WO2018100711A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2018100711A1
WO2018100711A1 PCT/JP2016/085721 JP2016085721W WO2018100711A1 WO 2018100711 A1 WO2018100711 A1 WO 2018100711A1 JP 2016085721 W JP2016085721 W JP 2016085721W WO 2018100711 A1 WO2018100711 A1 WO 2018100711A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heating element
refrigeration apparatus
heat exchanger
condenser
Prior art date
Application number
PCT/JP2016/085721
Other languages
French (fr)
Japanese (ja)
Inventor
健彦 赤井
▲高▼田 茂生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/085721 priority Critical patent/WO2018100711A1/en
Publication of WO2018100711A1 publication Critical patent/WO2018100711A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration apparatus having a cooling structure for cooling a heating element.
  • the control device of the refrigeration apparatus is provided with a heating element such as a power module, and the heating element is damaged when it exceeds the upper limit temperature.
  • a refrigeration apparatus in which a heating element is cooled using a refrigerant (see, for example, Patent Document 1).
  • a compressor, a condenser, a first decompression device, and an evaporator are connected to circulate a refrigerant circuit, and a part of the refrigerant flowing out of the condenser is decompressed by the second decompression device.
  • an injection circuit that injects into the compressor, and a cooling unit that is provided in the injection circuit and that cools the heating element using the refrigerant after decompression are provided.
  • Patent Document 1 the heat generating element is cooled using the refrigerant after decompression, but the temperature of the refrigerant discharged from the compressor is lowered by passing through the condenser. Therefore, since the temperature of the refrigerant is further reduced by reducing the temperature of the refrigerant that has passed through the condenser with the second decompression device, when the heat generating body is cooled using the refrigerant, the heat generating body is overcooled and dew condensation occurs. It can happen.
  • the present invention has been made in view of the above points, and an object thereof is to provide a refrigeration apparatus capable of suppressing overcooling of a heating element.
  • a refrigeration apparatus branches from a refrigerant circuit including a compressor, a condenser, a supercooling heat exchanger, a first decompression device and an evaporator, and between the supercooling heat exchanger and the first decompression device.
  • the heating element is cooled by the refrigerant in the refrigerant circuit from the outlet of the condenser to the inlet of the first pressure reducing device, it is possible to suppress overcooling of the heating element.
  • FIG. 3 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention. It is a perspective view of the plate type heat exchanger which comprises the supercooling heat exchanger 3 of FIG. It is the schematic of the cooling structure of the heat generating body 40 of the refrigeration apparatus which concerns on Embodiment 1 of this invention. It is the schematic which shows the other structural example of the cooling structure of the heat generating body 40 of the freezing apparatus which concerns on Embodiment 1 of this invention. It is the schematic which shows the other structural example of the cooling structure of the heat generating body 40 of the freezing apparatus which concerns on Embodiment 1 of this invention. It is the schematic of the cooling structure of the heat generating body 40 of the freezing apparatus which concerns on Embodiment 2 of this invention. It is a refrigerant circuit figure of the freezing apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the arrows in FIG. 1 indicate the flow of the refrigerant.
  • the refrigeration apparatus includes a refrigerant circuit A in which a compressor 1, a condenser 2, a supercooling heat exchanger 3, a first decompression device 4, and an evaporator 5 are connected in order by refrigerant piping.
  • the refrigerant circuit A further includes a liquid reservoir 6 and an auxiliary heat exchanger 7 between the condenser 2 and the supercooling heat exchanger 3.
  • the refrigeration apparatus further includes an injection circuit B that branches from between the supercooling heat exchanger 3 and the first decompression device 4 and is connected to the compressor 1 via the second decompression device 8 and the supercooling heat exchanger 3. I have.
  • the refrigeration apparatus further includes a condenser fan 20 that blows air to the condenser 2 and an evaporator fan 21 that blows air to the evaporator 5.
  • the compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the compressor 1 is composed of a positive displacement compressor whose operating frequency can be varied by an inverter.
  • the compressor 1 is not limited to the one driven by variable operation frequency, and may be a constant speed.
  • the condenser 2 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and the air supplied from the condenser fan 20 to radiate the heat of the refrigerant.
  • the condenser 2 is constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins.
  • the liquid reservoir 6 is a container for storing excess refrigerant liquefied in the refrigerant circuit A.
  • the auxiliary heat exchanger 7 is a heat exchanger provided auxiliary to the refrigerant downstream of the condenser 2, and is, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins. Constitute.
  • the supercooling heat exchanger 3 has a first flow path 3a and a second flow path 3b, and performs heat exchange between the refrigerant flowing into the first flow path 3a and the refrigerant flowing into the second flow path 3b.
  • the refrigerant flowing out of the liquid reservoir 6 in the refrigerant circuit A passes through the first flow path 3a.
  • the refrigerant decompressed by the second decompression device 8 in the injection circuit B passes through the second flow path 3b.
  • the supercooling heat exchanger 3 is preferably configured by a plate heat exchanger as shown in FIG.
  • FIG. 2 is a perspective view of a plate heat exchanger constituting the subcooling heat exchanger 3 of FIG.
  • the plate-type heat exchanger constituting the subcooling heat exchanger 3 has a plurality of heat transfer plates 31 stacked, and a first flow path 3a and a second flow path 3b are formed in a space formed between the heat transfer plates 31. It has the structure formed alternately.
  • a reinforcing side plate 32 and a reinforcing side plate 33 are arranged on the outermost surface in the stacking direction of the assembly in which the heat transfer plates 31 are stacked.
  • Both the side plate 32 and the side plate 33 are formed in a plate shape, and the outer peripheral surface of the side plate 32 is a flat flat surface, and is used as a mounting surface for a heating element 40 described later.
  • the supercooling heat exchanger 3 is not limited to a plate heat exchanger. Although the attachment property of the heating element 40 is lowered, the supercooling heat exchanger 3 may also use, for example, a double tube heat exchanger that performs heat exchange inside and outside the double tube.
  • the first decompression device 4 expands the refrigerant by decompressing it.
  • the first decompression device 4 adjusts the flow rate of the refrigerant flowing in the refrigerant circuit A.
  • the first pressure reducing device 4 may be composed of an electronic expansion valve capable of variably adjusting the opening of the throttle by a stepping motor (not shown).
  • other types may be used as long as they have a similar function, such as a mechanical expansion valve adopting a diaphragm for the pressure receiving portion, a temperature expansion valve, a capillary tube, or the like. Good.
  • the evaporator 5 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the first decompression device 4 and the air supplied from the evaporator fan 21.
  • the evaporator 5 is good to comprise, for example with the cross fin type fin and tube type heat exchanger comprised with the heat exchanger tube and many fins.
  • the second decompression device 8 decompresses and expands the refrigerant, and adjusts the flow rate of the refrigerant flowing through the injection circuit B.
  • the second pressure reducing device 8 may be constituted by an electronic expansion valve capable of adjusting the opening of the throttle by a stepping motor (not shown).
  • the electronic expansion valve other types may be used as long as they have a similar function, such as a mechanical expansion valve adopting a diaphragm for the pressure receiving portion, a temperature expansion valve, a capillary tube, or the like. Good.
  • the refrigeration apparatus further includes a heating element temperature sensor 11 that detects the temperature of the heating element 40 described later, and a refrigerant temperature sensor 12 that detects the temperature of the refrigerant that has flowed out of the first flow path 3a of the supercooling heat exchanger 3. And a discharge temperature sensor 13 for detecting the temperature discharged from the compressor 1 and a control device 50.
  • the control device 50 is configured to acquire the detected temperature detected by these temperature sensors and the operation content instructed by the user of the refrigeration apparatus.
  • control apparatus 50 is based on detected temperature and the content of operation, the operation method of the compressor 1, the opening degree of the 1st decompression device 4, the opening degree of the 2nd decompression device 8, the rotation speed of the condenser fan 20, and evaporation
  • the rotational speed of the fan 21 is controlled.
  • the control device 50 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • refrigerant used in the refrigeration apparatus there is no particular limitation on the type of refrigerant used in the refrigeration apparatus, and any refrigerant can be used.
  • a natural refrigerant such as carbon dioxide (CO 2 ), hydrocarbon, or helium may be employed, or a refrigerant that does not contain chlorine, such as an alternative refrigerant such as R407C and R404A, as well as R410A. Good.
  • the refrigeration apparatus configured as described above is installed in, for example, a showcase installed indoors, and is used as a cooling apparatus that cools a storage space in which products are arranged.
  • at least the evaporator 5 and the evaporator fan 21 are disposed in the cooling chamber 60 communicating with the storage space, and other components are disposed in, for example, the machine chamber 70 provided in the lower portion of the storage space, and the heat source device is installed.
  • the first pressure reducing device 4 is disposed in the cooling chamber 60, but may be disposed on the machine chamber 70 side.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the condenser 2 and is condensed and liquefied by heat exchange with the air from the condenser fan 20 to become a high-pressure and low-temperature refrigerant.
  • the high-pressure and low-temperature refrigerant that has been condensed and liquefied becomes a saturated liquid state, and a part of the saturated liquid is stored in the liquid reservoir 6.
  • the liquid refrigerant flowing out of the liquid reservoir 6 and flowing into the first flow path 3a of the supercooling heat exchanger 3 exchanges heat with the low-temperature refrigerant flowing through the second flow path 3b of the supercooling heat exchanger 3, To be cooled.
  • a part of the refrigerant supercooled by the supercooling heat exchanger 3 is bypassed from the refrigerant circuit A to the injection circuit B.
  • the remaining refrigerant is decompressed by the first decompression device 4 to become a two-phase refrigerant and sent to the evaporator 5.
  • the two-phase refrigerant sent to the evaporator 5 evaporates by heat exchange with the air from the evaporator fan 21 and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sucked into the compressor 1.
  • the refrigerant bypassed from the refrigerant circuit A to the injection circuit B is decompressed by the second decompression device 8 and becomes a low-temperature two-phase refrigerant.
  • the two-phase refrigerant flows into the second flow path 3b of the supercooling heat exchanger 3, exchanges heat with the refrigerant in the first flow path 3a of the supercooling heat exchanger 3, and is then injected into the compression chamber of the compressor 1.
  • the discharge temperature of the compressor 1 may become too high depending on the operating conditions, and the discharge temperature can be lowered by injecting the refrigerant that has passed through the injection circuit B into the compressor 1.
  • the heating element 40 that is provided in the refrigeration apparatus and generates heat is cooled with the refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first decompression device 4.
  • the heating element 40 includes, for example, a wide gap semiconductor such as SiC, GaN, or diamond.
  • An example of the heating element 40 including a wide gap semiconductor is a power module.
  • a power module comprises the inverter of the compressor 1, for example.
  • the refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first decompression device 4 is higher in temperature than the refrigerant decompressed by the second decompression device 8 in the injection circuit B. For this reason, the cooling of the heating element 40 with the refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4 can suppress the cooling of the heating element 40 too much.
  • FIG. 3 is a schematic diagram of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the heating element 40 is attached to the supercooling heat exchanger 3.
  • the heating element 40 is detachably attached to the flat side plate 33 of the supercooling heat exchanger 3 by screwing or the like via the heat transfer member 41.
  • the heat transfer member 41 may be a plate having good heat transfer properties such as an aluminum plate.
  • the heating element 40 may be attached directly to the supercooling heat exchanger 3.
  • it is only necessary that the heating element 40 is attached to the supercooling heat exchanger 3 so as to be thermally connected to the supercooling heat exchanger 3.
  • the supercooling heat exchanger 3 corresponds to the refrigerant device of the present invention.
  • the refrigerant of the refrigerant circuit A flowing out of the condenser 2 flows into the first flow path 3a of the supercooling heat exchanger 3, and the refrigerant of the injection circuit B flows into the second flow path 3b.
  • the refrigerant amount of the refrigerant circuit A is larger than the refrigerant amount of the injection circuit B.
  • the temperature of the side plate 33 of the supercooling heat exchanger 3 to which the heating element 40 is attached is dominated by the temperature of the refrigerant in the refrigerant circuit A flowing into the first flow path 3a, for example, 35 ° C. to 45 ° C. at the maximum. Degree.
  • the temperature of the heating element 40 rises to about 80 ° C. to 125 ° C., for example. Therefore, the heating element 40 can be cooled by thermally connecting the heating element 40 to the supercooling heat exchanger 3.
  • the refrigeration apparatus detects a temperature that changes due to cooling of the heating element 40, and controls the condenser fan 20 based on the detected temperature by the control apparatus 50 so that the detected temperature becomes a target value. Yes.
  • the rotational speed of the condenser fan 20 is increased, and if the refrigerant temperature is lower than the target value, the rotational speed of the condenser fan 20 is decreased.
  • the “temperature changing due to cooling of the heating element 40” is, for example, the temperature of the heating element 40, the temperature of the refrigerant flowing out from the first flow path 3a of the supercooling heat exchanger 3, and the discharge from the compressor 1. And the like, which can be detected by the heating element temperature sensor 11, the refrigerant temperature sensor 12, and the discharge temperature sensor 13 in this order. Any of these heating element temperature sensor 11, refrigerant temperature sensor 12, and discharge temperature sensor 13 corresponds to the control temperature sensor of the present invention.
  • control device 50 increases the opening of the second decompression device 8 or sets the rotation speed of the condenser fan 20. Control is performed to raise the temperature of the heating element 40 below the set temperature.
  • the set temperature is set to about 90 ° C., for example.
  • the heating element 40 is cooled by the refrigerant from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4, the heating element 40 is overcooled. Can be suppressed. As a result, condensation of the heating element 40 can be suppressed.
  • the heating element 40 when cooling the heating element 40 with the refrigerant from the outlet of the condenser 2 to the inlet of the refrigerant circuit A of the first decompression device 4, specifically, the heating element 40 is attached to the supercooling heat exchanger 3 and cooled. I did it.
  • the refrigeration apparatus is conventionally provided with a supercooling heat exchanger 3, and the heating element 40 is cooled by using the supercooling heat exchanger 3 which is a conventional refrigerant device. No additional circuit or device is required. For this reason, cooling of the heat generating body 40 is realizable at low cost and space saving.
  • the heating element 40 is attached to the supercooling heat exchanger 3 via the heat transfer member 41, not only can the heat of the heating element 40 be transmitted to the supercooling heat exchanger 3 via the heat transfer member 41. Since heat is also radiated from the heat transfer member 41 itself, the heating element 40 can be effectively cooled.
  • the heating element 40 or the heat transfer member 41 is utilized by using the planar portion of the side plate 32 disposed on the outermost surface of the plate heat exchanger. Can be easily attached. Further, by making the plate heat exchanger and the heating element 40 or the heat transfer member 41 detachable by screwing or the like, the heating element 40 can be detached from the plate heat exchanger. By making the heating element 40 removable from the plate heat exchanger in this way, it is possible to make the heating element 40 excellent in serviceability such as maintenance.
  • the refrigerant pipe is sandwiched and fixed from both sides by a plate-like member, and the heating element 40 is attached to the outer surface of the plate-like member. It was necessary and the mounting structure was messy. On the other hand, mounting structure becomes simple by comprising the supercooling heat exchanger 3 with a plate-type heat exchanger.
  • the “temperature changing due to cooling of the heating element 40” is detected by any one of the heating element temperature sensor 11, the refrigerant temperature sensor 12, and the discharge temperature sensor 13, and the detected temperature becomes a target value.
  • the condenser fan 20 was controlled. For this reason, the cooling capacity can be adjusted without changing the cooling structure, and the configuration for cooling the heating element 40 is simplified.
  • the opening of the second decompression device 8 is increased, or the rotation speed of the condenser fan 20 is increased to increase the heating element. Control was performed to lower the temperature of 40 below the set temperature. For this reason, the temperature of the heat generating body 40 can be lowered below the set temperature without changing the cooling structure.
  • the heating element 40 includes a wide gap semiconductor.
  • Wide-gap semiconductors have a high heat-resistant temperature of about 400 ° C. and can be operated at high temperatures. For this reason, the effect which cools the heat generating body 40 containing a wide gap semiconductor with a refrigerant
  • the refrigeration apparatus may be modified as follows in addition to the configuration shown in FIG. In this case, the same effect can be obtained.
  • FIG. 4 is a schematic diagram illustrating another configuration example of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram illustrating another configuration example of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration apparatus includes an electrical component box 80 that houses electrical components.
  • the electrical component box 80 has a large amount of heat generation such as a DC reactor or AC reactor, a coiled part, various substrates, etc., and cannot be directly attached to the heat transfer member 41 or the supercooling heat exchanger 3.
  • a body 40 is also arranged.
  • a control device 50 is also arranged in the electrical component box 80.
  • the electrical component box 80 is replaced with the heat-transfer member 41 or the supercooling heat exchanger. 3 may be used to cool the heating element 40.
  • the supercooling heat is generated in the contact wall 40a of the electrical component box 80 with the heat transfer member 41 or the supercooling heat exchanger 3.
  • a heating element 40 is disposed in a region facing the exchanger 3. Thereby, the heat of the heat generating body 40 can be efficiently radiated.
  • Embodiment 2 As the configuration in which the heating element 40 is cooled with the refrigerant from the outlet of the condenser 2 to the inlet of the refrigerant circuit A of the first decompression device 4, the cooling is performed by the supercooling heat exchanger 3. explained.
  • the second embodiment another configuration will be described.
  • the second embodiment will be described mainly with respect to points different from the first embodiment, and the configuration not described in the second embodiment is the same as that of the first embodiment.
  • FIG. 6 is a schematic diagram of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the heating element 40 is cooled by the refrigerant from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4, and the heating element 40 is attached to the liquid reservoir 6 to cool the heating element 40.
  • the structure for attaching the heating element 40 to the liquid reservoir 6 may be such that the heating element 40 may be directly attached to the liquid reservoir 6 or may be attached via the heat transfer member 41 as described in the first embodiment. .
  • the heating element 40 may be configured to be thermally connected to the liquid reservoir 6.
  • the liquid reservoir 6 corresponds to the refrigerant device of the present invention, like the supercooling heat exchanger 3.
  • the second embodiment configured as described above can achieve the same effects as the first embodiment. That is, since the heating element 40 is cooled by the refrigerant from the outlet of the condenser 2 to the inlet of the first decompression device 4, the cooling of the heating element 40 can be suppressed. As a result, condensation of the heating element 40 can be suppressed.
  • the refrigeration apparatus is conventionally provided with a liquid reservoir 6, and the heat generator 40 is cooled by using the liquid reservoir 6 which is a conventional refrigerant device, a circuit dedicated to cooling the heat generator or a heat generator. No additional cooling equipment is required. For this reason, cooling of the heat generating body 40 is realizable at low cost and space saving.
  • the modification of the first embodiment shown in FIGS. 4 and 5 can be applied. That is, the electrical component box 80 may be attached to the liquid reservoir 6 directly or via the heat transfer member 41.
  • Embodiment 3 Although the refrigeration apparatus of the first embodiment and the second embodiment is a form in which the entire refrigeration apparatus is installed indoors, the third embodiment is such that the condenser 2 and the condenser fan 20 are installed outdoors. It is a thing.
  • the third embodiment will be described mainly with respect to differences from the first and second embodiments, and the configuration not described in the third embodiment is the same as the first and second embodiments.
  • FIG. 7 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 3 of the present invention.
  • the condenser 2 and the condenser fan 20 are disposed inside the casing of the outdoor unit 100 and installed outdoors.
  • Other devices constituting the refrigeration apparatus are arranged indoors separately from the outdoor unit 100.
  • the heat of the heating element 40 is transmitted to the refrigerant in the refrigerant circuit A and carried to the condenser 2. And since the condenser 2 is installed outdoors, the heat of the heating element 40 is not accumulated indoors but is exhausted from the condenser 2 to the outdoors.
  • FIG. 7 shows a configuration in which the heating element 40 is cooled by the supercooling heat exchanger 3, it is cooled by the liquid reservoir 6 or the like from the outlet of the condenser 2 of the refrigerant circuit A to the inlet of the first pressure reducing device 4. What is necessary is just to be set as the structure cooled with the refrigerant
  • the same effects as in the first and second embodiments can be obtained, and the condenser 2 and the condenser fan 20 are installed outdoors, so the following effects are obtained. That is, the heat of the heating element 40 can be exhausted from the condenser 2 to the outside. As a result, the heat of the heating element 40 does not stay in the machine room 70 and the heat exchange efficiency of the condenser 2 does not decrease, so that the machine room 70 is cooled compared to the case where the condenser 2 is installed in the machine room 70. Can reduce the capacity of the refrigeration equipment. Moreover, since the heat of the heating element 40 is not discharged indoors, the ability of the air conditioner to cool the indoors can be reduced.
  • the heat discharged from the heating element 40 in the electrical component box 80 is exhausted to the outside of the electrical component box 80 due to heat radiation of the electrical component box 80, and is easily trapped in the machine room 70.
  • the electrical component box 80 has an intake port and an exhaust port and includes a fan inside, the heat of the electrical component box 80 is forcibly exhausted to the outside of the electrical component box 80, and the same In addition, it is easy to stay inside the machine room 70.
  • the electrical component box 80 is thermally connected to the supercooling heat exchanger 3 or the liquid reservoir 6, and the heat of the electrical component box 80 is transferred to the refrigerant in the refrigerant circuit A to be exhausted from the condenser 2 to the outside.
  • heat radiation of the electrical component box 80 in the machine room 70 can be suppressed, and a large amount of heat can be exhausted outdoors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Provided is a refrigeration device whereby overcooling of a heat-generating body and formation of frost can be suppressed. A refrigeration device is provided with: a refrigerant circuit (A) provided with a compressor (1), a condenser (2), a supercooling heat exchanger (3), a first decompression device (4), and an evaporator (5); and an injection circuit (B) which branches from between the supercooling heat exchanger and the first decompression device and is connected to the compressor via a second decompression device (8) and the supercooling heat exchanger. The refrigeration device is furthermore provided with a heat-generating body (40) for generating heat and a cooling structure for cooling the heat-generating body through use of refrigerant in the refrigerant circuit from an outlet of the condenser to an inlet of the first decompression device.

Description

冷凍装置Refrigeration equipment
 本発明は、発熱体を冷却する冷却構造を備えた冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus having a cooling structure for cooling a heating element.
 冷凍装置の制御装置には例えばパワーモジュール等の発熱体が備えられており、発熱体は使用上限温度を超えると損傷に至る。このため、従来より、発熱体を、冷媒を用いて冷却するようにした冷凍装置がある(例えば、特許文献1参照)。特許文献1の冷凍装置は、圧縮機、凝縮器、第一減圧装置及び蒸発器が接続されて冷媒が循環する冷媒回路と、凝縮器から流出した冷媒の一部を第二減圧装置で減圧した後、圧縮機にインジェクションするインジェクション回路と、インジェクション回路に設けられ、減圧後の冷媒を用いて発熱体を冷却する冷却部とを備えている。 The control device of the refrigeration apparatus is provided with a heating element such as a power module, and the heating element is damaged when it exceeds the upper limit temperature. For this reason, conventionally, there is a refrigeration apparatus in which a heating element is cooled using a refrigerant (see, for example, Patent Document 1). In the refrigeration apparatus of Patent Document 1, a compressor, a condenser, a first decompression device, and an evaporator are connected to circulate a refrigerant circuit, and a part of the refrigerant flowing out of the condenser is decompressed by the second decompression device. Thereafter, an injection circuit that injects into the compressor, and a cooling unit that is provided in the injection circuit and that cools the heating element using the refrigerant after decompression are provided.
特許第551662号公報Japanese Patent No. 551662
 特許文献1では、減圧後の冷媒を用いて発熱体を冷却しているが、圧縮機から吐出された冷媒は、凝縮器を通過することで温度が下がっている。よって、凝縮器を通過して温度の下がった冷媒を第二減圧装置で減圧することで更に冷媒の温度が下がるため、その冷媒を用いて発熱体を冷却すると、発熱体を冷やし過ぎて結露が生じる可能性がある。 In Patent Document 1, the heat generating element is cooled using the refrigerant after decompression, but the temperature of the refrigerant discharged from the compressor is lowered by passing through the condenser. Therefore, since the temperature of the refrigerant is further reduced by reducing the temperature of the refrigerant that has passed through the condenser with the second decompression device, when the heat generating body is cooled using the refrigerant, the heat generating body is overcooled and dew condensation occurs. It can happen.
 本発明はこのような点を鑑みなされたもので、発熱体の冷やし過ぎを抑制することが可能な冷凍装置を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide a refrigeration apparatus capable of suppressing overcooling of a heating element.
 本発明に係る冷凍装置は、圧縮機、凝縮器、過冷却熱交換器、第一減圧装置及び蒸発器を備えた冷媒回路と、過冷却熱交換器と第一減圧装置との間から分岐し、第二減圧装置及び過冷却熱交換器を介して圧縮機に接続されるインジェクション回路と、熱を発する発熱体と、凝縮器の出口から第一減圧装置の入口までの冷媒回路の冷媒によって発熱体を冷却する冷却構造とを備えたものである。 A refrigeration apparatus according to the present invention branches from a refrigerant circuit including a compressor, a condenser, a supercooling heat exchanger, a first decompression device and an evaporator, and between the supercooling heat exchanger and the first decompression device. Heat generated by an injection circuit connected to the compressor via the second decompression device and the supercooling heat exchanger, a heating element that generates heat, and refrigerant in the refrigerant circuit from the outlet of the condenser to the inlet of the first decompression device And a cooling structure for cooling the body.
 本発明によれば、凝縮器の出口から第一減圧装置の入口までの冷媒回路の冷媒によって発熱体を冷却するようにしたので、発熱体の冷却し過ぎを抑制することが可能である。 According to the present invention, since the heating element is cooled by the refrigerant in the refrigerant circuit from the outlet of the condenser to the inlet of the first pressure reducing device, it is possible to suppress overcooling of the heating element.
本発明の実施の形態1に係る冷凍装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention. 図1の過冷却熱交換器3を構成するプレート式熱交換器の斜視図である。It is a perspective view of the plate type heat exchanger which comprises the supercooling heat exchanger 3 of FIG. 本発明の実施の形態1に係る冷凍装置の発熱体40の冷却構造の概略図である。It is the schematic of the cooling structure of the heat generating body 40 of the refrigeration apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の発熱体40の冷却構造の他の構成例を示す概略図である。It is the schematic which shows the other structural example of the cooling structure of the heat generating body 40 of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の発熱体40の冷却構造の他の構成例を示す概略図である。It is the schematic which shows the other structural example of the cooling structure of the heat generating body 40 of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍装置の発熱体40の冷却構造の概略図である。It is the schematic of the cooling structure of the heat generating body 40 of the freezing apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which concerns on Embodiment 3 of this invention.
 以下、本発明の各実施の形態について図に基づいて説明する。以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。 Hereinafter, each embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common to all the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Further, the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state, operation, etc. of the system, apparatus, etc.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路図である。図1における矢印は冷媒の流れを示している。
 冷凍装置は、圧縮機1と、凝縮器2と、過冷却熱交換器3と、第一減圧装置4と、蒸発器5とを順に冷媒配管で接続した冷媒回路Aを備えている。冷媒回路Aには更に、凝縮器2と過冷却熱交換器3との間に、液溜め6と、補助熱交換器7とを備えている。冷凍装置は更に、過冷却熱交換器3と第一減圧装置4との間から分岐し、第二減圧装置8及び過冷却熱交換器3を介して圧縮機1に接続されるインジェクション回路Bを備えている。冷凍装置は更に、凝縮器2に送風する凝縮器ファン20と、蒸発器5に送風する蒸発器ファン21とを備えている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention. The arrows in FIG. 1 indicate the flow of the refrigerant.
The refrigeration apparatus includes a refrigerant circuit A in which a compressor 1, a condenser 2, a supercooling heat exchanger 3, a first decompression device 4, and an evaporator 5 are connected in order by refrigerant piping. The refrigerant circuit A further includes a liquid reservoir 6 and an auxiliary heat exchanger 7 between the condenser 2 and the supercooling heat exchanger 3. The refrigeration apparatus further includes an injection circuit B that branches from between the supercooling heat exchanger 3 and the first decompression device 4 and is connected to the compressor 1 via the second decompression device 8 and the supercooling heat exchanger 3. I have. The refrigeration apparatus further includes a condenser fan 20 that blows air to the condenser 2 and an evaporator fan 21 that blows air to the evaporator 5.
 以下、冷媒回路Aを構成する各機器について説明する。
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温且つ高圧の状態にするものである。圧縮機1はインバータによって運転周波数を可変させることが可能な容積式圧縮機で構成されている。なお、圧縮機1は運転周波数可変に駆動されるものに限定するものではなく、一定速のものでもよい。
Hereinafter, each apparatus which comprises the refrigerant circuit A is demonstrated.
The compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The compressor 1 is composed of a positive displacement compressor whose operating frequency can be varied by an inverter. In addition, the compressor 1 is not limited to the one driven by variable operation frequency, and may be a constant speed.
 凝縮器2は、圧縮機1から吐出された高温高圧の冷媒と凝縮器ファン20から供給される空気とを熱交換し、冷媒の熱を放熱するものである。凝縮器2は、例えば、伝熱管と多数のフィンで構成されたクロスフィン式のフィンアンドチューブ型熱交換器で構成する。 The condenser 2 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and the air supplied from the condenser fan 20 to radiate the heat of the refrigerant. The condenser 2 is constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins.
 液溜め6は、冷媒回路Aにおいて液化した余剰冷媒を貯留する容器である。 The liquid reservoir 6 is a container for storing excess refrigerant liquefied in the refrigerant circuit A.
 補助熱交換器7は、凝縮器2の冷媒下流に補助的に設けられた熱交換器であり、例えば、伝熱管と多数のフィンで構成されたクロスフィン式のフィンアンドチューブ型熱交換器で構成する。 The auxiliary heat exchanger 7 is a heat exchanger provided auxiliary to the refrigerant downstream of the condenser 2, and is, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins. Constitute.
 過冷却熱交換器3は、第一流路3aと第二流路3bとを有し、第一流路3aに流入した冷媒と第二流路3bに流入した冷媒との熱交換を行う。第一流路3aには、冷媒回路Aにおいて液溜め6から流出した冷媒が通過する。第二流路3bにはインジェクション回路Bにおいて第二減圧装置8で減圧された冷媒が通過する。過冷却熱交換器3は、後述するが発熱体40の取り付け性の観点から次の図2に示すようなプレート式熱交換器で構成されることが望ましい。 The supercooling heat exchanger 3 has a first flow path 3a and a second flow path 3b, and performs heat exchange between the refrigerant flowing into the first flow path 3a and the refrigerant flowing into the second flow path 3b. The refrigerant flowing out of the liquid reservoir 6 in the refrigerant circuit A passes through the first flow path 3a. The refrigerant decompressed by the second decompression device 8 in the injection circuit B passes through the second flow path 3b. As will be described later, the supercooling heat exchanger 3 is preferably configured by a plate heat exchanger as shown in FIG.
 図2は、図1の過冷却熱交換器3を構成するプレート式熱交換器の斜視図である。
 過冷却熱交換器3を構成するプレート式熱交換器は、伝熱プレート31が複数積層され、伝熱プレート31同士の間に形成された空間で第一流路3aと第二流路3bとが交互に形成された構成を有する。そして、伝熱プレート31が積層された集合体の積層方向の最外面には、補強用のサイドプレート32及び補強用のサイドプレート33が配置されている。サイドプレート32及びサイドプレート33は共に板状に構成されており、サイドプレート32の外周面は平坦な平面となっており、後述の発熱体40の取り付け面として用いられる。なお、過冷却熱交換器3はプレート式熱交換器に限られたものではない。発熱体40の取り付け性は低下するものの、過冷却熱交換器3は、他に例えば、二重になった管の内外で熱交換を行う二重管式熱交換器を用いてもよい。
FIG. 2 is a perspective view of a plate heat exchanger constituting the subcooling heat exchanger 3 of FIG.
The plate-type heat exchanger constituting the subcooling heat exchanger 3 has a plurality of heat transfer plates 31 stacked, and a first flow path 3a and a second flow path 3b are formed in a space formed between the heat transfer plates 31. It has the structure formed alternately. A reinforcing side plate 32 and a reinforcing side plate 33 are arranged on the outermost surface in the stacking direction of the assembly in which the heat transfer plates 31 are stacked. Both the side plate 32 and the side plate 33 are formed in a plate shape, and the outer peripheral surface of the side plate 32 is a flat flat surface, and is used as a mounting surface for a heating element 40 described later. The supercooling heat exchanger 3 is not limited to a plate heat exchanger. Although the attachment property of the heating element 40 is lowered, the supercooling heat exchanger 3 may also use, for example, a double tube heat exchanger that performs heat exchange inside and outside the double tube.
 図1の説明に戻る。第一減圧装置4は、冷媒を減圧して膨張させるものである。第一減圧装置4は、冷媒回路A内を流れる冷媒の流量調整を行う。第一減圧装置4は、ステッピングモータ(図示せず)により絞りの開度を可変に調整することが可能な電子膨張弁で構成するとよい。なお、電子膨張弁以外にも、受圧部にダイアフラムを採用した機械式膨張弁、又は温度式膨張弁、キャピラリーチューブ等、同様な役割を成すものであれば、他の形式のものを用いてもよい。 Returning to the explanation of FIG. The first decompression device 4 expands the refrigerant by decompressing it. The first decompression device 4 adjusts the flow rate of the refrigerant flowing in the refrigerant circuit A. The first pressure reducing device 4 may be composed of an electronic expansion valve capable of variably adjusting the opening of the throttle by a stepping motor (not shown). In addition to the electronic expansion valve, other types may be used as long as they have a similar function, such as a mechanical expansion valve adopting a diaphragm for the pressure receiving portion, a temperature expansion valve, a capillary tube, or the like. Good.
 蒸発器5は、第一減圧装置4で減圧された低温低圧の冷媒と、蒸発器ファン21から供給される空気とを熱交換させるものである。蒸発器5は、例えば、伝熱管と多数のフィンで構成されたクロスフィン式のフィンアンドチューブ型熱交換器で構成するとよい。 The evaporator 5 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the first decompression device 4 and the air supplied from the evaporator fan 21. The evaporator 5 is good to comprise, for example with the cross fin type fin and tube type heat exchanger comprised with the heat exchanger tube and many fins.
 第二減圧装置8は、冷媒を減圧して膨張させるものであり、インジェクション回路Bを流れる冷媒の流量調整を行う。第二減圧装置8は、ステッピングモータ(図示せず)により絞りの開度を調整することが可能な電子膨張弁で構成するとよい。なお、電子膨張弁以外にも、受圧部にダイアフラムを採用した機械式膨張弁、又は温度式膨張弁、キャピラリーチューブ等、同様な役割を成すものであれば、他の形式のものを用いてもよい。 The second decompression device 8 decompresses and expands the refrigerant, and adjusts the flow rate of the refrigerant flowing through the injection circuit B. The second pressure reducing device 8 may be constituted by an electronic expansion valve capable of adjusting the opening of the throttle by a stepping motor (not shown). In addition to the electronic expansion valve, other types may be used as long as they have a similar function, such as a mechanical expansion valve adopting a diaphragm for the pressure receiving portion, a temperature expansion valve, a capillary tube, or the like. Good.
 また、この冷凍装置は、更に、後述の発熱体40の温度を検知する発熱体温度センサ11と、過冷却熱交換器3の第一流路3aを流出した冷媒の温度を検知する冷媒温度センサ12と、圧縮機1から吐出された温度を検知する吐出温度センサ13と、制御装置50を備えている。制御装置50は、これらの温度センサによって検知された検知温度、及び冷凍装置の使用者から指示される運転内容を取得するように構成されている。 The refrigeration apparatus further includes a heating element temperature sensor 11 that detects the temperature of the heating element 40 described later, and a refrigerant temperature sensor 12 that detects the temperature of the refrigerant that has flowed out of the first flow path 3a of the supercooling heat exchanger 3. And a discharge temperature sensor 13 for detecting the temperature discharged from the compressor 1 and a control device 50. The control device 50 is configured to acquire the detected temperature detected by these temperature sensors and the operation content instructed by the user of the refrigeration apparatus.
 そして、制御装置50は、検知温度及び運転内容に基づいて、圧縮機1の運転方法、第一減圧装置4の開度、第二減圧装置8の開度、凝縮器ファン20の回転数、蒸発器ファン21の回転数等を制御する。制御装置50は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコン又はCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 And the control apparatus 50 is based on detected temperature and the content of operation, the operation method of the compressor 1, the opening degree of the 1st decompression device 4, the opening degree of the 2nd decompression device 8, the rotation speed of the condenser fan 20, and evaporation The rotational speed of the fan 21 is controlled. The control device 50 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
 この冷凍装置に用いられる冷媒の種類は、特に限定は無く、任意の冷媒を用いることができる。例えば、二酸化炭素(CO)、炭化水素又はヘリウム等のような自然冷媒を採用してもよいし、R410Aはもちろん、R407C、R404A等の代替冷媒等の塩素を含まない冷媒を採用してもよい。 There is no particular limitation on the type of refrigerant used in the refrigeration apparatus, and any refrigerant can be used. For example, a natural refrigerant such as carbon dioxide (CO 2 ), hydrocarbon, or helium may be employed, or a refrigerant that does not contain chlorine, such as an alternative refrigerant such as R407C and R404A, as well as R410A. Good.
 以上のように構成された冷凍装置は、屋内に設置された例えばショーケースに設置され、商品が配置される収納スペースを冷却する冷却装置として用いられる。この場合、少なくとも蒸発器5及び蒸発器ファン21は収納スペースに連通した冷却室60に配置され、その他の構成部品は例えば収納スペースの下部等に設けられた機械室70に配置され、熱源機を構成する。なお、この例では、第一減圧装置4が冷却室60に配置されているが機械室70側に配置してもよい。 The refrigeration apparatus configured as described above is installed in, for example, a showcase installed indoors, and is used as a cooling apparatus that cools a storage space in which products are arranged. In this case, at least the evaporator 5 and the evaporator fan 21 are disposed in the cooling chamber 60 communicating with the storage space, and other components are disposed in, for example, the machine chamber 70 provided in the lower portion of the storage space, and the heat source device is installed. Constitute. In this example, the first pressure reducing device 4 is disposed in the cooling chamber 60, but may be disposed on the machine chamber 70 side.
 次に、上記構成の冷凍装置の運転動作について図1に基づき説明する。
 圧縮機1から吐出された高温高圧のガス冷媒は、凝縮器2へ至り、凝縮器ファン20からの空気との熱交換により凝縮液化し、高圧低温の冷媒となる。凝縮液化した高圧低温の冷媒は飽和液状態となり、飽和液の一部が液溜め6に貯留される。その後、液溜め6を流出して過冷却熱交換器3の第一流路3aに流入した液冷媒は、過冷却熱交換器3の第二流路3bを流れる低温の冷媒と熱交換し、過冷却される。
Next, the operation of the refrigeration apparatus having the above configuration will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the condenser 2 and is condensed and liquefied by heat exchange with the air from the condenser fan 20 to become a high-pressure and low-temperature refrigerant. The high-pressure and low-temperature refrigerant that has been condensed and liquefied becomes a saturated liquid state, and a part of the saturated liquid is stored in the liquid reservoir 6. Thereafter, the liquid refrigerant flowing out of the liquid reservoir 6 and flowing into the first flow path 3a of the supercooling heat exchanger 3 exchanges heat with the low-temperature refrigerant flowing through the second flow path 3b of the supercooling heat exchanger 3, To be cooled.
 過冷却熱交換器3で過冷却された冷媒は、一部が冷媒回路Aからインジェクション回路Bにバイパスされる。残りの冷媒は第一減圧装置4にて減圧されて二相冷媒となって、蒸発器5へ送られる。蒸発器5に送られた二相冷媒は、蒸発器ファン21からの空気との熱交換により蒸発し、低圧のガス冷媒となる。そして、低圧のガス冷媒は圧縮機1へ吸入される。 A part of the refrigerant supercooled by the supercooling heat exchanger 3 is bypassed from the refrigerant circuit A to the injection circuit B. The remaining refrigerant is decompressed by the first decompression device 4 to become a two-phase refrigerant and sent to the evaporator 5. The two-phase refrigerant sent to the evaporator 5 evaporates by heat exchange with the air from the evaporator fan 21 and becomes a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sucked into the compressor 1.
 一方、冷媒回路Aからインジェクション回路Bにバイパスされた冷媒は、第二減圧装置8で減圧されて低温の二相冷媒となる。この二相冷媒は、過冷却熱交換器3の第二流路3bに流入し、過冷却熱交換器3の第一流路3aの冷媒と熱交換した後、圧縮機1の圧縮室内にインジェクションされる。冷凍装置では、運転条件によっては圧縮機1の吐出温度が高くなりすぎることがあり、インジェクション回路Bを通過した冷媒を圧縮機1にインジェクションすることで、吐出温度の低下が図られる。 On the other hand, the refrigerant bypassed from the refrigerant circuit A to the injection circuit B is decompressed by the second decompression device 8 and becomes a low-temperature two-phase refrigerant. The two-phase refrigerant flows into the second flow path 3b of the supercooling heat exchanger 3, exchanges heat with the refrigerant in the first flow path 3a of the supercooling heat exchanger 3, and is then injected into the compression chamber of the compressor 1. The In the refrigeration apparatus, the discharge temperature of the compressor 1 may become too high depending on the operating conditions, and the discharge temperature can be lowered by injecting the refrigerant that has passed through the injection circuit B into the compressor 1.
 そして、この実施の形態1の特徴として、冷凍装置に備えられ、熱を発する発熱体40を、凝縮器2の出口から第一減圧装置4の入口までの冷媒回路Aの冷媒で冷却を行うようにしている。発熱体40は、例えば、SiC、GaN又はダイヤモンド等のワイドギャップ半導体を含んでいる。ワイドギャップ半導体等を含んだ発熱体40としては、例えばパワーモジュールがある。パワーモジュールは、例えば圧縮機1のインバータを構成するものである。 As a feature of the first embodiment, the heating element 40 that is provided in the refrigeration apparatus and generates heat is cooled with the refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first decompression device 4. I have to. The heating element 40 includes, for example, a wide gap semiconductor such as SiC, GaN, or diamond. An example of the heating element 40 including a wide gap semiconductor is a power module. A power module comprises the inverter of the compressor 1, for example.
 凝縮器2の出口から第一減圧装置4の入口までの冷媒回路Aの冷媒は、インジェクション回路Bにおいて第二減圧装置8で減圧後の冷媒よりも温度が高い。このため、凝縮器2の出口から第一減圧装置4の入口までの冷媒回路Aの冷媒で発熱体40を冷却することで、発熱体40の冷え過ぎを抑制できる。 The refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first decompression device 4 is higher in temperature than the refrigerant decompressed by the second decompression device 8 in the injection circuit B. For this reason, the cooling of the heating element 40 with the refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4 can suppress the cooling of the heating element 40 too much.
 以下、凝縮器2の出口から第一減圧装置4の入口までの冷媒回路Aの冷媒で発熱体40を冷却する具体的な冷却構造の一例について説明する。 Hereinafter, an example of a specific cooling structure for cooling the heating element 40 with the refrigerant in the refrigerant circuit A from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4 will be described.
 図3は、本発明の実施の形態1に係る冷凍装置の発熱体40の冷却構造の概略図である。
 図3に示すように発熱体40が過冷却熱交換器3に取り付けられる。具体的には、発熱体40は過冷却熱交換器3の平板状のサイドプレート33に伝熱部材41を介してネジ留め等により着脱自在に取り付けられる。伝熱部材41には例えばアルミプレート等の熱伝達性のよいプレートを用いればよい。なお、ここでは、伝熱部材41を介して発熱体40を過冷却熱交換器3に取り付けているが、発熱体40を直接、過冷却熱交換器3に当接させて取り付けてもよい。要するに発熱体40が過冷却熱交換器3に熱的に接続されるように過冷却熱交換器3に取り付けられていればよい。過冷却熱交換器3は、本発明の冷媒機器に相当する。
FIG. 3 is a schematic diagram of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 3, the heating element 40 is attached to the supercooling heat exchanger 3. Specifically, the heating element 40 is detachably attached to the flat side plate 33 of the supercooling heat exchanger 3 by screwing or the like via the heat transfer member 41. The heat transfer member 41 may be a plate having good heat transfer properties such as an aluminum plate. Here, although the heating element 40 is attached to the supercooling heat exchanger 3 via the heat transfer member 41, the heating element 40 may be attached directly to the supercooling heat exchanger 3. In short, it is only necessary that the heating element 40 is attached to the supercooling heat exchanger 3 so as to be thermally connected to the supercooling heat exchanger 3. The supercooling heat exchanger 3 corresponds to the refrigerant device of the present invention.
 ここで、過冷却熱交換器3の第一流路3aには凝縮器2を流出した冷媒回路Aの冷媒が流入し、第二流路3bにはインジェクション回路Bの冷媒が流入する。冷媒回路Aの冷媒量はインジェクション回路Bの冷媒量よりも多い。このため、発熱体40が取り付けられる過冷却熱交換器3のサイドプレート33の温度は第一流路3aに流入した冷媒回路Aの冷媒の温度が支配的であり、例えば最大で35℃~45℃程度である。一方、発熱体40は、例えば、80℃~125℃位まで温度が上昇する。よって、発熱体40を過冷却熱交換器3に熱的に接続することで発熱体40を冷却することができる。 Here, the refrigerant of the refrigerant circuit A flowing out of the condenser 2 flows into the first flow path 3a of the supercooling heat exchanger 3, and the refrigerant of the injection circuit B flows into the second flow path 3b. The refrigerant amount of the refrigerant circuit A is larger than the refrigerant amount of the injection circuit B. For this reason, the temperature of the side plate 33 of the supercooling heat exchanger 3 to which the heating element 40 is attached is dominated by the temperature of the refrigerant in the refrigerant circuit A flowing into the first flow path 3a, for example, 35 ° C. to 45 ° C. at the maximum. Degree. On the other hand, the temperature of the heating element 40 rises to about 80 ° C. to 125 ° C., for example. Therefore, the heating element 40 can be cooled by thermally connecting the heating element 40 to the supercooling heat exchanger 3.
 以上のようにして発熱体40が冷却されると、発熱体40の熱は、過冷却熱交換器3を介して冷媒に伝達される。このため、冷媒回路Aを循環する冷媒の温度が上昇する。冷媒の温度が上昇し過ぎると、結果的に発熱体40の冷却不足を招いたり、吐出温度の上昇を招いたり等の不都合が生じる。そこで、冷凍装置は、発熱体40の冷却に起因して変化する温度を検知し、制御装置50にて検知温度に基づいて凝縮器ファン20を制御し、検知温度が目標値となるようにしている。すなわち、冷媒温度が目標値よりも高ければ凝縮器ファン20の回転数を上昇させ、冷媒温度が目標値よりも低ければ凝縮器ファン20の回転数を下降させる。 When the heating element 40 is cooled as described above, the heat of the heating element 40 is transmitted to the refrigerant through the supercooling heat exchanger 3. For this reason, the temperature of the refrigerant circulating in the refrigerant circuit A increases. If the temperature of the refrigerant rises too much, there will be inconveniences such as inadequate cooling of the heating element 40 and an increase in the discharge temperature. Therefore, the refrigeration apparatus detects a temperature that changes due to cooling of the heating element 40, and controls the condenser fan 20 based on the detected temperature by the control apparatus 50 so that the detected temperature becomes a target value. Yes. That is, if the refrigerant temperature is higher than the target value, the rotational speed of the condenser fan 20 is increased, and if the refrigerant temperature is lower than the target value, the rotational speed of the condenser fan 20 is decreased.
 なお、「発熱体40の冷却に起因して変化する温度」とは、例えば、発熱体40の温度、過冷却熱交換器3の第一流路3aから流出した冷媒の温度、圧縮機1から吐出された冷媒の温度等であり、これらは順に、発熱体温度センサ11、冷媒温度センサ12、吐出温度センサ13で検知できる。これら、発熱体温度センサ11、冷媒温度センサ12、吐出温度センサ13の何れかが本発明の制御用温度センサに相当する。 The “temperature changing due to cooling of the heating element 40” is, for example, the temperature of the heating element 40, the temperature of the refrigerant flowing out from the first flow path 3a of the supercooling heat exchanger 3, and the discharge from the compressor 1. And the like, which can be detected by the heating element temperature sensor 11, the refrigerant temperature sensor 12, and the discharge temperature sensor 13 in this order. Any of these heating element temperature sensor 11, refrigerant temperature sensor 12, and discharge temperature sensor 13 corresponds to the control temperature sensor of the present invention.
 また、発熱体40の温度が予め設定された設定温度を超えて高くなったときは、制御装置50は、第二減圧装置8の開度を大きくするか、又は凝縮器ファン20の回転数を上昇させて発熱体40の温度を設定温度以下に下げる制御を行う。なお、設定温度は、例えば、90℃程度に設定される。 Further, when the temperature of the heating element 40 becomes higher than a preset temperature, the control device 50 increases the opening of the second decompression device 8 or sets the rotation speed of the condenser fan 20. Control is performed to raise the temperature of the heating element 40 below the set temperature. The set temperature is set to about 90 ° C., for example.
 以上説明したように、本実施の形態1によれば、凝縮器2の出口から第一減圧装置4の入口までの冷媒で発熱体40の冷却を行うようにしたので、発熱体40の冷やし過ぎを抑制できる。その結果、発熱体40の結露を抑制できる。 As described above, according to the first embodiment, since the heating element 40 is cooled by the refrigerant from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4, the heating element 40 is overcooled. Can be suppressed. As a result, condensation of the heating element 40 can be suppressed.
 なお、凝縮器2の出口から第一減圧装置4の冷媒回路Aの入口までの冷媒で発熱体40の冷却するにあたり、具体的には過冷却熱交換器3に発熱体40を取り付けて冷却するようにした。冷凍装置には従来より過冷却熱交換器3が設けられており、従来既存の冷媒機器である過冷却熱交換器3を用いて発熱体40を冷却するようにしたので、発熱体40冷却専用の回路又は機器の追加が不要である。このため、低コスト且つ省スペースで発熱体40の冷却を実現できる。 In addition, when cooling the heating element 40 with the refrigerant from the outlet of the condenser 2 to the inlet of the refrigerant circuit A of the first decompression device 4, specifically, the heating element 40 is attached to the supercooling heat exchanger 3 and cooled. I did it. The refrigeration apparatus is conventionally provided with a supercooling heat exchanger 3, and the heating element 40 is cooled by using the supercooling heat exchanger 3 which is a conventional refrigerant device. No additional circuit or device is required. For this reason, cooling of the heat generating body 40 is realizable at low cost and space saving.
 また、発熱体40を伝熱部材41を介して過冷却熱交換器3に取り付けるようにしたので、発熱体40の熱を伝熱部材41を介して過冷却熱交換器3に伝達できるだけでなく、伝熱部材41自身からも放熱されるため、発熱体40を効果的に冷却できる。 Further, since the heating element 40 is attached to the supercooling heat exchanger 3 via the heat transfer member 41, not only can the heat of the heating element 40 be transmitted to the supercooling heat exchanger 3 via the heat transfer member 41. Since heat is also radiated from the heat transfer member 41 itself, the heating element 40 can be effectively cooled.
 また、過冷却熱交換器3をプレート式熱交換器で構成したので、プレート式熱交換器の最外面に配置されたサイドプレート32の平面状部分を利用して発熱体40又は伝熱部材41を容易に取り付けることができる。また、プレート式熱交換器と発熱体40又は伝熱部材41との取り付けをネジ留め等により着脱自在とすることで、発熱体40のプレート式熱交換器からの取り外しが可能となる。このように発熱体40をプレート式熱交換器から取り外し可能とすることで、発熱体40のメンテナンス等のサービス性に優れたものとすることができる。 In addition, since the subcooling heat exchanger 3 is configured by a plate heat exchanger, the heating element 40 or the heat transfer member 41 is utilized by using the planar portion of the side plate 32 disposed on the outermost surface of the plate heat exchanger. Can be easily attached. Further, by making the plate heat exchanger and the heating element 40 or the heat transfer member 41 detachable by screwing or the like, the heating element 40 can be detached from the plate heat exchanger. By making the heating element 40 removable from the plate heat exchanger in this way, it is possible to make the heating element 40 excellent in serviceability such as maintenance.
 また、従来、発熱体40を冷媒配管に取り付けて発熱体40を冷却する構造では、冷媒配管を両側から板状部材で挟んで固定し、板状部材の外面に発熱体40を取り付ける構造とする必要があり、取り付け構造が不雑であった。これに対し、過冷却熱交換器3をプレート式熱交換器で構成することで、取り付け構造が簡単となる。 Conventionally, in the structure in which the heating element 40 is attached to the refrigerant pipe and the heating element 40 is cooled, the refrigerant pipe is sandwiched and fixed from both sides by a plate-like member, and the heating element 40 is attached to the outer surface of the plate-like member. It was necessary and the mounting structure was messy. On the other hand, mounting structure becomes simple by comprising the supercooling heat exchanger 3 with a plate-type heat exchanger.
 また、「発熱体40の冷却に起因して変化する温度」を、発熱体温度センサ11、冷媒温度センサ12及び吐出温度センサ13の何れかで検知し、検知した温度が目標値となるように凝縮器ファン20を制御するようにした。このため、冷却構造を変更することなく冷却能力を調整することができ、発熱体40を冷却するための構成が簡単化される。 Further, the “temperature changing due to cooling of the heating element 40” is detected by any one of the heating element temperature sensor 11, the refrigerant temperature sensor 12, and the discharge temperature sensor 13, and the detected temperature becomes a target value. The condenser fan 20 was controlled. For this reason, the cooling capacity can be adjusted without changing the cooling structure, and the configuration for cooling the heating element 40 is simplified.
 また、発熱体40の温度が予め設定された設定温度を超えて高くなったときは、第二減圧装置8の開度を大きくするか、又は凝縮器ファン20の回転数を上昇させて発熱体40の温度を設定温度以下に下げる制御を行うようにした。このため、冷却構造を変更することなく発熱体40の温度を設定温度以下に下げることができる。 Further, when the temperature of the heating element 40 becomes higher than a preset temperature, the opening of the second decompression device 8 is increased, or the rotation speed of the condenser fan 20 is increased to increase the heating element. Control was performed to lower the temperature of 40 below the set temperature. For this reason, the temperature of the heat generating body 40 can be lowered below the set temperature without changing the cooling structure.
 また、発熱体40はワイドギャップ半導体を含むものである。ワイドギャップ半導体は耐熱温度が約400℃程度と高く、高温での動作が可能であるといった特徴がある。このため、ワイドギャップ半導体を含む発熱体40を冷媒で冷却する効果が顕著となる。 The heating element 40 includes a wide gap semiconductor. Wide-gap semiconductors have a high heat-resistant temperature of about 400 ° C. and can be operated at high temperatures. For this reason, the effect which cools the heat generating body 40 containing a wide gap semiconductor with a refrigerant | coolant becomes remarkable.
 なお、冷凍装置は、図1に示した構成に更に、以下のような変形を加えても良い。この場合も同様の作用効果を得ることができる。 The refrigeration apparatus may be modified as follows in addition to the configuration shown in FIG. In this case, the same effect can be obtained.
 図4は、本発明の実施の形態1に係る冷凍装置の発熱体40の冷却構造の他の構成例を示す概略図である。図5は、本発明の実施の形態1に係る冷凍装置の発熱体40の冷却構造の他の構成例を示す概略図である。
 冷凍装置は、電気部品を収容した電気品箱80を備えている。電気品箱80には、DCリアクトル又はACリアクトル等の巻物、コイルを有する部品、様々な基板等、発熱が大きく、且つ直接、伝熱部材41又は過冷却熱交換器3に取り付けることができない発熱体40も配置される。なお、電気品箱80内には制御装置50も配置される。
FIG. 4 is a schematic diagram illustrating another configuration example of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 1 of the present invention. FIG. 5 is a schematic diagram illustrating another configuration example of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 1 of the present invention.
The refrigeration apparatus includes an electrical component box 80 that houses electrical components. The electrical component box 80 has a large amount of heat generation such as a DC reactor or AC reactor, a coiled part, various substrates, etc., and cannot be directly attached to the heat transfer member 41 or the supercooling heat exchanger 3. A body 40 is also arranged. A control device 50 is also arranged in the electrical component box 80.
 このように、伝熱部材41又は過冷却熱交換器3に取り付けることができない発熱体40については、図4又は図5に示すように電気品箱80を伝熱部材41又は過冷却熱交換器3に取り付けて発熱体40を冷却するようにしてもよい。このように電気品箱80を伝熱部材41又は過冷却熱交換器3に取り付ける場合には、電気品箱80の伝熱部材41又は過冷却熱交換器3との接触壁40aにおいて過冷却熱交換器3と対向する領域に発熱体40を配置する。これにより、発熱体40の熱を効率良く放熱することができる。 Thus, about the heat generating body 40 which cannot be attached to the heat-transfer member 41 or the supercooling heat exchanger 3, as shown in FIG. 4 or FIG. 5, the electrical component box 80 is replaced with the heat-transfer member 41 or the supercooling heat exchanger. 3 may be used to cool the heating element 40. Thus, when attaching the electrical component box 80 to the heat transfer member 41 or the supercooling heat exchanger 3, the supercooling heat is generated in the contact wall 40a of the electrical component box 80 with the heat transfer member 41 or the supercooling heat exchanger 3. A heating element 40 is disposed in a region facing the exchanger 3. Thereby, the heat of the heat generating body 40 can be efficiently radiated.
実施の形態2.
 上記実施の形態1では、凝縮器2の出口から第一減圧装置4の冷媒回路Aの入口までの冷媒で発熱体40の冷却を行う構成として、過冷却熱交換器3で冷却を行う構成を説明した。実施の形態2では、別の構成について説明する。以下、実施の形態2が実施の形態1と異なる点を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, as the configuration in which the heating element 40 is cooled with the refrigerant from the outlet of the condenser 2 to the inlet of the refrigerant circuit A of the first decompression device 4, the cooling is performed by the supercooling heat exchanger 3. explained. In the second embodiment, another configuration will be described. Hereinafter, the second embodiment will be described mainly with respect to points different from the first embodiment, and the configuration not described in the second embodiment is the same as that of the first embodiment.
 図6は、本発明の実施の形態2に係る冷凍装置の発熱体40の冷却構造の概略図である。
 実施の形態2では、凝縮器2の出口から第一減圧装置4の入口までの冷媒で発熱体40の冷却を行う構成として、液溜め6に発熱体40を取り付けて発熱体40を冷却する。発熱体40の液溜め6への取り付け構造は、発熱体40を直接液溜め6へ取り付けてもよいし、実施の形態1で説明したように伝熱部材41を介して取り付けるようにしてもよい。要するに、発熱体40が熱的に液溜め6に接続される構造とされていればよい。液溜め6は、過冷却熱交換器3と同様に、本発明の冷媒機器に相当する。
FIG. 6 is a schematic diagram of the cooling structure of the heating element 40 of the refrigeration apparatus according to Embodiment 2 of the present invention.
In the second embodiment, the heating element 40 is cooled by the refrigerant from the outlet of the condenser 2 to the inlet of the first pressure reducing device 4, and the heating element 40 is attached to the liquid reservoir 6 to cool the heating element 40. The structure for attaching the heating element 40 to the liquid reservoir 6 may be such that the heating element 40 may be directly attached to the liquid reservoir 6 or may be attached via the heat transfer member 41 as described in the first embodiment. . In short, the heating element 40 may be configured to be thermally connected to the liquid reservoir 6. The liquid reservoir 6 corresponds to the refrigerant device of the present invention, like the supercooling heat exchanger 3.
 このように構成された実施の形態2は、実施の形態1と同様の効果が得られる。すなわち、凝縮器2の出口から第一減圧装置4の入口までの冷媒で発熱体40を冷却するため、発熱体40の冷却し過ぎを抑制できる。その結果、発熱体40の結露を抑制できる。 The second embodiment configured as described above can achieve the same effects as the first embodiment. That is, since the heating element 40 is cooled by the refrigerant from the outlet of the condenser 2 to the inlet of the first decompression device 4, the cooling of the heating element 40 can be suppressed. As a result, condensation of the heating element 40 can be suppressed.
 また、冷凍装置には従来より液溜め6が設けられており、従来既存の冷媒機器である液溜め6を用いて発熱体40を冷却するようにしたので、発熱体冷却専用の回路又は発熱体冷却専用の機器の追加が不要である。このため、低コスト且つ省スペースで発熱体40の冷却を実現できる。 Further, since the refrigeration apparatus is conventionally provided with a liquid reservoir 6, and the heat generator 40 is cooled by using the liquid reservoir 6 which is a conventional refrigerant device, a circuit dedicated to cooling the heat generator or a heat generator. No additional cooling equipment is required. For this reason, cooling of the heat generating body 40 is realizable at low cost and space saving.
 また、実施の形態2においても、図4及び図5に示した実施の形態1の変形例を適用できる。すなわち、電気品箱80を液溜め6に直接又は伝熱部材41を介して取り付けるようにしてもよい。 Also in the second embodiment, the modification of the first embodiment shown in FIGS. 4 and 5 can be applied. That is, the electrical component box 80 may be attached to the liquid reservoir 6 directly or via the heat transfer member 41.
実施の形態3.
 上記実施の形態1及び実施の形態2の冷凍装置は、冷凍装置全体が屋内に設置される形態であったが、実施の形態3は、凝縮器2及び凝縮器ファン20を屋外に設置するようにしたものである。以下、実施の形態3が実施の形態1、2と異なる点を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態1、2と同様である。
Embodiment 3 FIG.
Although the refrigeration apparatus of the first embodiment and the second embodiment is a form in which the entire refrigeration apparatus is installed indoors, the third embodiment is such that the condenser 2 and the condenser fan 20 are installed outdoors. It is a thing. Hereinafter, the third embodiment will be described mainly with respect to differences from the first and second embodiments, and the configuration not described in the third embodiment is the same as the first and second embodiments.
 図7は、本発明の実施の形態3に係る冷凍装置の冷媒回路図である。
 実施の形態3の冷凍装置は、冷凍装置を構成する各機器のうち、凝縮器2及び凝縮器ファン20が室外機100の筐体内に配置されて屋外に設置される。冷凍装置を構成する他の機器は、室外機100とは別に、屋内に配置される。
FIG. 7 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 3 of the present invention.
In the refrigeration apparatus of the third embodiment, among the devices constituting the refrigeration apparatus, the condenser 2 and the condenser fan 20 are disposed inside the casing of the outdoor unit 100 and installed outdoors. Other devices constituting the refrigeration apparatus are arranged indoors separately from the outdoor unit 100.
 発熱体40の熱は、冷媒回路Aの冷媒に伝達されて凝縮器2に運ばれる。そして、凝縮器2が屋外に設置されていることで、発熱体40の熱は、室内にこもらず、凝縮器2から屋外に排熱される。 The heat of the heating element 40 is transmitted to the refrigerant in the refrigerant circuit A and carried to the condenser 2. And since the condenser 2 is installed outdoors, the heat of the heating element 40 is not accumulated indoors but is exhausted from the condenser 2 to the outdoors.
 なお、図7では発熱体40を過冷却熱交換器3で冷却する構成を示しているが、液溜め6で冷却する等、冷媒回路Aの凝縮器2の出口から第一減圧装置4の入口までの冷媒によって冷却する構成とされていればよい。 Although FIG. 7 shows a configuration in which the heating element 40 is cooled by the supercooling heat exchanger 3, it is cooled by the liquid reservoir 6 or the like from the outlet of the condenser 2 of the refrigerant circuit A to the inlet of the first pressure reducing device 4. What is necessary is just to be set as the structure cooled with the refrigerant | coolant to.
 実施の形態3によれば、実施の形態1、2と同様の効果が得られると共に、凝縮器2及び凝縮器ファン20を屋外に設置したので、以下の効果が得られる。すなわち、発熱体40の熱を、凝縮器2から屋外に排熱することができる。これにより、発熱体40の熱が機械室70にこもらず、凝縮器2の熱交換効率の低下を招かないため、凝縮器2を機械室70に設置した場合に比べて、機械室70を冷却する冷凍装置の能力を削減できる。また、発熱体40の熱が屋内に排出されないため、屋内を冷却する空気調和機の能力を削減できる。 According to the third embodiment, the same effects as in the first and second embodiments can be obtained, and the condenser 2 and the condenser fan 20 are installed outdoors, so the following effects are obtained. That is, the heat of the heating element 40 can be exhausted from the condenser 2 to the outside. As a result, the heat of the heating element 40 does not stay in the machine room 70 and the heat exchange efficiency of the condenser 2 does not decrease, so that the machine room 70 is cooled compared to the case where the condenser 2 is installed in the machine room 70. Can reduce the capacity of the refrigeration equipment. Moreover, since the heat of the heating element 40 is not discharged indoors, the ability of the air conditioner to cool the indoors can be reduced.
 なお、上記実施の形態では、本発明の冷凍装置をショーケースに利用した例を説明したが、冷凍庫又は空気調和機等にも適用することができる。 In addition, although the example which utilized the freezing apparatus of this invention for the showcase was demonstrated in the said embodiment, it is applicable also to a freezer or an air conditioner.
 また、図4及び図5に示した実施の形態1の変形例を本実施の形態3に適用した構成としてもよく、この場合、以下の効果が得られる。電気品箱80内の発熱体40が排出した熱は、電気品箱80の熱輻射により電気品箱80の外に排熱され、機械室70内にこもりやすい。また、電気品箱80が、吸気口と排気口とを有し、内部にファンを備えた構成の場合、電気品箱80の熱が強制的に電気品箱80の外に排熱され、同様に機械室70内にこもりやすい。このため、電気品箱80を過冷却熱交換器3又は液溜め6に熱的に接続し、電気品箱80の熱を冷媒回路Aの冷媒に伝達して凝縮器2から屋外に排熱することで、機械室70内での電気品箱80の熱輻射を抑え、多くの熱を屋外に排熱できる。 Further, the modification of the first embodiment shown in FIGS. 4 and 5 may be applied to the third embodiment, and in this case, the following effects can be obtained. The heat discharged from the heating element 40 in the electrical component box 80 is exhausted to the outside of the electrical component box 80 due to heat radiation of the electrical component box 80, and is easily trapped in the machine room 70. In addition, when the electrical component box 80 has an intake port and an exhaust port and includes a fan inside, the heat of the electrical component box 80 is forcibly exhausted to the outside of the electrical component box 80, and the same In addition, it is easy to stay inside the machine room 70. For this reason, the electrical component box 80 is thermally connected to the supercooling heat exchanger 3 or the liquid reservoir 6, and the heat of the electrical component box 80 is transferred to the refrigerant in the refrigerant circuit A to be exhausted from the condenser 2 to the outside. Thus, heat radiation of the electrical component box 80 in the machine room 70 can be suppressed, and a large amount of heat can be exhausted outdoors.
 1 圧縮機、2 凝縮器、3 過冷却熱交換器、3a 第一流路、3b 第二流路、4 第一減圧装置、5 蒸発器、6 液溜め、7補助熱交換器、8 第二減圧装置、11 発熱体温度センサ、12 冷媒温度センサ、13 吐出温度センサ、20 凝縮器ファン、21 蒸発器ファン、31 伝熱プレート、32 サイドプレート、33 サイドプレート、40 発熱体、40a 接触壁、41 伝熱部材、50 制御装置、60 冷却室、70 機械室、80 電気品箱、100 室外機、A 冷媒回路、B インジェクション回路。 1 compressor, 2 condenser, 3 supercooling heat exchanger, 3a first flow path, 3b second flow path, 4 first pressure reduction device, 5 evaporator, 6 liquid reservoir, 7 auxiliary heat exchanger, 8 second pressure reduction Device, 11 Heating element temperature sensor, 12 Refrigerant temperature sensor, 13 Discharge temperature sensor, 20 Condenser fan, 21 Evaporator fan, 31 Heat transfer plate, 32 Side plate, 33 Side plate, 40 Heating element, 40a Contact wall, 41 Heat transfer member, 50 control device, 60 cooling room, 70 machine room, 80 electrical component box, 100 outdoor unit, A refrigerant circuit, B injection circuit.

Claims (15)

  1.  圧縮機、凝縮器、過冷却熱交換器、第一減圧装置及び蒸発器を備えた冷媒回路と、
     前記過冷却熱交換器と前記第一減圧装置との間から分岐し、第二減圧装置及び前記過冷却熱交換器を介して前記圧縮機に接続されるインジェクション回路と、
     熱を発する発熱体と、
     前記凝縮器の出口から前記第一減圧装置の入口までの前記冷媒回路の冷媒によって前記発熱体を冷却する冷却構造とを備えた冷凍装置。
    A refrigerant circuit comprising a compressor, a condenser, a supercooling heat exchanger, a first decompressor and an evaporator;
    An injection circuit branched from between the supercooling heat exchanger and the first pressure reducing device, and connected to the compressor via the second pressure reducing device and the supercooling heat exchanger;
    A heating element that emits heat;
    A refrigeration apparatus comprising: a cooling structure that cools the heating element with a refrigerant in the refrigerant circuit from an outlet of the condenser to an inlet of the first decompression device.
  2.  前記冷却構造は、前記凝縮器の出口から前記第一減圧装置の入口までの間に配置された冷媒機器に前記発熱体を取り付けた構造を有する請求項1記載の冷凍装置。 The refrigeration apparatus according to claim 1, wherein the cooling structure has a structure in which the heating element is attached to a refrigerant device arranged between an outlet of the condenser and an inlet of the first decompression device.
  3.  前記発熱体と前記冷媒機器とが伝熱部材を介して取り付けられている請求項2記載の冷凍装置。 The refrigeration apparatus according to claim 2, wherein the heating element and the refrigerant device are attached via a heat transfer member.
  4.  前記冷却構造は、前記凝縮器の出口から前記第一減圧装置の入口までの間に配置された冷媒機器に、前記発熱体を内部に収容した電気品箱を取り付けた構造を有する請求項1記載の冷凍装置。 2. The cooling structure has a structure in which an electrical component box in which the heating element is housed is attached to a refrigerant device arranged between an outlet of the condenser and an inlet of the first pressure reducing device. Refrigeration equipment.
  5.  前記発熱体は、前記電気品箱の前記冷媒機器との接触壁において前記冷媒機器と対向する領域に取り付けられている請求項4記載の冷凍装置。 The refrigeration apparatus according to claim 4, wherein the heating element is attached to a region facing the refrigerant device on a contact wall of the electrical component box with the refrigerant device.
  6.  前記電気品箱と前記冷媒機器とが伝熱部材を介して取り付けられている請求項4又は請求項5記載の冷凍装置。 The refrigeration apparatus according to claim 4 or 5, wherein the electrical component box and the refrigerant device are attached via a heat transfer member.
  7.  前記冷媒機器は前記過冷却熱交換器である請求項2~請求項6の何れか一項に記載の冷凍装置。 The refrigeration apparatus according to any one of claims 2 to 6, wherein the refrigerant device is the supercooling heat exchanger.
  8.  前記過冷却熱交換器はプレート式熱交換器である請求項1~請求項7の何れか一項に記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 7, wherein the supercooling heat exchanger is a plate heat exchanger.
  9.  前記プレート式熱交換器の最外面に配置された平面状のサイドプレートに前記発熱体が着脱自在に取り付けられている請求項8記載の冷凍装置。 The refrigeration apparatus according to claim 8, wherein the heating element is detachably attached to a planar side plate disposed on the outermost surface of the plate heat exchanger.
  10.  前記凝縮器と前記過冷却熱交換器との間に液溜めが配置され、
     前記冷媒機器は前記液溜めである請求項2~請求項6の何れか一項に記載の冷凍装置。
    A liquid reservoir is disposed between the condenser and the supercooling heat exchanger,
    The refrigeration apparatus according to any one of claims 2 to 6, wherein the refrigerant device is the liquid reservoir.
  11.  前記凝縮器が配置される室外機を備え、
     前記冷凍装置に備えられた前記凝縮器を除く他の機器が前記室外機とは別に配置される請求項1~請求項10の何れか一項に記載の冷凍装置。
    An outdoor unit in which the condenser is disposed;
    The refrigeration apparatus according to any one of claims 1 to 10, wherein other devices except the condenser provided in the refrigeration apparatus are arranged separately from the outdoor unit.
  12.  前記冷却構造による前記発熱体の冷却に起因して変化する温度を検知する制御用温度センサと、
     前記凝縮器に空気を送風する凝縮器ファンと、
     制御装置とを備え、
     前記制御装置は、前記制御用温度センサにより検知された温度が目標値となるように前記凝縮器ファンを制御する請求項1~請求項11の何れか一項に記載の冷凍装置。
    A temperature sensor for control that detects a temperature that changes due to cooling of the heating element by the cooling structure;
    A condenser fan for blowing air to the condenser;
    A control device,
    The refrigeration apparatus according to any one of claims 1 to 11, wherein the control device controls the condenser fan so that a temperature detected by the control temperature sensor becomes a target value.
  13.  前記制御用温度センサは、前記発熱体の温度を検知する発熱体温度センサ、前記過冷却熱交換器から流出した前記冷媒回路の冷媒の温度を検知する冷媒温度センサ、前記圧縮機から吐出された冷媒の温度を検知する吐出温度センサ、の何れかである請求項12記載の冷凍装置。 The control temperature sensor is discharged from the heating element temperature sensor that detects the temperature of the heating element, the refrigerant temperature sensor that detects the temperature of the refrigerant in the refrigerant circuit that has flowed out of the supercooling heat exchanger, and the compressor. The refrigeration apparatus according to claim 12, wherein the refrigeration apparatus is any one of a discharge temperature sensor that detects a temperature of the refrigerant.
  14.  前記凝縮器に空気を送風する凝縮器ファンと、
     前記発熱体の温度を検知する発熱体温度センサと、
     制御装置とを備え、
     前記制御装置は、前記発熱体温度センサにより検知された温度が予め設定された設定温度を超えて高くなった場合、前記第二減圧装置の開度を大きくするか、又は、前記凝縮器ファンの回転数を大きくする請求項1~請求項11の何れか一項に記載の冷凍装置。
    A condenser fan for blowing air to the condenser;
    A heating element temperature sensor for detecting the temperature of the heating element;
    A control device,
    When the temperature detected by the heating element temperature sensor becomes higher than a preset temperature, the control device increases the opening of the second decompression device or the condenser fan. The refrigeration apparatus according to any one of claims 1 to 11, wherein the rotational speed is increased.
  15.  前記発熱体は、ワイドギャップ半導体を含む請求項1~請求項14の何れか一項に記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 14, wherein the heating element includes a wide gap semiconductor.
PCT/JP2016/085721 2016-12-01 2016-12-01 Refrigeration device WO2018100711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085721 WO2018100711A1 (en) 2016-12-01 2016-12-01 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085721 WO2018100711A1 (en) 2016-12-01 2016-12-01 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2018100711A1 true WO2018100711A1 (en) 2018-06-07

Family

ID=62242849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085721 WO2018100711A1 (en) 2016-12-01 2016-12-01 Refrigeration device

Country Status (1)

Country Link
WO (1) WO2018100711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184077A4 (en) * 2020-07-15 2023-09-13 Mitsubishi Electric Corporation Refrigeration cycle device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650966U (en) * 1979-09-26 1981-05-06
JPH038921Y2 (en) * 1985-02-08 1991-03-06
JPH0634208A (en) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp Cooling device of electric article box of air conditioner
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
WO2013057832A1 (en) * 2011-10-21 2013-04-25 トヨタ自動車株式会社 Cooling device and control method for cooling device
JP2014102050A (en) * 2012-11-21 2014-06-05 Daikin Ind Ltd Refrigeration device
JP2014105943A (en) * 2012-11-28 2014-06-09 Daikin Ind Ltd Air conditioner and relay unit for air conditioner
JP2014126296A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Refrigeration device
JP2014206301A (en) * 2013-04-11 2014-10-30 株式会社日本自動車部品総合研究所 Chiller
WO2016147275A1 (en) * 2015-03-13 2016-09-22 三菱電機株式会社 Freezing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650966U (en) * 1979-09-26 1981-05-06
JPH038921Y2 (en) * 1985-02-08 1991-03-06
JPH0634208A (en) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp Cooling device of electric article box of air conditioner
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
WO2013057832A1 (en) * 2011-10-21 2013-04-25 トヨタ自動車株式会社 Cooling device and control method for cooling device
JP2014102050A (en) * 2012-11-21 2014-06-05 Daikin Ind Ltd Refrigeration device
JP2014105943A (en) * 2012-11-28 2014-06-09 Daikin Ind Ltd Air conditioner and relay unit for air conditioner
JP2014126296A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Refrigeration device
JP2014206301A (en) * 2013-04-11 2014-10-30 株式会社日本自動車部品総合研究所 Chiller
WO2016147275A1 (en) * 2015-03-13 2016-09-22 三菱電機株式会社 Freezing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184077A4 (en) * 2020-07-15 2023-09-13 Mitsubishi Electric Corporation Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
JP2020038054A (en) Heat exchanger having stacked coil sections
ES2287416T3 (en) METHOD FOR INCREASING THE EFFICIENCY OF A STEAM COMPRESSION SYSTEM HEATING THE EVAPORATOR.
JP2006162246A (en) Refrigeration system and an improved transcritical vapour compression cycle
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
JP2010501826A (en) Air conditioner for communication equipment
JP2007278666A (en) Binary refrigerating device
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2005172329A5 (en)
JP5940294B2 (en) Refrigeration equipment
JP2009068728A (en) Cooling apparatus
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
WO2018100711A1 (en) Refrigeration device
CN112230741A (en) Computer CPU cooling device
CN215073552U (en) Compact power device cooling system
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP2014066381A (en) Refrigeration cycle apparatus
WO2016104147A1 (en) Refrigerating or air conditioning device and control method for same
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP5474140B2 (en) Refrigeration equipment
WO2019176053A1 (en) Refrigeration cycle device
JP6400187B2 (en) Refrigeration cycle equipment
US20170045273A1 (en) Cryogenic refrigeration system
JP5796588B2 (en) Open showcase
JP2008121930A (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP