsorbents
Wei et al. Influence of minerals with different porous structures on thermochemical heat storage performance of CaCl2-based composite sorbents
Xu et al. A composite coating based on metal–organic framework MIL-101 (Cr) synthesised by L-malic acid as mineralising agent for thermal management
WO2018101387A1 (en) Porous chemical heat storage complex and method for producing same, and chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875701

Country of ref document: EP

Kind code of ref document: A1